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NOTES ON THE MOTIVIC MCKAY CORRESPONDENCE FOR

THE GROUP SCHEME αp

FABIO TONINI AND TAKEHIKO YASUDA

Abstract. We formulate a conjecture on the motivic McKay correspondence
for the group scheme αp in characteristic p > 0 and give a few evidences.
The conjecture especially claims that there would be a close relation between
quotient varieties by αp and ones by the cyclic group of order p.

1. Introduction

The motivic McKay correspondence was established by Batyrev [1] and Denef–Loeser
[3] in characteristic zero. A version of this theory says that given a linear action
of a finite group G on an affine space Adk without pseudo-reflection, we can express
the motivic stringy invariant Mst(A

d
k/G) of the quotient variety Adk/G as a sum of

the form
∑

g∈Conj(G) L
a(g), where Conj(G) is the set of conjugacy classes of G and

a is a function on Conj(G) with values in 1
♯GZ. This can be generalized to the tame

case in characteristic p > 0 (the case p ∤ ♯G) without essential change (see [10]).
After studying the case of the cyclic group of order p, the second author formu-
lated a conjectural generalization to the wild case (the case p | ♯G) (see [11, 9]). In
this conjecture, the sum

∑

g∈Conj(G) L
a(g) is replaced with an integral of the form

∫

∆G
La(g), where ∆G is the moduli space of G-torsors over the punctured formal

disk Spec k((t)) and a is a 1
♯GZ-valued function on it.

The aim of this paper is to discuss the case where G is the group scheme αp
rather than a genuine finite group, as a first step towards further generalization to
arbitrary finite group schemes. We will formulate a conjectural expression (Conjec-
ture 4.3) for Mst(A

d
k/G) again of the form

∫

∆G
La(g) under the condition Dd ≥ 2

(for the definition of Dd, see Section 4). But here we have a new phenomenon: the
moduli space ∆G in this case is an ind-pro-limit of finite dimensional spaces rather
than an ind-limit as in the case of genuine finite groups. Therefore we need to define
a motivic measure on ∆G in terms of truncation maps as we do for the arc space.
Our conjecture also indicates a close relation between the case of G = αp and the
case of the cyclic group H := Z/pZ of order p. There exists a one-to-one correspon-
dence between G-representations and H-representations. The conjecture says that
if Adk/G and Adk/H are quotient varieties associated to G and H-representations
corresponding to each other, then they have equal motivic stringy invariant. We
will give a few evidences for this conjecture. Note that Hiroyuki Ito [6] earlier ob-
served a similarity between surface quotient singularities by (non-linear) G-actions
and H-actions. This was an inspiration for our conjecture.

The paper is organized as follows. In Section 2, we describe the moduli spaces
∆G and ∆H . In Section 3, we define motivic measures on these spaces. In Section
4, we formulate our main conjecture. In Section 5, we give two examples supporting
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the equality of stringy invariants of Adk/G and Adk/H . In Section 6, we discuss the
case where G acts on A2

k, that is, the case Dd = 1, as a toy model and show the
change of variables formula for the quotient map A2

k → A2
k/G. This would be

viewed as a supporting evidence for our conjecture that Mst(A
d
k/G) is expressed as

∫

∆G
La(g) when Dd ≥ 2. In Appendix, we briefly recall the representation theory

of αp in terms of relations to nilpotent endomorphisms and derivations.
In what follows, we work over an algebraically closed field k of characteristic

p > 0. We always denote by G the group scheme αp and by H the cyclic group of
order p. We write the coordinate ring of αp as k[ǫ] = k[x]/(xp) with ǫ the image of
x in this quotient ring.

The authors would like to thank Hiroyuki Ito for helpful discussion. The sec-
ond author was supported by JSPS KAKENHI Grant Numbers JP15K17510 and
JP16H06337.

2. Moduli of G and H-torsors over the punctured formal disk.

The group scheme G fits into the exact sequence

0 → G→ Ga
F
−→ Ga → 0,

where F is the Frobenius map. Therefore the G-torsors over Spec k((t)) are param-
eterized by k((t))/F (k((t))). Let

∆G :=







∑

i∈Z; p∤i

cit
i | ci ∈ k






⊂ k((t)),

the set of Laurent power series having only terms of degree prime to p. The inclusion
map ∆G → k((t)) induces a bijection ∆G → k((t))/F (k((t))). Thus we regard ∆G

as the “moduli space” of G-torsors over Spec k((t)). The G-torsor corresponding to
a Laurent power series f ∈ ∆G is Spec k((t))[z]/(zp − f) and the action of αp is
defined so that the associated coaction is the k((t))-algebra homomorphism

k((t))[z]

(zp − f)
→

k((t))[z]

(zp − f)
[ǫ], z 7→ z + ǫ.

We can make a similar construction for H-torsors. Let ℘ : k((t)) → k((t)) be the
Artin-Schreier map given by ℘(f) = fp − f and let

∆H :=







∑

i∈Z; i<0, p∤i

cit
i | ci ∈ k






⊂ k((t)),

the set of Laurent polynomials having only terms of negative degree prime to p.
Then the H-torsors are parameterized by k((t))/℘(k((t))) and the composite map
∆H →֒ k((t)) ։ k((t))/℘(k((t))) is bijective. Thus we regard ∆H as the “moduli
space” of H-torsors over Spec k((t)). The H-torsor corresponding to f ∈ ∆H is
Spec k((t))[z]/(zp − z − f) where a generator of H acts by z 7→ z + 1.

