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NOTES ON THE MOTIVIC MCKAY CORRESPONDENCE FOR
THE GROUP SCHEME o,

FABIO TONINI AND TAKEHIKO YASUDA

ABsTrACT. We formulate a conjecture on the motivic McKay correspondence
for the group scheme «p in characteristic p > 0 and give a few evidences.
The conjecture especially claims that there would be a close relation between
quotient varieties by ap and ones by the cyclic group of order p.

1. INTRODUCTION

The motivic McKay correspondence was established by Batyrev [1] and Denef-Loeser

[3] in characteristic zero. A version of this theory says that given a linear action
of a finite group G on an affine space A¢ without pseudo-reflection, we can express
the motivic stringy invariant Mg (A¢/G) of the quotient variety A?/G as a sum of
the form ZgGCOnj(G) L*9) | where Conj(G) is the set of conjugacy classes of G' and
a is a function on Conj(G) with values in ﬁ%Z. This can be generalized to the tame
case in characteristic p > 0 (the case p { #G) without essential change (see [10]).
After studying the case of the cyclic group of order p, the second author formu-
lated a conjectural generalization to the wild case (the case p | §G) (see [11, 9]). In
this conjecture, the sum decc)nj(c) %9 is replaced with an integral of the form

/ Ao L9 where Ag is the moduli space of G-torsors over the punctured formal

disk Speck((t)) and a is a ti%Z—Vadued function on it.

The aim of this paper is to discuss the case where G is the group scheme «
rather than a genuine finite group, as a first step towards further generalization to
arbitrary finite group schemes. We will formulate a conjectural expression (Conjec-
ture 4.3) for My (A{/G) again of the form fAG L9 under the condition Dg > 2
(for the definition of Dgq, see Section 4). But here we have a new phenomenon: the
moduli space Ag in this case is an ind-pro-limit of finite dimensional spaces rather
than an ind-limit as in the case of genuine finite groups. Therefore we need to define
a motivic measure on Ag in terms of truncation maps as we do for the arc space.
Our conjecture also indicates a close relation between the case of G = o), and the
case of the cyclic group H := Z/pZ of order p. There exists a one-to-one correspon-
dence between G-representations and H-representations. The conjecture says that
if AY/G and AY/H are quotient varieties associated to G and H-representations
corresponding to each other, then they have equal motivic stringy invariant. We
will give a few evidences for this conjecture. Note that Hiroyuki Ito [6] earlier ob-
served a similarity between surface quotient singularities by (non-linear) G-actions
and H-actions. This was an inspiration for our conjecture.

The paper is organized as follows. In Section 2, we describe the moduli spaces
Ag and Ag. In Section 3, we define motivic measures on these spaces. In Section
4, we formulate our main conjecture. In Section 5, we give two examples supporting
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the equality of stringy invariants of A% /G and A¢/H. In Section 6, we discuss the
case where G acts on A, that is, the case Dg = 1, as a toy model and show the
change of variables formula for the quotient map A? — A?/G. This would be
viewed as a supporting evidence for our conjecture that My (A¢/G) is expressed as
/ Ao L9 when Dgq > 2. In Appendix, we briefly recall the representation theory
of a; in terms of relations to nilpotent endomorphisms and derivations.

In what follows, we work over an algebraically closed field k of characteristic
p > 0. We always denote by G the group scheme a,, and by H the cyclic group of
order p. We write the coordinate ring of «, as kle] = k[x]/(«P) with e the image of
z in this quotient ring.

The authors would like to thank Hiroyuki Ito for helpful discussion. The sec-
ond author was supported by JSPS KAKENHI Grant Numbers JP15K17510 and
JP16H06337.

2. MODULI OF G AND H-TORSORS OVER THE PUNCTURED FORMAL DISK.

The group scheme G fits into the exact sequence
O—>G—>Gaf—>Ga—>O,

where F is the Frobenius map. Therefore the G-torsors over Spec k((t)) are param-
eterized by k((t))/F(k((t))). Let

Ag:=14 > cit'|ci€ky Ch((1),
1E€Z; pti
the set of Laurent power series having only terms of degree prime to p. The inclusion
map Ag — k((t)) induces a bijection Ag — k((t))/F(k((t))). Thus we regard Ag
as the “moduli space” of G-torsors over Spec k((t)). The G-torsor corresponding to
a Laurent power series f € Ag is Speck((t))[z]/(2P — f) and the action of «, is
defined so that the associated coaction is the k((t))-algebra homomorphism

K@), k(@))[]

(=1  (P=))

We can make a similar construction for H-torsors. Let p: k((t)) — k((t)) be the
Artin-Schreier map given by p(f) = f? — f and let

le]l, z— z+ e

Apg = Z cit’ | ci € k p CE((1)),

1€7Z;1<0, pti

the set of Laurent polynomials having only terms of negative degree prime to p.
Then the H-torsors are parameterized by k((t))/p(k((t))) and the composite map
Apg <= k((t)) = k((¥))/p(k((t))) is bijective. Thus we regard Ay as the “moduli
space” of H-torsors over Speck((t)). The H-torsor corresponding to f € Ap is
Speck((t))[z]/ (2 — z — f) where a generator of H acts by z +— z+ 1.

