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BOUNDS FOR GL3; L-FUNCTIONS IN DEPTH ASPECT
QINGFENG SUN AND RUI ZHAO

ABSTRACT. Let f be a Hecke-Maass cusp form for SLs(Z) and x a primitive Dirichlet character
of prime power conductor q = p” with p prime and k > 10. We prove a subconvexity bound

1 _
I (5771_@)() Cpmie q3/4 3/40+¢

for any € > 0, where the dependence of the implied constant on p is explicit and polynomial. We
obtain this result by applying the circle method of Kloosterman’s version, summation formulas
of Poisson and Voronoi’s type and a conductor lowering mechanism introduced by Munshi [14].
The main new technical estimates are the essentially square root bounds for some twisted multi-
dimensional character sums, which are proved by an elementary method.
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1. INTRODUCTION

Let L(s, f) be an L-function with the analytic conductor q(s, f). By the functional equa-
tion and the Phragmen-Lindel6f convexity principle, we have the convexity bound L(s, f) <
q(s, f)l/ 4+¢ Tt is an fascinating problem to break the convexity barrier. In the t-aspect, one
has the classical result for the Riemann zeta function ¢(1/2 + it) <. (1 + |t[)1/5*¢ due to Weyl
[19]. For L-functions on GLg, results of the same strength

1
L <§ +it, f> g (14 ]t)V/3+e (1.1)
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were proved by Good [4], Jutila [7] and Meurman [I0], where f is a fixed holomorphic cusp form
or a Maass cusp form. For GL3 L-functions, Munshi [I5] proved that

1
L (5 n m) e (14 A5, (12)

where 7 is a fixed GL3 Hecke-Maass cusp form (this bound was first proved by Li [9] for 7 self-
dual). On the other hand, in the conductor aspect, we have the Burgess’ bounds L(1/2, x) <.
@15+ and L (1/2, f @ X) <je ¢*/3° for a primitive character y of conductor g, where f is a
fixed GLo cusp form. Interestingly, for x quadratic, Conrey and Iwaniec [3] proved the exponent
1/3, i.e., the quantitative analogue of (1.1). Recently, by developing a general result on p-adic
analytic phase and a p-adic version of van der Corput’s method for exponential sums, Blomer
and Mili¢evié¢ [2] also proved the same exponent if the conductor of x is a prime power q = p~

L(1/2+it, f @ X) <pure 931, (1.3)

where the implied constant on p and ¢ is explicit and polynomial (Munshi and Singh proved the
same result using the approach in [14]). Also see [I1] and [8] for other interesting subconvexity
results in the depth aspect.

Let 7 be a Hecke-Maass cusp form for SL3(Z) and x a primitive Dirichlet character modulo
q. Then the convexity bound for L (1/2,7 ® x) is ¢°/**¢. For q prime, the subconvexity results
for L (1/2,7m ® x) have recently been established in the work [1], [6] and [16]-[17]. Munshi [14]
showed a subconvexity bound for q square-free. In this paper, following Munshi [14], we want
to prove a subconvexity bound for L (1/2,7 ® x) in the depth aspect. Our main result is the
following.

Theorem 1. Let 7 be a Hecke-Maass cusp form for SL3(Z) and x a primitive Dirichlet character
of prime power conductor q = p" with k > 3. We have

1
L <§= T® x> Ko PO AGPIA3/404
for any e > 0.

Remark 1. Our result in Theorem 1 can be compared with the t-aspect subconvexity in (1.2)

as explained in [I3]. It is worth noting that for = the symmetric-square lifts of G Ly cusp forms,
Munshi [I3] proved the better result ¢3/4~1/12+¢ by the moment method.

Remark 2. We are not trying to get the best exponent in p. With the present exponent 3/4,
the bound in Theorem 1 breaks the convexity for x > 10.

Notation. Throughout the paper, the letters ¢, m and n, with or without subscript, denote
integers. The letter £ is an arbitrarily small positive constant, not necessarily the same at
different occurrences. The symbol <, . denotes that the implied constant depends at most on
a, b and c. Finally, fractional numbers such as Z—g will be written as ab/cd and a/b+c or c+a/b
means § + c.

2. SKETCH OF THE PROOF

By the functional equation we have L (%, s X) <« N~12.2(N), where
FS(N) =Y A(1,n)x(n),

n~N
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with N ~ %2, Applying the conductor lowering mechanism introduced by Munshi [14], we
have

SN A(Ln)x(n)s <” ;;”)

n,m~N
n=m(modp*)

where ¢ : Z — {0,1} with 6(0) = 1 and 6(n) = 0 for n # 0, and A > 2 is an integer to be
chosen later. Using Kloosterman’s circle method and removing the congruence n = m(modp*)
by exponential sums we get

“5Y L Y LY T A (TR,

q~Q Q<a<q+Q b(modp ) n,m~N

Trivially we have .7 (N) < N2.

