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Abstract

For a constant γ ∈ [0, 1] and a graph G, let ωγ(G) be the largest integer k for

which there exists a k-vertex subgraph of G with at least γ
(k
2

)

edges. We show that if
0 < p < γ < 1 then ωγ(Gn,p) is concentrated on a set of two integers. More precisely,
with α(γ, p) = γ log γ

p +(1−γ) log 1−γ
1−p , we show that ωγ(Gn,p) is one of the two integers

closest to 2
α(γ,p)

(

log n − log log n + log eα(γ,p)
2

)

+ 1
2 , with high probability. While this

situation parallels that of cliques in random graphs, a new technique is required to
handle the more complicated ways in which these “quasi-cliques” may overlap.

1 Introduction

Let G = (V (G), E(G)) be a simple, undirected graph where V (G) denotes the set of vertices
of G (sometimes called nodes) and E(G) denotes the set of edges. A graph G is said to be
complete if all possible edges are present: if {i, j} ∈ E(G) for all i, j ∈ V (G), i 6= j. For a
subset S ⊆ V (G), we denote by G[S] the subgraph of G induced by S: the graph with vertex
set S and edge set {{i, j} : i, j ∈ S} ∩E(G). A clique C is a subset of V (G) for which G[C]
is a complete graph [22].

Cliques are a indispensable concept in the theory of graphs and have been extensively
studied in various contexts, reaching back to the 1930s with the celebrated results of Ramsey
[28] and Turán [33]. In random graphs, cliques have also been a central topic of study
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with its roots in the pioneering work of Erdős [11] on the probabilistic method. More
recently, the concept of a clique has arisen naturally in sociometry [22] to model cohesive
subgroups of tightly knit elements in a graph [8]. For example, in social networks, where
vertices correspond to “actors” and edges indicate relationships between actors [36], a clique
represents a group of people any two of which have a certain kind of relationship (friendship,
acquaintance, etc.) with each other [24]. Some of the earliest work on cliques, in the context
of sociometry, is presented in [22, 21, 13].

However, in real-world applications, the clique is not always the correct concept; often
we do not care that all edges are present in a particular subset, but only that the set is very
“well connected”, in some appropriate sense. Consequently, a number of relaxations of the
notion of “clique” have appeared in the literature in recent years [27, 19].

One of the most popular and widely used clique relaxation models is the γ-quasi-clique,
where γ ∈ [0, 1] is a parameter [2]. In particular, for γ ∈ [0, 1], we say that a subset S ⊆ V (G)
of a graph G is a γ-quasi-clique if the graph G[S], induced by S, has at least γ

(

|S|
2

)

edges.
This concept was first defined by Abello, Pardalos & Resende [1] who were interested

in quasi-cliques in graphs representing telecommunications data. Later, the idea of “dense
clusters” (a more general concept which includes γ-quasi-cliques) were studied in the context
of molecular interaction networks described by Hartwell, Leland, Hopfield, John, Leibler,
Stanislas, Murray and Andrew [14] and further analyzed by Spirin and Mirny [31]. They
reported that dense subgraphs in molecular interaction networks correspond to meaningful
modules or building blocks of molecular networks such as protein complexes or dynamic
functional units. The problem of finding large dense subgraphs have also appeared in a
number of other domains including biology [3, 9, 16, 4], social network analysis [10, 20, 36],
finance [5, 17, 29, 30] and data mining [25, 32].

Given the the myriad of instances for which the notion is useful, one would like to
efficiently compute solutions to basic questions about quasi-cliques in a given graph: for
example, “what is the largest γ-quasi clique in (a given graph) G”? However, it comes as no
surprise that the computational problem of finding the largest quasi-clique in a given graph
(along with many other such questions) is a hard computational problem, in general [26]
– similar to the sister problem of finding large cliques in graphs [18, 15]. Moreover, the
literature on exact computational methods for this class of problems is extremely sparse
and mostly focuses on the development and application of heuristic methods. It is therefore
natural to study quasi-cliques in “random” or “typical” graphs, which may suffice for most
applications, while allowing us to avoid the many hard computational barriers blocking the
general problem.

