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On the loss of Fisher information in some multi-object

tracking observation models

J. Houssineau∗, A. Jasra† and S. S. Singh‡

Abstract

The concept of Fisher information can be useful even in cases where the probability distri-

butions of interest are not absolutely continuous with respect to the natural reference measure

on the underlying space. Practical examples where this extension is useful are provided in the

context of multi-object tracking statistical models. Upon defining the Fisher information with-

out introducing a reference measure, we provide remarkably concise proofs of the loss of Fisher

information in some widely used multi-object tracking observation models.

1 Introduction

The Fisher information is a fundamental concept in Statistics and Information Theory (Rissanen
1996), e.g. it features in Jeffreys prior (Jeffreys 1946), the Cramér-Rao lower bound (Cramér 1946,
Rao 1992) and in the analysis of the asymptotics of maximum-likelihood estimators (Le Cam
1986, Douc et al. 2004, 2011). Although different generalisations have been proposed, see e.g.
(Lutwak et al. 2005, 2012), the standard formulation of the Fisher information often involves a
parametric family of probability measures which are all absolutely continuous with respect to a
common reference measure in order to define the corresponding probability density functions. This
though can be a restrictive assumption for some statistical models.

Let Θ ⊆ R be a given open set of parameters and let {Pθ}θ∈Θ be a parametric family of probability
measures on a Polish space E equipped with its Borel σ-algebra B(E) and with a reference measure λ.
Most often, E is a subset of Rd for some d > 0 and λ is the Lebesgue measure, although Haar
measures can be considered more generally for locally-compact topological groups. We will consider
the former since the main practical limitation with the usual definition of Fisher information does not
come from the lack of natural reference measure but instead from the irregularity of the probability
distributions of interest. The usual setting is to assume that for all θ ∈ Θ it holds that Pθ is
absolutely continuous with respect to λ, denoted Pθ ≪ λ. In this case, the probability density
function pθ can be defined as the Radon-Nikodym derivative

pθ =
dPθ

dλ

that is, as the function on E defined uniquely up to a λ-null set by

Pθ(A) =

∫

1A(x)pθ(x)λ(dx)

for all A ∈ B(E). In this situation, assuming that pθ is differentiable with respect to θ, the score is
defined as ∂

∂θ
log pθ(x) or indeed

∂
∂θ
pθ(x)/pθ(x). Under the final assumption that the score is square
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integrable, the Fisher information (Lehmann & Casella 1998) is defined as

I(θ) =

∫
( ∂

∂θ
pθ(x)

pθ(x)

)2

pθ(x)λ(dx). (1)

The objective in this article is twofold. For some applications, it is necessary to relax the requirement
that Pθ ≪ λ holds for all θ ∈ Θ, or indeed any θ, and an appropriate definition of I(θ) is needed in
these cases. Upon addressing this issue, our second objective is then to study the Fisher information
of some observation models frequently used in multi-object tracking. Our starting point is the
following generalisation of the score ∂

∂θ
pθ(x)/pθ(x) given in Heidergott & Vázquez-Abad (2008),

dP ′
θ

dPθ

(x), (2)

where P ′
θ is the (yet to be formally defined) derivative of the probability measure Pθ with re-

spect to θ and the ratio in eq. (2) is the Radon-Nikodym derivative of P ′
θ with respect to Pθ.

Heidergott & Vázquez-Abad (2008) introduced this definition of the score in the context of sensi-
tivity analysis for performance measures of Markov chains (Rubinstein & Shapiro 1993). We define
the Fisher information using this expression for the score and then study the loss of information in
the context of some statistical estimation problems arising in Engineering (see section 2.) Indeed, as
shown in proposition 3, when the family Pθ have differentiable densities with respect to the Lebesgue
measure, the Fisher information defined using the score in eq. (2) coincides with eq. (1).

The first problem studied in section 2.1 concerns fitting a parametric model to random vectors
which are observed through a sensor that randomly permutes the components of the vector. This
problem arises in the context of multi-object tracking (Houssineau et al. 2017) where the random
vector corresponds to recorded measurements from distinct objects (e.g. vehicles) being tracked
using a radar. The radar is able to provide (noisy) measurements of the locations of these object
but without knowledge of the association of recorded measurements to the objects themselves. Our
analysis involves studying a parametric model that does not have a common dominating measure and
through the proposed definition of the Fisher information we provide a simple proof that association
uncertainty results in a loss of information. This fact is surprisingly undocumented in the literature
despite the numerous articles in Engineering on statistical inference for these types of models.