For simplicity, we assume (¢,p) = 1 and (@ + bg,p) = 1. Recall x is of modulus q = p”. Then
the conductor of the m-sum has the size gp”. Applying Poisson summation to the m-sum we
get that the dual sum is of size ¢p”/N. The conductor for the n-sum has the size gp® and the
dual sum after GL3 Voronoi summation formula is essentially supported on summation of size

3p3) /N. Assuming square-root cancellation for the character sum, we find that we have saved

N N ML/2 | 11/8 —A/4
() 72 " (g~ () e

Now we arrive at an expression of the form

> A x> > x(m—bp" S (B, n; gp’).

1<n<k@3p3* /N ~Q |m|<Qp*/N  b(modp?)

Next we apply Cauchy-Schwartz inequality to get rid of the Fourier coefficients. Then we need
to deal with

oo Dixte > > X(m—bp")S(b,n;qp")

1<n<@3pP /N [a~Q  |m|<Qp*/N  b(modp?)

Opening the square and applying Poisson summation to the sum over n, we are able to save
Q%*p"/N ~ p* from the diagonal term and

QPN 5y
Vo "
from the off-diagonal term. So the optimal choice for A is given by A = 2x/5. In total, we have

saved
q11/8p—)\/4 % p3>\/4 N q3/2+3/40'

It follows that

L (%,71'@)() < N—1/2y(N) < N3/2q—3/2—3/40 ~ C|3/4_3/40.
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3. PROOF OF THEOREM 1

By the approximate functional equation we have

L<1 7T®X> Lreq® sup w
27 e NSq3/2+5 \/N ’

=Y AL mx(m)V (5)

for some smooth function V supported in [1,2] and satisfying V) (y) <; 1. Note that by
Cauchy’s inequality and the Rankin-Selberg estimate (see [12])

Z Z |A7T(n17 n2)|2 Lre Y1+€7 (32)

TL%'I’LQSY

(3.1)

where

we have the trivial bound .#(N) <. N. Thus Theorem 1 is true for N < ¢%7/2°. In the
following, we will estimate .#(N) in the range

q27/20 < N S q3/2+€' (33)
Proposition 1. Assume A < 2k/3 and (3.3). Then we have
y(N) < N1/2+a(p3n/8+3)\/4 _|_p7n/8—)\/2+3/4)‘
Take A\ = [2k/5] + 1, where |z | denotes the largest integer which does not exceed z. By (3.3)
and Proposition 1, we have
y(N) < p3/4N1/2+6q3/4—3/40
Then Theorem 1 follows from above bound and (3.1). In the following we prove Proposition 1.

3.1. The circle method. Define § : Z — {0,1} with 6(0) = 1 and d6(n) = 0 for n # 0. By
Kloosterman’s version of the circle method, for any n € Z and Q € R™, we have

= 2Re Z > —e (— - ”—C> dc, (3.4)

a
0 1<4<q Q<a<q+Q 1

where throughout the paper e(z) = e?™* and @(mod ¢) denotes the multiplicative inverse of a
g

modulo ¢. Define 17 =1 if .Z is true, and is 0 otherwise. Following Munshi [14] we write d(n)
as 6(n/pA)1pA|n (2 < X < K, A € Nis a parameter to be determined later) to lower the conductor

and obtain
n m n—m
n prn—m
where U is a smooth function supported in [1/2,5/2], U(y) = 1 for y € [1,2] and UV (y) <; 1.

Applying (3.4) and choosing
Q =/N/p*

we get

F(N) = SFH(N)+.7(N),
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where

/ZZ ZAln()

0 1<4<0 Q<a<q+Q

5w () e (£ 5 R

pAn—m “ar

We will only estimate . (N) (the same analysis holds for .~ (N)) and write . (N) as
Z(N). Removing the condition p*|n — m using exponential sums to separate the variables m
and n we get

1
/ — Z o x B dC, (3.5)
0 1<¢<Q Q<a<q+Q aq b(mOdp/\)
where
(@+bgm ¢ (my (G
of = TN N
;x(m)e ( > )Y (N) “\agp®
and

(@-+ bq)n> n n(
B = A 1,ne<7 V(—)e
Zn: (L) gp* N agp?
3.2. Summation formulas and Cauchy-Schwartz. Next we transform ./ and % by Poisson
summation formula and G L3 Voronoi formula, respectively, and obtain the following results.
Lemma 1. Let g = p°¢, (¢,p) =1 and s > 0. Then we have

! m— (a R
g =Ny (P . a,.0)+ Ol )

K S
b I <NEQpr /N p
m=ap®—X(mod q)

for any A > 0, where the integral I(m,a,q,C) is defined in (4.2).
Lemma 2. Let a* = (E +bq)/(@+ bq, qp*) and ¢* = qp* /(@ + bq, qp*). Then we have

