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BOUNDS FOR GL3 L-FUNCTIONS IN DEPTH ASPECT

QINGFENG SUN AND RUI ZHAO

Abstract. Let f be a Hecke-Maass cusp form for SL3(Z) and χ a primitive Dirichlet character
of prime power conductor q = pκ with p prime and κ ≥ 10. We prove a subconvexity bound

L

(

1

2
, π ⊗ χ

)

≪p,π,ε q
3/4−3/40+ε

for any ε > 0, where the dependence of the implied constant on p is explicit and polynomial. We
obtain this result by applying the circle method of Kloosterman’s version, summation formulas
of Poisson and Voronoi’s type and a conductor lowering mechanism introduced by Munshi [14].
The main new technical estimates are the essentially square root bounds for some twisted multi-
dimensional character sums, which are proved by an elementary method.
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1. Introduction

Let L(s, f) be an L-function with the analytic conductor q(s, f). By the functional equa-
tion and the Phragmen-Lindelöf convexity principle, we have the convexity bound L(s, f) ≪
q(s, f)1/4+ε. It is an fascinating problem to break the convexity barrier. In the t-aspect, one

has the classical result for the Riemann zeta function ζ(1/2 + it) ≪ε (1 + |t|)1/6+ε due to Weyl
[19]. For L-functions on GL2, results of the same strength

L

(
1

2
+ it, f

)
≪f,ε (1 + |t|)1/3+ε (1.1)
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were proved by Good [4], Jutila [7] and Meurman [10], where f is a fixed holomorphic cusp form
or a Maass cusp form. For GL3 L-functions, Munshi [15] proved that

L

(
1

2
+ it, π

)
≪π,ε (1 + |t|)3/4−1/16+ε, (1.2)

where π is a fixed GL3 Hecke-Maass cusp form (this bound was first proved by Li [9] for π self-
dual). On the other hand, in the conductor aspect, we have the Burgess’ bounds L(1/2, χ) ≪ε

q3/16+ε and L (1/2, f ⊗ χ) ≪f,ε q
3/8+ε for a primitive character χ of conductor q, where f is a

fixed GL2 cusp form. Interestingly, for χ quadratic, Conrey and Iwaniec [3] proved the exponent
1/3, i.e., the quantitative analogue of (1.1). Recently, by developing a general result on p-adic
analytic phase and a p-adic version of van der Corput’s method for exponential sums, Blomer
and Milićević [2] also proved the same exponent if the conductor of χ is a prime power q = pκ

L (1/2 + it, f ⊗ χ) ≪p,t,f,ε q
1/3+ε, (1.3)

where the implied constant on p and t is explicit and polynomial (Munshi and Singh proved the
same result using the approach in [14]). Also see [11] and [8] for other interesting subconvexity
results in the depth aspect.

Let π be a Hecke-Maass cusp form for SL3(Z) and χ a primitive Dirichlet character modulo

q. Then the convexity bound for L (1/2, π ⊗ χ) is q3/4+ε. For q prime, the subconvexity results
for L (1/2, π ⊗ χ) have recently been established in the work [1], [6] and [16]-[17]. Munshi [14]
showed a subconvexity bound for q square-free. In this paper, following Munshi [14], we want
to prove a subconvexity bound for L (1/2, π ⊗ χ) in the depth aspect. Our main result is the
following.

Theorem 1. Let π be a Hecke-Maass cusp form for SL3(Z) and χ a primitive Dirichlet character
of prime power conductor q = pκ with κ ≥ 3. We have

L

(
1

2
, π ⊗ χ

)
≪π,ε p

3/4q3/4−3/40+ε

for any ε > 0.

Remark 1. Our result in Theorem 1 can be compared with the t-aspect subconvexity in (1.2)
as explained in [13]. It is worth noting that for π the symmetric-square lifts of GL2 cusp forms,

Munshi [13] proved the better result q3/4−1/12+ε by the moment method.

Remark 2. We are not trying to get the best exponent in p. With the present exponent 3/4,
the bound in Theorem 1 breaks the convexity for κ > 10.

Notation. Throughout the paper, the letters q, m and n, with or without subscript, denote
integers. The letter ε is an arbitrarily small positive constant, not necessarily the same at
different occurrences. The symbol ≪a,b,c denotes that the implied constant depends at most on

a, b and c. Finally, fractional numbers such as ab
cd will be written as ab/cd and a/b+ c or c+ a/b

means a
b + c.

2. Sketch of the proof

By the functional equation we have L
(
1
2 , π ⊗ χ

)
≪ N−1/2S (N), where

S (N) =
∑

n∼N

Aπ(1, n)χ(n),
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with N ∼ q3/2. Applying the conductor lowering mechanism introduced by Munshi [14], we
have

S (N) =
∑∑

n,m∼N

n≡m(modpλ)

Aπ(1, n)χ(n)δ

(
n−m

pλ

)

where δ : Z → {0, 1} with δ(0) = 1 and δ(n) = 0 for n 6= 0, and λ ≥ 2 is an integer to be
chosen later. Using Kloosterman’s circle method and removing the congruence n ≡ m(modpλ)
by exponential sums we get

S (N) ≈ 1

pλ

∑

q∼Q

1

q

∑

Q<a≤q+Q
(a,q)=1

1

a

∑

b(mod pλ)

∑∑

n,m∼N

Aπ(1, n)χ(m)e

(
(a+ bq)(n−m)

qpλ

)
.

Trivially we have S (N) ≪ N2.
For simplicity, we assume (q, p) = 1 and (a+ bq, p) = 1. Recall χ is of modulus q = pκ. Then

the conductor of the m-sum has the size qpκ. Applying Poisson summation to the m-sum we
get that the dual sum is of size qpκ/N . The conductor for the n-sum has the size qpλ and the
dual sum after GL3 Voronoi summation formula is essentially supported on summation of size
q3p3λ/N . Assuming square-root cancellation for the character sum, we find that we have saved

N

(qpκ)1/2
× N

(qpλ)3/2
× (qpλ)1/2 ∼ q11/8p−λ/4.

Now we arrive at an expression of the form
∑

1≤n≪Q3p3λ/N

Aπ(n, 1)
∑

q∼Q

χ(q)
∑

|m|≪Qpκ/N

∑

b(modpλ)

χ(m− bpκ−λ)S(b, n; qpλ).

Next we apply Cauchy-Schwartz inequality to get rid of the Fourier coefficients. Then we need
to deal with

∑

1≤n≪Q3p3λ/N

∣∣∣∣∣∣

∑

q∼Q

χ(q)
∑

|m|≪Qpκ/N

∑

b(modpλ)

χ(m− bpκ−λ)S(b, n; qpλ)

∣∣∣∣∣∣

2

.

