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DIFFERENTIAL PROJECTIVE MODULES OVER ALGEBRAS

WITH RADICAL SQUARE ZERO

DAWEI SHEN

Abstract. Let Q be a finite quiver and Λ be the radical square zero algebra
of Q over a field. We give a full and dense functor from the category of reduced
differential projective modules over Λ to the category of representations of the
opposite of Q. If moreover Q has oriented cycles and Q is not a basic cycle,
we prove that the algebra of dual numbers over Λ is not virtually Gorenstein.

1. Introduction

Given a ring Λ, recall that a differential Λ-module is a pair (M,d), where M is
a Λ-module and d is an endomorphism of M such that d2 = 0. If (M,d), (N, δ)
are differential Λ-modules, a differential Λ-module map f : (M,d) → (N, δ) is a Λ-
module map f : M → N such that fd = δf . A Λ-module map f : (M,d) → (N, δ)
is null homotopic if there exists a Λ-module map r : M → N such that f = rd+ δr.
Note that differential modules over Λ are just modules over the ring Λ[ǫ] of dual
numbers over Λ.

Let (M,d) be a differential Λ-module. The shift Σ(M,d) of (M,d) is (M,−d).
Recall that (M,d) is contractible if the identity map of M is null homotopic, (M,d)
is reduced if it has no nonzero contractible direct summands, and (M,d) is exact if
Ker d = Im d. Every contractible differential Λ-module is exact.

By the term differential projective Λ-modules, we mean differential Λ-modules
which are projective as Λ-modules. In [20] differential finitely generated projective
Λ-module are called perfect differential Λ-modules.

The graded differential modules, namely the complexes, have been studied by
many authors. However, few papers investigate the differential modules in detail.
L. L. Avramov, R.-O. Buchweitz and S. Iyengar [4] study the projective class as well
as free class and flat class for differential modules. C. M. Ringel and P. Zhang [20]
investigate the perfect differential modules over path algebras, they prove that the
homology functor gives a bijection from the reduced perfect differential modules to
the finitely generated modules over path algebras. J. Wei [23] studies the Gorenstein
homological theory for differential modules and extends their bijection.

The study of differential modules is related to the Gorenstein homological theory.
M. Auslander and M. Bridger [1] introduce the notion of modules of G-dimension
zero over two-sided Noetherian rings. This kind of modules are also called totally
reflexive modules [5]. E. E. Enochs and O. M. G. Jenda [12, 13] extend their ideas
and introduce the notion of Gorenstein projective modules, Gorenstein injective
modules and Gorenstein flat modules for arbitrary rings. In particular, the totally
reflexive modules are just the finitely generated Gorenstein projective modules for
two-sided Noetherian rings.
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2 DAWEI SHEN

The Gorenstein projective modules over algebras with radical square zero have
been well studied. X.-W. Chen [11] shows that a connected Artin algebra with
radical square zero is either selfinjective or CM-free. Recall that an Artin algebra
is called CM-free if every totally reflexive module is projective. C. M. Ringel and
B.-L. Xiong [19] extend this result to arbitrary Gorenstein projective modules.

However, the Gorenstein projective modules over algebras with radical cubic zero
are quite complicated. Y. Yoshino [24] studies a class of commutative local Artin
algebras with radical cubic zero, over these algebras the simple module has no right
approximations by the totally reflexive modules. They are not virtually Gorenstein
algebras in the sense of [8].

The totally reflexive modules over Sn = k[X,Y1, · · · , Yn]/(X
2, YiYj) are studied

by D. A. Rangel Tracy [18], where k is a field, n ≥ 2 and 1 ≤ i, j ≤ n. The main
result gives a bijection from the reduced totally reflexive modules over Sn to the
finite-dimensional modules over the free algebra of n variables.

Inspired their works, we investigate the differential projective modules over Artin
algebras with radical square zero.

Let k be a field and Q be a finite quiver. Denote by kQ the path algebra of
Q. Let J be the arrow ideal of kQ, then the quotient algebra kQ/J2 is an Artin
algebra with radical square zero. Let Qop be the opposite quiver of Q.

We construct a “Koszul dual functor” F from the category of reduced differential
projective kQ/J2-modules to the category of kQop-modules.

Denote by Diff(kQ/J2-Proj) the Frobenius category of all differential projective
kQ/J2-modules [15]. The homotopy category Diff(kQ/J2-Proj) of all differential
projective kQ/J2-modules is a triangulated category [22].

Denote by Diff0(kQ/J2-Proj) the full subcategory of Diff(kQ/J2-Proj) formed
by reduced differential projective kQ/J2-modules. We recall the abelian category
kQop-Mod of all kQop-modules.

The following is the main result of this paper; see also [18], compare [7, 20].