To this end, we study the order of the largest γ-quasi-clique in the binomial random
graph, a project initiated in a paper of Veremyev and Boginski [34]. For a graph G, we let
ωγ(G) be the size of the largest subset of vertices of G that induces a γ-quasi clique. Of
course, ω1(G) is the classical “clique number” of G, often denoted by ω(G).

We prove that ωγ(Gn,p) is concentrated on two explicitly determined points, with high
probability as n → ∞, provided 0 < p < γ < 1 are fixed real numbers. See Section 2 for a
more careful statement of this result.

2



Although these bounds are asymptotic, computational experiments suggest that they are
quite accurate even for relatively small (n = 50, 100) graphs generated using the Gn,p model.
For the results of these experiments, see Section 5.

2 Notation and statement of the main result

As usual write [n] for the set {1, . . . , n} and Gn,p for the binomial random graph on vertex
set [n] with edge probability p ∈ (0, 1). We use the notation On(1) to denote a quantity that
is bounded by a constant as n tends to infinity and we use on(1) to denote a quantity that
tends to zero as n tends to infinity. We say that a sequence of events En holds with high

probability (henceforth whp) if P(En) = 1 − on(1). For a graph G we let e(G) denote the
number of edges in the graph.

A complete subgraph on k vertices will be called a k-clique, and we define the clique

number ω(G) of a graph G to be the largest integer k for which G contains a k-clique. The
study of the clique number of Gn,p was first carefully considered by Matula [23], who noticed
that the clique number of Gn,p is concentrated on a small set of values. These results were
later strengthened by Grimmett and McDiarmid [12] and then Bollobás and Erdős [7], who
showed that for fixed 0 6 p 6 1 the clique number takes one of only two values, whp (See
also Theorem 11.1 in [6]). We prove that a similar phenomena persists for γ-quasi-cliques.
However, a significant difficulty arises when controlling the concentration of the count of
γ-quasi cliques directly. We tackle this issue by instead controlling a closely related random
variable, which is more naturally handled.

We call n-vertex graph a γ-quasi-clique if e(G) > γ
(

n
2

)

. For a graph G, we define ωγ(G)
to be the the largest integer k for which there exists a γ-quasi-clique subgraph of order k.
For 0 < p < γ < 1, we show that ωγ(Gn,p) is concentrated on two points whp as n → ∞.

Theorem 1. Let 0 < p < γ < 1 and ε > 0 be fixed and define

α(γ, p) := γ log
γ

p
+ (1− γ) log

1− γ

1− p
.

Then

ωγ(Gn,p)−
2

α(γ, p)

(

log n− log log n+ log
eα(γ, p)

2

)

∈ (−ε, 1 + ε),

whp. In particular, ωγ(Gn,p) is one of the two integers closest to

2

α(γ, p)

(

log n− log logn + log
eα(γ, p)

2

)

+
1

2
,

whp.

As usual, the binary entropy function for γ ∈ (0, 1) is

h(γ) := γ log
1

γ
+ (1− γ) log

1

1− γ
.
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We use the following consequence of Stirling’s formula. If γ ∈ (0, 1) is fixed, we have

(

n

γn +On(1)

)

= enh(γ)−
1
2
log(nγ(1−γ))+On(1). (1)

We first set out to give an upper bound for ωγ(Gn,p) which holds with high probability.
Let Xk = Xk,γ(Gn,p) be the random variable which counts the number of subgraphs of Gn,p

that are γ-quasi-cliques on k vertices. We easily obtain an upper bound on ωγ(Gn,p) by
bounding EXk. In preparation, we state a basic fact about binomial random variables.