Opening the square and applying Poisson summation to the sum over n, we are able to save
Q2pκ/N ∼ pκ−λ from the diagonal term and

Q3p3λ/N√
Q2pλ

∼ p3λ/2

from the off-diagonal term. So the optimal choice for λ is given by λ = 2κ/5. In total, we have
saved

q11/8p−λ/4 × p3λ/4 ∼ q3/2+3/40.

It follows that

L

(
1

2
, π ⊗ χ

)
≪ N−1/2

S (N) ≪ N3/2q−3/2−3/40 ∼ q3/4−3/40.
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3. Proof of Theorem 1

By the approximate functional equation we have

L

(
1

2
, π ⊗ χ

)
≪π,ε q

ε sup
N≤q3/2+ε

|S (N)|√
N

, (3.1)

where

S (N) =
∑

n

Aπ(1, n)χ(n)V
( n

N

)

for some smooth function V supported in [1, 2] and satisfying V (j)(y) ≪j 1. Note that by
Cauchy’s inequality and the Rankin-Selberg estimate (see [12])

∑∑

n2
1n2≤Y

|Aπ(n1, n2)|2 ≪π,ε Y
1+ε, (3.2)

we have the trivial bound S (N) ≪π,ε N . Thus Theorem 1 is true for N ≤ q27/20. In the
following, we will estimate S (N) in the range

q27/20 < N ≤ q3/2+ε. (3.3)

Proposition 1. Assume λ ≤ 2κ/3 and (3.3). Then we have

S (N) ≪ N1/2+ε(p3κ/8+3λ/4 + p7κ/8−λ/2+3/4).

Take λ = ⌊2κ/5⌋+1, where ⌊x⌋ denotes the largest integer which does not exceed x. By (3.3)
and Proposition 1, we have

S (N) ≪ p3/4N1/2+εq3/4−3/40

Then Theorem 1 follows from above bound and (3.1). In the following we prove Proposition 1.

3.1. The circle method. Define δ : Z → {0, 1} with δ(0) = 1 and δ(n) = 0 for n 6= 0. By
Kloosterman’s version of the circle method, for any n ∈ Z and Q ∈ R

+, we have

δ(n) = 2Re

∫ 1

0

∑

1≤q≤Q

∑

Q<a≤q+Q
(a,q)=1

1

aq
e

(
na

q
− nζ

aq

)
dζ, (3.4)

where throughout the paper e(z) = e2πiz and a(mod q) denotes the multiplicative inverse of a
modulo q. Define 1F = 1 if F is true, and is 0 otherwise. Following Munshi [14] we write δ(n)
as δ(n/pλ)1pλ|n (2 ≤ λ < κ, λ ∈ N is a parameter to be determined later) to lower the conductor
and obtain

S (N) =
∑

n

Aπ(1, n)V
( n

N

) ∑

pλ|n−m

χ(m)U
(m
N

)
δ

(
n−m

pλ

)
,

where U is a smooth function supported in [1/2, 5/2], U(y) = 1 for y ∈ [1, 2] and U (j)(y) ≪j 1.
Applying (3.4) and choosing

Q =
√

N/pλ

we get

S (N) = S
+(N) + S

−(N),
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where

S
±(N) =

∫ 1

0

∑

1≤q≤Q

∑

Q<a≤q+Q
(a,q)=1

1

aq

∑

n

Aπ(1, n)V
( n

N

)

∑

pλ|n−m

χ(m)U
(m
N

)
e

(
±(n−m)a

qpλ
∓ (n−m)ζ

aqpλ

)
dζ.

We will only estimate S +(N) (the same analysis holds for S −(N)) and write S +(N) as
S (N). Removing the condition pλ|n −m using exponential sums to separate the variables m
and n we get

S (N) =

∫ 1

0

∑

1≤q≤Q

∑

Q<a≤q+Q
(a,q)=1

1

aqpλ

∑

b(mod pλ)

A × B dζ, (3.5)

where

A =
∑

m

χ(m)e

(
−(a+ bq)m

qpλ

)
U
(m
N

)
e

(
mζ

aqpλ

)

and

B =
∑

n

Aπ(1, n)e

(
(a+ bq)n

qpλ

)
V
( n

N

)
e

(
− nζ

aqpλ

)
.

3.2. Summation formulas and Cauchy-Schwartz. Next we transform A and B by Poisson
summation formula and GL3 Voronoi formula, respectively, and obtain the following results.

Lemma 1. Let q = psq′, (q′, p) = 1 and s ≥ 0. Then we have

A =
Nχ(q′)τχ

pκ

∑

|m|≤NεQpκ/N

m≡apκ−λ(mod q)

χ

(
m− (a+ bq)pκ−λ

ps

)
I(m,a, q, ζ) +O(q−A)

for any A > 0, where the integral I(m,a, q, ζ) is defined in (4.2).

Lemma 2. Let a∗ = (a+ bq)/(a+ bq, qpλ) and q∗ = qpλ/(a+ bq, qpλ). Then we have

B =
N1/2

q∗1/2

∑

±

∑

n1|q∗

∑∑

n2
1n2≤Nεq∗3Q3/q3N

Aπ(n2, n1)√
n2

S

(
a∗,±n2;

q∗

n1

)

×J±
(
n2
1n2

q∗3
, a, q, ζ

)
+O(q−A)

for any A > 0, where J± (y, a, q, ζ) is defined in (5.2) and satisfies

J± (y, a, q, ζ) ≪ N ε

√
Q

q
.