Theorem 1.1. Let k be a field and Q be a finite quiver. Then taking the top

makes a functor F : Diff0(kQ/J2-Proj) → kQop-Mod from the category of reduced

differential projective kQ/J2-modules to the category of kQop-modules. Moreover,

(1) F is full, dense, and detects the isomorphisms;

(2) F is exact and commutes with all small coproducts;

(3) F vanishes on all null-homotopic maps;

(4) For any M,N in Diff0(kQ/J2-Proj), there is an isomorphism

Diff(kQ/J2-Proj)(M,N) ≃ HomkQop (F (M), F (N))
∐

Ext1kQop (F (M), FΣ(N)).

The “Koszul dual functor” F has a good restriction on some full subcategories.
More precisely, we have the following.

Proposition 1.2. Let M be a reduced differential projective kQ/J2-module in the

homotopy category Diff(kQ/J2-Proj).

(1) M is finite dimensional if and only if F (M) is finite dimensional.

(2) M is compact if and only if F (M) is finitely presented.

(3) M is exact if and only if ExtnkQop (kQ0, F (M)) = 0 for n = 0, 1.

We give a compact generator for the homotopy category Diff(kQ/J2-Proj) as
follows. Let C be the kQ/J2-module kQ/J2 ⊗kQ0

kQop with a differential d given
by d(y ⊗ z) =

∑
α∈Q1

yα ⊗ α∗z for y ∈ kQ/J2, z ∈ kQop. Here, α∗ ∈ Qop is the
reversed arrow of α.

We have the following.

Theorem 1.3. The above C is a compact generator for Diff(kQ/J2-Proj).
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Recall that a finite connected quiver Q is a basic cycle if the number of vertices
is equal to the number of arrows in Q and all arrows form an oriented cycle.

The following gives a class of noncommutative algebras with radical cubic zero
which are not virtually Gorenstein algebras; compare [24].

Theorem 1.4. If Q is a finite connected quiver with oriented cycles and Q is not a

basic cycle. Then the algebra kQ/J2[ǫ] of dual number over kQ/J2 is not virtually

Gorenstein.

The present paper is organized as follows. In Section 2 and Section 3, we recall
some required facts about quivers and radical square zero algebras, respectively. In
Section 4, we construct the functor F and prove Theorem 1.1. In Section 5, we
study the restriction of F and give the proofs of Proposition 1.2 and Theorem 1.3.
In Section 6, we study virtual Gorensteinness of algebras and prove Theorem 1.4.

2. Quivers and representations

In this section, we recall some facts about quivers and their representations. We
refer to [3, III.1] for more details.

A finite quiver Q is a quadruple (Q0, Q1; s, t), where Q0 is the finite set of
vertices, Q1 is the finite set of arrows, and s, t : Q1 → Q0 are the source map and
the target map, respectively. Denote by ei the trivial path at i for i ∈ Q0, where
s(ei) = t(ei) = i. A nontrivial path p is a sequence αl · · ·α2α1 of arrows, where
l ≥ 1 and t(αi) = s(αi+1) for 1 ≤ i ≤ l− 1. Here, s(p) = s(α1) and t(p) = t(αl). A
nontrivial path p is called an oriented cycle if s(p) = t(p). A finite quiver Q is said
to be acyclic if it has no oriented cycles.

Let kQ be the path algebra of Q over a field k. Recall that kQ is a hereditary
algebra and kQ is finite dimensional if and only if Q is acyclic.

A representation of Q is a collection (Mi,Mα)i∈Q0,α∈Q1
, where Mi is a k-vector

space and Mα is a k-linear map from Ms(α) to Mt(α). If M,N are representations
of Q, a morphism from M to N is a collection (fi)i∈Q0

, where fi is a k-linear map
from Mi to Ni such that ft(α)Mα = Nαfs(α) for each α ∈ Q1.

Recall that the category of representations of Q is equivalent to the category of
kQ-modules. We identify a kQ-module with the associated representation of Q.

Let J be the arrow ideal of kQ; it is the ideal generated by all arrows in Q. For an
admissible ideal I of kQ satisfying Jn ⊆ I ⊆ J2 for some n ≥ 2, the quotient algebra
kQ/I is finite dimensional over k. Recall that a kQ/I-module is a kQ-module M
such that wM = 0 for every w ∈ I.

3. Projective modules for radical square zero algebras

Let k be a field and Q be a finite quiver. Recall that the unit element of the
path algebra kQ is

∑
i∈Q0

ei, where ei the trivial path at vertex i.

Let J be arrow ideal of kQ, then kQ/J2 is the radical square zero algebra of Q.
In this section, we study some facts about the projective kQ/J2-modules.