Multi-object observation models often also include thinning and clutter. Clutter are spurious
observations, unrelated to the objects being tracked, generated by radar reflections from non-targets.
Thinning is the random deletion of target generated measurements which models the occasional
obscuring of targets by obstacles. The augmented set of thinned and spurious observations can
be modelled as a spatial point process and section 2.2 concerns fitting a parametric model to a
spatial point process that is observed under thinning and superposition. Like random permutation,
thinning and superposition results in a loss of information, which is easily shown using the Fisher
information defined via eq. (2) and its associated properties. These properties are invoked in the
proofs in section 2 but are formally stated and proven in the final section, section 3.

2 Motivating examples

2.1 Random permutation of a random vector

Consider a parametric probability measure Pθ, θ ∈ Θ ⊆ R. For each θ, Pθ is the law of a random vec-
tor (X1, . . . , Xn) where each Xi are in R

d, i.e. Pθ is a probability measure on (Rdn,B(Rdn)). Assume
n, d ∈ N are fixed. Let (X ′

1, . . . , X
′
n) = (Xς(1), . . . , Xς(n)), a random permutation of (X1, . . . , Xn),

where ς is a random variable with values in the set Sym(n) of permutations of {1, . . . , n}. Through-
out this section, x1:n denotes the vector (x1, . . . , xn).

In multi-object tracking, eachXi corresponds to a measurement of a distinct object being tracked;
there are n of them. The sensor acquiring (X1, . . . , Xn), e.g. a radar, returns the vector but with the
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association of observations to the n targets lost, which can be modelled as (X ′
1, . . . , X

′
n). Filtering

for such models has spawned an entire family of algorithms. e.g. see Blackman (1986), Bar-Shalom
(1987).

The following theorem shows that the Fisher information I
′(θ) of the law of X ′

1:n, i.e. after
the random permutation, is smaller than the Fisher information I(θ) of Pθ. The concept of weak-
differentiability will be defined formally in the next section.

Theorem 1. Assume the family {Pθ}θ∈Θ is weakly-differentiable. Then any random permutation

of X1:n that is independent of θ incurs a loss of information, that is I
′(θ) ≤ I(θ).

Proof. Let π be the probability distribution of ς on Sym(n), then a version of the conditional law
of X ′

1:n given X1:n is

Q(B1 × · · · ×Bn | X1:n) =
∑

σ∈Sym(n)

π(σ)

n
∏

i=1

δXσ(i)
(Bi),

for any B1 × · · · × Bn ∈ B(Rdn). The fact that Q does not depend on θ follows from the indepen-
dence of the random permutation ς from the parameter. From lemma 1 and corollary 1 the score
corresponding to the extended model (X1:n, X

′
1:n) can then be expressed as

d(Pθ ×Q)′

dPθ ×Q
(x1:n, x

′
1:n) =

dP ′
θ ×Q

dPθ ×Q
(x1:n, x

′
1:n) (3a)

=
dP ′

θ

dPθ

(x1:n) (3b)

for all x1:n and all x′
1:n in R

dn. Note that (X1:n, X
′
1:n) is not absolutely continuous with respect to

the Lebesgue measure on R
2dn even when Pθ has a density with respect to the Lebesgue measure.

Using the extension of the Fisher identity (see proposition 4), it follows that

dP̂ ′
θ

dP̂θ

(X ′
1:n) = Eθ

(

d(Pθ ×Q)′

dPθ ×Q
(X1:n, X

′
1:n)

∣

∣

∣

∣

X ′
1:n

)

(4a)

= Eθ

(

dP ′
θ

dPθ

(X1:n)

∣

∣

∣

∣

X ′
1:n

)

almost surely, (4b)

with P̂θ the marginal law of X ′
1:n. Applying Jensen’s inequality to the function y 7→ y2, we conclude

that

I
′(θ)

.
= Eθ

(

(

dP̂ ′
θ

dP̂θ

(X ′
1:n)

)2
)

≤ Eθ

(

(

dP ′
θ

dPθ

(X1:n)

)2
)

= I(θ),

which concludes the proof of the theorem.

Remark 1. A different proof of this result has been proposed in Houssineau et al. (2017) using the
standard formulation of Fisher information. However the proof presented here is remarkably concise
and less tedious thanks to the possibility of defining in eq. (3) the score of the extended parametric
model (X1:n, X

′
1:n) which does not have a common dominating measure. The final result then follows

from the identity in eq. (4) and Jensen’s inequality.