Lemma 2. Let 0 < p < γ < 1 be fixed and N → ∞. We have

P(Bin(N, p) = ⌈γN⌉) = e−Nα(γ,p)+O(logN),

and

P(Bin(N, p) > γN) = e−Nα(γ,p)+O(logN).

Proof. We have

P(Bin(N, p) = ⌈γN⌉) =

(

N

⌈γN⌉

)

p⌈γN⌉(1− p)⌊(1−γ)N⌋

= eNh(γ)− 1
2
log(Nγ(1−γ))+N(γ log p+(1−γ) log(1−p))+O(log p

1−p
)

= e−Nα(γ,p)+O(logN).

The second result follows as, for r > γN > pN , P(Bin(N, p) = r) is decreasing in r, and
hence

P(Bin(N, p) = ⌈γN⌉) 6 P(Bin(N, p) > γN) 6 (N + 1)P(Bin(N, p) = ⌈γN⌉).

We now may establish an upper bound on ωγ(Gn,p), that holds whp, thus proving one of
the inequalities implicit in the statement of Theorem 1. In the following sections, we go on
to show that the distribution of quasi-cliques (actually a subclass of these quasi-cliques) is
sufficiently concentrated to prove Theorem 1.

Lemma 3. Let 0 < p < γ < 1 and ε > 0 be fixed. Then as n → ∞

ωγ(Gn,p) <
2

α(γ, p)
(logn− log log n+ log

e · α(γ, p)

2
) + 1 + ε,

whp.
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Proof. With Xk = Xk,γ(Gn,p) and S =
(

k
2

)

we have

EXk =

(

n

k

)

P(Bin(S, p) > γS)

6
nk

k!
e−Sα(γ,p)+O(logS)

= ek(logn−
α(γ,p)(k−1)

2
−log(k/e)+ok(1))

Let κ = 2
α(γ,p)

(logn− log logn + log e·α(γ,p)
2

) + 1 + ε. If k = ⌈κ⌉ then

log n−
α(γ, p)(k − 1)

2
− log(k/e) + ok(1) < −

ε · α(γ, p)

2
+ ok(1)

is negative for large enough n, and hence the expectation must tend to zero. Thus we have
P(Xk > 0) 6 EXk = on(1). The existence of a γ-quasi-clique on j > k vertices implies, by a
simple averaging argument, that there exists a γ-quasi-clique subgraph on k vertices. Thus
if Xk = 0 then Xj = 0 for all j > k. Hence ωγ(Gn,p) < κ with high probability.

3 γ-flat subgraphs

To show that Gn,p contains a γ-quasi-clique of order roughly 2
α(γ,p)

log n whp, we count a
slightly restricted class of subgraphs. The advantage of working with this restricted class
is that the second moment of their count is controlled more naturally. Roughly speaking,
we say that a γ-quasi-clique G is γ-flat if every induced subgraph of G is close to being a
γ-quasi clique.

To make this definition precise, we need a few definitions. First, for a graph G and a
subset A of the vertex set of G, let us define e(A) to be the number of edges with both
end-points in A.

Now, for γ ∈ (0, 1) and ℓ ∈ [k], we define S =
(

k
2

)

, T =
(

ℓ
2

)

, and set

Dk(ℓ) = min(T, S − T )ℓ−1/2 log k.

Call an k-vertex graph G γ-flat if e(G) = ⌈γ
(

k
2

)

⌉ and for all A ⊆ V (G) with ℓ = |A| ∈

[2, k − 1], we have e(A) 6 γ
(

ℓ
2

)

+ Dk(ℓ). We note that min(T, S − T ) is clearly an upper

bound on e(A) − γ
(

ℓ
2

)

when e(G) = ⌈γ
(

k
2

)

⌉, so this is only a restriction on e(A) when
|A| = ℓ > (log k)2.