Lemma 3.1. Let M be a projective kQ/J2-module. Then we have

(1) rad2(M) = 0;
(2) (radM)i =

∐
α∈Q1,t(α)=i ImMα for each i ∈ Q0;

(3) (radM)s(α) = KerMα for each α ∈ Q1;

(4) (M/ radM)s(α) = Ms(α)/KerMα for each α ∈ Q1.

Proof. Observe that (1)–(4) hold for the regular module over kQ/J2. Since M is
projective over kQ/J2, it is a direct summand of direct sums of copies of kQ/J2.
Since taking the radicals, kernels and images commute with all small coproducts,
we infer that (1)–(4) also hold for M . �
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Given a module M , recall that the radical radM of M is the intersection of all
maximal submodules of M , and the top of M is the quotient module M/ radM .

Let f : M → N be a kQ/J2-module map between projective kQ/J2-modules.
Recall that f is radical if Im f ⊆ radN . Denote by F (f) : M/ radM → N/ radN
the induced map of f . It follows that f is radical if and only if F (f) = 0. Denote
by Rad(M,N) the subspace of HomkQ/J2 (M,N) formed by radical maps.

Lemma 3.2. For projective kQ/J2-modules M,N , there is a short exact sequence

0 → Rad(M,N)
⊂
−→ HomkQ/J2 (M,N)

F
−→ HomkQ0

(M/ radM,N/ radN) → 0.

Proof. Let g : M/ radM → N/ radN be a kQ0-module map. Since M is projective
over kQ/J2, we have g = F (f) for some kQ/J2-module map f : M → N . Then the
map F is surjective. Since KerF = Rad(M,N), this gives rise to the desired short
exact sequence. �

For kQ0-modules X and Y , denote by E(X,Y ) the k-vector space consisting of
the collections (fα∗)α∈Q1

, where fα∗ : Xt(α) → Ys(α) is a k-linear map.

Lemma 3.3. For projective kQ/J2-modules M,N , there is an isomorphism

γ : Rad(M,N)
F
−→ HomkQ0

(M/ radM, radN)
G
−→ E(M/ radM,N/ radN).

Proof. We identify Rad(M,N) with HomkQ/J2 (M, radN). Then the map F is well

defined since rad2(N) is zero. By Lemma 3.2 the map F is surjective and KerF = 0.
Then F is an isomorphism.

We recall Lemma 3.1(1)–(4). Denote by pα : (radN)t(α) → ImNα the natural
projection and by iα : ImNα → (radN)t(α) the natural inclusion. Let us denote

by Nα : Ns(α)/KerNα → ImNα the induced isomorphism of Nα.

Let g ∈ HomkQ0
(M/ radM, radN). Define G(g)α∗ = (Nα)

−1pαgt(α) for α ∈ Q1.

Let h ∈ E(M/ radM,N/ radN). Define G−1(h)i =
∑

α iαNαhα∗ for i ∈ Q0, where
α runs through all arrows terminating at i. One checks that G andG−1 are mutually
inverse isomorphisms.

Therefore, the composite γ = G ◦ F is an isomorphism. �

Recall the opposite quiver Qop of Q. The underlying graph of Qop is the same
as Q, but the orientations are all reversed. We denote by α∗ the reversed arrow in
Qop for each arrow α in Q.

If X,Y are kQop-modules, let E0(X,Y ) be the subspace of E(X,Y ) formed by
(hα∗)α∈Q1

, where hα∗ = θs(α)Xα∗ −Yα∗θt(α) for some kQ0-module map θ : X → Y .
We need the following lemmas.

Lemma 3.4. For kQop-modules X,Y , there is an isomorphism

Ext1kQop (X,Y ) ≃ E(X,Y )/E0(X,Y ).

Proof. This follows from [14, 7.2]. �

Lemma 3.5. Let X be a kQop-module. Then X is finitely presented if and only if

the functors HomkQop(X,−) and Ext1kQop(X,−) commute with all small coproducts.

Proof. Since the path algebra kQop is hereditary, the projective dimension of X is
no more than one. Then the statement follows from [21, 1.4 Corollary 2]. �
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4. Construction of the “Koszul dual functor”

In this section, for a finite quiver Q we show that taking the top makes a full and
dense functor from the category of reduced differential projective kQ/J2-modules
to the category of kQop-modules. Here, Qop is the opposite of Q.

Let M and N be differential projective kQ/J2-modules. A kQ/J2-module map
f : M → N is said to be null homotopic if there is a kQ/J2-module map r : M → N
such that f = rd+ δr. Here, d and δ are the differentials of M and N , respectively.
Denote by Hpt(M,N) the subspace of HomkQ/J2(M,N) formed by null-homotopic
maps.