The details of the proof of Lemmas 1 and 2 are in Sections 4 and 5. Note that for s ≥ 1, we
have (a+bq, qpλ) = 1, a∗ = a+bq and q∗ = qpλ. For s = 0, we have (a+bq, qpλ) = pr, 0 ≤ r ≤ λ,
a∗ = (a+ bq)/pr and q∗ = qpλ−r. Since a+ bq ≡ 0(mod pr), we have b ≡ −aq(mod pr). Denote
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̟r
q := (1− qq)/pr ∈ Z. We write a+ bq = (a̟r

q + cq)pr with c(mod pλ−r). Plugging Lemmas 1
and 2 into (3.5) and reducing the n1, n2 sums into dyadic intervals, we have

S (N) ≪
∑

±

λ∑

r=0

∑

L1≪Nεp3λ−3rQ3/N
L1 dyadic

|S ±
1 (N,L1, r)|

+
∑

±

logQ/ log p∑

s=1

∑

L2≪Nεp3λQ3/N
L2 dyadic

|S ±
2 (N,L2, s)|+ q−2018, (3.6)

where

S
±
1 (N,L1, r) =

N3/2

p(κ+3λ−r)/2

∑∑

L1/2<n2
1n2≤L1

Aπ(n2, n1)√
n2

∑

1≤q≤Q,(q,p)=1

n1|qp
λ−r

χ(q)

q3/2

×
∑

1≤|m|≤NεQpκ/N
(m,q)=1

∑

Q<a≤q+Q

a≡mpκ−λ(mod q)

1

a
K±

(
m,

n2
1n2

q3p3λ−3r
, a, q

)

×
∑

c(mod pλ−r)

χ
(
m− cpκ−λ+r

)
S

(
c,±n2;

qpλ−r

n1

)

(3.7)

and

S
±
2 (N,L2, s) =

N3/2

p(κ+3λ+3s)/2

∑∑

L2/2<n2
1n2≤L2

Aπ(n2, n1)√
n2

∑

1≤q≤Q/ps,(q,p)=1

n1|qp
λ+s

χ(q)

q3/2

∑

1≤|m|≤NεQpκ/N
m≡0(mod ps)

∑

Q<a≤qps+Q,(a,p)=1

a≡mpκ−λ(mod q)

1

a
K±

(
m,

n2
1n2

q3p3λ+3s
, a, qps

)

×
∑

b(mod pλ)

χ

(
m− (a+ bps)pκ−λ

ps

)
S

(
a+ bps,±n2;

qpλ+s

n1

)

with

K±(y1, y2, a, q) =

∫ 1

0
I(y1, a, q, ζ)J

± (y2, a, q, ζ) dζ ≪ N ε

√
q

Q
. (3.8)

Here we have changed variables a̟r
q + cq → c and bq → b.

Remark 3. If m = 0, then the conditions pκ−λ ≡ 0(mod qps) and ((a + bqps)pκ−λ−s, p) = 1

imply that q = 1 and s = κ−λ. Thus we have pκ−λ ≤ Q =
√

N/pλ which implies N > p(3/2+ε)κ

which contradicts to the assumption (3.3). Therefore, we have m 6= 0.

Applying Cauchy-Schwartz inequality to n1, n2-sums in (3.7) and using the Rankin-Selberg
bound (3.2), we get

S
±
1 (N,L1, r) ≪ N3/2L

1/2
1

p(κ+3λ−r)/2
H

±
1 (N,L1, r)

1/2 (3.9)
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where

H
±
1 (N,L1, r) =

∑

(n′
1,p)=1

∑

n′′
1 |p

λ−r

∑

n2

1

n2
W

(
n′2
1 n

′′2
1 n2

L1

)
∣∣∣∣∣∣∣∣

∑

1≤q≤Q,(q,p)=1

n′
1
|q

χ(q)

q3/2

∑

1≤|m|≤NεQpκ/N
(m,q)=1

∑

Q<a≤q+Q

a≡mpκ−λ(mod q)

1

a
Cr(m,n′

1, n
′′
1,±n2, a, q)K

±

(
m,

n′2
1 n

′′2
1 n2

q3p3λ−3r
, a, q

)
∣∣∣∣∣∣∣∣

2

(3.10)

with W (y) a smooth positive function, W (y) = 1 if y ∈ [1/2, 1], and

Cr(m,n′
1, n

′′
1, n2, a, q) = S

(
a̟r

q p̂r, n2p̂r; q̂
) ∑

c(mod pλ−r)

χ
(
m− cpκ−λ+r

)
S
(
cq̂, n2q̂; p̂r

)
. (3.11)

Here q̂ = q/n′
1 and p̂r = pλ−r/n′′

1. Similarly,

S
±
2 (N,L2, s) ≪

N3/2L
1/2
2

p(κ+3λ+3s)/2
H

±
2 (N,L2, s)

1/2 (3.12)

where

H
±
2 (N,L2, s) =

∑

(n′
1,p)=1

∑

n′′
1 |p

λ+s

∑

n2

1

n2
W

(
n′2
1 n

′′2
1 n2

L2

)
∣∣∣∣∣∣∣∣

∑

1≤q≤Q/ps,(q,p)=1

n′
1
|q

χ(q)

q3/2

∑

1≤|m|≤NεQpκ/N
m≡0(mod ps)

∑

Q<a≤qps+Q,(a,p)=1

a≡mpκ−λ(mod q)

1

a
Bs(m,n′

1, n
′′
1 ,±n2, a, q)K

±

(
m,

n′2
1 n

′′2
1 n2

q3p3λ+3s
, a, qps

)
∣∣∣∣∣∣∣∣

2

with

Bs(m,n′
1, n

′′
1 , n2, a, q) = S

(
apλ+s/n′′

1, n2pλ+s/n′′
1;

q

n′
1

) ∑

b(mod pλ)

χ

(
m− (a+ bps)pκ−λ

ps

)

×S

(
a+ bps q/n′

1, n2q/n′
1;
pλ+s

n′′
1

)
. (3.13)

3.3. Poisson summation. Opening the square in (3.10) and switching the order of summa-
tions, we get

H
±
1 (N,L1, r) =

∑

n′
1

∑

n′′
1 |p

λ−r

∑

1≤q1≤Q,(q1,p)=1

n′
1
|q1

χ(q1)

q
3/2
1

∑

1≤q2≤Q,(q2,p)=1

n′
1
|q2

χ(q2)

q
3/2
2

∑

1≤|m1|≤NεQpκ/N
(m1,q1)=1

∑

1≤|m2|≤NεQpκ/N
(m2,q2)=1

∑

Q<a1≤q1+Q

a1≡m1p
κ−λ(mod q1)

1

a1

∑

Q<a2≤q2+Q

a2≡m2p
κ−λ(mod q2)

1

a2
×T,
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where temporarily,

T =
∑

n2

1

n2
W

(
n′2
1 n

′′2
1 n2

L1

)
Cr(m1, n

′
1, n

′′
1 ,±n2, a1, q1)Cr(m2, n′

1, n
′′
1,±n2, a2, q2)

K±

(
m1,

n′2
1 n

′′2
1 n2

q31p
3λ−3r

, a1, q1

)
K±

(
m2,

n′2
1 n

′′2
1 n2

q32p
3λ−3r

, a2, q2

)
.