Remark 2.1. Constructing the true moduli space (stack) which represents a relevant
moduli functor is a more difficult problem. However, the above ad hoc version
would be sufficient for our application to motivic integration, since we work over
an algebraically closed field. When k is algebraically closed, the coarse moduli
space for ∆H was constructed by Harbater [4]. The fine moduli stack for ∆H over
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an arbitrary field of characteristic p > 0 was constructed by the authors [7]. The
moduli space ∆G has not been seriously studied yet, as far as the authors know.

3. Motivic measures on ∆G and ∆H

For a positive integer j prime to p, the set ∆≥−j
H := {f ∈ ∆H | ord(f) ≥ −j}

is the affine space A
j−⌊j/p⌋
k . Thus ∆H is the union of affine spaces ∆≥−j

H . We say

that a subset C of ∆H is constructible if C is a constructible subset of some ∆≥−j
H .

We define the motivic measure µH on ∆H by µH(C) := [C] say in M̂′, a version of
the complete Grothendieck ring of varieties used in [11]. (In this note, we do not
discuss what additional relation would be really necessary to put on the complete
Grothendieck ring for the McKay correspondence in the case of the group scheme
G. This should be clarified in a future study.)

For n ∈ Z, let

τn : ∆G → ∆G,n :=
∆G

∆G ∩ tnpk[[t]]

be the quotient map, which truncates the terms of degrees ≥ np. We often identify
∆G,0 with ∆H through the natural bijection ∆H →֒ ∆G → ∆G,0 and τ0 with a map

∆G → ∆H . When n ≥ 0, ∆G,n is the product of ∆H and an affine space A
n(p−1)
k .

We say that a subset C ⊂ ∆G is a cylinder of level n if τn(C) is a constructible
subset of ∆G,n and C = τ−1

n (τn(C)). For a cylinder C ⊂ ∆G of level n, we define
its measure as

µG(C) := [τn(C)]L
−n(p−1) ∈ M̂′.

Since the natural map ∆G,n+1 → ∆G,n is the trivial Ap−1
k -fibration, the element

[τn(C)]L
−n(p−1) is independent of the choice of a sufficiently large n. For instance,

∆≥0
G := {f ∈ ∆G | ord(f)} is a cylinder of level zero such that τ0(∆

≥0
G ) is a

singleton. Note that this set contains 0 ∈ k((t)), according to the convention

ord(0) = +∞. The measure of ∆≥0
G is

µG(∆
≥0
G ) = [1 pt] = 1.

4. A conjecture on the McKay correspondence for linear G-actions

To a sequence of integers, d = (d1, d2, . . . , dl) such that 1 ≤ dλ ≤ p and dλ ≥
dλ+1, we associate the linear representationW ofH over k that have dλ-dimensional
indecomposables as direct summands. Namely a generator of H acts on the vector

space W = kd, d := |d| =
∑l

λ=1 dλ by a matrix whose Jordan normal form has
Jordan blocks of sizes dλ with diagonal entries 1. The map d 7→ W gives a one-
to-one correspondence between sequences d of integers as above and isomorphism
classes of H-representions over k.

Similarly, to a sequence d as above, we associate also the linear representation
V of G over k that have dλ-dimensional indecomposables as direct summands. If ρ
denotes the nilpotent linear endomorphism of k[x1, . . . , xd] defined by Jordan blocks
of sizes dλ with diagonal entries 0, then the map

k[x1, . . . , xd] → k[x1, . . . , xd][ǫ], f 7→

p−1
∑

i=0

ρi(f)

i!
ǫi
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defines the linear G-action on Adk. For details, see Appendix. In particular, through
sequences d, we get a one-to-one correspondence between G-representations and H-
representations. We expect that the quotient varieties V/G and W/H for the same
d would be very similar in the sense we will make more precise.

Let us fix a sequence d as above. Following [11], for a positive integer j prime
to p, we define

sht(j) :=

l∑

λ=1

dλ−1∑

i=1

⌊
ij

p

⌋

.

We define a function sht: ∆H → Z by

sht(f) :=

{

sht(−ord(f)) (f 6= 0)

0 (f = 0).

We define another function sht′ on ∆H by

sht′(f) :=

{

sht(f)− l (f 6= 0)

−d (f = 0).

Fibers of these functions are constructible subsets. In general, for a function
u : ∆H → Z with constructible fibers, we define the motivic integral

∫

∆H

Lu dµH :=
∑

i∈Z

[u−1(i)]Li ∈ M̂′,

provided that the last infinite sum converges in M̂′. When it diverges, we formally
put

∫

∆H
Lf dµH := ∞.

We define a numerical invariant Dd :=
∑l

λ=1(dλ − 1)dλ/2, which we also think
of as invariants of representations Vd and Wd. Integrals

∫

∆H

L−sht dµH ,

∫

∆H

L−sht′ dµH

converge exactly when Dd ≥ p (for details of computation, see [11]). If Dd = 0,
then the corresponding H-action is trivial. If Dd = 1, then d = (2, 1, . . . , 1) ,
W/H ∼= Adk and the quotient mapW → W/H has ramification locus of codimension
one. Therefore the case Dd ≥ 2 is of our main interest, although the case Dd = 1
will be discussed in Section 6 as a toy case.