Remark 2.1. Constructing the true moduli space (stack) which represents a relevant
moduli functor is a more difficult problem. However, the above ad hoc version
would be sufficient for our application to motivic integration, since we work over
an algebraically closed field. When k is algebraically closed, the coarse moduli
space for Ay was constructed by Harbater [1]. The fine moduli stack for Ay over
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an arbitrary field of characteristic p > 0 was constructed by the authors [7]. The
moduli space Ag has not been seriously studied yet, as far as the authors know.

3. MOTIVIC MEASURES ON Ag AND Ay

For a positive integer j prime to p, the set A%ﬁj ={f € Ay |ord(f) > —j}
is the affine space A]~ U/} Thus A g is the union of affine spaces Afl—j . We say
that a subset C' of Ay is constructible if C' is a constructible subset of some Aflﬂ .
We define the motivic measure pug on Ag by pg(C) := [C] say in M’, a version of
the complete Grothendieck ring of varieties used in [11]. (In this note, we do not
discuss what additional relation would be really necessary to put on the complete
Grothendieck ring for the McKay correspondence in the case of the group scheme
G. This should be clarified in a future study.)

For n € Z, let

Ag
A = Agp = ——m—m———
be the quotient map, which truncates the terms of degrees > np. We often identify
Ag o with Ag through the natural bijection Ay — Ag — Ag o and 79 with a map

Ag = Ag. When n > 0, Ag,,, is the product of Ay and an affine space Az(pfl).
We say that a subset C' C Ag is a cylinder of level n if 7,,(C) is a constructible
subset of Ag,, and C = 7,71 (7,(C)). For a cylinder C C Ag of level n, we define
its measure as

e (C) = [r (CL"F=D e M.

Since the natural map Ag 41 — Ag,p is the trivial Ag_l—ﬁbration, the element
[7,(C)]L~P=1) is independent of the choice of a sufficiently large n. For instance,
Ago = {f € Ag | ord(f)} is a cylinder of level zero such that TO(AEO) is a
singleton. Note that this set contains 0 € k((t)), according to the convention
ord(0) = +o00. The measure of Ago is

Ho(AZ%) = [Lpt = 1.

4. A CONJECTURE ON THE MCKAY CORRESPONDENCE FOR LINEAR (G-ACTIONS

To a sequence of integers, d = (di,da,...,d;) such that 1 < dy < p and d) >
dx+1, we associate the linear representation W of H over k that have dy-dimensional
indecomposables as direct summands. Namely a generator of H acts on the vector
space W = k4, d := |d| = Zl)\:1 dy by a matrix whose Jordan normal form has
Jordan blocks of sizes d) with diagonal entries 1. The map d — W gives a one-
to-one correspondence between sequences d of integers as above and isomorphism
classes of H-representions over k.

Similarly, to a sequence d as above, we associate also the linear representation
V of G over k that have dy-dimensional indecomposables as direct summands. If p
denotes the nilpotent linear endomorphism of k[z1, . .., 4] defined by Jordan blocks
of sizes dy with diagonal entries 0, then the map

klxy,...,zq) = klz1,...,z4d)[e], f— Z
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defines the linear G-action on Az. For details, see Appendix. In particular, through
sequences d, we get a one-to-one correspondence between G-representations and H-
representations. We expect that the quotient varieties V/G and W/ H for the same
d would be very similar in the sense we will make more precise.

Let us fix a sequence d as above. Following [11], for a positive integer j prime
to p, we define

1 da—1 i
() =3 Y H |
A=1i=1 LP
We define a function sht: Ay — Z by

shi(~ord(f)) (f #0)
0 (f=0).
We define another function sht’ on Ay by

sht(f) 1 (f #0)
—d (f=0).

Fibers of these functions are constructible subsets. In general, for a function
u: Ag — 7 with constructible fibers, we define the motivic integral

/A Lt duy o= 3 [u ()]LF € AT,

i€Z

sht(f) := {

sht'(f) == {

provided that the last infinite sum converges in M’. When it diverges, we formally
put [ LY dup = .