It is not possible to establish a strict information loss in general, e.g. if Pθ is symmetrical or
if θ is related to some summary statistics that is not affected by random permutation. Additional
assumption that guarantee a strict loss are given in Houssineau et al. (2017).
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2.2 Thinning and superposition of point processes

Spatial point processes are important in numerous applications (Baddeley et al. 2006), e.g. Forestry
(Stoyan & Penttinen 2000) and Epidemiology (Elliot et al. 2000). In addition, point process models
are widely used in formulating multi-object tracking problems (Mahler 2007) as they naturally ac-
count for an unknown number of objects which are observed indirectly without association and under
thinning and superposition. We adopt the approach of the previous section but now characterise
the Fisher information of a family of point process parametrized by θ ∈ Θ observed under thinning
and superposition. (Note the loss of Fisher information in the presence of association uncertainty
has already been established in section 2.1.)

Let Φ denote a point process on R
d with parametrised distribution Pθ on E =

⋃

n≥0 R
dn, with R

0

denotes an arbitrary isolated point representing the absence of points in the process. A realisation
from Pθ is a random vector (x1, . . . , xn) where both the number of points n and their locations xi ∈
R

d are random. However, point-process distributions on R
d are not always absolutely continuous

with respect to the corresponding Lebesgue measure. In particular, the distribution of a non-simple
point process, which is a point process such that there is a positive probability of two or more points
of its realisation, say xi and xj of (x1, . . . , xn), being identical; see Schoenberg (2006) for a discussion
about non-simple point processes and examples, e.g. by duplicating the points in a realisation as
discussed further below. Assuming that the family {Pθ}θ∈Θ is weakly-differentiable, the Fisher
information IΦ(θ) corresponding to the parametrised distribution of Φ can then be expressed as

IΦ(θ) =
∑

n≥0

πθ(n)

∫
(

dP ′
θ

dPθ

(x1, . . . , xn)

)2

Pθ(d(x1, . . . , xn) | n), (5)

where πθ is a probability mass function on N0 characterising the number of points N in Φ and where
Pθ(· | n) is the conditional distribution of the location of the points in Φ given that the number of
points is n (which is supported by R

dn). A straightforward example is when Φ is an independently
identically distributed point process. Its distribution factorises as

Pθ(B1 × · · · ×Bn) = πθ(n)
n
∏

i=1

µθ(Bi)

for any B1, . . . , Bn ∈ B(Rd) and any n ∈ N0, where µθ is a probability measure on R
d. Using the

product rule of corollary 1 the expression of the Fisher information simplifies in the independently
identically distributed case to

IΦ(θ) = IN (θ) +
∑

n≥0

n2πθ(n)

∫
(

dµ′
θ

dµθ

(x)

)2

µθ(dx)

= IN (θ) + E(N2)IX(θ) (6)

where X is a random variables with distribution µθ.

Example 1. A trivial construction of a non-simple point process can be obtained from an inde-
pendently identically distributed point process Φ by duplicating its realisation. The resulting point
process, denoted Φ2, has each point of Φ present twice. The Fisher information of Φ2 can be ex-
pressed with the proposed formulation in spite of the lack of absolute continuity with respect to to
the reference measure on E. Indeed, the law P+

θ of the point process Φ2 is

P+
θ (B1 × · · · ×B2n) = πθ(n)

∑

σ∈Sym(2n)

n
∏

i=1

µ̄θ(Bσ(2i−1) ×Bσ(2i))

and P+
θ (Rd(2n+1)) = 0, where µ̄θ a probability measure supported by the diagonal of Rd × R

d such
that µ̄θ(B×B′) = µθ(B ∩B′) for any B,B′ ∈ B(Rd). One can verify that µ̄′

θ(B×B′) = µ′
θ(B ∩B′)
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so that

dµ̄′
θ

dµ̄θ

(x, x′) =







dµ′
θ

dµθ

(x) if x = x′

0 otherwise,

from which it follows that IΦ2(θ) = IΦ(θ), that is, duplicating each point in the point process Φ
does not change the Fisher information. In the context of parameter inference, this is in agreement
with the natural approach of removing the duplicate points before estimating θ.