Ar(no,n — *
*1/2 Z Z ZZ %S (a*,im; Z—1>

T nilg* n3na<Neg*3Q3/¢3N

n2n
x I+ ( ;*32,a,q,c> +0(a™")

for any A > 0, where J* (y,a,q,() is defined in (5.2) and satisfies

I (y.a,0,0) < NE\/g

The details of the proof of Lemmas 1 and 2 are in Sections 4 and 5. Note that for s > 1, we
have (@+bq, gp*) = 1, a* = @+bg and ¢* = gp*. For s = 0, we have (@+bq, qp*) =p", 0 <r < A,
a* = (@+bq)/p" and ¢* = qp*~". Since @ + bg = 0(mod p"), we have b = —ag(mod p"). Denote
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wy = (1 —qq)/p" € Z. We write @ + bqg = (@w, + cq)p” with c(mod p*"). Plugging Lemmas 1
and 2 into (3.5) and reducing the nj,ns sums into dyadic intervals, we have

A
y(N) < ZZ Z ’yli(N7L17T)‘

4+ r=0 L1<<N5p3A*37'Q3/N

Ly dyadic
log Q/logp
+y 0> > AN Ly s) + 9720, (3.6)
+ s=1 L2<<N5p3AQ3/N
Lo dyadic
where
N3/2 Ar(ng,nq) (q)
+ . x(N2, 11 x\q
TN L) = (R t32—1)/2 ZZ Z 3/2
p /12 )
Ly /2<n?ny<Ly 1<q<Q,(g,p)=1
nylgpA="
1 4 n%n2
X Z Z aﬁ m, q3p3)\—3r’a’q
1<|m|<NE€QpF /N Q<a<q+Q
(m,q)=1 a=mpr—A(mod q)
A—r
X Z X (m - cp“_>‘+r> S <E, +no; p >
c(mod pr—T) "
(3.7)
and
N3/2 Ar(n2,n1) (q)
+ . r(n2, N1 xX\q
Sy (NyLays) = Pr+3A+35)/2 ZZ 2 Z PEIE
La/2<n?n2<Lo 1<¢<Q/p?%,(¢,p)=1
nqlgpAts
1 + Tl%ng S
> DR (L
1<|m|<N€Qp* /N Q<a<qp$+Q,(a,p)=1
m=0(mod p%) azﬁp“*A(mod q)
m — (a -+ bp® K—A A s
X Z Y< ( Sp)p >S<6+bps,j:ng;q};1
b(mod p*) P !
with
1
~ ~ q
o) = [ 900,00 (00,0 a0 < 37 L (3.5)
0

Here we have changed variables aw; + c¢ — ¢ and bg — b.

Remark 3. If m = 0, then the conditions p*~* = 0(mod ¢p®) and ((@ + bgp®)p"~*~%,p) = 1
imply that ¢ = 1 and s = x — \. Thus we have p*~* < Q = \/N/p* which implies N > pl3/2+e)s
which contradicts to the assumption (3.3). Therefore, we have m # 0.

Applying Cauchy-Schwartz inequality to n1,ng-sums in (3.7) and using the Rankin-Selberg
bound (3.2), we get

N3/2L1/2
L F (N, Ly,r)'/? (3.9)

SEN,Ly,r) < SeBA—n/2
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where
"2
+ _ nfn*n x(q)
A = XY Yow () Y Wy
(n],p)=1ny|pr—" n2 1<q<Q,(gq,p)=1 1<|m|<NEQp" /N
nlq (m.)=1
2
1 n/2,n//2,n2
Z ECT(m,n'l,nll',:tng,a,q)ﬁi (m m ,q> (3.10)
Q<a<q+Q q°p

a=mpr—A(mod q)

with W (y) a smooth positive function, W(y) =1 if y € [1/2,1], and

¢ .(m,n,nf naya,q) =S (aw"pr,ngpr, q) Z X (m - cp“_)‘M) S <cq,n2§ ﬁ) . (3.11)
c(mod p*—T)

Here § = q/n/, and p, = p*~"/n/. Similarly,

N3/2L1/2

5 (N, Ly, 5) < Im

;" (N, Ly, s)'/? (3.12)

where

"2

AN Lays) = S Y Z (w) 5 x(q) 3

3/2

(ny,p)=1nY/|pr+s n2 Ly 1<¢<Q/p%,(q,p)=1 q 1<Im|SNEQpR/N
nll‘q m=0(mod p%)
2
1 ron n/2n//2n
4 17ty 12 S
E —B,(m,n’,nY, £no,a,q)R M Bpiaras 4P
Q<a<qp3+Q,(a,p)=1

a=mpH—X(mod q)

with

pS

q _(m— E—Fbpsp“_)‘
By(m, 0, q) = S(apm/na',mpm/naf;n—,) 3 x( @+ bp')

b(mod p*)

Ats
xS <E+bp5q/n’l,n2q/n’l;pn—/l> . (3.13)
1

3.3. Poisson summation. Opening the square in (3.10) and switching the order of summa-
tions, we get

HEN, Ly, r) = Z ¥ T X(gqé) 3 X(2)