Applying Poisson summation with modulus q̂1q̂2p̂r, we arrive at

T =
1

q̂1q̂2p̂r

∑

n2∈Z

C∗ × K∗,

where

C∗ =
∑

β(mod q̂1q̂2p̂r)

Cr

(
m1, n

′
1, n

′′
1 , β, a1, q1

)
Cr (m2, n′

1, n
′′
1 , β, a2, q2)e

( ±n2β

q̂1q̂2p̂r

)
(3.14)

and

K∗ =

∫

R

W (y)K±

(
m1,

L1y

q31p
3λ−3r

, a1, q1

)
K±

(
m2,

L1y

q32p
3λ−3r

, a2, q2

)
e

(
− n2L1y

q1q2pλ−rn′′
1

)
dy

y
.

The integral K∗ gives arbitrary power saving in q if |n2| ≥ N εQ2pλ−rn′′
1/L1 for any ε > 0. For

small values of n2, by (3.8), we have

K∗ ≪ N ε

√
q1q2

Q
.

Therefore, at the cost of a negligible error,

T ≪ N ε

√
q1q2

Q

1

q̂1q̂2p̂r

∑

|n2|≤NεQ2pλ−rn′′
1/L1

|C∗|

and

H
±
1 (N,L1, r) ≪ N ε 1

Q3

∑

n′
1

∑

n′′
1 |p

λ−r

∑

1≤q1≤Q

n′
1|q1

1

q1

∑

1≤q2≤Q

n′
1|q2

1

q2

∑

1≤|m1|≤NεQpκ/N
(m1,q1)=1

∑

1≤|m2|≤NεQpκ/N
(m2,q2)=1

1

q̂1q̂2p̂r

∑

|n2|≤NεQ2pλ−rn′′
1/L1

|C∗|. (3.15)

Similarly,

H
±
2 (N,L2, s) ≪ N ε p

3s

Q3

∑

n′
1

∑

n′′
1 |p

λ+s

∑

1≤q1≤Q/ps,(q1,p)=1

n′
1|q1

1

q1

∑

1≤q2≤Q/ps,(q2,p)=1

n′
1|q2

1

q2

∑

1≤|m1|≤NεQpκ/N
m1≡0(mod ps)

∑

1≤|m2|≤NεQpκ/N
m2≡0(mod ps)

1

q̂1q̂2ρ̂s

∑

|n2|≤NεQ2pλ−sn′′
1/L2

|B∗|, (3.16)
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where q̂ = q/n′
1, ρ̂s = pλ+s/n′′

1 and

B∗ =
∑

β(mod q̂1q̂2ρ̂s)

Bs

(
m1, n

′
1, n

′′
1, β, a1, q1

)
Bs (m2, n′

1, n
′′
1 , β, a2, q2)e

( ±n2β

q̂1q̂2ρ̂s

)
. (3.17)

Lemma 3. Assume λ ≤ 2κ/3. Let pk‖n2 with k ≥ 0.
(1) We have

C∗ ≪ q̂1q̂2(q̂1, q̂2, n2)p̂r
2p2(λ−r).

Moreover, for n2 = 0, the character sums vanish unless q1 = q2 in which case

C∗ ≪ q̂1
2(q̂1,m1 −m2)p̂rp

2(λ−r).

(2) For n′′
1 = pλ−r or n′′

1 = pλ−r−1 with λ− r ≥ 2, we have

C∗ = 0.

(3) For pλ−r/n′′
1 ≥ p2, we have C∗ vanishes unless n′′

1 = 1. Moreover, let λ− r = 2α+ δ with
δ = 0 or 1. For n2 = 0, C∗

2 vanishes unless m1q
2
1 ≡ m2q

2
2(mod pα). For n2 6= 0, we have

C∗ ≪ q̂1q̂2(q̂1, q̂2, n2)p
5(λ−r)/2+min{k,α}+3δ/2.

Lemma 4. Assume λ ≤ 2κ/3. Let pk‖n2 with k ≥ 0.
(1) We have B∗ vanishes unless n′′

1 = 1 and

B∗ ≪ q̂1q̂2(q̂1, q̂2, n2)ρ̂s
2p2λ.

Moreover, for n2 = 0, the character sums vanish unless q1 = q2 and a1 ≡ a2(modps) in which
case

B∗ ≪ q̂1
2(q̂1,m1 −m2)ρ̂sp

2λ+s.

(2) Let λ = 2α + δ with δ = 0 or 1. For n2 = 0, we have B∗
2 vanishes unless q21m1/p

s ≡
q22m2/p

s(mod pα). For n2 6= 0, we have

B∗ ≪ q̂1q̂2(q̂1, q̂2, n2)p
5λ/2+4s+min{k,α}+3δ/2.

For r ≥ λ− 1, by (3.15) and Lemma 3 (1), we have

H
±
1 (N,L1, r) ≪ N ε 1

Q3

∑

n′
1

∑

n′′
1 |p

λ−r

∑

1≤q1≤Q

n′
1|q1

1

q1

∑

1≤q2≤Q

n′
1|q2

1

q2

∑

1≤|m1|≤NεQpκ/N
(m1,q1)=1

∑

1≤|m2|≤NεQpκ/N
(m2,q2)=1

1

q̂1q̂2p̂r

∑

1≤|n2|≤NεQ2pλ−rn′′
1/L1

q̂1q̂2(q̂1, q̂2, n2)p̂r
2p2(λ−r)

+N ε 1

Q3

∑

n′
1

∑

n′′
1 |p

λ−r

∑

1≤q1≤Q,(q1,p)=1

n′
1
|q1

1

q21

∑

1≤|m1|≤NεQpκ/N
(m1,q1)=1

∑

1≤|m2|≤NεQpκ/N
(m2,q1)=1

1

q̂1
2p̂r

q̂1
2(q̂1,m1 −m2)p̂rp

2(λ−r)

≪ N ε

(
Qp2κ+4λ−4r

N2L1
+

p2κ+2λ−2r

QN2

)
. (3.18)
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For r ≤ λ− 2, by Lemma 3, we have

H
±
1 (N,L1, r) ≪ R1 +R2, (3.19)

where R1 is the contribution from pλ−r/n′′
1 ≥ p2 and n2 = 0

R1 = N ε 1

Q3

∑

δ=0,1

∑

n′
1

∑

1≤q1≤Q

n′
1|q1

1

q21

∑

1≤|m1|≤NεQpκ/N
(m1,q1)=1

∑

1≤|m2|≤NεQpκ/N

m2≡m1(mod p(λ−r−δ)/2)

1

q̂1
2pλ−r

q̂1
2(q̂1,m1 −m2)p

3(λ−r)

≪ N εp
2(λ−r)