We define a numerical invariant Dg := Zl)\zl(d,\ — 1)dx/2, which we also think
of as invariants of representations Vg and Wy. Integrals

/ L—sht dMHa / L—sht' dﬂH
AH AH

converge exactly when Dgq > p (for details of computation, see [11]). If Dgq = 0,
then the corresponding H-action is trivial. If Dg = 1, then d = (2,1,...,1) ,
W/H = A{ and the quotient map W — W/ H has ramification locus of codimension
one. Therefore the case Dq > 2 is of our main interest, although the case Dq = 1
will be discussed in Section 6 as a toy case.

The quotient variety W/H is factorial [2, Th. 3.8.1], in particular, has the
invertible canonical sheaf wyy, . The w-Jacobian ideal sheaf J C Oy, p is defined
by Jww/m = Im(/\‘d‘ Qw/m — wwyn). Let o € W/H be the image of the origin
of W, Joo(W/H) the arc space of W/H and Joo(W/H), the preimage of o by the
natural map Joo(W/H) — W/H. The motivic stringy invariant (resp. the motivic
stringy invariant at o) of W/ H is defined to be

My (W/H) := / LY dpuyy) g
Joo (W/H)

(resp. My (W/H), = /

Lerds d/ﬂW/H .
Joo(W/H),

If there exists a crepant resolution ¢: Y — W/H, then we have My (W/H) = [Y]
and My (W/H), = [¢~1(0)].



NOTES ON THE MOTIVIC MCKAY CORRESPONDENCE FOR THE GROUP SCHEME «, 5

The following theorem proved in [11] can be considered as the motivic McKay
correspondence for linear H-actions:

Theorem 4.1. If Dgq > 2, we have the following equalities in M’ U {oc},

My (W/H), = / L= dpy, My (W/H) = / L= dpg.
Ag Ap
Since the convergence of My (W/H) (or My (M/H),) is equivalent to that W/H
has only canonical singularities, this theorem in particular implies that W/H has
canonical singularities if and only if Dg > p (see [8]).
In the rest of this section, we will formulate a conjecture for V/G similar to this
theorem. For this purpose, we extend functions sht, sht’: Ay — Z to functions on

Ag by

B ) sht(—ord(f)) (ord(f) <0)
sht(f) = sht(ro(f)) = {Sht(o) (ord(f) > 0)’
o fSord(f) (ord() <)
sht'(f) := sht/(1o(f)) = {sht’(O) (ord(f) > 0)°

Each fiber of the extended functions sht or sht’ is a cylinder of level zero and

(41)  7o(sht™ (@) = (shtla,) T (6),  To((sht))"1(3)) = (sht/|AH)_l (i).

For a function u: Ag — Z whose fibers are cylinders, we define

/A L" dpg o= pe(u" (4))L".

i€z
From (4.1), we have

/ L—sht d,uG _ / L—sht d,uH, / L—sht/ d,uH — / L—sht' d,uH
Ag Ay Ag Apg

Lemma 4.2. The scheme V/G is of finite type over k and factorial.

Proof. Let k[V] and k[V/G] be the coordinate rings of V' and V/G respectively,
so that k[V/G] = k[V]P. In particular k[V]P C k[V/G], which easily implies that
V — V/G is a homeomorphism. Moreover V/G — V is finite, which implies
that V/G is of finite type over k because k is perfect.

Let P be a prime of height one of k[V/G]. We must show that P is principal. We
have that P is the restriction of a height one prime ideal of k[V], which is therefore
generated by an irreducible polynomial f. If f | D(f) then, since deg(D(f)) <
deg(f), we have D(f) = cf for some ¢ € k. In particular 0 = DP(f) = P f so that
¢ =0 and D(f) = 0. In this case it follows easily that P = k[V/G] N (fk[V]) =
fEV/G].

So assume that f t D(f). We claim that P = fPk[V/G]. Let x € P — {0}, that
is x = hf! with [ > 0, h coprime with f and D(z) = 0. We have

0= D(z) = D(h)f' + hif"'D(f) = p|land D(h) =0
So = = h(fP)!/P € fPE[V/G]. O
Thanks to this lemma, we can define the w-Jacobian ideal on V/G similarly to

the case of W/H. In turn, we can define Mg (V/G), Ms(V/G),. The following is

our main conjecture.
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Conjecture 4.3. If Dgq > 2, we have the following equalities in M’ U {0},

MMWG%:AAD“MWGFAhWWHM,

My (V/G) = /A L0t dyg (= My (W/H)).

5. Two EXAMPLES

In this section, we see two examples supporting the conjecture that My (V/G) =
Mg (W/H) and My (V/G), = Mst(W/H),.