3/2
ny nf|pr—r 12a1=Q,(q1,p)=1 4 1<49<Q,(ag.p)=1 2
nf lay nf lag
1 1
> > ) DD DR

ai a2

1<|mq |[<NEQpr /N 1<|mo|<NEQpr /N Q<a1<q1+Q Q<ag<ga+Q

(m1,q1)=1 (mg,q9)=1 alzmilp’i*/\(mod q1) aQEWQp"f)‘(mod q2)
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where temporarily,

1 nn’*ny
! 1/
T = E —W <7> ¢.(my,ny, ny, £n2, a1, q1)& (M2, n},nY, £n2, a2, ¢2)

Ly
12,112 12,112
m1 3 3,\_3T7<117Q1 ma, 3. 3\—3r "’ az, q2
qlp 5y%

Applying Poisson summation with modulus ¢;¢2p,, we arrive at

T=—— ¢* x R*,
q1492pPr Z

n2€Z
where
+nf3
= D & (my,nhnf,B,a1,q1) & (ma, i, ], B,az, g2)e <AAA> (3.14)
Slmod Gi@5) zbr

Lyy Ly naLyy dy
W ﬁi < CL1,Q1> a3 <m2777a27Q2 e\~ —-
/ 3 3)\ 3r’ q%p?))\—?)r q1q2p)\—rn/1/ y

The integral & gives arbitrary power saving in q if |na| > N°Q?*p*~"n!//L; for any £ > 0. For
small values of ng, by (3.8), we have

ﬁ*<<N€‘/QIQ2
0

Therefore, at the cost of a negligible error,

\/ 1
T<<NE q1QQAAA Z ’Q:*’

Q1Q2p7” ‘TL2|SN5Q2P>‘7T”/1//L1

and
+
o = NEE S S LT
//‘pA r 1<q1<Q 1<q2<Q
”1“11 ”1“12
1
> > > €. (3.15)
1<Imy [SNEQpH/N 1< imal<Ne@pr/N VAT e gapa - 1y
(m1,q1)=1 (mg,q2)=1 -
Similarly,
HEN, L e L 1
(N Les) < NG D DD D
s 150 <Q/p (=1 1 1<e <@/ ez =1 P
1“11 ”/1“12

3 > L > B*|, (3.16)

1<y |<NeQpt /N 1<imgl<neQpr /N TIPS 1N ah s
m1=0(mod p%) mo=0(mod p%) -
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where ¢ = q/n}, ps = p***/n! and

imﬁ) . (317

%* - § %s (mlynllynll/aﬁvahql) sBs (m27n/17n/1,757a27q2)e</\/\/\
=~ q192ps
B(mod ¢1d2ps)

Lemma 3. Assume A < 2x/3. Let pF||ng with k > 0.
(1) We have

¢ L AGR@, Byno)py P,

Moreover, for ng = 0, the character sums vanish unless q1 = qo in which case

¢ < @G, m1 — ma)prp* ).

2) For n/ = p*7" or n/ = p* "1 with \ — r > 2, we have
1 1
¢ =0.
(3) For p*~" /nY > p?, we have € vanishes unless n| = 1. Moreover, let A —r = 2a + § with

0 =0 orl. Forng =0, € vanishes unless mlql = m2q2(modp ). For ng # 0, we have

o* < é\lé\Z(é\l; q/57 n2)p5()\—7“)/2+min{k‘,0l}+36/2'

Lemma 4. Assume \ < 2k/3. Let p*||ng with k > 0.
(1) We have B* vanishes unless n] =1 and

B* < ARG @y n2)ps p™
Moreover, for no = 0, the character sums vanish unless q1 = qo and a3 = az(modp?®) in which

case

B < (ﬁ2((j\1,m1 m2)psp2)\+s

(2) Let A = 2a + & with 6 = 0 or 1. For ny = 0, we have B3 vanishes unless gimy /p® =
q3ma /p®(mod p®). For ny # 0, we have

PB* < <]A1<]A2(qu, 6\27 n2)p5)\/2+45+min{k,a}+36/2‘

For r > A — 1, by (3.15) and Lemma 3 (1), we have

ML) < NEE Y S LY LY

//‘ A—r 1<q1<Q 1<q2<Q 1<‘77L1‘SN5QPK/N
nf la nf lag (m1,q1)=1
1 2
~ o~~~ ~2 2 A—r
) ——— > QBT @y n2)py 2p* )
q192pr

1<|mg |<NEQpH /N
(mg,q2)=1

ngzzq%z >

//|p)\ r 1<q1 <Q,(q1,p)=1 1 1<|m1|<NEQpH /N 1<|mg|<NEQpPH /N

1<|n2|<N=Q?p*—rnf /Ly

nlay (m1,q1)=1 (mg,q1)=1
1 - ~ _
—— @%@, m1 — ma)prp* )
q1 Dr
Qp2/~£+4)\—4r p2ﬁ+2)\—2r
N°¢ . 3.18
< ( VIt ow (3.18)
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For r < XA — 2, by Lemma 3, we have
HE(N, Ly, r) < Ry + R, (3.19)