Q3

Qpκ

N

∑

δ=0,1

(
1 +

Qpκ

N
p−

λ−r−δ
2

)

≪ N ε

(
pκ+2λ−2r

Q2N
+ p1/2

p2κ+3λ/2−3r/2

QN2

)
(3.20)

and R2 is the remaining piece

R2 = N ε 1

Q3

∑

δ=0,1

∑

n′
1

∑

1≤q1≤Q

n′
1
|q1

1

q1

∑

1≤q2≤Q

n′
1
|q2

1

q2

∑

1≤|m1|≤NεQpκ/N
(m1,q1)=1

∑

1≤|m2|≤NεQpκ/N
(m2,q2)=1

1

q̂1q̂2pλ−r

∑

0≤k≪log q

∑

1≤|n2|≤NεQ2pλ−r/L1
pk|n2

q̂1q̂2(q̂1, q̂2, n2)p
5(λ−r)/2+min{k,(λ−r−δ)/2}+3δ/2

≪ N ε p
3(λ−r)/2

Q3

(
Qpκ

N

)2 ∑

δ=0,1

p3δ/2
∑

n′
1

1

n′
1

∑

1≤q1≤Q

n′
1|q1

1

q1





∑

0≤k≤(λ−r−δ1)/2

Q2pλ−r

L1

+
∑

(λ−r−δ1)/2<k≪log q

p(λ−r−δ)/2Q
2pλ−r−k

L1





≪ p3/2N ε p
2κ+2λ−5r/2

N3/2L1
. (3.21)



BOUNDS FOR GL3 L-FUNCTIONS IN DEPTH ASPECT 11

Obviously, the second term in (3.20) is dominated by (3.21), since N εQ2pλ−r/L1 ≥ 1. By (3.9)
and (3.18-3.21), the contribution from H

±
1 (N,L1, r) to S (N) in (3.6) is at most

N ε
λ∑

r=λ−1

∑

L1≪Nεp3λ−3rQ3/N
L1 dyadic

N3/2L
1/2
1

p(κ+3λ−r)/2

(
Q1/2pκ+2λ−2r

NL
1/2
1

+
pκ+λ−r

Q1/2N

)

+N ε
λ−2∑

r=0

∑

L1≪Nεp3λ−3rQ3/N
L1 dyadic

N3/2L
1/2
1

p(κ+3λ−r)/2

{
pκ/2+λ−r

QN1/2
+ p3/4

pκ+λ−5r/4

N3/4L
1/2
1

}

≪ N1/2+ε
λ∑

r=λ−1

(
N1/4pκ/2+λ/4−3r/2 + pκ/2+λ/2−2r

)

+ N1/2+ε
λ−2∑

r=0

(
p3λ/4−2rN1/4 + p3/4N1/4pκ/2−λ/2−3r/4

)

≪ N1/2+ε
(
N1/4p3λ/4 + p3/4N1/4pκ/2−λ/2

)
(3.22)

for λ ≥ 2.
Similarly, by Lemma 4, the contribution from n2 = 0 to H

±
2 (N,L2, s) is at most

N ε p
3s

Q3

∑

δ=0,1

∑

n′
1

∑

1≤q1≤Q/ps

n′
1|q1

1

q21

∑

1≤|m1|≤NεQpκ/N
ps|m1

∑

1≤|m2|≤NεQpκ/N,ps|m2

m2/p
s≡m1/p

s(mod p(λ−δ)/2)

× 1

q̂1
2pλ+s

q̂1
2 (q̂1,m1 −m2) p

3λ+2s

= N ε p
2λ+4s

Q3

∑

δ=0,1

∑

n′
1

∑

1≤q1≤Q/ps

(q1,p)=1

n′
1|q1

1

q21

Qpκ−s

N

(
q̂1 +

Qpκ−s−(λ−δ)/2

N

)

= N ε

(
pκ+2λ+3s

Q2N
+ p1/2

p2κ+3λ/2+2s

QN2

)
. (3.23)
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The contribution from n2 6= 0 to H
±
2 (N,L2, s) is bounded by

N ε p
3s

Q3

∑

δ=0,1

∑

n′
1

∑

1≤q1≤Q/ps

n′
1|q1

1

q1

∑

1≤q2≤Q/ps

n′
1|q2

1

q2

∑

1≤|m1|≤NεQpκ/N
m1≡0(mod ps)

∑

1≤|m2|≤NεQpκ/N
m2≡0(mod ps)

1

q̂1q̂2pλ+s

∑

0≤k≪log q

∑

1≤|n2|≤NεQ2pλ−s/L2
pk|n2

q̂1q̂2 (q̂1, q̂1, n2) p
5λ/2+4s+min{k,(λ−δ)/2}+3δ/2

≪ N ε p
3λ/2+6s

Q3

∑

δ=0,1

p3δ/2
∑

n′
1

1

n′
1

∑

1≤q1≤Q/ps

n′
1|q1

1

q1

(
Qpκ−s

N

)2
Q2pλ−s

L2

≪ p3/2N εQp2κ+5λ/2+3s

N2L2
. (3.24)

Obviously, the second term in (3.23) is bounded by (3.24). Plugging these estimates into (3.16)
and (3.12), we have that the contribution from S

±
2 (N,L2, s) to S (N) in (3.6) is bounded by

N ε

logQ/ log p∑

s=1

∑

L2≪Nεp3λQ3/N
L2 dyadic

N3/2L
1/2
2

p(κ+3λ+3s)/2

(
p(κ+2λ+3s)/2

QN1/2
+ p3/4

Q1/2pκ+5λ/4+3s/2

NL
1/2
2

)

≪ N1/2+ε(N1/4p3λ/4 + p3/4N1/4pκ/2−λ/2). (3.25)

3.4. Conclusion. By (3.22) and (3.25) we have

S (N) ≪ N1/2+ε(N1/4p3λ/4 + p3/4N1/4pκ/2−λ/2).

Since N ≤ p3κ/2+ε, Proposition 1 follows.