5.1. We first consider the case d = (3), supposing p > 3. If p = 3, then W/H has
a crepant resolution ¢: U — W/H such that

My(W/H) = [U] = L® + 2L,
My (W/H), = [¢"'(0)] = 2L + 1.

If p > 3, then W/H is not log canonical, in particular, My (W/H) = My (W/H), =
oo. See [11, Example 6.23].

As for the G-action on V', the corresponding derivation D on the coordinate ring
klx,y, z] is given by D(z) =0, D(y) = x, D(z) = y. We can compute

k[V/G] = k[z,ypvzp,yQ - Z:EZ] = k[X,KZ, W]/(Y2 - WP — X;DZ),

where X,Y, Z, W correspond to 2z, yP, 2P, y? — 222 respectively. By simple compu-
tation of blowups, we can easily see that if p = 3, then V/G has a crepant resolution.
Using this resolution, we see that My (V/G) = L3 + 2L? and My (V/G), = 2L + 1.
We also see that if p > 3, then V/G is not canonical and M (V/G) = co. More
details of computation are as follows.

Let us compute a (partial) resolution of Uy := V/G. The singular locus U sing
of Uy is the affine line defined by X =Y =W = 0. Let U; — Uy be the blowup
of Uy along Upsing. This is a crepant morphism and the exceptional locus is the
trivial P'-bundle over Uo,sing-

When p = 3, then Ui g is again an affine line and U sing has an affine open
neighborhood isomorphic to Spec k[X, Y, Z]/(Y?+ X Z) x A;.. Therefore the blowup
Uy — U, along U, ging is a crepant resolution and its exceptional locus is again the
trivial P!-bundle over Ul sing. Let ¢: Uz — Uy be the natural morphism, which is
a crepant resolution. Then, the above computation shows that

My (V/G) = [Us] = L3 + 212,
My (V/G), = (¢ (0)] = 2L + 1.

When p > 3, we claim that U; is not log canonical, and neither is Uy = V/G,
since U; — Uy is crepant. By an explicit computation, we see that U; has an affine
open subset U] which is isomorphic to a hypersurface defined by Y? — XP—2WP —
X?P72Z = 0. Tts singular locus Uj g, is defined by X =Y = 0. Let Us — Uj
be the blowup along ULSing and B — Ai the blowup of the ambient affine space

along the same locus U7 ;,, so that U is a closed subset of B. Let E'C B be the
exceptional divisor of B — A}. We see

KUg/U{ = —E|U2.
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If p = 5, then Us is normal and —F|y, = —2E’ for a prime divisor E’. Thus E’
has discrepancy —2 over Uy, hence U; is not log canonical. If p > 5, then Us; is not
normal. We similarly take the blowup ¢: Us — U} of an affine open subset U} C Us
such that Ky, ,u; = —F|u, and ¥*(E|v,) = F'|u,, where F is the exceptional divisor
of the blowup of the ambient affine space. We conclude that Ky, = —2F|y,.
This shows that U; is not log canonical. Thus V/G is not log canonical and we have
M4 (V/G) = co. Let T — V/G be a log resolution on which the above exceptional
divisor with discrepancy < —1 appears. This exceptional divisor on T surjects onto
the singular locus of V/G. This shows that M (V/G), = oo.

Remark 5.1. When p = 3, the quotient singularities above by H and G are the
same as the two hypersurface singularities in characteristic three in [5, Th. 3] up
to suitable coordinate transforms.

5.2. Next we consider the case p =2 and d = (2,2). Then W/H is the symmetric
product of two copies of AZ. It has a crepant resolution ¢: U — W/H constructed
simply by blowing up the singular locus once. This resolution coincides with the
Hilbert scheme of two points of A?, usually denoted by Hilb? (A2). From an explicit
description, we know that

My (W/H) = [U] = L* + L3,
My(W/H), = [¢*(0)] =L + 1.

The corresponding derivation on the polynomial ring k[xo, yo, 1, y1] is given by
D(z;) =0, D(y;) = x;. The coordinate ring of V/G is

k[x()vygvxlvy%vxoyl + xlyO] = k[Va VV7X7KZ]/(Z2 + VQY + X2W)

The singular locus of V/G is defined by X = V = Z = 0 and isomorphic to an
affine plane. Let ¢: U — V/G be the blowup along the singular locus. This is

a crepant resolution such that the exceptional locus is the trivial P!-bundle over
(V/@)sing =2 AZ. Thus [U] = L*+ L3 and [¢p~1(0)] = L + 1.