The quotient variety W/H is factorial [2, Th. 3.8.1], in particular, has the
invertible canonical sheaf ωW/H . The ω-Jacobian ideal sheaf J ⊂ OW/H is defined

by J ωW/H := Im(
∧|d|ΩW/H → ωW/H). Let o ∈ W/H be the image of the origin

of W , J∞(W/H) the arc space of W/H and J∞(W/H)o the preimage of o by the
natural map J∞(W/H) →W/H . The motivic stringy invariant (resp. the motivic

stringy invariant at o) of W/H is defined to be

Mst(W/H) :=

∫

J∞(W/H)

LordJ dµW/H

(

resp. Mst(W/H)o :=

∫

J∞(W/H)o

LordJ dµW/H

)

.

If there exists a crepant resolution φ : Y → W/H , then we have Mst(W/H) = [Y ]
and Mst(W/H)o = [φ−1(o)].
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The following theorem proved in [11] can be considered as the motivic McKay
correspondence for linear H-actions:

Theorem 4.1. If Dd ≥ 2, we have the following equalities in M̂′ ∪ {∞},

Mst(W/H)o =

∫

∆H

L−sht dµH , Mst(W/H) =

∫

∆H

L−sht′ dµH .

Since the convergence of Mst(W/H) (or Mst(M/H)o) is equivalent to that W/H
has only canonical singularities, this theorem in particular implies that W/H has
canonical singularities if and only if Dd ≥ p (see [8]).

In the rest of this section, we will formulate a conjecture for V/G similar to this
theorem. For this purpose, we extend functions sht, sht′ : ∆H → Z to functions on
∆G by

sht(f) = sht(τ0(f)) =

{

sht(−ord(f)) (ord(f) < 0)

sht(0) (ord(f) ≥ 0)
,

sht′(f) := sht′(τ0(f)) =

{

sht′(−ord(f)) (ord(f) < 0)

sht′(0) (ord(f) ≥ 0)
.

Each fiber of the extended functions sht or sht′ is a cylinder of level zero and

(4.1) τ0(sht
−1(i)) = (sht|∆H

)−1 (i), τ0((sht
′)−1(i)) =

(

sht
′

|∆H

)−1

(i).

For a function u : ∆G → Z whose fibers are cylinders, we define
∫

∆G

Lu dµG :=
∑

i∈Z

µG(u
−1(i))Li.

From (4.1), we have
∫

∆G

L−sht dµG =

∫

∆H

L−sht dµH ,

∫

∆G

L−sht′ dµH =

∫

∆H

L−sht′ dµH .

Lemma 4.2. The scheme V/G is of finite type over k and factorial.

Proof. Let k[V ] and k[V/G] be the coordinate rings of V and V/G respectively,
so that k[V/G] = k[V ]D. In particular k[V ]p ⊆ k[V/G], which easily implies that
V −→ V/G is a homeomorphism. Moreover V/G −→ V is finite, which implies
that V/G is of finite type over k because k is perfect.

Let P be a prime of height one of k[V/G]. We must show that P is principal. We
have that P is the restriction of a height one prime ideal of k[V ], which is therefore
generated by an irreducible polynomial f . If f | D(f) then, since deg(D(f)) ≤
deg(f), we have D(f) = cf for some c ∈ k. In particular 0 = Dp(f) = cpf so that
c = 0 and D(f) = 0. In this case it follows easily that P = k[V/G] ∩ (fk[V ]) =
fk[V/G].

So assume that f ∤ D(f). We claim that P = fpk[V/G]. Let x ∈ P − {0}, that
is x = hf l with l > 0, h coprime with f and D(x) = 0. We have

0 = D(x) = D(h)f l + hlf l−1D(f) =⇒ p | l and D(h) = 0

So x = h(fp)l/p ∈ fpk[V/G]. �

Thanks to this lemma, we can define the ω-Jacobian ideal on V/G similarly to
the case of W/H . In turn, we can define Mst(V/G),Mst(V/G)o. The following is
our main conjecture.
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Conjecture 4.3. If Dd ≥ 2, we have the following equalities in M̂′ ∪ {∞},

Mst(V/G)o =

∫

∆G

L−shtd dµG (=Mst(W/H)o) ,

Mst(V/G) =

∫

∆G

L−sht′
d dµG (=Mst(W/H)) .

5. Two Examples

In this section, we see two examples supporting the conjecture that Mst(V/G) =
Mst(W/H) and Mst(V/G)o =Mst(W/H)o.

5.1. We first consider the case d = (3), supposing p ≥ 3. If p = 3, then W/H has
a crepant resolution φ : U →W/H such that

Mst(W/H) = [U ] = L3 + 2L2,

Mst(W/H)o = [φ−1(o)] = 2L+ 1.

If p > 3, then W/H is not log canonical, in particular, Mst(W/H) =Mst(W/H)o =
∞. See [11, Example 6.23].