4. Proof of Lemma 1

In this section we apply Poisson summation formula to prove Lemma 1. Precisely,

A =
∑

β(mod qpκ)

χ(β)e

(
−(a+ bq)β

qpλ

) ∑

m≡β(mod qpκ)

U
(m
N

)
e

(
mζ

aqpλ

)

:=
N

qpκ

∑

m∈Z

A(m,a, b, q)I(m,a, q, ζ) (4.1)

where

A(m,a, b, q) =
∑

β(mod qpκ)

χ(β)e

(
m− (a+ bq)pκ−λ

qpκ
β

)

and

I(m,a, q, ζ) =

∫

R

U(y)e

(
ζNy

aqpλ

)
e

(
−mNy

qpκ

)
dy. (4.2)
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4.1. Computing the character sum A(m,a, b, q). Write q = psq′, (q′, p) = 1 and s ≥ 0. Then

A(m,a, b, q) =
∑

β(mod q′ps+κ)

χ(β)e

(
m− (a+ bq′ps)pκ−λ

q′ps+κ
β

)

=
∑

β1(mod q′)

e

(
m− apκ−λ

q′
ps+κβ1

)

∑

β2(mod ps+κ)

χ(β2)e

(
m− (a+ bq′ps)pκ−λ

ps+κ
q′β2

)
,

where the first sum over β1 is q′1m≡apκ−λ(mod q′), and the second sum over β2 is

χ(q′)
∑

β2(mod ps+κ)

χ(β2)e

(
m− (a+ bq′ps)pκ−λ

ps+κ
β2

)

= χ(q′)
∑

α1(mod ps)

e

(
m− apκ−λ

ps
α1

) ∑

α2(mod pκ)

χ(α2)e

(
m− (a+ bq′ps)pκ−λ

ps+κ
α2

)

= psχ(q′)1m≡apκ−λ(mod ps)χ

(
m− (a+ bq′ps)pκ−λ

ps

)
τχ.

Here τχ is the Gauss sum. Thus

A(m,a, b, q) = q1m≡apκ−λ(mod q)χ(q
′)χ

(
m− (a+ bq)pκ−λ

ps

)
τχ. (4.3)

4.2. Bounding the integral I(m,a, q, ζ). Integration by parts j times, we get

I(m,a, q, ζ) ≪
(

Qpκ

|m|N

)j

.

Thus the m-sum is essentially supported on |m| ≤ N εQpκ/N . Then Lemma 1 follows from (4.1)
and (4.2).

Furthermore, we also do repeated partial integration by integrating all the exponential factors
and differentiating U only to get

I(m,a, q, ζ) ≪
(

N

aqpλ

∣∣∣∣ζ −
ma

pκ−λ

∣∣∣∣
)−j

.

This restricts the ζ-integral essentially over
∣∣ζ −ma/pκ−λ

∣∣ ≤ N εq/Q for any ε > 0.

5. Proof of Lemma 2

In this section we will apply the GL3 Voronoi formula to transform B, where

B =
∑

n

Aπ(1, n)e

(
a∗n

q∗

)
φ(n),
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where a∗ = (a + bq)/(a + bq, qpλ), q∗ = qpλ/(a + bq, qpλ) and φ(y) = V (y/N) e
(
−ζy/aqpλ

)
.

Applying the GL3 Voronoi formula (see [5], [18]), we have

B = q∗
∑

±

∑

n1|q∗

∞∑

n2=1

Aπ(n2, n1)

n1n2
S

(
a∗,±n2;

q∗

n1

)
Φ±
φ

(
n2
1n2

q∗3

)
, (5.1)

where

Φ±
φ (y) =

1

2πi

∫

(σ)

y−sγ±(s)φ̃(−s)ds, σ > max
1≤j≤3

{−1− Re(µj)},

where µj, j = 1, 2, 3, are the Langlands parameters of π, φ̃ is the Mellin transform of φ and

γ±(s) =
1

2π3(s+1/2)




3∏

j=1

Γ ((1 + s+ µj)/2)

Γ ((−s− µj)/2)
∓ i

3∏

j=1

Γ ((2 + s+ µj)/2)

Γ ((−s− µj + 1)/2)


 .

First, we study the integral transform in (5.1). By Stirling’s formula, for σ ≥ −1/2,

γ±(σ + iτ) ≪π,σ (1 + |τ |)3(σ+1/2).

Moreover, for s = σ + iτ ,

φ̃(−s) = N−sṼ

(
ζN

aqpλ
,−s

)
≪ N−σ min

{
1,

(
Q

q|τ |

)j
}
,

for any j ≥ 0, where Ṽ (r, s) =
∫∞
0 V (y)e(−ry)ys−1dy. Thus

Φ±
φ (y) ≪

(
Q

q

)5/2(q3Ny

Q3

)−σ

.

Thus Φ±
φ

(
n2
1n2/q

∗3
)
on the right hand side of (5.1) gives arbitrary power saving in q if n2

1n2 ≥
N εq∗3Q3/q3N for any ε > 0. For small values of n2

1n2, we move the integration line to σ = −1/2
to get

Φ±
φ

(
n2
1n2

q∗3

)
:=

(
Nn2

1n2

q∗3

)1/2

J±
(
n2
1n2

q∗3
, a, q, ζ

)
,

where

J± (y, a, q, ζ) =
1

2π

∫

R

(Ny)−iτγ±

(
−1

2
+ iτ

)
Ṽ

(
ζN

aqpλ
,
1

2
− iτ

)
dτ. (5.2)

Therefore,

B =
N1/2

q∗1/2

∑

±

∑

n1|q∗

∑

n2
1n2≤Nεq∗3Q3/q3N

Aπ(n2, n1)√
n2

S

(
a∗,±n2;

q∗

n1

)

×J±
(
n2
1n2

q∗3
, a, q, ζ

)
+O(q−2018). (5.3)

Furthermore, by the second derivative test for exponential integrals,

Ṽ

(
ζN

aqpλ
,
1

2
− iτ

)
≪ (1 + |τ |)−1/2.
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It follows that

J± (y, a, q, ζ) ≪ N ε

√
Q

q
. (5.4)

Lemma 2 follows from (5.3) and (5.4).

6. Character sums

In this section we estimate the character sums in (3.14) and (3.17)

C∗ =
∑

β(mod q̂1q̂2p̂r)

Cr

(
m1, n

′
1, n

′′
1 , β, a1, q1

)
Cr (m2, n′

1, n
′′
1 , β, a2, q2)e

(
n2β

q̂1q̂2p̂r

)

and

B∗ =
∑

β(mod q̂1q̂2ρ̂s)

Bs

(
m1, n

′
1, n

′′
1, β, a1, q1

)
Bs (m2, n

′
1, n

′′
1 , β, a2, q2)e

(
n2β

q̂1q̂2ρ̂s

)
,

where q̂ = q/n′
1, p̂r = pλ−r/n′′

1 , ρ̂s = pλ+s/n′′
1, n2 ∈ Z, Cr(m,n′

1, n
′′
1 , β, a, q) andBs(m,n′

1, n
′′
1, β, a, q)

are defined in (3.11) and (3.13), respectively. Write β = q̂1q̂2q̂1q̂2b1 + p̂rp̂rb2, where b1 (mod p̂r)
and b2 (mod q̂1q̂2). We obtain

C∗ = C∗
1C

∗
2,

where

C∗
1 =

∑

b(mod q̂1q̂2)

S
(
a1̟r

q1 p̂r, bp̂r; q̂1

)
S
(
a2̟r

q2 p̂r, bp̂r; q̂2

)
e

(
n2p̂rb

q̂1q̂2

)

and

C∗
2 =

∑

b(mod p̂r)

∑

c1(mod pλ−r)

χ
(
m1 − c1p

κ−λ+r
)
S
(
c1q̂1, bq̂1; p̂r

)

∑

c2(mod pλ−r)

χ
(
m2 − c2p

κ−λ+r
)
S
(
c2q̂2, bq̂2; p̂r

)
e

(
q̂1q̂2bn2

p̂r

)
.