We shall show that if a subset of k vertices in Gn,p has ⌈γ
(

k
2

)

⌉ edges then it is reasonably
likely that it will also be γ-flat, and hence the two notions are “typically” interchangeable.
For positive integers n, m, 0 6 m 6

(

n
2

)

, we define the Erdős-Rényi random graph G(n,m)
as the uniform probability space that is supported on all n vertex graphs with exactly m
edges.
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Lemma 4. Let G = G(k, ⌈γ
(

k
2

)

⌉) and let γ be fixed and k → ∞. Then G is γ-flat with high

probability.

Proof. Let G = G(k, ⌈γ
(

k
2

)

⌉) be realized on the vertex set [k] and fix a subset A ⊆ [k] with
ℓ = |A| ∈ [2, k − 1]. We shall show that

(

k

ℓ

)

P
(

e(A) > γ
(

ℓ
2

)

+Dk(ℓ)
)

6 k−2. (2)

Set S =
(

k
2

)

, T =
(

ℓ
2

)

, R = S − T , and put C(L) = P(e(A) = L). Note that

C(L) =

(

T

L

)(

R

⌈γS⌉ − L

)(

S

⌈γS⌉

)−1

and for 0 6 L < T , we have

Q(L) :=
C(L+ 1)

C(L)
=

T − L

L+ 1

(

⌈γS⌉ − L

R− ⌈γS⌉+ L+ 1

)

. (3)

From (3) we see that Q(L) is strictly decreasing as L increases. Let L = ⌈γT ⌉ + r 6 T .
Then if r > 0,

Q(L) 6 Q(γT + r) 6

(

(1− γ)T − r

γT + r + 1

)(

γR + 1− r

(1− γ)R + r

)

=

(

1− r
(1−γ)T

1 + r+1
γT

)(

1− r−1
γR

1 + r
(1−γ)R

)

6 min
{

1−
r

(1− γ)T
, 1−

r − 1

γR

}

6 e−
c(r−1)

min(R,T ) ,

where c = 1/max(γ, 1− γ) > 0 is a constant. Hence

C(L) = C(⌈γT ⌉+ r) 6 C(⌈γT ⌉ + 1)

r
∏

s=1

e
− c(s−1)

min(R,T ) 6 e
− cr(r−1)

2min(R,T ) , (4)

where we have used the (trivial) fact that C(⌈γT ⌉+ 1) 6 1. Now Tℓ−1/2 log k >
1
2
log k and

Rℓ−1/2 log k > (k− 1)1/2 log k, so Dℓ(k) → ∞ uniformly in ℓ as k → ∞. Thus for large k we
have cr(r − 1)/(2min(R, T )) > c′ min(R, T )ℓ−1(log k)2 for some c′ > 0 when r > Dk(ℓ)− 1.
Hence

P
(

e(A) > γT +Dk(ℓ)
)

=
∑

γT+Dk(ℓ)6L6T

C(L)

6 ℓ2e−c′ min(R,T )ℓ−1(log k)2 (5)
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for large enough k.
Consider the case when R < T . Then R = (k − ℓ)(k + ℓ − 1)/2 > ℓ(k − ℓ)/2 and so

c′ min(R, T )ℓ−1(log k)2 > 5(k − ℓ) log k > (k − ℓ) log k + 4 log k for large enough k. Now
(

k
ℓ

)

=
(

k
k−ℓ

)

6 kk−ℓ, so
(

k

ℓ

)

P
(

e(A) > γ
(

ℓ
2

)

+Dk(ℓ)
)

6

(

k

ℓ

)

k2e−(k−ℓ) log k−4 log k
6 k−2,

as required. Now suppose R > T . Then c′ min(R, T )ℓ−1(log k)2 > 3ℓ log k > ℓ log k + 4 log k
when k is large enough. Now

(

k
ℓ

)

6 kℓ, so
(

k

ℓ

)

P
(

e(A) > γ
(

ℓ
2

)

+Dk(ℓ)
)

6

(

k

ℓ

)

k2e−ℓ log k−4 log k
6 k−2,

as required. Hence (2) holds for all ℓ ∈ [2, k − 1].
Now, for 2 6 ℓ 6 k − 1, let Yℓ be the random variable counting the number of subsets A

of order ℓ which induce more than γ
(

ℓ
2

)

+Dk(ℓ) edges. By (2) we have

P(Yℓ > 0) 6 E(Yℓ) 6

(

k

ℓ

)

P
(

e(A) > γ
(

ℓ
2

)

+Dk(ℓ)
)

6 k−2,

for large enough k. So the probability that Yℓ > 0 for any of the < k choices for ℓ is at most
k−1 = ok(1).