Returning now to a general point process Φ which is not necessarily independently identically
distributed. For each α ∈ [0, 1], let Φα denote the thinned version of Φ where each point of its
realisation is retained independently of the other points with probability α. In multi-object track-
ing, an independently thinned point processes arises because a radar can fail to return a credible
observation for an object in its surveillance region.

Theorem 2. Let Φ be a point process characterised by a weakly-differentiable family of probability

distributions parametrised by Θ, then IΦ(θ) ≥ IΦα
(θ) holds for any α ∈ [0, 1]. If IΦ(θ) > 0 then

the inequality is strict when α < 1.

Proof. The probability distribution Qα of the thinned point process Φα given Φ can be expressed as

Qα(B1 × · · · ×Bk | x1, . . . , xn) =
∑

I⊆{1,...,n}:|I|=k

αk(1− α)n−k
∏

i∈I

δxi

(

Bs(i)

)

for any B1, . . . , Bk ∈ B(Rd), any x1, . . . , xn ∈ R
d and any integers n, k such that k ≤ n, with

s(i) = |{1, . . . , i} ∩ I| so that i is the s(i)th element of I. We obtain from the Fisher identity that
the score associated with the point process Φα with law Pθ,α verifies

dP ′
θ,α

dPθ,α

(x1, . . . , xk) = E

(

dP ′
θ ×Qα

dPθ ×Qα

(Φ,Φα)

∣

∣

∣

∣

Φα = (x1, . . . , xk)

)

= E

(

dP ′
θ

dPθ

(Φ)

∣

∣

∣

∣

Φα = (x1, . . . , xk)

)

,

where the use of Φ as an argument of point-process distributions is possible because of the irrelevance
of the points’ ordering. The proof of IΦ(θ) ≥ IΦα

(θ) can now be concluded using the decomposition
in (5) and invoking Jensen’s inequality as in theorem 1. The proof of the strict inequality is deferred
to the Appendix.

The decrease of the Fisher information demonstrated in theorem 2 can be quantified in the special
case of an independently identically distributed point process as follows.

Proposition 1. Let Φ be an independently identically distributed point process characterised by

a weakly-differentiable family of probability distributions parametrised by θ ∈ Θ and assume its

cardinality distribution πθ = {πθ(n) : n ∈ N0} does not depend on θ, then
(

IΦα
(θ)− IΦ

α′
(θ)
)

/IX(θ) =
(

(α− α′)− (α2 − α′2))E(N) + (α2 − α′2)E(N2) ≥ 0

for any 0 ≤ α′ ≤ α ≤ 1.

Proof. The parameter θ of the distribution πθ is omitted in this proof as a consequence of the
assumption of independence. Additionally, thinning does not affect the common distribution of the
points in Φ so that, from (6), both point processes have IN (θ) = 0 and their IX(θ) terms are equal.
Thus, denoting Nα the random number of points in Φα, the objective is to show that E(N2

α) is
greater than E(N2

α′). It holds that the distribution πα of Nα verifies

πα(n) =
∑

k≥n

π(k)

(

k

n

)

αn(1 − α)k−n,
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for any n ≥ 0, so that

E(N2
α) =

∑

k≥0

π(k)

k
∑

n=0

n2

(

k

n

)

αn(1− α)k−n.

The second sum in the right hand side can be recognised to be the second moment of Bernoulli
random variable so that

E(N2
α) =

∑

k≥n

π(k)kα((k − 1)α+ 1)

= (α − α2)E(N) + α2
E(N2),

from which the result follows.

Proposition 1 sheds light on the source of the information loss when applying independent thin-
ning to a point process: the quantity (IΦα

(θ) − IΦ
α′
(θ))/IX(θ), which can be seen as a relative

loss of Fisher information, is shown to be related to the first and second moments of the random
variable associated with the number of points in the process. This is because the operation of thin-
ning applied to the considered type of independently identically distributed point process incurs a
loss of information only through the decrease of the number of points.

The focus is now on how information evolves when the points of Φ are augmented with that
of another point process which has a distribution not depending on θ. In the context of multi-
object observation models, the point process being augmented to Φ are spurious observations called
clutter which is unrelated to the objects being tracked, e.g. generated by radar reflections from non-
targets. This, combined with the fact that the number of clutter points received is a priori unknown,
shows that treating clutter as a θ-independent point process is appropriate. Superposition is less
straightforward than thinning since the resulting augmented point process will have an altered
spatial distribution and cardinality distribution. However, the operation of superposition can be
expressed as a Markov kernel that transforms Φ to a new point process Φ′ and this Markov kernel is
independent of θ. Thus the same approach as in theorem 2 can be applied to show that superposition
(in general) also leads to a loss of Fisher information. In the following proposition, Φ+ Φ̃ stands for
the point process resulting from the superposition of Φ with another point process Φ̃.