As for the G-action on V , the corresponding derivation D on the coordinate ring
k[x, y, z] is given by D(x) = 0, D(y) = x, D(z) = y. We can compute

k[V/G] = k[x, yp, zp, y2 − 2xz] ∼= k[X,Y, Z,W ]/(Y 2 −W p −XpZ),

where X,Y, Z,W correspond to 2x, yp, zp, y2 − 2xz respectively. By simple compu-
tation of blowups, we can easily see that if p = 3, then V/G has a crepant resolution.
Using this resolution, we see that Mst(V/G) = L3 +2L2 and Mst(V/G)o = 2L+ 1.
We also see that if p > 3, then V/G is not canonical and Mst(V/G) = ∞. More
details of computation are as follows.

Let us compute a (partial) resolution of U0 := V/G. The singular locus U0,sing

of U0 is the affine line defined by X = Y = W = 0. Let U1 → U0 be the blowup
of U0 along U0,sing. This is a crepant morphism and the exceptional locus is the
trivial P1-bundle over U0,sing.

When p = 3, then U1,sing is again an affine line and U1,sing has an affine open
neighborhood isomorphic to Spec k[X,Y, Z]/(Y 2+XZ)×A1

k. Therefore the blowup
U2 → U1 along U1,sing is a crepant resolution and its exceptional locus is again the
trivial P1-bundle over U1,sing. Let φ : U2 → U0 be the natural morphism, which is
a crepant resolution. Then, the above computation shows that

Mst(V/G) = [U2] = L3 + 2L2,

Mst(V/G)o = [φ−1(o)] = 2L+ 1.

When p > 3, we claim that U1 is not log canonical, and neither is U0 = V/G,
since U1 → U0 is crepant. By an explicit computation, we see that U1 has an affine
open subset U ′

1 which is isomorphic to a hypersurface defined by Y 2 −Xp−2W p −
Xp−2Z = 0. Its singular locus U ′

1,sing is defined by X = Y = 0. Let U2 → U ′
1

be the blowup along U ′
1,sing and B → A4

k the blowup of the ambient affine space

along the same locus U ′
1,sing so that U2 is a closed subset of B. Let E ⊂ B be the

exceptional divisor of B → A4
k. We see

KU2/U ′
1
= −E|U2

.
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If p = 5, then U2 is normal and −E|U2
= −2E′ for a prime divisor E′. Thus E′

has discrepancy −2 over U1, hence U1 is not log canonical. If p > 5, then U2 is not
normal. We similarly take the blowup ψ : U3 → U ′

2 of an affine open subset U ′
2 ⊂ U2

such thatKU3/U ′
2
= −F |U3

and ψ∗(E|U2
) = F |U3

, where F is the exceptional divisor

of the blowup of the ambient affine space. We conclude that KU3/U ′
1
= −2F |U3

.
This shows that U1 is not log canonical. Thus V/G is not log canonical and we have
Mst(V/G) = ∞. Let T → V/G be a log resolution on which the above exceptional
divisor with discrepancy < −1 appears. This exceptional divisor on T surjects onto
the singular locus of V/G. This shows that Mst(V/G)o = ∞.

Remark 5.1. When p = 3, the quotient singularities above by H and G are the
same as the two hypersurface singularities in characteristic three in [5, Th. 3] up
to suitable coordinate transforms.

5.2. Next we consider the case p = 2 and d = (2, 2). Then W/H is the symmetric
product of two copies of A2

k. It has a crepant resolution φ : U → W/H constructed
simply by blowing up the singular locus once. This resolution coincides with the
Hilbert scheme of two points of A2

k, usually denoted by Hilb2(A2
k). From an explicit

description, we know that

Mst(W/H) = [U ] = L4 + L3,

Mst(W/H)o = [φ−1(o)] = L+ 1.

The corresponding derivation on the polynomial ring k[x0, y0, x1, y1] is given by
D(xi) = 0, D(yi) = xi. The coordinate ring of V/G is

k[x0, y
2
0 , x1, y

2
1 , x0y1 + x1y0] ∼= k[V,W,X, Y, Z]/(Z2 + V 2Y +X2W ).

The singular locus of V/G is defined by X = V = Z = 0 and isomorphic to an
affine plane. Let φ : U → V/G be the blowup along the singular locus. This is
a crepant resolution such that the exceptional locus is the trivial P1-bundle over
(V/G)sing ∼= A2

k. Thus [U ] = L4 + L3 and [φ−1(o)] = L+ 1.

6. The change of variables in dimension two

In this section, we present some computation supporting the equalitiesMst(V/G)o =
∫

∆G
L−shtd dµG and Mst(V/G) =

∫

∆G
L−sht′

d dµG in Conjecture 4.3. However,

whenDd ≥ 2, V/G andW/H have singularities, which make analysis more difficult.
Therefore we consider the case Dd = 1 as a toy model. We will use jet schemes and
the theory of integration above those spaces. For generalities see [11, Section 4].