where R is the contribution from p*~"/ ny > p*and ny =0

Ro-VAYY Y LY >

§=0,1 nf 1<01<Q ql 1<|mq|<NEQpH /N 1<|mg|<NEQpH /N
1“11 (m1,q1)=1 mzzml(modpo‘f"qf‘s)/z)
1 _
——— (@1, 1 — ma)p* ")
p
Qp Qp" e
« NPT S (1 W
6=0,1
pn+2)\—2r 12 p2/€+3>\/2—37’/2
<« Nf|— - 3.20

and Ry is the remaining piece

RoNEYY YLyl oy oy

§=0,1 n/ 1£020 M 1220 B 1<imy<NE QR /N 1<imy | <NEQpR/N
nflay nflag (my,q1)=1 (m2,92)=1
1 PPN _ . e
— Z Z Q1qQ(ql,qQ,n2)p5()‘ r)/24+min{k,(A—r—38)/2}+35/2
nap 0<k<logq 1<|ng|<NEQ2pA—T /Ly
pFing
3(A=7)/2 k0 2 2, A—r
eD Qp 36/2 Q"p
« v (W) T X
5=0,1 1<q1‘<Q 0<k<(A—r—51)/2
"1 q1
o Q2p)\—r—k
4 Z pA-T=9)/2 L
(A—r—41)/2<k<log q 1
p2hH2A=br/2
) — (3.21)

N3/2L,
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Obviously, the second term in (3.20) is dominated by (3.21), since N°Q?p*~"/L; > 1. By (3.9)
and (3.18-3.21), the contribution from 4% (N, Ly,r) to .#(N) in (3.6) is at most

A 3/271/2 1/2, k+2A—2r KAA—T
NEZ Z N3AL12 ¢ p12 Jr1012
p(’ﬂ‘ -r)/ NLl/ Q 2N

r=X—1 L < Nep3A=3rQ3/N
Ly dyadic

A2 1/2 A—r K+A—5r/4
N3/2L H/2+ + /
+N* Z Z pr+3A=T) QN1/2 + p3/42]9V3/4L1/2
r=0 L1<<N5p3A*37'Q3/N 1
Ly dyadic

A
< N2te Z <N1/4p/i/2+)\/4—3r/2+pn/2+>\/2—27’>

r=A—1
A—2
4+ N2te Z <p3)\/4—2rN1/4 + p3/4N1/4pn/2—)\/2—3r/4)
r=0
< N2te <N1/4p3A/4 + p3/4N1/4pn/2—>\/2> (3.22)

for A > 2.
Similarly, by Lemma 4, the contribution from ns = 0 to ,%”Qi(N , La, s) is at most

FESY Y LY )

6=0,1 n} 1<a1<Q/p* i 1<|my |SNQpF/N  1<|mg| <NEQpF /N,pS|my

”Ll‘fIl pSlmy mo /pS=mq /pS(mod p(A=8)/2)
1 2
~2 [~ 3A+2s
X5 (@, my —ma)p

ap

22 +4s K—S$ k—s—(A—0)/2
_ Nap ZZ Z %QI;V <(j\1+QP = )

6=0,1 n| 1<a1<Q/p* %
(q1,p)=1

n'1|111

_ [ prrss " p2r3N/2+2s
= N°|—r— —_— . 2
0N +p ON? (3.23)
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The contribution from no # 0 to %i (N, Lo, s) is bounded by

VEYY Y &Y &% >

§=0,1 nf 1<q1<Q/p® = 1<g2<Q/p* ' 1<Im1|SNQpF/N 1<|mg| SNQp/N

nylq1 nlq2 m1=0(mod p?) mo=0(mod pS)
% Z Z G (G, Gi, o) poN HHs+min{k,(A=6)/2}+35/2
<= 5 @,
q1q2p 0<k<10g q 1<|ng| <NSQ2pA—5 /Ly
pklng
3\/2+6s N2 2 s
P 35/2 1 /Qp 0%
< N/ P a
Z Z: 1 Z q1 N Lo
6=0,1 n 1<1<Q/p*
”1|41
2R+5)\/2+3s
< p3/2NanN2—L2‘ 21

Obviously, the second term in (3.23) is bounded by (3.24). Plugging these estimates into (3.16)
and (3.12), we have that the contribution from .#;"(N, L, 5) to .(N) in (3.6) is bounded by

log Q/logp 1/2 K s R S
Y s (Y
s=1 Lo« Nep3AQ3/N p QN NL2
Lo dyadic
< N1/2+5(N1/4p3>\/4 +p3/4N1/4p“/2_’\/2). (3.25)
3.4. Conclusion. By (3.22) and (3.25) we have
Z(N) < N1/2+5(N1/4p3>\/4 +p3/4N1/4p“/2_)‘/2).
Since N < p3#/2+¢ Proposition 1 follows.
4. PROOF OF LEMMA 1
In this section we apply Poisson summation formula to prove Lemma 1. Precisely,
(@+bg)B m me
g o Y e ((TH) y (m)e(2
qp _ B aqp
B(mod gp~) m=p(mod gp*)
= S Am.a,b.g)3(m,a.0.0) (41)
" mMEZL
where
m — (@ + bq)p
Am,a,b,q) = > x(Be - B
B(mod gp*) »
and