Proposition 2. Let Φ be a point process characterised by a weakly-differentiable family of probability

distributions parametrised by Θ and let Φ̃ be another point process whose conditional distribution

given Φ does not depend on θ. Then IΦ(θ) ≥ IΦ+Φ̃(θ).

Proof. Let P̃ (· | Φ) be the conditional law of Φ̃ given Φ, then the law of the point process Φ + Φ̃
given a realisation (x1, . . . , xk) of Φ is

Q(B1 × · · · ×Bn | x1 . . . , xk) =

1

n!

∑

σ∈Sym(n)

1Bσ(1)×···×Bσ(k)
(x1, . . . , xk)P̃ (Bσ(k+1) × · · · ×Bσ(n) | x1, . . . , xk)

for any B1, . . . , Bn ∈ B(Rd). The desired can be now established by proceeding as in the proof of
theorem 2; details are omitted.

3 Fisher information via the weak derivative

To start with, the derivative P ′
θ has to be be defined formally. For this purpose, we consider the

following weak form of measure-valued differentiation (Pflug 1992), where the notation µ(f) is used
to denote the integral

∫

f(x)µ(dx). Henceforth, the set E will be assumed to be Polish with B(E)
its Borel σ-algebra.
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Definition 1. Let {µθ}θ∈Θ be a parametric family of finite measures on (E,B(E)), then θ → µθ is
said to be weakly differentiable at θ ∈ Θ if there exists a signed finite measure µ′

θ on (E,B(E)) such
that

lim
ǫ→0

1

ǫ

(

µθ+ǫ(f)− µθ(f)
)

= µ′
θ(f)

holds for all bounded continuous functions f on E.

Although the signed measure µ′
θ is only characterised by the mass is gives to bounded continuous

functions, one can show that this characterisation is sufficient to define µ′
θ on the whole Borel σ-

algebra B(E), see lemma 2 in the Appendix.
Assuming that θ 7→ Pθ has a derivative at θ ∈ Θ, that P ′

θ is absolutely continuous with respect
to Pθ, and that the square of the score is integrable, the Fisher information is defined to be

I(θ) =

∫
(

dP ′
θ

dPθ

(x)

)2

Pθ(dx).

Simple cases where this more versatile definition of Fisher information is useful can be given
using Dirac measures on the real line as in the following examples.

Example 2. Consider Θ = [0, 1], Pθ = θδ−x + (1 − θ)δx for some given x ∈ E = R. Indeed, in this
case, Pθ is not absolutely continuous with respect to the natural reference measure on the real line,
the Lebesgue measure λ. However,

P ′
θ = δ−x − δx,

which is a signed measure and
dP ′

θ

dPθ

=
1

θ
1{−x} −

1

1− θ
1{x},

where the Radon-Nikodym derivative is assumed without loss of generality to be equal to 0 every-
where it is not uniquely defined. It follows from basic calculations that

I(θ) =
1

θ(1− θ)
.

This unsurprisingly is the Fisher information of a Bernoulli experiment with probability of success
equal to θ. Example 2 is meant to be an illustrative calculation executing the definition of I(θ):
indeed the same result can be recovered by simply restricting the domain of definition of Pθ to the
set {−x, x} for all θ ∈ Θ. The following result illustrates a usual setting one would expect both
definitions of the Fisher information to coincide.

Proposition 3. For some dominating measure λ, assume Pθ ≪ λ for all θ ∈ Θ and let pθ denote

its density. For each x, assume pθ(x) is differentiable w.r.t. θ and

∣

∣

∣

∂

∂θ
pθ(x)

∣

∣

∣
≤ g(x) (9)

for all θ ∈ Θ and λ-almost all x ∈ E where g is some integrable function on E. Then I(θ) = I(θ).

