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WELLPOSEDNESS OF A NONLINEAR PERIDYNAMIC MODEL

GIUSEPPE MARIA COCLITE, SERENA DIPIERRO, FRANCESCO MADDALENA,
AND ENRICO VALDINOCI

Abstract. We consider an evolution equation inspired by a model in peridynamics, with
a singular pairwise interaction force term, and we give global in time existence, uniqueness
and stability results for the Cauchy problem.

1. Introduction

The exceptional achievements in materials science and the new technological issues ask for
a continuous deepening of our understanding of the materials behavior. Since the end of the
sixties, the need to enlarge the framework of continuum mechanics in order to keep track
of nonlocal effects was recognized by many researchers. More precisely, E. Kröner, D. G.
B. Edelen, A. C. Eringen and I. A. Kunin (see [11, 12, 13, 14]) laid the foundations for a
comprehensive theoretical treatment of nonlocal mechanics.
More recently, in [17] S. A. Silling introduced peridynamics, as a nonlocal elasticity theory: a
continuum theory avoiding spatial derivatives and incorporating spatial nonlocality (see also
[18, 19, 20, 21]). Peridynamics allows to model nonlocal interactions through long-range forces,
and it is believed to be suited for the description of a large class of physical phenomena which
escape a classical description of continuum mechanics based on partial differential equations.
In particular, the theory of peridynamics seems to offer a promising framework to model
phenomena such as damage and fracture in solids, evolution of phase boundaries in phase
transformations, defects, dislocations, etc.

We now introduce the mathematical framework in which we work. Let Ω ⊂ R
N be the

rest configuration of a material body endowed with a mass density ρ : Ω × [0, T ] → R+, and
let u : Ω×[0, T ] → R

N be the displacement field assigning at the particle having position x ∈ Ω
at time t = 0 the new position x+ u(x, t) at time t. The crucial assumption of peridynamics
relies in postulating the existence of a long range internal force field, in place of the classical
contact forces. Therefore the evolution of the material body is ruled by the following nonlocal
version of the linear momentum balance:

ρ(x, t)∂2
t u(x, t) =

∫

Vx∩Ω
f(x,x′,u(x, t),u(x′, t), t) dx′ + b(x, t),(1.1)

u(·, 0) = u0, ∂tu(·, 0) = v0,(1.2)
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where Vx ⊂ R
N is a measurable subset with

(1.3) x ∈ Vx, diam(Vx) ≥ δ > 0

and b(x, t) represents the external body force field.
Let us make some comments on (1.1). Notice that the internal contact forces, condensed

in the Cauchy stress tensor and representing the fundamental concept in classical continuum
mechanics, here are replaced by the pairwise force function f which can be thought as the
density of the interaction between the particle at x and all the particles x′ belonging to the
region Vx (one can also assume that Vx = Ω). Then, whereas in the classical context we have
to face with partial differential equations and the evolution problem is an initial boundary
value problem, in the present context we have an integro-differential equation.

The fundamental issue in this setting, which constitutes the core of the mathematical-
physics wellposedness, relies in selecting the force field f in such a way that it satisfies the
general principles of mechanics, to capture the essential features of the material behavior, to
deliver a well posed mathematical problem. In this framework, we study the Cauchy problem
for an unbounded domain, under general enough assumptions on the force field f .

Due to the balance of linear and angular momentum, the pairwise force function f has the
direction of the vector joining x+ u(x, t) to x′ + u(x′, t), therefore we can write

f(x,x′,u(x, t),u(x′, t), t) =f(x,x′,u(x, t),u(x′, t), t) e,

where e =
(x′ + u(x′, t))− (x+ u(x, t))

|(x′ + u(x′, t))− (x+ u(x, t))| .

Furthermore, assuming the invariance with respect to rigid motions and neglecting time de-
pendence for the internal forces, we get

(1.4) f(x,x′,u(x, t),u(x′, t)) = f(x,x′,u(x, t) − u(x′, t))

and the Newton law of actio et reactio delivers

(1.5) f(x,x′,−η) = −f(x,x′,η).