Similarly,

B∗ = B∗
1B

∗
2,

where

B∗
1 =

∑

b(mod q̂1q̂2)

S
(
a1ρ̂s, bρ̂s; q̂1

)
S
(
a2ρ̂s, bρ̂s; q̂2

)
e

(
n2ρ̂sb

q̂1q̂2

)

and

B∗
2 =

∑

b(mod ρ̂s)

∑

c1(mod pλ)

χ

(
m1 − (a1 + c1p

s)pκ−λ

ps

)
S
(
a1 + c1psq̂1, bq̂1; ρ̂s

)

∑

c2(mod pλ)

χ

(
m2 − (a2 + c2p

s)pκ−λ

ps

)
S
(
a2 + c2psq̂2, bq̂2; ρ̂s

)
e

(
q̂1q̂2bn2

ρ̂s

)
.
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We quote the following estimates for C∗
1 and B∗

1 which were proved in [14] by induction.

Lemma 5. We have

C∗
1,B

∗
1 ≪ q̂1q̂2(q̂1, q̂2, n2).

Moreover, for n2 = 0, the character sums vanish unless q1 = q2 in which case

C∗
1,B

∗
1 ≪ q̂1

2(q̂1,m1 −m2).

For C∗
2 and B∗

2, we will prove the following results.

Lemma 6. Assume λ ≤ 2κ/3. Let pk‖n2 with k ≥ 0.
(1) We have

C∗
2 ≪ p̂r

2p2(λ−r). (6.1)

Moreover, for n2 = 0, we have

C∗
2 ≪ p̂rp

2(λ−r). (6.2)

(2) For n′′
1 = pλ−r or n′′

1 = pλ−r−1 with λ− r ≥ 2, we have

C∗
2 = 0.

(3) For pλ−r/n′′
1 ≥ p2, we have C∗

2 vanishes unless n′′
1 = 1. Moreover, let λ− r = 2α+ δ with

δ = 0 or 1. For n2 = 0, C∗
2 vanishes unless m1q

2
1 ≡ m2q

2
2(mod pα). For n2 6= 0, we have

C∗
2 ≪ p5(λ−r)/2+min{k,α}+3δ/2. (6.3)

Lemma 7. Assume λ ≤ 2κ/3. Let pk‖n2 with k ≥ 0.
(1) We have B∗

2 vanishes unless n′′
1 = 1 and

B∗
2 ≪ ρ̂s

2p2λ.

Moreover, for n2 = 0, we have a2 ≡ q̂2
2q̂1

2a1(mod ps) in which case

B∗
2 ≪ ρ̂sp

2λ+s.

(2) Let λ = 2α + δ with δ = 0 or 1. For n2 = 0, we have B∗
2 vanishes unless q21m1/p

s ≡
q22m2/p

s(mod pα). For n2 6= 0, we have

B∗
2 ≪ p5λ/2+4s+min{k,α}+3δ/2.

Now Lemma 3 follows from Lemmas 5 and 6, and Lemma 4 follows from Lemmas 5 and 7.
We only prove Lemma 6 for C∗

2 in detail, since the proof of Lemma 7 is very similar.

Proof. (1) Trivially, (6.1) follows from Weil’s bound for Kloosterman sums. To prove (6.2), we
open the Kloosterman sums and sum over b to get

C∗
2 = p̂r

∑

c1(mod pλ−r)

χ
(
m1 − c1p

κ−λ+r
) ∑

c2(mod pλ−r)

χ
(
m2 − c2p

κ−λ+r
)

∑∗

d(mod p̂r)

e

(
q̂2c2 − q̂2q̂1 (q̂1 + n2d) c1

p̂r
d

)
. (6.4)
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For n2 = 0, we denote m0 = q̂2c2 − q̂2q̂1
2c1. Since the Ramanujan sum

S(m, 0; c) =
∑∗

α(mod c)

exp(2πimα/c) = µ (c/(m, c))ϕ(c)/ϕ (c/(m, c)) ,

where µ is the Möbius function and ϕ is the Euler function, the last sum over d for n2 = 0 is

µ

(
p̂r

(m0, p̂r)

)
ϕ(p̂r)

ϕ (p̂r/(m0, p̂r))
=





p̂r(1− p−1), if (m0, p̂r) = p̂r
−p̂r/p, if (m0, p̂r) = p̂r/p
0, otherwise.

Thus (6.2) follows.
(2) Let λ − r = 2α + δ with δ = 0 or 1, α ≥ 1 is a positive integer. Write c1 = b1p

α+δ + b2,
b1(mod pα), b2(mod pα+δ) and c2 = h1p

α+δ + h2, h1(mod pα), h2(mod pα+δ). If n′′
1 = pλ−r−1,

we have p̂r = p and

C∗
2 = p

∑

b2(mod pα+δ)

∑

h2(mod pα+δ)

χ
(
m1 − b2p

κ−2α−δ
)
χ
(
m2 − h2p

κ−2α−δ
)

∑∗

d(mod p)

e

(
q̂2h2 − q̂2q̂1 (q̂1 + n2d) b2

p
d

)
∑

b1(mod pα)

χ
(
1 +m1 − b2pκ−2α−δpκ−αb1

)

∑

h1(mod pα)

χ
(
1−m2 − h2pκ−2αpκ−αh1

)
.