Remark 2. The assumption of eq. (9) is often invoked in the analysis of maximum likelihood estima-
tion (Douc et al. 2004, Dean et al. 2014) to interchange the order of integration and differentiation,
and thus not unique to us. An alternative to assumption in eq. (9) is to assume that the mapping

θ →
∫

∣

∣

∣

∣

∂

∂θ
pθ(x)

∣

∣

∣

∣

λ(dx) < ∞ is a continuous function of θ. This will imply

lim
ǫ→0

∫
∣

∣

∣

∣

pθ+ǫ − pθ
ǫ

−
∂

∂θ
pθ

∣

∣

∣

∣

λ(dx) = 0 (10)

and thus preserving the conclusion of proposition 3. The proof of eq. (10) follows similarly to that
of (Van der Vaart 1998, lemma 7.6).
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Proof. Recalling that the probability density function pθ of Pθ with respect to λ is defined as

Pθ(A) =

∫

1A(x)pθ(x)λ(dx)

for all A ∈ B(E), it follows from Leibniz’s rule that

P ′
θ(f) = lim

ǫ→∞

1

ǫ

∫

f(x)
(

pθ+ǫ(x) − pθ(x)
)

λ(dx),

=

∫

f(x)
∂

∂θ
pθ(x)λ(dx),

for any bounded continuous mappings f on E, and we conclude that ∂
∂θ
pθ is the Radon-Nikodym

derivative of P ′
θ with respect to λ. Rewriting the Fisher information I(θ) as

I(θ) =

∫

(

dP ′

θ

dλ (x)

pθ(x)

)2

Pθ(dx) =

∫
( ∂

∂θ
pθ(x)

pθ(x)

)2

pθ(x)λ(dx) = I(θ).

concludes the proof of the proposition.

The proposed expression of Fisher information can be easily extended to cases where the pa-
rameter θ is vector-valued: each component of the Fisher information matrix can be simply defined
based on the partial version of the weak differentiation introduced in definition 1.

Another Polish space F is now considered in order to study the Fisher information for probability
measures on product spaces. A function Q on E×B(F ) is said to be a signed kernel from E to F if
Q(x, ·) is a signed finite measure for all x ∈ E and if Q(·, B) is measurable for all B ∈ B(F ) (with R

equipped with the Borel σ-algebra, which will be considered by default). If, in particular, Q(x, ·) is a
probability measure for all x ∈ E then Q is said to be a Markov kernel. If P is a probability measure
on E then we denote by P ×Q the probability measure on (E × F,B(E)⊗ B(F )) characterised by
P × Q(A × B) =

∫

1A(x)Q(x,B)P (dx) for all A × B in the product σ-algebra B(E) ⊗ B(F ). A
family {Qθ}θ∈Θ of Markov kernels from E to F is said to be weakly-differentiable if the measure
Qθ(x, ·) is weakly-differentiable for all x ∈ E and for all θ ∈ Θ; it is additionally said to be bounded

weakly-differentiable if

sup
g

∣

∣

∣

∣

∫

g(y)Q′
θ(x, dy)

∣

∣

∣

∣

< ∞,

where the supremum is taken over all bounded continuous functions. If the latter condition is
satisfied, then Q′

θ is itself a signed kernel (see (Heidergott et al. 2008, theorem 1)). Some technical
results are first required.

A formal approach to the weak differentiability of product measures has been considered in
Heidergott & Leahu (2010) and we consider here an easily-proved corollary of (Heidergott & Leahu
2010, theorem 6.1).

Corollary 1. Let {Pθ}θ∈Θ be a weakly-differentiable parametric family of probability measures on

E and let {Qθ}θ∈Θ be a bounded weakly-differentiable parametric family of Markov kernels from E
to F , then

(Pθ ×Qθ)
′ = P ′

θ ×Qθ + Pθ ×Q′
θ.

Corollary 1 was used at several occasions in the examples of section 2 for the special case where
the kernel does not depend on θ, that is (Pθ ×Q)′ = P ′

θ ×Q. In these examples, the key argument
was the simplification of terms that appear both in the numerator and denominator of the score
function, using the following lemma.

Lemma 1. Let µ and τ be finite signed measures on (E,B(E)) such that µ ≪ τ and let ν and η be

signed kernels from E to F such that ν(x, ·) ≪ η(x, ·) for all x ∈ E, then

dµ× ν

dµ× η
(x, y) =

dν(x, ·)

dη(x, ·)
(y),

dτ × η

dµ× η
(x, y) =

dτ

dµ
(x)
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for (µ× η)-almost every (x, y) ∈ E × F .