Let M be a differential projective kQ/J2-module. Recall that M is said to be
contractible if the identity map of M is null homotopic, and M is said to be reduced
if M has no nonzero contractible direct summands.

We need the following.

Lemma 4.1. Let M be a differential projective kQ/J2-module.

(1) M is reduced if and only if the differential of M is a radical map.

(2) There exists a decomposition M = M ′
∐

M ′′ such that M ′ is contractible and

M ′′ is reduced. Moreover, this decomposition is unique up to isomorphism.

Proof. View M as a one-periodic complex · · ·
d
→ M

d
→ M

d
→ · · · , where d is the

differential. Then (1) and (2) follow from the dual versions of [16, Appendix B]. �

Let us recall some notations. We denote by Diff(kQ/J2-Proj) the category of
all differential projective kQ/J2-modules. It is a Frobenius category and it admits
all small products. Denote by Diff0(kQ/J2-Proj) the full subcategory consisting of
reduced differential projective kQ/J2-modules.

Recall the homopopy category Diff(kQ/J2-Proj) of all differential projective
kQ/J2-modules. The objects are all differential projective kQ/J2-modules. The
morphisms are obtained from differential kQ/J2-module maps by factoring out the
null homotopic maps.

Note that Diff0(kQ/J2-Proj) is not extension closed in Diff(kQ/J2-Proj). How-
ever, the homotopy categories of these two categories are equivalent.

Let (M,d) and (N, δ) be reduced differential projective kQ/J2-modules. Then
we have inclusions

Hpt(M,N) ⊆ Rad(M,N) ⊆ Diff(kQ/J2-Proj)(M,N).

In fact, since M and N are reduced, by Lemma 4.1(1) d and δ are radical maps.
If f : M → N is radical, then fd = 0 = δf and thus f is a differential map. Then
we obtain the inclusion on the right hand side. Similarly, the inclusion on the left
hand side also holds.

We now prove the following key lemma. Here, we recall the maps F and γ from
Lemma 3.3.

Lemma 4.2. Let f : M → N be a kQ/J2-module map between reduced differential

projective kQ/J2-modules. Then we have

(1) f is a differential map if and only if F (f)γ(d) = γ(δ)F (f);
(2) f is null homotopic if and only if F (f) = 0 and there exists a kQ0-module map

θ : M/ radM → N/ radN such that γ(f) = θγ(d) + γ(δ)θ.

Proof. (1) Since the map γ is an isomorphism by Lemma 3.3, we infer that fd = δf
if and only if γ(fd) = γ(δf). Note that γ(fd) = F (f)γ(d) and γ(δf) = γ(δ)F (f).
Then f is a differential map if and only if F (f)γ(d) = γ(δ)F (f).

(2) “ =⇒ ” Since f is null homotopic, there is a kQ/J2-module map r : M → N
such that f = rd + δr. Then F (f) = 0 and γ(f) = F (r)γ(d) + δF (r).
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“ ⇐= ” Since M is projective, there is a kQ/J2-module map r : M → N such
that θ = F (r). Note that f is radical and γ(f) = γ(rd+ δr). Then f = rd+ δr by
Lemma 3.3. We infer that f is null homotopic. �

We now construct the “Koszul dual functor” F from the category of reduced
differential projective kQ/J2-modules to the category of kQop-modules.

For any object (M,d) in Diff0(kQ/J2-Proj), set F (M,d)i = (M/ radM)i for
i ∈ Q0 and F (M,d)α∗ = γ(d)α∗ for α ∈ Q1. Then F (M,d) is a kQop-module.

For a morphism f in Diff0(kQ/J2-Proj), recall that F (f) is a kQ0-module map.
It follows from Lemma 4.2(1) that F (f) is a kQop-module map.

Let σ be the algebra isomorphism of kQop induced by σ(q) = (−1)lq for every
path q in Qop, where l is the length of q. Note that σ2 is the identity map.

For a kQop-module X , let σX be the twisted module ofX . Here, σX is equal toX
as k-vector spaces, and the action ◦ is given by w ◦x = σ(w)x for w ∈ kQop, x ∈ X .

We see that
σ
(σX) is the same as X . However, the twisted module σX and the

original module X need not be isomorphic. The following is an example.

Example 4.3. Let k be field and Q be the following quiver.

2
•

β

��❄
❄❄

❄❄
❄❄

❄

1 • γ
//

α

>>⑦⑦⑦⑦⑦⑦⑦⑦
• 3

Let X be the kQ-module with X1 = X2 = X3 = k, Xα = Xβ = Xγ = 1k, where
1k is the identity map. Then σX1 = σX2 = σX3 = k, σXα = σXβ = σXγ = −1k.