Coherently with the literature on peridynamics in this section we will often use the notation

ξ := x′ − x, η := u(x′, ·)− u(x, ·).
Let us continue by providing some examples of f in specific cases. For a Linear Elastic

Material, we have

(1.6) f(x,x′,η) := f0(x,x
′) +C(x,x′)η

By recalling (1.4), it is readily seen that the tensor C takes the form

(1.7) C(x,x′) := λ(|ξ|)ξ ⊗ ξ
where λ : R+ → R is a measurable function such that λ(r) = 0 for r ≥ δ (recall that δ is
the quantity introduced in (1.3)). The tensor C determines the specific material and depends
on N and δ.

In the case of a Nonlinear Elastic Material one can assume

(1.8) f(x,x′,η) :=

{
ϕ
(
|ξ+η|
|ξ| − 1

)
e, if |ξ| < δ,

0, if |ξ| ≥ δ,
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where the function ϕ depends on s :=
(
|ξ+η|
|ξ| − 1

)
, which represents the bond stretch, i.e. the

relative change of the length of a pairwise bond.
The main mathematical problems in peridynamics concern well-posedness and regularity for

the integral-differential equation (1.1) under the particular choice of f related to the material
behavior and the analysis of the limit for vanishing nonlocality, i.e. the issue of characterizing
the solution as well as the problem as δ → 0.

In the linear elastic case, well-posedness and regularity were established in [9], though the
problem of the limit as δ → 0 is still largely open. In particular, assuming that u0,v0 ∈
Lp(Ω) and b ∈ L1(0, T ;Lp(Ω)), the authors prove the existence of a unique solution u ∈
C1([0, T ];Lp(Ω)) to the initial-value problem (1.1)-(1.2) in the linear case (1.6).

In the case of nonlinear elasticity, the situation is more involved and at the present time few
results are known [4, 5, 6, 7, 8, 9, 15] (the situation is even more complicated in the classical
nonlinear elastodynamics). According to the authors of [7], the main known results can be
represented by the two theorems below related to the peridynamic operator

(Ku)(x) :=

∫

Ω∩Bδ(x)
f(x′ − x,u(x′)− u(x)) dx′,

where Bδ(x) denotes the N -dimensional open ball centered in x of radius δ.
The first result that we recall is the following:

Theorem 1.1. ([7]) Let u0,v0 ∈ C(Ω)N and b ∈ C([0, T ];C(Ω)N ). Assume that f : Bδ(0)×
R
N → R

N is continuous and that there exists a nonnegative function ℓ ∈ L1(Bδ(0)) such that
for all ξ ∈ R

N with |ξ| ≤ δ and η,η′ there holds

|f(ξ,η′)− f(ξ,η)| ≤ ℓ(ξ)|η′ − η|.
Then, the peridynamic operator K : C(Ω)N → C(Ω)N is well-defined and Lipschitz-continuous,
and the initial-value problem (1.1)-(1.2) is globally well-posed and there exists a solution u ∈
C2([0, T ];C(Ω)N ).

Notice that, as remarked by the authors of [7], global Lipschitz-continuity of the pairwise
force function with respect to η is quite a restrictive assumption since it implies linearly
bounded growth.

The next result that we recall regards the existence of weak solutions. For this, before stating
the theorem, we need some definitions. We denote by (·, ·) the inner product in L2(Ω)N and
we consider a Banach space X ⊂ L2(Ω)N . Moreover, K : X → X∗ is the energetic extension
of the peridynamic operator, namely

〈Kw, z〉 := 1

2

∫

Ω×Ω
a(|ξ|, |η|)(w(x′)−w(x)) · (z(x′)− z(x)) d(x′,x),

for every w, z ∈ X.
With this notation, we say that u : [0, T ] → X satisfying the initial conditions (1.2) is a

weak solution for (1.1) if, for every ϕ ∈ C∞
0 (0, T ) and every z ∈ X,

−
∫ T

0
∂tϕ

′(t)(∂tu(t), z) dt −
∫ T

0
〈Ku(t), z〉ϕ(t) dt =

∫ T

0
(b(t), z)ϕ(t) dt.

In the following, the basic function space is the Sobolev-Slobodeckij space X = W σ,p(Ω)N

with 0 < σ < 1 and 2 ≤ p < +∞, and Cw([0, T ];X) denotes the space of the functions v :
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[0, T ] → X which are continuous with respect to the weak convergence in X. In this setting,
we have:

Theorem 1.2. ([8]) Assume that b ∈ L1(0, T ;L2(Ω)N ), u0 ∈ W σ,p(Ω)N , v0 ∈ L2(Ω)N and
the pairwise force function f satisfies suitable growth and regularity conditions.