Then d is of the form (2, 1, . . . , 1), but it is enough to consider the special case
d = (2), because there is no essential difference in the general case. When d = (2),
if we write W = Spec k[x, y] and let a generator of H act on it by y 7→ y, x 7→ x+y,
then W/H = Spec k[xp−xyp−1, y] ∼= A2

k. The quotient map W →W/H is ramified
along the divisor y, in particular, the map is not crepant. Because of this, we do
not have the equalities in Conjecture 4.3 in this case. Instead we have

L2 =Mst(W/H) =

∫

J∞(W/H)

1 dµW/G =

∫

J∞W

L−ord(yp−1)−s dµW ,

1 =Mst(W/H)o =

∫

(J∞(W/H))o

1 dµW/G =

∫

(J∞W)o

L−ord(yp−1)−s dµW
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the last integral of which we will explain now. The domain of integral, J∞W , is
the space of twisted arcs of the quotient stack W = [W/H ]. The use of the stack
W is only for this conventional notation and not really necessary. We can describe
this space as

J∞W :=
⊔

f∈∆H

HomH(SpecOf ,W )/H,

where SpecOf is the normalization of Spec k[[t]] in theH-torsor over Spec k((t)) cor-

responding to f , HomH(−,−) is the set of H-equivariant morphisms. The (J∞W)o
is the subset of J∞W consisting of H-orbits of H-equivariant maps SpecOf →W
sending the closed point(s) onto the origin of W , and (J∞(W/H))o is the set of
arcs Spec k[[t]] → W/G sending the closed point to o. We can define a motivic
measure on J∞W and there exists a natural map J∞W → J∞(W/H) which is
almost bijective (bijective outside measure zero subsets) and induces an almost
bijection (J∞W)o → (J∞(W/H))o. The ord(yp−1) is the function on J∞W as-
signing orders of yp−1 along twisted arcs. Note that the ideal (yp−1) ⊂ k[x, y] is
the Jacobian ideal of the map W → W/H . Finally s is the composition of the
natural map J∞W → ∆H and sht: ∆H → Z. The equality

∫

J∞(W/H) 1 dµW/H =
∫

J∞W
L−ord(yp−1)−s dµW can be thought of as the change of variables formula for

the map J∞W → J∞(W/H). More generally, for a measurable function F : C → Z
on a subset C ⊂ J∞(W/G), if φ : J∞W → J∞(W/G) denotes the natural map,
then

(6.1)

∫

C

LF dµW/H =

∫

φ−1(C)

LF◦φ−ord(yp−1)−s dµW .

The term −ord(yp−1) corresponds to the ramification divisor of W → W/H , the
divisor defined by the Jacobian ideal, or to the relative canonical divisor of the
proper birational map W → W/H . If Dd ≥ 2, then W → W/H is étale in
codimension one and has no ramification divisor, but W/H acquires singularities
as compensation. Therefore the corresponding formula in that case is

(6.2)

∫

C

LF+J dµW/H =

∫

φ−1(C)

LF◦φ−s dµW .

When C = J∞(W/H) and F ≡ 0, then the right hand side becomes
∫

J∞W

L−s dµW =

∫

∆H

L−sht′ dµH .

We show a similar formula in the case of G. We first introduce a counterpart of
J∞W . For f ∈ ∆G, let SpecKf → Spec k((t)) be the corresponding G-torsor. The
underlying topological space of SpecKf is always a singleton.

Lemma 6.1. If f 6= 0, then Kf is reduced, equivalently, Kf is a field.

Proof. The Kf is a finite extension of k((t)) of degree p. If Kf is non-reduced,
then the associated reduced ring (Kf )red is an extension of degree one, hence the
natural map k((t)) → (Kf )red is an isomorphism. This means that the G-torsor
SpecKf → Spec k((t)) admits a section, hence it is a trivial torsor and f = 0. �

For f 6= 0, let SpecOf be the normalization of Spec k[[t]] in SpecKf . For
f = 0, we define Of := k[[t]][z]/(zp). We say that a morphism SpecOf → V is
G-equivariant if the composition map SpecKf → SpecOf → V is G-equivariant.
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Note that the G-action on SpecKf does not generally extend to SpecOf , which is
the reason that we define G-equivariant morphisms SpecOf → V in this way. Let

HomG(SpecKf , V ) and HomG(SpecOf , V ) be the set of G-equivariant morphisms
SpecKf → V and SpecOf → V respectively. Regarding Hom(SpecOf , V ) as a
subset of Hom(SpecKf , V ), we have

HomG(SpecOf , V ) = Hom(SpecOf , V ) ∩ HomG(SpecKf , V ).

We then put

J∞V :=
⊔

f∈∆G

HomG(SpecOf , V ).

We now give an explicit description of this set. Let D denote the derivation on
k[x, y] given by D(y) = x, D(x) = 0, which corresponds to the G-action on V =
Spec k[x, y]. The G-action on V is given by the coaction:

θ : k[x, y] → k[x, y][ǫ]

x 7→ x

y 7→ y + xǫ

The G-action on SpecKf with Kf = k((t))[z]/(zp − f) is given by:

ψf : Kf → Kf [ǫ]

z 7→ z + ǫ

An element ofKf is uniquely written as
∑p−1

i=0 aiz
i, ai ∈ k((t)) and a map γ : SpecKf →

V is uniquely determined by two elements γ∗(x) =
∑p−1

i=0 aiz
i and γ∗(y) =

∑p−1
i=0 biz

i

of Kf . The map γ is G-equivariant if and only if

ψf (γ
∗(x)) = (γ∗ ⊗ idk[ǫ])(θ(x)), ψf (γ

∗(y)) = (γ∗ ⊗ idk[ǫ])(θ(y)).