Let Zk = Zk,n be the random variable counting the number of copies of γ-flat subgraphs
of order k in Gn,p, with p fixed and n → ∞. We now easily bound EZk, by using Lemma 4,
to relate it to the quantity EXk.

Lemma 5. Let ε > 0 and k 6
2

α(γ,p)
(logn − log log n + log e·α(γ,p)

2
) + 1 − ε with k → ∞ as

n → ∞. Then EZk → ∞.

Proof. We apply Lemma 4 to deduce that

EZk =

(

n

k

)

P(G(k, p) is γ-flat) > (1 + ok(1))

(

n

k

)

P(e(G(k, p)) = ⌈γS⌉).

Now k = O(logn) by assumption, so
(

n
k

)

= nk

k!
(1− O(k2/n)) = (1 + ok(1))

nk

k!
. Hence

EZk = (1 + ok(1))
nk

k!
P(Bin(S, p) = ⌈γS⌉)

=
nk

k!
e−Sα(γ,p)+O(logS)

= ek(logn−(k−1)α(γ,p)/2−log(k/e)+ok(1)).

However, the exponent in the last line tends to infinity when k → ∞ and k 6
2

α(γ,p)
(logn−

log logn + log eα(γ,p)
2

) + 1− ε.

In the next section we turn to estimate the variance of Zk.
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4 The second moment

To prove our lower bound on ωγ(Gn,p), we count the number of γ-flat subsets of order k in
Gn,p, where k is roughly 2

α(γ,p)
log n. For k ∈ [n], recall that Zk is the random variable which

counts the number of γ-flat subsets of G(n, p). To apply Chebyshev’s inequality, we aim to
estimate the fraction

F =
VarZk

(EZk)2
=

EZ2
k − (EZk)

2

(EZk)2
. (6)

In particular, we shall show F = o(1), as both k and n tend to infinity. Let A,B ⊆ [n]
with |A| = |B| = k and |A ∩ B| = ℓ. We think of ℓ ∈ [2, k − 1] and treat the degenerate
cases ℓ ∈ {0, 1, k} separately. Put S =

(

k
2

)

, T =
(

ℓ
2

)

, R = S − T and let gℓ(L) denote the
probability that e(A) = ⌈γS⌉, e(B) = ⌈γS⌉ and e(A ∩B) = L. We note that

gℓ(L) =

(

T

L

)(

R

⌈γS⌉ − L

)2

p2⌈γS⌉−L(1− p)2⌊(1−γ)S⌋−T+L

and consider the ratio

Rℓ(L) =
gℓ(L)

P(e(A) = ⌈γS⌉)2

=

(

T

L

)(

R

⌈γS⌉ − L

)2(
S

⌈γS⌉

)−2

p−L(1− p)L−T . (7)

The following lemma gives us a suitable way of estimating the quantity Rℓ(L), for our
purposes. For the remainder of the section, we maintain the assumption that 0 < p < γ 6 1
and that k → ∞.