6. THE CHANGE OF VARIABLES IN DIMENSION TWO

In this section, we present some computation supporting the equalities My (V/G), =
Ja, LM dug and My (V/G) = [, L~s"a dpg in Conjecture 4.3. However,
when Dgq > 2, V/G and W/ H have singularities, which make analysis more difficult.
Therefore we consider the case Dg = 1 as a toy model. We will use jet schemes and
the theory of integration above those spaces. For generalities see [11, Section 4].

Then d is of the form (2,1,...,1), but it is enough to counsider the special case
d = (2), because there is no essential difference in the general case. When d = (2),
if we write W = Spec k[x, y] and let a generator of H act on it by y — y, z — x+y,
then W/H = Spec k[zP —zyP~',y] = AZ. The quotient map W — W/H is ramified
along the divisor y, in particular, the map is not crepant. Because of this, we do
not have the equalities in Conjecture 4.3 in this case. Instead we have

L? = My (W/H) = / Ldpw,c = / Lo D=5 gy,
Joo(W/H) T W

1=My(W/H), = / Ldpwa = /( : Lo )78 gy,
jOOW o

(Joo (W/H))o
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the last integral of which we will explain now. The domain of integral, JoW, is
the space of twisted arcs of the quotient stack W = [W/H]. The use of the stack
W is only for this conventional notation and not really necessary. We can describe
this space as
TooW = |_| Hom' (Spec Oy, W)/ H,
fE€EAH

where Spec Oy is the normalization of Spec k[[t]] in the H-torsor over Spec k((t)) cor-
responding to f, HomH(—, —) is the set of H-equivariant morphisms. The (7o W),
is the subset of J.oW consisting of H-orbits of H-equivariant maps Spec Oy — W
sending the closed point(s) onto the origin of W, and (J(W/H)), is the set of
arcs Speck[[t]] — W/G sending the closed point to 0. We can define a motivic
measure on JoW and there exists a natural map JooW — Joo(W/H) which is
almost bijective (bijective outside measure zero subsets) and induces an almost
bijection (JooW)o — (Joo(W/H)),. The ord(y?~1) is the function on J W as-
signing orders of y?~! along twisted arcs. Note that the ideal (y?~1) C k[z,v] is
the Jacobian ideal of the map W — W/H. Finally s is the composition of the
natural map JooW — Apg and sht: Ay — Z. The equality fJoo(W/H) Ldpw g =

Il ToW L-ord@’ ™ )—s duyy can be thought of as the change of variables formula for
the map JooW — Joo (W/H). More generally, for a measurable function F: C' — Z
on a subset C' C Joo(W/Q), if ¢: JTocW — Joo(W/G) denotes the natural map,
then

c »=1(C)
The term —ord(y?~!) corresponds to the ramification divisor of W — W/H, the
divisor defined by the Jacobian ideal, or to the relative canonical divisor of the
proper birational map W — W/H. If Dq > 2, then W — W/H is étale in
codimension one and has no ramification divisor, but W/H acquires singularities
as compensation. Therefore the corresponding formula in that case is

(6.2) / L dpy g = / LE°?=2 dyiyy.
c ¢=1(C)
When C = Jo(W/H) and F = 0, then the right hand side becomes

/ L= duyy = LiSht, dpg.
Too W Ag

We show a similar formula in the case of G. We first introduce a counterpart of
JsW. For f € Ag, let Spec Ky — Speck((t)) be the corresponding G-torsor. The
underlying topological space of Spec K is always a singleton.

Lemma 6.1. If f # 0, then K¢ is reduced, equivalently, Ky is a field.

Proof. The K; is a finite extension of k((t)) of degree p. If K is non-reduced,
then the associated reduced ring (K)req is an extension of degree one, hence the
natural map k((t)) = (Kf)red is an isomorphism. This means that the G-torsor
Spec Ky — Spec k((t)) admits a section, hence it is a trivial torsor and f =0. O

For f # 0, let Spec O be the normalization of Speck[[t]] in Spec K;. For
f =0, we define Oy := E[[t]][2]/(2F). We say that a morphism Spec Oy — V is
G-equivariant if the composition map Spec Ky — Spec Oy — V is G-equivariant.
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Note that the G-action on Spec Ky does not generally extend to Spec Oy , which is
the reason that we define G-equivariant morphisms Spec Oy — V' in this way. Let
HomG(Spec Ky, V) and HomG(Spec Oy, V) be the set of G-equivariant morphisms
Spec Ky — V and Spec Oy — V respectively. Regarding Hom(Spec Of,V) as a
subset of Hom(Spec K7, V), we have
Hom® (Spec Of, V) = Hom(Spec O, V) N Hom (Spec K¢, V).
We then put
IV = |_| Hom® (Spec Oy, V).
feAg
We now give an explicit description of this set. Let D denote the derivation on
klx,y] given by D(y) = =, D(x) = 0, which corresponds to the G-action on V =
Spec k[z,y]. The G-action on V is given by the coaction:

0: K[z, y] — klz, ylle]
T T
Y — Y+ T€E
The G-action on Spec Ky with Ky = k((t))[2]/ (2" — f) is given by:
vy Ky = Kyl
ZrrzZ+e€

An element of K is uniquely written as El o @iz', a; € k((t)) and a map : Spec Kf —

V is uniquely determined by two elements v*(z) = Ef:ol a;ztand y*(y) = Y07, L bz
of Ky. The map v is G-equivariant if and only if

Pr(y* () = (7" @ idk(g)(0(2)), (v (y)) = (v" @ idgie)) (6(y))-
The left equality is explicitly written as

Zalz—ke Zaz s
7

which is equivalent to saying that a; = 0 for ¢ > 0. The right equality then says

that
Zb z—l—e sz —i—Zalze

This is equivalent to requiring b; = ag and b; =0 for i > 1. As a consequence, we
can identify Hom® (Spec K¢, V) with

{(a,b+a2) € K2 | a,b € b((1)} = K((1))".
For f # 0, if we extend the order function on k((t)) to Ky as a valuation, then
ord(z) = %ff). Therefore, with the above identification, (a, b+az) € Hom®(Spec K, V)
lies in Hom® (Spec Oy, V) if and only if ord(a) > 0 and ord(b+az) > 0. Since ord(f)
is coprime with p, we have Z > ord(b) # ord(az) ¢ Z and therefore

ord(b+ az) = min{ord(d), ord(az)}

Thus the two conditions translate into ord(a) > max{0, [—ord(f)/p]} and ord(b) >
0. In conclusion, for every f, the set HomG(Spec Oy,V) is identified with the
following subset of 02,

{(a,b+az) € OJ% | a €t k[[t]], b € k[[t]]} (sy := max{0, [—ord(f)/p]} = sht'(f)+2).
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We then identify 7.V with
|| k(] @ K([2]]

FASTAVeE!

and write its elements as triples (f, a,b). For m € Zsg, the image of Hom®(Spec Of, V)
under the natural map O3 — O3/t 0%, which we denote by Hom® (Spec Of, V),
coincides with the image of the injective map
£ k[[t]] il
tSf"l‘Tﬂ"l‘lk[[t]] tm-l-lk[[t]]
We define a motivic measure gy on JsoV as follows. For m,n € Z>q, let
£ k[[t] k[[]
tortmEE([t]] R[]

— Ofc/tm+1(92, (a,b) — (a,b+ az).

jm,nv = |_|

f€AGn

Here sy = s, where g € Ag is any lift of f € Ag,,. For integers n, j with np > j,

let Aéjn C Ag,n be the subspace of f € Ag,, with ord(f) > j. This is an affine

space of finite dimension and A, is the union of Agjn, J < np. This filtration also

allows to write J,,»V as an increasing union of affine spaces, so that the notion of
constructible subsets and their measure is well defined. For m’ > m and n’ > n,
the natural map J/ 0V — TmaV is a trivial Ai(m/_m)+(p_1)("/_n)—bundle. Let
Tmn' JooV — JmnV be the natural map. We say that a subset C C JxV is a
cylinder of level (m,n) if C' = w1 7 n(C) and mp, ,(C) is a constructible subset
of Jm.nV. Then we define the measure py(C) of C as

v (C) = [Tm,n (O)L—>m= (=,

We can further extend this measure py to measurable subsets, following [3, Ap-
pendix|. A subset C C JxV is measurable if there exists a sequence of cylin-
ders C1,Cs, ... approximating C' (which means that there exists another sequence
Bi, Ba, ... of cylinders such that lim;_,o py(B;) = 0 and for each i, the symmet-
ric difference CAC; = (C U C;) \ (C N C;) is contained in B;). For a measurable
subset C, we define py(C) := lim;_, oo py(C;). A function f: C' — Z on a subset
C C JxV is said to be measurable if all fibers f~1(n) are measurable. The integral
J LY dpy is then defined to be 3, c,[f~1(n)]L™ in M’, provided that this infinite
sum converges.