The left equality is explicitly written as
∑

i

ai(z + ǫ)i =
∑

i

aiz
i,

which is equivalent to saying that ai = 0 for i > 0. The right equality then says
that ∑

i

bi(z + ǫ)i =
∑

i

biz
i +
∑

i

aiz
iǫ.

This is equivalent to requiring b1 = a0 and bi = 0 for i > 1. As a consequence, we
can identify HomG(SpecKf , V ) with

{(a, b+ az) ∈ K2
f | a, b ∈ k((t))} ∼= k((t))2.

For f 6= 0, if we extend the order function on k((t)) to Kf as a valuation, then

ord(z) = ord(f)
p . Therefore, with the above identification, (a, b+az) ∈ HomG(SpecKf , V )

lies in HomG(SpecOf , V ) if and only if ord(a) ≥ 0 and ord(b+az) ≥ 0. Since ord(f)
is coprime with p, we have Z ∋ ord(b) 6= ord(az) /∈ Z and therefore

ord(b+ az) = min{ord(b), ord(az)}

Thus the two conditions translate into ord(a) ≥ max{0, ⌈−ord(f)/p⌉} and ord(b) ≥

0. In conclusion, for every f , the set HomG(SpecOf , V ) is identified with the
following subset of O2

f ,

{(a, b+az) ∈ O2
f | a ∈ tsf ·k[[t]], b ∈ k[[t]]} (sf := max{0, ⌈−ord(f)/p⌉} = sht′(f)+2).
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We then identify J∞V with
⊔

f∈∆G

tsf k[[t]]⊕ k[[t]]

and write its elements as triples (f, a, b). Form ∈ Z≥0, the image of HomG(SpecOf , V )

under the natural map O2
f → O2

f/t
m+1O2

f , which we denote by HomG(SpecOf , V )m,
coincides with the image of the injective map

tsfk[[t]]

tsf+m+1k[[t]]
⊕

k[[t]]

tm+1k[[t]]
−→ O2

f/t
m+1O2

f , (a, b) 7→ (a, b+ az).

We define a motivic measure µV on J∞V as follows. For m,n ∈ Z≥0, let

Jm,nV :=
⊔

f∈∆G,n

tsf k[[t]]

tsf+m+1k[[t]]
⊕

k[[t]]

tm+1k[[t]]
.

Here sf = sg where g ∈ ∆G is any lift of f ∈ ∆G,n. For integers n, j with np ≥ j,

let ∆≥j
G,n ⊂ ∆G,n be the subspace of f ∈ ∆G,n with ord(f) ≥ j. This is an affine

space of finite dimension and ∆G,n is the union of ∆≥j
G,n, j ≤ np. This filtration also

allows to write Jm,nV as an increasing union of affine spaces, so that the notion of
constructible subsets and their measure is well defined. For m′ ≥ m and n′ ≥ n,

the natural map Jm′,n′V → Jm,nV is a trivial A
2(m′−m)+(p−1)(n′−n)
k -bundle. Let

πm,n : J∞V → Jm,nV be the natural map. We say that a subset C ⊂ J∞V is a
cylinder of level (m,n) if C = π−1

m,nπm,n(C) and πm,n(C) is a constructible subset
of Jm,nV . Then we define the measure µV(C) of C as

µV(C) := [πm,n(C)]L
−2m−(p−1)n.

We can further extend this measure µV to measurable subsets, following [3, Ap-
pendix]. A subset C ⊂ J∞V is measurable if there exists a sequence of cylin-
ders C1, C2, . . . approximating C (which means that there exists another sequence
B1, B2, . . . of cylinders such that limi→∞ µV(Bi) = 0 and for each i, the symmet-
ric difference C△Ci = (C ∪ Ci) \ (C ∩ Ci) is contained in Bi). For a measurable
subset C, we define µV(C) := limi→∞ µV(Ci). A function f : C → Z on a subset
C ⊂ J∞V is said to be measurable if all fibers f−1(n) are measurable. The integral
∫

C
Lf dµV is then defined to be

∑

n∈Z[f
−1(n)]Ln in M̂′, provided that this infinite

sum converges.
The quotient variety V/G has the coordinate ring k[x, yp]. The arc space J∞(V/G)

of V/G is identified with k[[t]]2 by looking at the images of x and yp in k[[t]].

Similarly the m-th jet scheme Jm(V/G) is identified with
(
k[[t]]/(tm+1)

)2
. Given

an element of J∞V regarded as a G-equivariant morphism SpecOf → V , taking
the G-quotient of the induced morphism SpecKf → V , we obtain a morphism
Spec k((t)) → V/G. We easily see that this morphism extends to a morphism
Spec k[[t]] → V/G. Thus we obtain a map ψ : J∞V → J∞(V/G). In concrete
terms, the map sends (f, a, b) to (a, bp + fap). For n ≥ m ≥ 0, the map ψ induces
map

ψm,n : Jm,nV → Jm(V/G), (f, a, b) 7→ (a, bp + fap).