3(m,a,q,¢) = /RU(y)e ((gqj\;ﬁ) e (-mNy> dy. (4.2)
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4.1. Computing the character sum 2A(m,a,b, q). Write ¢ = p°¢’, (¢’,p) = 1 and s > 0. Then

m — (a ! on S\ K— A
Amaba) = Y eI )

ImS+kK
B(mod ¢'pstr) 7p

m—apt > ——
= Z e <q7/pps+liﬁl>
B1(mod q’)
m — E—i—bq/ps pn—)\_
> x(52)6< ( o s,
B2(mod pstr)

where the first sum over §; is ¢’1 , and the second sum over 35 is

m=ap*~*(mod q')

m — (a ! A8\ E—A
W)Y X(52)€< @+ ba'p)p 52)

S+K
B2 (mod pstr) b
— K=\ — 10708\ K—A
m — ap” m — (@ + bq'p°)p
= xd) ) e <7sa1> > Xla)e ( P az
P p
a1 (mod p?) az(mod p*)
_(m—(@+bgp*)p?
= pSX(q,)lmEEp“*A(modps)X ( ps Tx:

Here 7, is the Gauss sum. Thus

_(m—(a+b A
A(m,a,b,q) = qlmzﬁp“’k(mOdQ)X(q/)X ( ( o = > e

4.2. Bounding the integral J(m,a,q,(). Integration by parts j times, we get
Qp~ J
Im|N > '

3(m, a,q,) < (

Thus the m-sum is essentially supported on |m| < N°Qp”/N. Then Lemma 1 follows from (4.1)
and (4.2).
Furthermore, we also do repeated partial integration by integrating all the exponential factors
and differentiating U only to get
> ~j

This restricts the (-integral essentially over |C — ma/p“_)‘| < N¢q/Q for any € > 0.

ma
pn—A

3<m,a,q,<><<( ‘-

agp?

5. PROOF OF LEMMA 2

In this section we will apply the GL3 Voronoi formula to transform %, where

an
B =) A(ln)e ( =

: >¢<n>,
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where a* = (@ + bg)/(@ + bq, qp*), ¢* = qp*/(@+ bg, qp*) and ¢(y) = V (y/N) e (—Cy/agp™).
Applying the GL3 Voronoi formula (See 5], [18]) we have

2 LE Y s el (), e

+ ng|g* ne=1

where

+ _ —s Py _
B ) = 5 [ 1 (0)3(-5)ds, o> max (1~ Re(y))
where 15, j = 1,2, 3, are the Langlands parameters of , 5 is the Mellin transform of ¢ and

3

5 1+8+ug)/2). D ((2+ s+ 4;)/2)
1] (=5 — 13)/2) *ﬂr((—s—wwm

First, we study the integral transform in (5.1). By Stirling’s formula, for o > —1/2,

T(s) = 9730 s+1/2

V(o +i1) <z (1 + |7'|)3(‘7+1/2).

Moreover, for s = o + i,

oy st (SN o QY
)= V<qu ) <w ml”{1’<q|f|>}’

for any j > 0, where V (r,s) fo (—ry)y*~tdy. Thus

5/2 3 —o
< (" ()

Thus (IDjf (n%ng / q*3) on the right hand side of (5.1) gives arbitrary power saving in q if n3ny >

Neg*3Q3/¢®N for any £ > 0. For small values of n2ns, we move the integration line to o = —1/2
to get
1/2
¢ q*3 q*3 q*g ) ) )
where
1 . 1 ~ ([ (N 1
~t —iT . .
y Wy iy = 5 N . V oy~ T d . 52

¥ 0.0 = 5 [ (<5 i) V(g i) ar (5:2)

Therefore,

1/2 *
]\11/2 Z Z Z %S (E’ £z Z_>

1
T nilg* n3na<Neg*3Q3/¢3N

~t ning —2018
I\ e ¢)+0@ 7). (5.3)
Furthermore, by the second derivative test for exponential integrals,

~(CN 1 ~1/2
V(aqp)"2 it ) < (1417 .
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Lemma 2 follows from (5.3) and (5.4).

It follows that

6. CHARACTER SUMS

In this section we estimate the character sums in (3.14) and (3.17)

no 3
C= >, & (muninf,Ba1,a) & (ma,nf, 0], B, az,g2)e <ﬁ>
7142Pr q192pPr
B(mod ¢1G2pr)
and
nof3
B = > B, (mi,nl,nf, B a1,q1) By (ma,nf,nf, B,az, g2)e <quqA2pA> ,
S

B(mod G1G2ps)

where § = q/n}, b = p*~"/nY, ps = p*5 /0, ny € Z, €. (m, n}, 0y, B, a,q) and Bs(m,ny,n{, B, a,q)
are defined in (3.11) and (3.13), respectively. Write 8 = (1(2q1G2b1 + Py-prba2, where by (mod py)
and by (mod ¢1¢2). We obtain