Lemma 6. Let 2 6 ℓ 6 k − 1, r > 0 be an integer and set λ = 2 · γ
1−γ

1−p
p
. Then

Rℓ(⌊γT ⌋ + r) 6 λreTα(γ,p)+Ok(1) (8)

and

Rℓ(⌊γT ⌋ − r) 6 Rℓ(⌊γT ⌋). (9)

Proof. We first bound Rℓ(⌊γT ⌋). Note that R > k − 1 and hence R2T = R2(S − R) > S2

for 2 6 ℓ 6 k − 1. Since S =
(

k
2

)

→ ∞ and γ is fixed, we may bound line (7) by using
equation (1), to obtain

Rℓ(⌊γT ⌋) = e
Th(γ)+2(S−T )h(γ)−2Sh(γ)+ 1

2
log S2

γ(1−γ)R2T
+Ok(1)p−⌊γT ⌋(1− p)−⌈(1−γ)T ⌉

6 e−Th(γ)+Ok(1)p−⌊γT ⌋(1− p)−⌈(1−γ)T ⌉

= eTα(γ,p)+Ok(1).

8



Now put C(L) = Rℓ(L+ 1)/Rℓ(L) and observe that C(L) can be written as

1− p

p
·
T − L

L+ 1

(

⌈γS⌉ − L

R − ⌈γS⌉ + L+ 1

)2

.

From this expression, we see that C(L) strictly decreases as L increases and therefore

C(⌊γT ⌋+ r) 6 C(⌊γT ⌋)

6
1− p

p
·

γ

1− γ

(

1 +
1

γR

)

.

Now note that since ℓ < k, by assumption, we have that R > k − 1 and thus R tends to
infinity with k. Hence, for large k,

C(⌊γT ⌋+ r) 6 2
1− p

p

γ

1− γ
= λ.

We now apply this inequality r times to obtain

Rℓ(⌊γT ⌋+ r) 6 λrRℓ(⌊γT ⌋),

which holds for k sufficiently large, but independently of r. This proves the inequality (8).
To prove the inequality (9) we note that C(L) is strictly decreasing and

C(⌊γT ⌋ − 1) >
1− p

p

γ

1− γ
·

(

1 +
1

(1− γ)T

)(

1 +
1

γT

)

>
1− p

p

γ

1− γ
> 1.

Thus Rℓ(⌊γT ⌋ − r) 6 Rℓ(⌊γT ⌋).

We are now in a position to show that F = o(1) as n and k tend to infinity.

Lemma 7. Let k 6
2

α(γ,p)
(logn− log log n+ log eα(γ,p)

2
) + 1− ε. We have

EZ2
k = (1 + ok(1))(EZk)

2.

Proof. We consider the fraction F , from equation (6). We keep with the convention that
S =

(

k
2

)

, T =
(

ℓ
2

)

, and R = S−T . Let EA and EB denote the events that A, resp. B, induces
a γ-flat subgraph. Let E ′

A, resp. E
′
B, denote the event that A, resp. B, induce exactly ⌈γS⌉

edges. Note that EA ⊆ E ′
A and EB ⊆ E ′

B. Now write t(ℓ) = tn,k(ℓ) =
(

k
ℓ

)(

n−k
k−ℓ

)(

n
k

)−1
. We

now turn to bound F . We may expand Zk as a sum of indicators

Zk =
∑

A⊂V (G),|A|=k

1(EA)

9



Hence EZk =
(

n
k

)

P(EA) thus

F =
EZ2

k − (EZk)
2

EZk
=
∑

A,B

(

n

k

)−2
P(EA ∩ EB)− P(EA)P(EB)

P(EA)2
.

We now divide the sum with respect to |A ∩B| = ℓ to obtain

F =

k
∑

ℓ=0

(

n

k

)(

k

ℓ

)(

n− k

k − ℓ

)(

n

k

)−2
P(EA ∩ EB)− P(EA)P(EB)

P(EA)P(EB)

=
k−1
∑

ℓ=2

t(ℓ) ·
P(EA ∩ EB)− P(EA)

2

P(EA)2
+ on(1), (10)

where we have eliminated the first two terms in the above sum as EA and EB are independent
events when |A ∩ B| 6 1. We have also eliminated the last term in the sum, i.e. when
EA = EB. This is justified, as this term is at most (

(

n
k

)

P(EA)))
−1 = (EZk)

−1 = ok(1), by
Lemma 5. Let us denote the ℓth term in the sum at (10) as F (ℓ).