Recall χ is a primitive character of modulus pκ and κ > λ ≥ 2α. Thus χ(1 + zpκ−α) is an
additive character to modulus pα, so there exists an integer η (uniquely determined modulo pα),
(η, p) = 1, such that χ(1 + zpκ−α) = exp(2πiηz/pα). Therefore, C∗

2 = 0. For n′′
1 = pλ−r, the

proof is similar and easier.
(3) Write pλ−r = p2α+δ1 , p̂r = pλ−r/n′′

1 = p2β+δ2 , δ1 = 0 or 1, δ2 = 0 or 1, α ≥ 1 and
β ≥ 1. Write c1 = b1p

α+δ1 + b2, b1(mod pα), b2(mod pα+δ1), c2 = h1p
α+δ1 + h2, h1(mod pα),

h2(mod pα+δ1), and d = d1p
β+δ2 + d2, d1(mod pβ), d2(mod pβ+δ2). Then by (6.4), we have

C∗
2 = p2β+δ2

∑

b2(mod pα+δ1)

∑

h2(mod pα+δ1)

∑∗

d2(mod pβ+δ2)

∑

b1(mod pα)

∑

h1(mod pα)

∑

d1(mod pβ)

χ
(
m1 − (b2 + b1p

α+δ1)pκ−2α−δ1
)
χ
(
m2 − (h2 + h1p

α+δ1)pκ−2α−δ1
)

e

(
q̂2(h2 + h1pα+δ1)− q̂2q̂1 (q̂1 + n2d2 + n2d1pβ+δ2) (b2 + b1pα+δ1)

p2β+δ2
(d2 + d1p

β+δ2)

)
.

Note that κ > λ ≥ 2α + δ1 ≥ 2β + δ2 and a+ bpα ≡ a(1− abpα)(mod p2α). Thus

C∗
2 = p2α+3β+δ2

∑

b2(mod pα+δ1)

∑

h2(mod pα+δ1)

∑∗

d2(mod pβ+δ2)
(q̂1+n2d2)2b2q̂2

2n2d2−(q̂1+n2d2)b2q̂2
2+q̂1h2≡0(mod pβ)

f(b2, h2, d2)C1C2, (6.5)
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where

C1 =
1

pα

∑

b1(mod pα)

χ
(
1 +m1 − b2pκ−2α−δ1pκ−αb1

)
e

(
q̂2q̂1(q̂1 + n2d2)b

2
2d2n

′′
1

pα
b1

)
,

C2 =
1

pα

∑

h1(mod pα)

χ
(
1−m2 − h2pκ−2α−δ1pκ−αh1

)
e

(
−q̂2h

2
2d2n

′′
1

pα
h1

)

and

f(b2, h2, d2) = χ
(
m1 − b2p

κ−2α−δ1
)
χ
(
m2 − h2p

κ−2α−δ1
)
e

(
q̂2h2 − q̂2q̂1(q̂1 + n2d2)b2

p2β+δ2
d2

)
.

Since χ(1 + zpκ−α) = exp(2πiηz/pα) with (η, p) = 1, we have

C1 =
1

pα

∑

b1(mod pα)

e

(
m1 − b2pκ−2α−δ1η

pα
b1

)
e

(
q̂2q̂1(q̂1 + n2d2)b22d2n

′′
1

pα
b1

)

= 1
m1−b2pκ−2α−δ1η+q̂2q̂1(q̂1+n2d2)b22d2n

′′
1≡0(mod pα)

.

Thus C1 vanishes unless n′′
1 = 1 which in turn implies that α = β and δ1 = δ2. Moreover, by

taking λ ≤ 2κ/3, we have κ ≥ 3α+ 2δ1. Hence C1 vanishes unless m1η + q̂2q̂1(q̂1 + n2d2)b22d2 ≡
0(mod pα). Similarly,

C2 = 1
m2η+q̂2h2

2d2≡0(mod pα)
.

Plugging these into (6.5) we obtain

C∗
2 = p5α+δ1

∑

b2(mod pα+δ1)

∑

h2(mod pα+δ1)

∑∗

d2(mod pα+δ1)
(q̂1+n2d2)2b2q̂2

2n2d2−(q̂1+n2d2)b2q̂2
2+q̂1h2≡0(mod pα)

m1η+q̂2q̂1(q̂1+n2d2)b22d2≡0(mod pα)

m2η+q̂2h2
2d2≡0(mod pα)

f(b2, h2, d2). (6.6)

To count the numbers of b2, h2 and d2, we solve the three congruence equations in (6.6).
(i) If n2 = 0 or n2 = pkn′

2 with (n′
2, p) = 1 and pk ≥ pα, we have





h2 ≡ q̂2
2q̂1

2b2(mod pα)

d2 ≡ −m1ηq̂1
2q̂2b

2
2(mod pα)

d2 ≡ −m2ηq̂2h
2
2(mod pα)

By the last two equations, one sees that C∗
2 vanishes unless m1q̂1

2 ≡ m2q̂2
2(mod pα). Moreover,

for fixed b2, h2 and d2 are uniquely determined modulo pα. Therefore,

C∗
2 ≪ p6α+4δ1 ≪ p3(λ−r)+δ1 . (6.7)

(ii) If n2 6= 0, we let n2 = pkn′
2 with (n′

2, p) = 1 and pk < pα, and let γ = q̂1 + n2d2. Then

d2 ≡ n′
2(γ − q̂1)/p

k
(
mod pα−k

)
and the three equations give





b2 ≡ q̂2
2γ2h2(mod pα),

γ ≡ q̂1

(
1 +m1ηq̂1q̂2n2b

2
2

)
(mod pα),

γ ≡ q̂1

(
1−m2ηq̂1q̂2n2h

2
2

)
(mod pα).

(6.8)
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Plugging the second equation into the first equation in (6.8) we get

b2 ≡ q̂2
2q̂1

2
(
1 +m1ηq̂1q̂2n2b

2
2

)2
h2(mod pα). (6.9)

By (6.9) and the last two equations in (6.8) we get
(
m1ηq̂1q̂2

)5
u5 + 4

(
m1ηq̂1q̂2

)4
u4 + 6

(
m1ηq̂1q̂2

)3
u3 + 4

(
m1ηq̂1q̂2

)2
u2

−m1m2η
2q̂1

4q̂2
4
u2 +m1ηq̂1q̂2u−m2ηq̂1

3q̂2
3
u ≡ 0(mod pα),

where u = n2b
2
2. Thus there are at most 5 roots modulo pα for u. Therefore, there are at most

10 roots modulo pα−k for b2. For fixed u, γ is uniquely determined modulo pα and for fixed γ
and b2, h2 is uniquely determined modulo pα by the first equation in (6.8). Then by the last
congruence equation in (6.6), d2 is uniquely determined modulo pα. Therefore,

C∗
2 ≪ p5α+k+4δ1 ≪ p5(λ−r)/2+k+3δ1/2.

By (6.7) and (6.10), the bound in (6.3) follows.
�
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