Let us take an element

(α, β) ∈

(
k[[t]]

tm+1k[[t]]

)⊕2

= Jm(V/G).
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We will describe the fiber ψ−1
m,n((α, β)). Namely we will describe the set of triples

(f, a, b) with f ∈ ∆G,n, a ∈ tsf k[[t]]/tsf+m+1k[[t]], b ∈ k[[t]]/tm+1k[[t]] such that
a = α and bp + fap = β in k[[t]]/tm+1k[[t]]. Let us write a =

∑

i≤sf+m
ait

i,

b =
∑

i≤m bit
i, f =

∑

i≤np−1 fit
i. The equality a = α determines ai, i ≤ m,

requires that sf ≤ ord(α) and put no other constraint on ai, i > m, bi or fi.
For the equality bp + fap = β, we note that bp (resp. fap) has only terms of
degrees divisible (resp. not divisible) by p. Therefore this equality determines bi,
i ≤ ⌊m/p⌋. If a is fixed and m ≥ p · ord(a) = p · ord(α), then the same equation
determines fi, i ≤ m− p · ord(a), but put no more constraint on ai, bi, fi. In this
case, since the resulting f is such that fap has neither term of negative degree nor
term of degree divisible by p, it does follow that f ∈ ∆G,n and that sf ≤ ord(α).
Notice moreover that, if β′ is the subsum of β of degree coprime with p, then sf
is a function of ord(β′), so that, in particular, the number sf does not depends
of the choice of (f, a, b) over (α, β). For simplicity, suppose m = m′p for some
m′ ∈ N. As a consequence of the above computation, if α 6= 0 and m′ ≥ ord(α),
then ψ−1

m,n((α, β)) is the affine space of dimension

no. of free ai
︷ ︸︸ ︷

{(sf +m)−m}+

no. of free bi
︷ ︸︸ ︷

(m− ⌊m/p⌋) +

no. of free fi
︷ ︸︸ ︷

{n− (m′ − ord(a))}(p− 1)

= sf + (p− 1)n+ (p− 1)ord(a).

We define functions

s : J∞V → Z, (f, a, b) 7→ sf = sht′(f) + 2,

ord(x) : J∞V → Z ⊔ {∞}, (f, a, b) 7→ ord(a).

From the above argument, s is the composition of ψ : J∞V → J∞(V/G) and a
function s′ : J∞(V/G) → Z, the latter having cylindrical fibers. The function ord(x)
on J∞V also factors through ord(x) : J∞(V/G) → Z ∪ {∞}, whose fibers are also
cylinders except that ord(x)−1(∞) is a measurable subset of measure zero. Let
C ⊂ J∞(V/G) be a cylinder of level m. The inverse image ψ−1(C) is a cylinder of
level (m,m) and

πm,m(ψ−1(C)) = ψ−1
m,m(πm(C)).

If s and ord(x) take constant values s0 and r on ψ−1(C), then

µV/G(C) = L−s0−(p−1)rµV(ψ
−1(C)).

By a standard formal argument on measurable subsets (for instance, see [11, Proof
of Th. 5.20]), this equality is valid also when C is a measurable subset. Subdividing
a given measurable subset C ⊂ J∞(V/G), we can reduce to the case where s and
ord(x) are constant. These arguments lead to the change of variables formula:

Theorem 6.2. Let C ⊂ J∞(V/G) be a subset and F : C −→ Z be a measurable

function. Then
∫

C

LF dµV/G =

∫

ψ−1(C)

LF◦ψ−s−(p−1)ord(x) dµV .

In particular,

L2 =Mst(V/G) =

∫

J∞(V/G)

1 dµV/G =

∫

J∞V

L−s−(p−1)ord(x) dµV .
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In the last lineMst(V/G) =
∫

J∞(V/G)
1 dµV/G follows from definition and the fact

that V/G is smooth, while
∫

J∞(V/G)
1 dµV/G = L2 from the fact that J0(V/G) =

V/G = A2
k.

We describe here an alternative way to check the equality
∫

J∞V

L−s−(p−1)ord(x) dµV = L2.

The set

C≥0,i := {(f, a, b) ∈ J∞V | ord(f) ≥ 0, ord(a) = i}

is a cylinder of level (i, 0) with πi,0(C≥0,i) ∼= Gm × Ai+1
k . Therefore

µV(C≥0,i) = (L− 1)Li+1L−2i = (L− 1)L−i+1

Their disjoint union is C≥0 := {(f, a, b) | ord(f) ≥ 0} and
∫

C≥0

L−s−(p−1)ord(x) dµV =
∑

i≥0

µV(C0,i)L
−(p−1)i

=
L2 − L

1− L−p
.

For j = −(pd + e) < 0 with d ∈ N and 1 ≤ e ≤ p − 1 and for i ∈ N, let
Cj,i := {(f, a, b) ∈ J∞V | ord(f) = j, ord(a) = sf + i}. This set is a cylinder of
level (i, 0) such that

πi,0(Cj,i) ∼=

f
︷ ︸︸ ︷

Gm × A
d(p−1)+e−1
k ×

a
︷︸︸︷

Gm ×

b
︷ ︸︸ ︷

Ai+1
k .

Thus

µV(Cj,i) = (L − 1)2L−i+d(p−1)+e.