Proof. Denoting f the Radon-Nikodym derivative of µ× ν by µ× η, it holds by definition that

µ× ν(A×B) =

∫

1A×B(x, y)f(x, y)µ× η(d(x, y))

for all A×B ∈ B(E)⊗ B(F ), so that

∫

1A(x)ν(x,B)µ(dx) =

∫

1A(x)

∫

1B(y)f(x, y)η(x, dy)µ(dx)

which implies that, for all B ∈ B(F ), it holds that

ν(x,B) =

∫

1B(y)f(x, y)η(x, dy) (12)

for µ-almost every x ∈ E. Since F is a Polish space, there exists a countable collection G of subsets
of F that is a π-system and that is generating B(F ). Equation (12) implies that for all B ∈ G, there
exists a subset EB of E with full µ-measure such that ν(x,B) =

∫

1B(y)f(x, y)η(x, dy) is true for
all x ∈ EB . Considering the countable intersection EG =

⋂

B∈G EB , it follows that the statement of
interest is true for all x ∈ EG and all B ∈ G. To prove the equality of the measures defined on each
side of eq. (12) it is sufficient to prove their equality on a π-system as demonstrated. We conclude
that f(x, ·) is also the Radon-Nikodym derivative of ν(x, ·) by η(x, ·) for µ-almost every x, which
proves the first result. The second result can be proved in a similar but simpler way.

Now assuming that the interest is in the marginal law P̂θ of Pθ × Qθ on (F,B(F )), it is often
easier to express P̂θ as

P̂θ(B) = PθQθ(B)
.
=

∫

1B(y)Qθ(x, dy)Pθ(dx),

for any B ∈ B(F ). In this case, the score can be computed as in the following proposition.

Proposition 4 (Fisher identity). Let P̂θ be the law of a random variable Y from (Ω,Σ,P) to

(F,B(F )) defined as the marginal of the law Pθ × Qθ of (X,Y ) on (E × F,B(E) ⊗ B(F )), and let

{Pθ}θ∈Θ and {Qθ}θ∈Θ be respectively weakly-differentiable and bounded weakly-differentiable, then

dP̂ ′
θ

dP̂θ

(Y ) = Eθ

(

d(Pθ ×Qθ)
′

dPθ ×Qθ

(X,Y )

∣

∣

∣

∣

Y

)

almost surely (13)

with Eθ(· | Y ) the conditional expectation for a given θ ∈ Θ.

Proof. For any θ ∈ Θ, the marginal P̂θ is simply the probability measure B 7→ Pθ ×Qθ(E ×B), so
that the family {P̂θ}θ∈Θ inherits weak-differentiability from {Pθ}θ∈Θ and {Qθ}θ∈Θ. The derivative
P̂ ′
θ can then be characterised for all B ∈ B(E) by

P̂ ′
θ(B) = (Pθ ×Qθ)

′(E ×B)

=

∫

d(Pθ ×Qθ)
′

dPθ ×Qθ

(x, y)1E×B(x, y)Pθ ×Qθ(d(x, y))

=

∫

Eθ

(

d(Pθ ×Qθ)
′

dPθ ×Qθ

(X,Y )

∣

∣

∣

∣

Y = y

)

PθQθ(dy)

Recalling that P̂θ = PθQθ concludes the proof of the proposition.
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The Fisher identity is particularly important when the interest is in the Fisher information with
respect to the successive observations of a state space model (Douc et al. 2004, Dean et al. 2014),
in which case it is defined as the limit

I(θ) = lim
n→∞

1

n

∫
(

dP̄ ′
θ

dP̄θ

(y1, . . . , yn)

)2

P̄θ(d(y1, . . . , yn)),

where n refers to the time horizon and where P̄θ is the stationary distribution of the observation
process.

The results of corollary 1 and lemma 1 also lead to the following extension of a known property
of Fisher information, involving the Fisher information IY |X(θ) of a random variable Y calculated
with respect to the conditional law of Y given another random variable X , defined as

IY |X(θ) =

∫

IY (θ;x)P (dx),

where P is the law of X and where

x 7→ IY (θ;x) =

∫
(

dQ′
θ(x, ·)

dQθ(x, ·)
(y)

)2

Qθ(x, dy)

is assumed to be a measurable mapping, with Qθ a Markov kernel identified with the conditional
law of Y given X . Note that making the law of X dependent on the parameter θ does not induce
any difficulties.