If the characteristic of k is not equal to 2, then the two kQ-modules X and σX
are not isomorphic.

Let M be a reduced differential projective kQ/J2-module. The shift Σ(M) of M
is the equal to M as kQ/J2-modules, while the differential of Σ(M) is the negative
of the differential of M . Observe that the kQop-modules σF (M) and FΣ(M) are
isomorphic.

We have the following.

Lemma 4.4. For any M,N in Diff0(kQ/J2-Proj), there is an isomorphism

Rad(M,N) ≃ Ext1kQop(F (M), FΣ(N)).

Here, we write Rad(M,N) = Rad(M,N)/Htp(M,N).

Proof. It follows from Lemma 3.3 that there is an isomorphism

γ : Rad(M,N)
∼
−→ E(F (M), F (N)) = E(F (M), FΣ(N)).

The image of Hpt(M,N) under γ is E0(F (M), FΣ(N)) by Lemma 4.2(2). We infer
from Lemma 3.4 that Rad(M,N) and Ext1kQop (F (M), FΣ(N)) are isomorphic. �

The following is the main result of this section.

Theorem 4.5. Let k be a field and Q be a finite quiver. Then taking the top

makes a functor F : Diff0(kQ/J2-Proj) → kQop-Mod from the category of reduced

differential projective kQ/J2-modules to the category of kQop-modules. Moreover,

(1) F is full, dense, and detects the isomorphisms;

(2) F is exact and commutes with all small coproducts;

(3) F vanishes on all null-homotopic maps;

(4) For any M,N in Diff0(kQ/J2-Proj), there is an isomorphism

Diff(kQ/J2-Proj)(M,N) ≃ HomkQop (F (M), F (N))
∐

Ext1kQop (F (M), FΣ(N)).
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Proof. (1) Let M and N be in Diff0(kQ/J2-Proj) and let g : F (M) → F (N) be a
kQop-module map. By Lemma 3.2 there is a kQ/J2-module map f : M → N such
that g = F (f). Since g is a kQop-module map, it follows from Lemma 4.2(1) that
f is a differential map . This shows that the functor F is full.

For a kQop-module X , set G(X) be the kQ/J2-module kQ/J2 ⊗kQ0
X with a

differential d given by

d(
∑

i∈Q0

yi ⊗ xi) =
∑

α∈Q1

yt(α)α⊗Xα∗(xt(α))

for yi ∈ (kQ/J2)ei and xi ∈ Xi. Here, we recall the target t(α) of the arrow α.
Note that G(X) is a reduced differential projective kQ/J2-module and F (G(X))

is isomorphic to X . It follows that the functor F is dense.
It remains to show that F detects the isomorphisms. Suppose that f : M → N

is a morphism in Diff0(kQ/J2-Proj) with F (f) being an isomorphism.
Let g be the inverse of F (f). Since N is projective, there exists a morphism

h : N → M such that F (h) = g. Then F (1M ) = F (hf), F (1N ) = F (fh), where 1M
and 1N are the identity maps. By Lemma 3.2 both 1M−hf and 1N−fh are radical
maps. Since rad2(M) = 0, rad2(N) = 0, we have (1M − hf)2 = 0, (1N − fh)2 = 0.
Then hf and fh are isomorphisms. It follows that f is an isomorphism.

(2) For every reduced differential projective kQ/J2-module M , recall that F (M)
is isomorphic to kQ0 ⊗kQ/J2 M as k-vector spaces. It follows that F is exact and
commutes with all small coproducts.

(3) Since every null-homotopic map is radical and F vanishes on all radical maps,
it follows that F vanishes on all null-homotopic maps.

(4) Let M and N be in Diff0(kQ/J2-Proj). Since the functor F is full by (1),
there is a short exact sequence

0 → Rad(M,N) → HomDiff(kQ/J2-Proj)(M,N) → HomkQop(F (M), F (N)) → 0.

Since Hpt(M,N) ⊆ Rad(M,N), it yields a short exact sequence

0 → Rad(M,N) → HomDiff(kQ/J2-Proj)(M,N) → HomkQop(F (M), F (N)) → 0.

Since k is a field, the previous exact sequence is split. Then the desired isomorphism
follows from Lemma 4.4. �

By Theorem 4.5 we have the following; compare [23, Corollary 4.10].

Corollary 4.6. The functor F gives a bijection from the isoclasses of objects in

the homotopy category of differential projective kQ/J2-modules to the isoclasses of

objects in the category of kQop-modules, which carries indecomposable objects to

indecomposable objects.

5. Compact generator

Let k be a field and Q be a finite quiver. Recall the opposite quiver Qop and the
radical square algebra kQ/J2 of Q.