The quotient variety V/G has the coordinate ring k[z, y?]. The arc space J(V/G)
of V/G is identified with k[[t]]* by looking at the images of z and y? in k[[t]].
Similarly the m-th jet scheme J,,(V/G) is identified with (k[[t]]/(tm+1))2. Given
an element of J.V regarded as a G-equivariant morphism Spec Oy — V, taking
the G-quotient of the induced morphism Spec Ky — V, we obtain a morphism
Speck((t)) — V/G. We easily see that this morphism extends to a morphism
Speck[[t]] — V/G. Thus we obtain a map ¢: JV — Jo(V/G). In concrete
terms, the map sends (f, a,b) to (a,b?” + fa?). For n > m > 0, the map ¢ induces
map

V't ImnV = In(V/G), (f,a,b) = (a,b” + faP).
Let us take an element

LIt B2
(o, B8) € (%) = Jn(V/Q).
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We will describe the fiber 1/),;)1”((04, B)). Namely we will describe the set of triples
(f,a,b) with f € Ag ., a € t7k[[t]]/t57 ™ K[[t]], b € k[[t]]/t™ T k[[t]] such that
a = o and b’ + fa? = B in k[[t]]/t"* E[t]]. Let us write a = 3, ., ait’
b=, bt [= D i<np1 fit. The equality ¢ = « determines a;, i < m,
requires that s < ord(a) and put no other constraint on a;, i > m, b; or fi.
For the equality b* + faP? = [, we note that P (resp. faP) has only terms of
degrees divisible (resp. not divisible) by p. Therefore this equality determines b;,
i < |m/p]. If a is fixed and m > p-ord(a) = p - ord(a), then the same equation
determines f;, i < m — p-ord(a), but put no more constraint on a;, b;, f;. In this
case, since the resulting f is such that fa” has neither term of negative degree nor
term of degree divisible by p, it does follow that f € Ag,, and that sy < ord(a).
Notice moreover that, if 5’ is the subsum of 3 of degree coprime with p, then sy
is a function of ord(8’), so that, in particular, the number s; does not depends
of the choice of (f,a,b) over («, ). For simplicity, suppose m = m’p for some
m’ € N. As a consequence of the above computation, if « # 0 and m’ > ord(«),
then ¢! ((a, 3)) is the affine space of dimension

)

no. of free a; no. of free b; no. of free f;
{(sy + m) =m} + (m — [m/p]) + {n— (m' —ord(a)) }p — 1)
=s;+(p—1n+ (p—1ord(a).
We define functions
s: IV = Z, (f,a,b) — sy =sht'(f) + 2,
ord(z): JooV — Z U {0}, (f,a,b) — ord(a).

From the above argument, s is the composition of ¥: JooV — Joo(V/G) and a
function s": J»(V/G) — Z, the latter having cylindrical fibers. The function ord(x)
on JxoV also factors through ord(x): Joo(V/G) — Z U {cc}, whose fibers are also
cylinders except that ord(z)~!(co) is a measurable subset of measure zero. Let
C C J»(V/G) be a cylinder of level m. The inverse image ¢»~1(C) is a cylinder of
level (m,m) and

Wm,m(wil(c)) = w%,lm(ﬂm(c))'
If s and ord(z) take constant values so and 7 on 1 ~*(C), then
pv)c(C) = Lm0~ =Dy, (=1 (0).

By a standard formal argument on measurable subsets (for instance, see [11, Proof
of Th. 5.20]), this equality is valid also when C'is a measurable subset. Subdividing
a given measurable subset C' C Jo(V/G), we can reduce to the case where s and
ord(z) are constant. These arguments lead to the change of variables formula:

Theorem 6.2. Let C C Joo(V/G) be a subset and F: C — Z be a measurable
function. Then

/ LF dMV/G :/ LFowfsf(pfl)ord(z) dﬂV
c P=H(C)

In particular,

L? = M (V/G) = / Ldpy,c = / Le (e bord(@) gy,
Joo (V/G) TooV
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In the last line My (V/G) = [, (v/c) L dpvyc follows from definition and the fact
that V/G is smooth, while Ldpy)e = L? from the fact that Jo(V/G) =
V/G = Aj.

We describe here an alternative way to check the equality

/ L—s—(p—l)ord(;ﬂ) duy — L2.
JOOV

f,]x,(V/G)

The set
Cso0i:={(f,a,b) € TV | ord(f) > 0, ord(a) = i}
is a cylinder of level (¢,0) with m; 0(C>0,:) = Gy, ¥ A}:‘l. Therefore
5 (Cs04) = (L — DLHIL™% = (L — 1)L=F!
Their disjoint union is C>¢ := {(f,a,b) | ord(f) > 0} and

/ Lo~ =00 gy, = 3™ g, (G )LD
C>o i>0

L2 -L

1-L-»’