Proposition 5. Let X and Y be random variables on a common probability space (Ω,Σ,P) whose

laws are parametrised by θ ∈ Θ, let the family of laws of X be weakly-differentiable, and let the family

of laws of Y given X be bounded and weakly-differentiable, then the Fisher information IX,Y (θ)
corresponding to the law of (X,Y ) can be expressed as

IX,Y (θ) = IY |X(θ) + IX(θ)

where IY |X(θ) and IX(θ) correspond to the random variables Y |X and X respectively.

Proof. Let {Pθ}θ∈Θ be the (weakly-differentiable) parametric family of laws of X and let {Qθ}θ∈Θ

be the (bounded weakly-differentiable) parametric family of conditional laws of Y given X , then

IX,Y (θ) =

∫
(

d(Pθ ×Qθ)
′

dPθ ×Qθ

(x, y)

)2

Pθ ×Qθ(d(x, y)).

Using corollary 1 and lemma 1, it follows that

IX,Y (θ) =

∫
(

dP ′
θ

dPθ

(x) +
dQ′

θ(x, ·)

dQθ(x, ·)
(y)

)2

Pθ ×Qθ(d(x, y))

which concludes the proof of the proposition.

A straightforward corollary of proposition 5 can be stated as follows: if X and Y are independent
random variables, then IX,Y (θ) = IX(θ) + IY (θ). Note that proposition 5 could also be used to
prove theorem 1.
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Appendix

Proofs and technical details

Proof of strict inequality in theorem 2. Jensen’s inequality is strict unless it is applied to a non-
strictly-convex function or to a degenerate random variable. In the context of theorem 2, the
involved function is y 7→ y2 so that we only have to verify that the random variable

Sθ(Φ) =
dP ′

θ

dPθ

(Φ)

is not σ(Φα)-measurable:

1. We can rule out Sθ(Φ) = c (for some constant c) almost surely as follows: since E(Sθ(Φ)) = 0,
it follows that c = 0. But this violates the assumption that IΦ(θ) > 0.

2. Since Sθ(Φ) is not a constant almost surely, there exists a set A ∈ B(R) such that 1 >
E
(

IA(Sθ(Φ))
)

> 0. Then

E
(

IA (Sθ(Φ)) IR0(Φα)
)

= E
(

IA(Sθ(Φ))E(IR0 (Φα) | Φ)
)

(15a)

= E
(

IA(Sθ(Φ))(1 − α)|Φ|
)

> 0 (15b)

since (1− α)|Φ| > 0 almost surely where |Φ| denotes the number of points in Φ and where IR0(Φα)
is the indicator of the event |Φα| = 0. We can similarly show that eq. (15) holds with A replaced
with Ac. Thus

E
(

IR0(Φα)
)

> E
(

IA(Sθ(Φ))IR0(Φα)
)

> 0

which violates the following fact: Let X and Y be integrable random variables, assume Y = c is an
atom of σ(Y ) and Y = c has positive probability. If X is σ(Y ) measurable then E(IA(X)I{c}(Y )) is
either 0 or equal to E(I{c}(Y )).

Lemma 2. If µ be a finite signed measure on a metric space E characterised by the value of µ(f)
for all bounded continuous mappings f on E. Then µ is uniquely defined on B(E).

Proof. Let τ be another finite signed measure that is characterised by τ(f) = µ(f) for all bounded
continuous functions f on E. We first prove that µ and τ agree on the closed subsets of E. Let
ρ(x, y) be the metric on E and let ρ(x,C) denote the usual distance between a point x and set C.
Let fǫ be the continuous function fǫ(x) = (1 − ρ(x,C)/ǫ)+ for some some closed set C and some
ǫ > 0 where g+ denotes the positive part of a function g. Note that fǫ(x) is a continuous function
that approximates 1C(x) and

1C(x) ≤ fǫ(x) ≤ 1Cǫ(x)

with Cǫ the ǫ-neighbourhood of C, so that η(fǫ) tends to η(C) when ǫ → 0 for any finite signed
measure η. It follows from that relation τ(fǫ) = µ(fǫ) that τ(C) = µ(C). This result can be
extended to µ = τ as follows. Noticing that the set G = {B ∈ B(E) : µ(B) = τ(B)} is a λ-
system that contains the closed sets and that the set of closed sets are themselves a π-system (which
generates B(E)), we conclude by the π-λ theorem that B(E) is contained in G. Thus B(E) = G and
therefore µ(B) = τ(B) for all B ∈ B(E).
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