Then, there exists a function u : [0, T ] → W σ,p(Ω)N with

u ∈ Cw([0, T ];W
σ,p(Ω)N ), ∂tu ∈ Cw([0, T ];L

2(Ω)N ), ∂2
t u ∈ L1(0, T ; (W σ,p(Ω)N )∗),

such that
∂2
t u−Ku = b in L1(0, T ; (W σ,p(Ω)N )∗)

and u(·, 0) = u0 in W σ,p(Ω)N , ∂tu(·, 0) = v0 in L2(Ω)N .

The goal of this paper is to provide:

• existence results in the spirit of Theorems 1.1 and 1.2, but which are valid for singular
and non-Lipschitz interaction force,

• uniqueness and stability results.

The complete description of the mathematical setting in which we work will be given in the
forthcoming Section 2, but, for simplicity, we mention here that the interaction force we can
take into account comprises, among the others, examples of the form

f(ξ,η) =
|η|p−2 η

|ξ|N+αp
+ψ(ξ,η),

where p ≥ 2, α ∈ (0, 1) and ψ plays the role of a “sufficiently smooth perturbation”, e.g.

ψ(ξ,η) =
N∑

i=1

sin ξi cosηi.

In this framework, we establish that

for every initial datum with finite energy, the Cauchy problem admits at least one weak solution
whose energy at time t is bounded by the initial one.

A precise statement for this existence result will be given in Theorem 2.4.
In the case p = 2, we also provide a uniqueness and stability result. Namely,

if u and ũ are weak solutions with finite energy initial data, then the quantity

‖∂tu(·, t)− ∂tũ(·, t)‖2L2(RN ) +

∫

RN

∫

Bδ(0)

|u(x, t) − u(x− y, t) − ũ(x, t) + ũ(x− y, t)|2
|y|N+2α

dx dy

is bounded, up to constants, by the same quantities at the initial time, multiplied by an expo-
nential in time.

In particular, if the initial data coincide, the two solutions must coincide as well. A detailed
statement for this result will be given in Theorem 2.5.

It is interesting to point out that the functional spaces in which we work allow, in principle,
singular functions (see Appendix B in [3]).

The rest of the paper is organized as follows. In Section 2 we state precisely the problem
that we study, the assumptions and the main results. Section 3 is devoted to the proof of
the existence of weak solutions. The uniqueness and stability of such solutions is proved in
Section 4.
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2. Statement of the problem and main results

This section is devoted to the rigorous mathematical formulation of the problem, the def-
inition of weak solutions, and the statements of the main results of the paper. To keep the
analysis of the mathematical problem clear we assume b ≡ 0.

2.1. Set-up of the problem and assumptions. We consider the Cauchy problem

(2.1)

{
∂2
t u(x, t) = (Ku(·, t))(x), x ∈ R

N , t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), x ∈ R
N ,

where

(2.2) (Ku)(x) :=

∫

Bδ(x)
f(x′ − x,u(x′)− u(x)) dx′, for every x ∈ R

N ,

for a given δ > 0. Here, the R
N valued function f is defined on the set

Ω := (RN \ {0}) × R
N

and we assume that

(H.1) f ∈ C1(Ω;RN );
(H.2) f(−y,−u) = −f(y,u), for every (y, u) ∈ Ω×R

N ;
(H.3) the material is hyperelastic, i.e., there exists a function Φ ∈ C2(Ω) such that

f = ∇uΦ, Φ(y,u) = κ
|u|p

|y|N+αp
+Ψ(y,u), for every (y, u) ∈ Ω,

where κ, p, α are constants such that

κ > 0, 0 < α < 1, p ≥ 2,

and

Ψ(y,0) = 0 ≤ Ψ(y,u),

|∇uΨ(y,u)|, |D2
u
Ψ(y,u)| ≤ g(y), for every (y, u) ∈ Ω,

for some nonnegative function g ∈ L2
loc(R

N ).