Lemma 4 implies that

P(EA ∩ EB)− P(EA)
2

P (EA)2
6 (1 + ok(1))

P(EA ∩ EB)

P(E ′
A)

2
.

For ℓ ∈ [2, k − 1], our “flatness condition” on subsets of A applies and hence

P(EA ∩ EB)/P(E
′
A)

2 = P(E ′
A)

−2
∑

06L6γT+Dk(ℓ)

P(EA ∩ EB | e(A ∩ B) = L)P(e(A ∩B) = L)

6 P(E ′
A)

−2
∑

06L6γT+Dk(ℓ)

P(E ′
A ∩ E ′

B | e(A ∩ B) = L)P(e(A ∩ B) = L)

=
∑

06L6γT+Dk(ℓ)

Rℓ(L)

=
∑

06L<γT

Rℓ(L) +
∑

γT6L6γT+Dk(ℓ)

Rℓ(L)

6 TλDk(ℓ)eTα(γ,p)+Ok(1).

This last inequality follows from applying the inequality (8) (from Lemma 6) to each term
in the right sum and applying the inequality (9) (again from Lemma 6) to the left sum. So
we may bound the ℓth term in the sum (10) as

F (ℓ) 6 t(ℓ)TλDk(ℓ)eTα(γ,p)+Ok(1).

We first consider the case when R < T . Write δ := k − ℓ. Now

t(ℓ) =

(

k

δ

)(

n− k

δ

)(

n

k

)−1

6 (kn)δ
(

n

k

)−1

10



and EZk =
(

n
k

)

e−Sα(γ,p)+O(log k) → ∞. Also Dk(ℓ) = Rℓ−1/2 log k = ok(R) as R < T implies
ℓ > k/2. Thus

F (ℓ)EZk 6 eδ log(kn)−Rα(γ,p)+ok(R)

But R = δ(k+ℓ−1)/2 > 2kδ/3 and kα(γ, p) ∼ 2 logn. Thus F (ℓ) 6 (EZk)
−1e−( 1

3
−ok(1))δ logn.

In particular,
∑

ℓ : R<T F (ℓ) = o(1).
Now consider the case when R > T . In this case we use the bound t(ℓ) 6 (1 +

ok(1))(k
2/n)ℓ to deduce that

F (ℓ) 6 eTα(γ,p)+ℓ log(k2/n)+Ok(Tℓ−1/2 log k)+Ok(log k) = eℓ((ℓ−1)α(γ,p)/2−log(n)+Ok(k
1/2 log k)).

Now k = O(logn) and ℓ < 3k/4. Thus (ℓ − 1)α(γ, p)/2 6 (3/4 + ok(1)) logn. Hence
F (ℓ) 6 e−(1/4−o(1)) logn and so

∑

ℓ : R>T F (ℓ) = o(1).

After these preparations, it is only a small step to finish the proof of Theorem 1.

Proof of Theorem 1. Let ε > 0 be given. The upper bound on ωγ(Gn,p) follows from

Lemma 3. For the lower bound, assume k 6
2

α(γ,p)
(log n − log logn + log eα(γ,p)

2
) + 1 − ε.

From Lemma 5 we know that EZk → ∞, so for sufficiently large n we have EZk > 0 and
thus we may apply Chebyshev’s inequality to show that the quantity P(Xk = 0) is small.
We have

P(Xk = 0) 6 P(Zk = 0) 6 P(|Zk − EZk| > EZk) 6 Var(Zk)/E(Zk)
2 = F = o(1),

where we have used the fact that every γ-flat set is a γ-quasi-clique for the first inequality.
The third inequality is Chebyshev’s inequality and the bound on F is the content of Lemma 7.