¢ - cie;
where
¢ = Z S (alwglpr,bpr;m) S (azwgzpr,bprm) e < — )
b(mod i) 1192
and
G o= ) > ox (ml — qp“‘”’") S (Ea, bﬁ;@)
b(mod pr) c1(mod p*r—7)
— = 71qabn
Z X (ma — c2p” AJ””>S<6qz,qu;pr>e <Q1qi 2)
cz(mod pA—T) br
Similarly,
B* = BIB3,
where
* = ;= ~ = ;= ~ TLQTb
%1 - Z S (alps’bps;(h> S <a2psybPSQQ2) € ( Apj )
b(mod 4i2) 1192
and
. _(m1 — (@ + cap)p" SR
B, = Z Z X ( ( p ) S (al + ClpSQ17bQ1§Ps)

b(mod ps) c1(mod p*)

mg — (@g + cop®)p™ - = q1q2bnz
> ox ( ( ) S <a2 + 2P @2, bq2;ps> el ——|.

S
ca(mod p*) P
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We quote the following estimates for € and B} which were proved in [14] by induction.
Lemma 5. We have
1, BT < 0142(71, 42, n2).-
Moreover, for no = 0, the character sums vanish unless qu = qo in which case
LB < GG, my — ma).
For €5 and B3, we will prove the following results.

Lemma 6. Assume A < 2x/3. Let pF||ng with k > 0.

(1) We have
¢ < ppip?r ), (6.1)
Moreover, for ng =0, we have
¢ < pp* . (6.2)
(2) For nll = p*=" or nf = p* "1 with A\ —r > 2, we have
¢ =0,

(8) For p*="/nY > p%, we have € vanishes unless nj = 1. Moreover, let A —r = 2a + & with
§ =0 or 1. For ny =0, € vanishes unless m1q3 = maqs(modp®). For ny # 0, we have

Q:Z < p5()\—r)/2+min{k,a}+35/2. (63)

Lemma 7. Assume A < 2x/3. Let pF||ng with k > 0.
(1) We have B35 vanishes unless n{ =1 and

%; <<p/;2p2)\'
Moreover, for no =0, we have ag = @2?a1(mod p®) in which case
%5 <<p/;p2)\+s'
(2) Let A = 2a + § with § = 0 or 1. For ny = 0, we have B} vanishes unless gimy /p® =
q3ma/p*(mod p®). For ny # 0, we have
%z <<p5)\/2+4s+min{k,a}+35/2‘

Now Lemma 3 follows from Lemmas 5 and 6, and Lemma 4 follows from Lemmas 5 and 7.
We only prove Lemma 6 for €5 in detail, since the proof of Lemma 7 is very similar.

Proof. (1) Trivially, (6.1) follows from Weil’s bound for Kloosterman sums. To prove (6.2), we
open the Kloosterman sums and sum over b to get

G = Hm >, X (ml - Clpﬁ_’\+r> > x <m2 - C2p“_A+T)

c1(mod pA—r) ca(mod pA—)

Z* . <<J2C2 — 2N (AQ1 +nad) &1 d> ' (6.4)

d(mod py) Pr
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For ny = 0, we denote mg = g2 — @3q12¢1. Since the Ramanujan sum

S(m,0;¢) = > exp(2mima/c) = p(c/(m, ) p(c) [ (c/(m,c)),

a(mod c)

where p is the Mobius function and ¢ is the Euler function, the last sum over d for ng = 0 is

() s e )
= ~ =< = —DPr/D, if mO)@‘ :@‘ p
(mo,pr) ) ¢ (Pr/(mo,pr)) 0, otherwise.

Thus (6.2) follows.
(2) Let A\—r=2a+0 with § =0 or 1, « > 1 is a positive integer. Write ¢; = b1p® T + by,

bi(mod p®), ba(mod p®+°) and cg = hyp®TO + hg, hi(mod p®), ho(mod p®*+0). If nf = p*—"—1,
we have p, = p and

G =p > > oox (ml - b2p“_2a_5> X (m2 - th”_za_‘S)

ba(mod p+9) ha(mod p-+o)

Z* e <Q2h2 — @241 (q1 + na2d) by d> Z Y (1 +my — bzpn—m—épn—abl)
b (

d(mod p) p mod p*)
Z X (1 —mg — th“_zap'{_ahl) :
ha (mod p)

Recall x is a primitive character of modulus p* and K > A > 2a. Thus x(1 + zp®~%) is an
additive character to modulus p®, so there exists an integer 1 (uniquely determined modulo p®),
(n,p) = 1, such that x(1 + 2p"~®) = exp(27winz/p®). Therefore, €5 = 0. For n! = p*~", the
proof is similar and easier.