The disjoint union of all the Cj,i is C<0 = {(f, a, b) | ord(f) < 0}. Then
∫

C<0

L−s−(p−1)(x) dµV =
∑

1≤e≤p−1

∑

d∈N

∑

i∈N

(L− 1)2L−i+d(p−1)+e × L−(d+1)−(p−1)(d+1+i)

=
∑

1≤e≤p−1

∑

d∈N

∑

i∈N

(L− 1)2L−pi+e−d−p

= (L− 1)2L−p L1 + · · ·+ Lp−1

(1 − L−p)(1 − L−1)

=
L− L2−p

1− L−p
.

It follows that
∫

J∞V

L−s−(p−1)ord(x) dµV =
L2 − L

1− L−p
+

L− L2−p

1− L−p
= L2.

Remark 6.3. It is natural to see the function (p − 1)ord(x) in Theorem 6.2 as a
counterpart of the function ord(yp−1) = (p − 1)ord(y) in the change of variables
formula (6.1) for the case of H . The latter is the order function associated to the
Jacobian ideal (yp−1) ⊂ k[x, y] of the map W → W/H . It is a natural problem,
how to derive the ideal (xp−1) as the “Jacobian ideal” of V → V/G, a map not
generically étale.



NOTES ON THE MOTIVIC MCKAY CORRESPONDENCE FOR THE GROUP SCHEME αp13

Appendix A. Representation theory of αp

In this appendix we recall the representation theory of the group scheme αp over
Fp.

Given an Fp-algebra A we denote by Modαp A the category of A-modules with
an action of αp × A, or, equivalently, a coaction of the Hopf algebra A[αp] = A[ε].

We introduce also the category Modnil A of pairs (M, ξ) where M is an A-module
and ξ : M −→ M is an A-linear map which is p-nilpotent, that is ξp = 0. Given
(M, ξ) ∈ Modnil A we define

exp(ξε) =

p−1
∑

i=0

ξiεi

i!
: M −→M ⊗ Fp[ε]

Proposition A.1. The functor

Modnil(A) −→ Modαp(A), (M, ξ) 7−→ (M, exp(ξε))

is well defined and an equivalence of categories. Moreover for (M, ξ), (N, η) ∈

Modnil(A) we have Mαp = Ker(ξ) and that

ξ ⊗ idM + idN ⊗ η : M ⊗N −→M ⊗N

corresponds to the tensor product of αp-modules.

If B is an A-algebra and (B, ξ) ∈ Modnil(A) then αp acts on the A-algebra B,

that is A −→ B and B ⊗A B −→ B are αp-equivariant, if and only if ξ : B −→ B
is an A-derivation.

Proof. Let M be an A-module and φ : M −→ M ⊗ k[ε] be an A-linear map. The
map φ can be written as

φ =

p−1
∑

i=0

φiε
i for A-linear maps φi : M −→M

The map φ must satisfy the following two conditions in order to be an αp-action:
(idM ⊗ z) ◦ φ = idM : M −→ M , where z : Fp[ε] −→ Fp, z(ε) = 0 is the 0-section
and (idM ⊗∆) ◦φ = (φ⊗ idFp[ǫ]) ◦φ : M −→M ⊗Fp[ε]⊗Fp[ε], where ∆: Fp[ε] −→
Fp[ε]⊗Fp[ε], ∆(ε) = ε⊗1+1⊗ε is the comultiplication. Those conditions translate
into

φ0 = idM and φiφj =

(
i+ j

i

)

φi+j for 0 ≤ i, j < p

and into φp1 = 0, φ = exp(φ1ε). This easily prove the equivalence in the statement.

The trivial αp-action on A corresponds to the nilpotent endomorphism A
0

−−→ A.
Thus

Mαp = Homαp(A,M) = HomModnil(A)((A, 0), (M, ξ)) = Ker(ξ)

The claim about the tensor product follows from a direct check.
Consider now the last statement. The map ι : A −→ B is αp-equivariant if

ι is compatible with the nilpotent endomorphisms A
0

−−→ A and ξ if and only
if ξ(ι(a)) = 0 for a ∈ A. From the assertion of the tensor product, the map
B⊗AB −→ B is αp-equivariant if and only if this map is compatible with ξ : B −→
B and ξ ⊗ idB + idB ⊗ ξ : B ⊗A B → B ⊗A B if and only if ξ satisfies the Leibniz
rule. This ends the proof. �
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Example A.2. Let (M, ξ) ∈ Modnil A. Then αp acts on the A-algebra Sym(M)
and the corresponding p-nilpotent endomorphism ξ∗ : Sym(M) −→ Sym(M) is the
unique A-derivation such that (ξ∗)|M = ξ.

In particular the corresponding p-nilpotent endomorphism ξn : SymnM −→
SymnM is given by

ξn(m1 · · ·mn) = ξ(m1)m2 · · ·mn + · · ·+m1 · · ·mn−1ξ(mn)

Example A.3. Assume that A = k is a field. Then any p-nilpotent endomorphism
ξ : kn −→ kn can be put in Jordan form and, in this case, this just means that all
blocks have 0 diagonal and have size at most p. It follows that, up to isomorphisms,
the αp-representions over k correspond bijectively to sequences d = (d1, . . . , dl) with
1 ≤ di ≤ p, di ≥ di+1 and l ∈ N.
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