For j = —(pd+e) < 0 withd € Nand 1 < e < p—1 and for i € N, let
Cji = {(f,a,b) € TV | ord(f) = j, ord(a) = sy +i}. This set is a cylinder of
level (4,0) such that

f
mi,0(Cji) = Gy X AZ(p—l)-i—e—l x Gy x AT

Thus
p(Cj) = (L — 1)’L-HHaE=Dte,
The disjoint union of all the C;; is C<o = {(f,a,b) | ord(f) < 0}. Then

/ Lo 0D@ gy, = 3 Y0 S 1)L e @)D @)
C<o 1<e<p—1deN ieN

SID SR
1<e<p—1deN ieN
L!4+...41p1

= (L —1)*L""
( ) (1-L-7)(1-L"1
L —L2P

 1-L-r’

It follows that
/ L—s—(p—l)ord(;ﬂ) dﬂV —
jOOv

Remark 6.3. It is natural to see the function (p — 1)ord(z) in Theorem 6.2 as a
counterpart of the function ord(y?~!) = (p — 1)ord(y) in the change of variables
formula (6.1) for the case of H. The latter is the order function associated to the
Jacobian ideal (y?~1) C k[z,y] of the map W — W/H. It is a natural problem,
how to derive the ideal (zP~!) as the “Jacobian ideal” of V' — V/G, a map not
generically étale.

L2 -L +L—L2_p
1-L-» 1-L-»

=12
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APPENDIX A. REPRESENTATION THEORY OF

In this appendix we recall the representation theory of the group scheme o, over
Fp.

Given an Fp-algebra A we denote by Mod®® A the category of A-modules with
an action of ay, x A, or, equivalently, a coaction of the Hopf algebra Afa,] = Ale].
We introduce also the category Mod™ A of pairs (M, &) where M is an A-module
and £: M — M is an A-linear map which is p-nilpotent, that is £&# = 0. Given
(M, &) € Mod™ A we define

1

exp(&e) :Z

=0

gt

M — M QF,[]

Proposition A.1. The functor
Mod™(A) — Mod®»(A), (M,€) — (M, exp(ée))

is well defined and an equivalence of categories. Moreover for (M,§), (N,n) €
Mod™(A) we have M = Ker(£) and that

¢@idy +idy@n: M®N — M @N

corresponds to the tensor product of ay,-modules.

If B is an A-algebra and (B,¢) € Mod™(A) then a, acts on the A-algebra B,
that is A — B and B ®4 B — B are ay,-equivariant, if and only if &: B — B
is an A-derivation.

Proof. Let M be an A-module and ¢: M — M & k[e] be an A-linear map. The
map ¢ can be written as

p—1

¢ = Z ¢ie’ for A-linear maps ¢;: M —s M

=0
The map ¢ must satisfy the following two conditions in order to be an «a,-action:
(idy ® z) 0 p = idpr: M — M, where z: Fple] — F,, z(¢) = 0 is the 0-section
and (idy ® A)o ¢ = (¢ ®idp, ) 0 ¢p: M — M @F,[e] @ F,[e], where A: Fyle] —
F,le]@F,le], A(e) = e®1+1®e is the comultiplication. Those conditions translate
into

do = idy and ¢;¢; = (“:j>¢m for 0 <i,j <p

and into ¢} = 0, ¢ = exp(¢1£). This easily prove the equivalence in the statement.

The trivial ay-action on A corresponds to the nilpotent endomorphism A Ny
Thus
M = Hom» (Av M) = HomMod"“(A) ((Aa 0)7 (Mv 5)) = Ker({)

The claim about the tensor product follows from a direct check.
Consider now the last statement. The map ¢: A — B is ap-equivariant if

¢ is compatible with the nilpotent endomorphisms A 25 A and ¢ if and only
if £(v(a)) = 0 for a € A. From the assertion of the tensor product, the map
B®aB — B is ap-equivariant if and only if this map is compatible with £: B —
Band {®idp +idp®&: BRa B — B®4 B if and only if £ satisfies the Leibniz
rule. This ends the proof. ([
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Example A.2. Let (M, &) € Mod"" A. Then a, acts on the A-algebra Sym(M)
and the corresponding p-nilpotent endomorphism &, : Sym(M) — Sym(M) is the
unique A-derivation such that (&) = §.

In particular the corresponding p-nilpotent endomorphism &,: Sym"” M —
Sym™ M is given by

gn(ml . mn) = g(ml)m2 My + My -- 'mn—lg(mn)

Example A.3. Assume that A = k is a field. Then any p-nilpotent endomorphism
&: k™ — k™ can be put in Jordan form and, in this case, this just means that all
blocks have 0 diagonal and have size at most p. It follows that, up to isomorphisms,
the a,-representions over k correspond bijectively to sequences d = (dy, . .., d;) with
1§di§p, dizdi-i-l and [ € N.
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