(3) Write p*~" = p?et0 p = pA/nfl = p?PF%2 5 = 0or 1,0, = 0or 1, a > 1 and
B > 1. Write ¢; = byp®t9 4 by, by(mod p®), by(mod p®1), ¢y = hyp®+® + hy, hy(mod p®),
ha(mod p@*9t), and d = d1p®+%2 + dy, dy(mod p?), do(mod p?T92). Then by (6.4), we have

* 28+6 *
G = ) 2 PIED DD DD
bo(mod pa+31) hy(mod pa+61)d2(mod pﬁ+62) b1 (mod p®) h1(mod p<) 4, (mod pﬁ)

X (ml . (bg + blpa+61 )p/i—2o¢—61> X (m2 o (hg + hlpa+61 )pn—2o¢—61>

72 (hg + h1p*to1) — g1 (1 + nads + nadipft92) (by + bypaton
. <CJ2( 2 + hipoto1) — @1 (Q1 p2ﬁiéz 2d1pPt2) (by + bip )(d2+d1p5+52) ‘

Note that kK > X > 2a + &, > 23 + 3 and a + bp™ = @(1 — @bp®)(mod p>*). Thus

Q:S _ p2o¢+36+52 Z Z Z* f(bg, hs, dg)clcg, (65)

ba(mod p®t91) ha(mod p>t91)d,y (mod pﬁ+52)

(G1+n2d2)2b2a2nade—(q1+n2d2)be @2 +¢i he=0(mod ph)
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where
1 _ 3241 (q1 + noda)bidany
Ci = o Z X<1+m1—b2p“_2a_51pﬁ Olb1)e <Q2q1(Q1 pj 2)byd2 Ly ),
b1 (mod p®)
1 _/\h2d "
Co= > x (T hap I 0 e (L Pk h1>
e e
h (mod p*)
and
_ —9a— o Gho — @1 (q1 + noda)b
f(b2,h2,d2) =X (m1 — byp" 61) X (mz — hop" 2 61) e ( 22 2p;£’+162 2d2) 2d2) .
Since x(1 + zp"~%) = exp(2minz/p*) with (n,p) = 1, we have
1 —b K—20—081 Pyl Fo d b2d "
c, = — Z e <m1 2pa 77b1> e <Q2Q1(Q1—|—nj 2) 521y by
P b1 (mod p®) p p
=1

m1—bgp“*%‘*‘sln—i-zfgzﬁ((ﬁ-‘rngdg)b%dgn’l’EO(mod p)’
Thus C; vanishes unless n/ = 1 which in turn implies that @ =  and §; = d3. Moreover, by

taking A < 2x/3, we have xk > 3a + 20;. Hence C; vanishes unless m1n + ¢@2q1(q1 + nada)bids =
0(mod p®). Similarly,

C=1

Wgn—l—q’éh% d2=0(mod p*)"

Plugging these into (6.5) we obtain

¢ = pth > 3 Y F(ba, ha, da). (6.6)

ba(mod p®t91) ha(mod p>t91)d,y (mod p@+51)
((ﬁ+n2d2)2b2(j\22n2d2—(tﬁ+n2d2)b21f22+tﬁh_250(mod %)
Wlﬁ-l-@ﬁ(tﬁﬁzdz)b%dQEO(modp“)
m_zn—l—q'éh%dQEO(modpa)
To count the numbers of b, he and ds, we solve the three congruence equations in (6.6).
(i) If ng = 0 or ny = pnly, with (nh,p) = 1 and p* > p®, we have
ho = ququlzbg(Eod )
dy = —mingi > 3:b3(mod p)
dy = —Tangah3(mod p*)
By the last two equations, one sees that € vanishes unless miqi’ = mqugz(mod p®). Moreover,
for fixed by, ho and dy are uniquely determined modulo p®. Therefore,

ii) If ng # 0, we let ny = pPnf with (nh,p) = 1 and p* < p®, and let v = @ + nads. Then
2 2

do = n_é(7 — qu)/pk (mod pa_k) and the three equations give

by = @°7*ha(mod p®),
Ty=q (1+ qui%ngb%) (mod p®), (6.8)
ol

a1 (1-— Wnﬁq’inﬂz%) (mod p%).
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Plugging the second equation into the first equation in (6.8) we get
~ 92 =< 2
by = B0 <1 + mmqlqgngbg) he(mod p®). (6.9)

By (6.9) and the last two equations in (6.8) we get

_AT55 _/\744 _/\733 _/\722

(mmq1q2) u’ +4 <m177‘ZIQ2) u”+6 <m177‘ZIQ2) u” +4 <m177‘ZIQ2) u

9~y =H4 = __ ~3=3
—mrman 4 G u® + Mg geu — Mangi° g u = 0(mod p®),

where u = nyb3. Thus there are at most 5 roots modulo p® for u. Therefore, there are at most
10 roots modulo p®~* for by. For fixed u, 7 is uniquely determined modulo p® and for fixed ~

and by, ho is uniquely determined modulo p® by the first equation in (6.8). Then by the last
congruence equation in (6.6), ds is uniquely determined modulo p®. Therefore,

Q:Z < p5a+k+451 <<p5()\—r)/2+k+351/2.

By (6.7) and (6.10), the bound in (6.3) follows.
O
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