Let C be the kQ/J2-module kQ/J2 ⊗kQ0
kQop with a differential d given by

d(y ⊗ z) =
∑

α∈Q1

yα⊗ α∗z

for y ∈ kQ/J2 and z ∈ kQop. Here, we recall that α∗ is the reversed arrow of α.
Observe that C is a reduced differential projective kQ/J2-module. Recall the

functor F from the previous section. It is routine to show that F (C) is isomorphic
to the regular module over kQop.

Recall the homotopy category Diff(kQ/J2-Proj) of differential projective kQ/J2-
module. We will later show C is a compact generator for this triangulated category.
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Let M be a differential projective kQ/J2-module. By Lemma 4.1(2) there exists
a decomposition M = M ′

∐
M ′′ such that M ′ is contractible and M ′′ is reduced.

Recall that the cohomology group H(M) of M is Kerd/ Im d, where d is differential
of M . We also recall that M is said to be exact if its cohomology group is zero.
Note that H(M ′) = 0 and H(M) = H(M ′′).

Lemma 5.1. Let M be a differential projective kQ/J2-module. Then we have

(1) Diff(kQ/J2-Proj)(C,M) ≃ F (M ′′);
(2) H(M) ≃ HomkQop (kQ0, F (M ′′))

∐
Ext1kQop (kQ0, F (M ′′)).

Proof. Note that H(M) is isomorphic to Diff(kQ/J2-Proj)(kQ/J2,M). Here we
denote by kQ/J2 the differential module kQ/J2 with vanishing differential. Then
(1) and (2) follow from Theorem 4.5(4). �

The “Koszul dual functor” F has a good restriction on some full subcategories.
More precisely, we have the following result.

Proposition 5.2. Let M be a reduced differential projective kQ/J2-module in the

stable category Diff(kQ/J2-Proj).

(1) M is finite dimensional if and only if F (M) is finite dimensional.

(2) M is compact if and only if F (M) is finitely presented.

(3) M is exact if and only if ExtnkQop (kQ0, F (M)) = 0 for n = 0, 1.

Proof. (1) Since F (M) is the top of the projective module M , it follows that M is
finitely generated if and only if F (M) is finitely generated. Since finitely generated
kQ/J2-modules are exactly finite-dimensional kQ/J2-modules, we infer that M is
finite dimensional if and only if F (M) is finite dimensional.

(2) “ =⇒ ” Assume that M is compact. Let {Yλ}λ∈L be a set of kQop-modules.
Since the functor F is dense by Theorem 4.5(1), every Yλ is isomorphic to F (Tλ)
for some reduced differential projective kQ/J2-module Tλ.

By Theorem 4.5(2) and (4) there are isomorphisms

HomkQop (F (M),
∐

λ∈L

Yλ) ≃
∐

λ∈L

HomkQop(F (M), Yλ),

and

Ext1kQop (F (M),
∐

λ∈L

σYλ) ≃
∐

λ∈L

Ext1kQop (F (M), σYλ).

It follows from Lemma 3.5 that F (M) is finitely presented.
“ ⇐= ” Assume that X = F (M) is a finitely presented kQop-module. Let us

take a set {Tλ}λ∈L of differential projective kQ/J2-modules. By Lemma 4.1(2) we
have Tλ = T ′

λ

∐
T ′′
λ such that T ′

λ is contractible and T ′′
λ is reduced.

By Lemma 3.5 and Theorem 4.5(4) we have isomorphisms

Diff(kQ/J2-Proj)(M,
∐

λ∈L

Tλ) ≃
∐

λ∈L

Diff(kQ/J2-Proj)(M,Tλ).

Then M is compact in Diff(kQ/J2-Proj).
(3) This follows directly from Theorem 4.5(4) and Lemma 5.1(2). �

We have two full subcategories of T = Diff(kQ/J2-Proj). Denote by T c is the
full subcategory formed by compact objects and by T fd is the full subcategory
formed by objects M such that its reduced part M ′′ is finite dimensional.

Corollary 5.3. We have an inclusion T fd ⊆ T c. Moreover, the equality holds if

and only if the quiver Q is acyclic.
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Proof. Recall that the category of all finite-dimensional kQop-modules is contained
in the category of all finitely presented kQop-modules, these two categories coincide
if and only if the quiver Q is acyclic. Then the corollary follow directly from
Proposition 5.2. �

By Theorem 4.5 we have the following; compare [20, Theorem 2].

Corollary 5.4. The bijection in Corollary 4.6 carries finite-dimensional objects to

finite-dimensional objects and carries compact objects to finitely presented objects.

In particular, if we take Q to be the n-loop quiver with n ≥ 2, then the bijection
between finite-dimensional objects has already studied in [18, Theorem 3.6].