5 Computational Experiments

Here, we note the bounds obtained from Theorem 1 are actually quite accurate in practice,
even for relatively small values of n. To illustrate, we performed a small set of computational
experiments for graphs of size n = 50 and n = 100 and different values of p. For each pair n, p
we generated 100 instances of graphs sampled according to the corresponding Gn,p model.
We have also selected various values of γ ranging from 0.3 to 0.9.

For each γ, n, p in Table 1 we report the minimum ωγ
min, maximum ωγ

max and average
ωγ
avg cardinalities of the largest γ-quasi-cliques and compare this to ωγ

th, the “theoretical”
value obtained from the formula in Theorem 1. That is,

ωγ
th(n) =

2

α(γ, p)

(

logn− log logn + log
eα(γ, p)

2

)

+
1

2
. (11)

11



γ ω
γ
min ωγ

max ωγ
avg ω

γ
th γ ω

γ
min ωγ

max ωγ
avg ω

γ
th γ ω

γ
min ωγ

max ωγ
avg ω

γ
th

n = 50
p = 0.20 p = 0.15 p = 0.10

0.9 4 5 4.95 5.72 0.9 3 5 4.12 5.06 0.9 3 5 3.27 4.39
0.8 5 7 6.01 6.92 0.8 4 6 5.19 6.03 0.8 3 5 4.28 5.14
0.7 6 8 7.2 8.44 0.7 5 8 6.02 7.26 0.7 3 6 5.05 6.09
0.6 8 11 9.48 10.41 0.6 6 10 7.62 8.87 0.6 5 8 6.15 7.34
0.5 10 15 12.58 12.64 0.5 8 12 9.85 10.99 0.5 6 10 7.8 9.05

n = 100
p = 0.15 p = 0.10 p = 0.05

0.9 4 5 4.98 5.82 0.9 3 6 4.41 4.99 0.8 3 5 4.1 4.73
0.85 4 6 5.6 6.4 0.8 5 7 5.23 5.92 0.6 5 7 5.72 6.65
0.8 6 7 6.21 7.04 0.7 5 8 6.11 7.12 0.4 7 11 9.06 10.56
0.75 6 8 6.95 7.78 0.6 7 10 7.74 8.75 0.3 11 16 12.77 14.44

Table 1: Largest quasi-cliques in graphs generated according to Gn,p model. For each n, p,
the minimum ωγ

min, maximum ωγ
max and average ωγ

avg cardinalities of the largest quasi-cliques
identified in 100 instances are reported. These values are compared against the values given
by the formula for ωγ

th at (11).

Observe that the obtained formula provides an accurate estimate of γ-quasi-clique number
ωγ(G) in graph instances generated according to the binomial random graph Gn,p, even for
relatively small values of n.

To identify the largest γ-quasi-clique in these experiments, we used the so-called feasi-
bility check version of formulation F4 in [35] (or AlgF4). Previous experimental work has
suggested this algorithm to be the best performing on instances generated from Gn,p.

References

[1] J. Abello, P.M. Pardalos, and M.G.C. Resende. On maximum clique problems in very
large graphs. In J. Abello and J. Vitter, editors, External Memory Algorithms and

Visualization, pages 119–130. American Mathematical Society, Boston, 1999.

[2] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detection. In
S. Rajsbaum, editor, LATIN 2002: Theoretical Informatics, pages 598–612, London,
2002. Springer-Verlag.

[3] G. D. Bader and C. W. Hogue. An automated method for finding molecular complexes
in large protein interaction networks. BMC Bioinformatics, 4(1):2, 2003.

[4] S. Bastkowski, V. Moulton, A. Spillner, and T. Wu. The minimum evolution problem
is hard: a link between tree inference and graph clustering problems. Bioinformatics,
page 623, 2015.

12



[5] V. Boginski, S. Butenko, and P. M. Pardalos. Statistical analysis of financial networks.
Computational Statistics & Data Analysis, 48(2):431–443, 2005.

[6] B. Bollobás. Random Graphs. Cambridge University Press, 2001.
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