Let T be a triangulated category admitting all small coproducts. An object S
in T is said to be compact [17] if for any set {Tλ}λ∈L of objects in T , the natural
monomorphism ∐

λ∈L

HomT (S, Tλ) −→ HomT (S,
∐

λ∈L

Tλ)

is an epimorphism (and thus isomorphism).
Recall that a triangulated category T is said to be compactly generated [17] if T

admits all small coproducts, and there exists a set S of objects in T such that

(1) Given T ∈ T , if T (ΣnS, T ) = 0 for every S ∈ S and n ∈ Z, then T ≃ 0;
(2) Every object S ∈ S is compact.

Here, Σ denotes the translation functor of T . The set S is called a compact gener-

ating set for T . In particular, if S = {S0} is a singleton, then S0 is called a compact

generator for T .
We now prove that C is a compact generator for Diff(kQ/J2-Proj).

Theorem 5.5. The homotopy category Diff(kQ/J2-Proj) is compactly generated,

where C is a compact generator for it.

Proof. Let T be an object in Diff(kQ/J2-Proj). We have T = T ′
∐

T ′′ such that
T ′ is contractible and T ′′ is reduced by Lemma 4.1(2).

Suppose Diff(kQ/J2-Proj)(C, T ) = 0. Then F (T ′′) = 0 by Lemma 5.1(1). Since
T ′′ is projective over kQ/J2, we have T ′′ = 0 and T = T ′ is contractible. Then
T ≃ 0 in Diff(kQ/J2-Proj). We infer that C is a generator for Diff(kQ/J2-Proj).

Take a set {Tλ}λ∈L of objects in Diff(kQ/J2-Proj). Then Lemma 4.1(2) yields
that Tλ = T ′

λ

∐
T ′′
λ , where T ′

λ is contractible and T ′′
λ is reduced.

By Lemma 5.1(1) there are isomorphisms

Diff(kQ/J2-Proj)(C,
∐

λ∈L

Tλ) ≃ F (
∐

λ∈L

T ′′
λ )

and ∐

λ∈L

Diff(kQ/J2-Proj)(C, Tλ) ≃
∐

λ∈L

F (T ′′
λ ).

Recall from Theorem 4.5(2) that F commutes with all small coproducts. It follows
that C is a compact object in Diff(kQ/J2-Proj).

Therefore C is a compact generator for Diff(kQ/J2-Proj). �

6. Virtually Gorenstein algebras

In this section, we study the virtue Gorensteiness of algebras. Here, we recall the
notion of Gorenstein projective modules and Gorenstein injective modules; see [12]
for more details.

Given a ring Λ, a complex P • of projective Λ-modules is said to be totally acyclic

if P • is acyclic and HomΛ(P
•, T ) is acyclic for every projective Λ-module T . A Λ-

moduleM is said to be Gorenstein projective if there exists a totally acyclic complex
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P • of projective Λ-modules such that M is isomorphic to Coker(d−1 : P−1 → P 0).
The complex P • is called a complete projective resolution of M .

Dually, a complex I• of injective Λ-modules is said to be totally acyclic if I• is
acyclic and HomΛ(T, I

•) is acyclic for every injective Λ-module T . A Λ-module
M is said to be Gorenstein injective if there exists a totally acyclic complex I• of
injective Λ-modules such that M is isomorphic to Ker(d0 : I0 → I1). The complex
I• is called a complete injective resolution of M .

Denote by Λ-Mod the category of all Λ-modules. Let us denote by Λ-Proj the full
subcategory of projective Λ-modules and denote by Λ-GProj the full subcategory
of Gorenstein projective Λ-modules.

We need the following facts; see [10, 13] for more details.

(1) Λ-GProj is a Frobenius category with proj(Λ-GProj) = Λ-Proj.
(2) The stable category Λ-GProj is a triangulated category.
(3) Λ is a quasi-Frobenius ring if and only if Λ-GProj = Λ-Mod.
(4) If the left global dimension of Λ is finite, then Λ-GProj = Λ-Proj.

Let Λ[ǫ] = Λ[T ]/〈T 2〉 be the ring of dual numbers over Λ. Note that differential
modules over Λ are just modules over Λ[ǫ]. In particular, if Λ is an algebra over
a field k, then the algebra Λ[ǫ] is isomorphic to the tensor product Λ ⊗k k[ǫ] of
algebras. Here, we recall that k[ǫ] = k[T ]/〈T 2〉 is the algebra of dual numbers over
k; it is a selfinjective algebra.

By [23, Theorem 1.1] a differential Λ-module (M,d) is Gorenstein projective if
and only if the underlying Λ-moduleM is Gorenstein projective. Then we know that
every differential projective Λ-module is Gorenstein projective since every projective
module is Gorenstein projective.

Let Λ be an Artin algebra. Recall that Λ is said to Gorenstein [2] if the injective
dimension of Λ and the injective dimension of Λop are both finite. Algebras of finite
global dimension and selfinjective algebras are Gorenstein algebras.

We also recall that Λ is said to be virtually Gorenstein [8] if for every Λ-module
M , the functor Ext1Λ(−,M) vanishes on all Gorenstein projective Λ-modules if and
only if the functor Ext1Λ(M,−) vanishes on all Gorenstein injective Λ-modules. Al-
gebras of finite representation type and Gorenstein algebras are virtually Gorenstein
algebras. Examples of non-virtually Gorenstein algebras can be founded in [9, 24].

We need the following.

Lemma 6.1. Let Λ and Γ be finite-dimensional algebras over a field k.

(1) Λ is virtually Gorenstein if and only if every reduced compact object in the

stable category Λ-GProj is finite dimensional.

(2) Λ⊗k Γ is Gorenstein if and only if Λ and Γ are Gorenstein.

(3) Λ⊗k Γ is selfinjective if and only if Λ and Γ are selfinjective.

Proof. (1) This follows [8, Theorem 8.2]; see also [9, Theorem 4].
(2) and (3) These are taken from [2, Proposition 2.2]. �

Let k be a field and Q be a finite quiver. We investigate the Gorenstein projective
differential modules over the radical square zero algebra kQ/J2 of Q. Recall that
a finite connected quiver Q is a basic cycle if the number of vertices is equal to the
number of arrows in Q and all arrows form an oriented cycle.

Proposition 6.2. Let k be a field and Q be a finite connected quiver.

(1) If Q is not a basic cycle, then Gorenstein projective differential kQ/J2-modules

are just differential projective kQ/J2-modules.

(2) Otherwise, every differential kQ/J2-module is Gorenstein projective.
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Proof. (1) Since Q is not a basic cycle, by [19, Theorem 2] all Gorenstein projective
modules over kQ/J2 are projective. By [23, Theorem 1.1] Gorenstein projective
differential kQ/J2-modules are just differential projective kQ/J2-modules.

(2) Since Q is a basic cycle, the algebra kQ/J2 is selfinjective. Then kQ/J2[ǫ] is
selfinjective and thus every differential kQ/J2-module is Gorenstein projective. �

The following theorem provides a class of noncommutative Artin algebras that
are not virtually Gorenstein; compare [24, Theorem 6.1].

Theorem 6.3. Let k be a field and Q be a finite connected quiver.

(1) If Q is acyclic, then the algebra kQ/J2[ǫ] is Gorenstein.

(2) If Q is a basic cycle, then the algebra kQ/J2[ǫ] is selfinjective.

(3) Otherwise, the algebra kQ/J2[ǫ] is not virtually Gorenstein.

Proof. (1) If Q is acyclic, then the algebra kQ/J2 has finite global dimension. By
Lemma 6.1(2) the algebra kQ/J2[ǫ] is Gorenstein.

(2) If Q is a basic cycle, then the algebra kQ/J2 is selfinjective. By Lemma 6.1(3)
the algebra kQ/J2[ǫ] is selfinjective.

(3) Since Q is not a basic cycle, by Proposition 6.2(1) the homotopy category of
differential projective kQ/J2-modules is exactly the stable category of Gorenstein
projective kQ/J2[ǫ]-modules.

Since Q has oriented cycles, the compact generator in Theorem 5.5 is reduced
and not finite dimensional. It follows from Lemma 6.1(1) that the algebra kQ/J2[ǫ]
is not virtually Gorenstein. �

Remark 6.4. Following [19] we know that the radical square zero algebra kQ/J2 is
virtually Gorenstein for every finite quiver Q.

Let k be a field of characteristic 2, then the algebra kQ/J2[ǫ] is isomorphic to
the group algebra (kQ/J2)C2 where C2 is the cyclic group of order 2. Now if Q
is a quiver in Theorem 6.3(3), then the group algebra (kQ/J2)C2 is not virtually
Gorenstein; compare [6, Proposition 3.1].

We end this section by an example.

Example 6.5. Let k be a field and Q,Q′ be the following quivers.

Q : •
1

α

�� β // •
2 Q′ : •

1

α

��
ǫ1 ::

β // •
2

ǫ2dd

Let I be the ideal of kQ′ generated by {α2, βα, ǫ21, ǫ
2
2, αǫ1−ǫ1α, βǫ1−ǫ2β}. Then

the algebras kQ′/I and kQ/J2[ǫ] are isomorphic.
By Theorem 6.3(2) the algebra kQ′/I is not virtually Gorenstein.
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