We notice that if Ψ(−y,−u) = Ψ(y,u), then (H.2) holds true. In addition, Assumption
(H.3) can be easily generalized to the anisotropic case by taking

Φ(y,u) := (Ku · u) |u|p−2

|y|N+αp
+Ψ(y,u), for every (y, u) ∈ Ω× R

N ,

where K ∈ R
N×N is a positive definite matrix. Here, we stick to assumption (H.3) for the

sake of simplicity.
We observe that (H.1), (H.2), (H.3) are the only constitutive assumptions characterizing

the peridynamic model and they are sufficient to prove global well-posedness of the problem,
as it is shown in Theorems 2.4 and 2.5 below. We emphasize that here, in contrast to classical
(local) elastodynamics neither polyconvexity or null condition (see [1, 16]) are required to
guarantee existence of global (in time) solutions.

Setting y = x′−x and using (H.2), we will often rewrite the operator K in (2.2) as follows

(2.3) (Ku)(x) = −
∫

Bδ(0)
f(y,u(x) − u(x− y))dy, for every x ∈ R

N .
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Moreover, due to (H.3), we can also rewrite

(2.4) f(y,u) = κp
u|u|p−2

|y|N+αp
+∇uΨ(y,u), for every (y, u) ∈ Ω.

As a consequence, in virtue of (2.3) and (2.4), we have that

(Ku)(x) =− κp

∫

Bδ(0)

(u(x) − u(x− y))|u(x) − u(x− y)|p−2

|y|N+αp
dy

−
∫

Bδ(0)
∇uΨ(y,u(x) − u(x− y)) dy.

(2.5)

Furthermore, the energy associated to (2.1) is

(2.6) E[u](t) :=
‖∂tu(·, t)‖2L2(RN )

2
+

1

2

∫

RN

∫

Bδ(0)
Φ(y,u(x, t) − u(x− y, t)) dx dy,

see the forthcoming proof of Lemma 3.2 below. Also, the equation in (2.1) is the Euler-
Lagrange equation of the action functional

(2.7) u 7→
∫ ∞

0

∫

RN

(
(∂tu)

2

2
− 1

2

∫

Bδ(0)
Φ(y,u(x, t) − u(x− y, t)) dy

)
dt dx.

2.2. Fractional Sobolev spaces. Let α and p be the parameters introduced in (H.3). We
remind that the fractional Sobolev space Wα,p is defined through the norm

‖u‖Wα,p(RN ;RN ) :=

(∫

RN

|u|pdx+

∫

RN

∫

RN

|u(x) − u(x− y)|p
|y|N+αp

dx dy

)1/p

(see [2, Section 2]), and the following compact embedding holds

Wα,p(RN ;RN ) →֒→֒ Lq
loc(R

N ;RN ), 1 ≤ q ≤ p,

(see [2, Theorem 7.1]).
In this paper, we use a slight modification of the fractional Sobolev space Wα,p. Namely,

we consider the space W defined through the norm

(2.8) ‖u‖W := ‖u‖L2(RN ;RN ) +

(∫

RN

∫

Bδ(0)

|u(x)− u(x− y)|p
|y|N+αp

dx dy

)1/p

.

Then, the following compact embedding can be proved:

Lemma 2.1. W →֒→֒ L2
loc(R

N ;RN ).

Proof. One can argue as in [2, Theorem 7.1], or make the following observations. We sup-
pose p > 2 (the case p = 2 following directly from [2, Theorem 7.1]). Fix λ ∈ (0, α) and a
bounded domain K ⊂ R

N . We write

N + 2(α − λ) =
2(N + αp)

p
+

p(N + 2(α − λ))− 2(N + αp)

p

=
2(N + αp)

p
+

(p− 2)N

p
− 2λ.
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Therefore, using the Hölder inequality with exponents p
2 and p

p−2 , we find that, for any z ∈ R
n,

∫

Bδ/2(z)

∫

Bδ/2(z)

|u(x) − u(y)|2
|x− y|N+2(α−λ)

dx dy =

∫

Bδ/2(z)

∫

Bδ/2(z)

|u(x)− u(y)|2

|x− y|
2(N+αp)

p

dx dy

|x− y|
(p−2)N

p
−2λ

≤
(∫

Bδ/2(z)

∫

Bδ/2(z)

|u(x)− u(y)|p
|x− y|N+αp

dx dy

) 2
p
(∫

Bδ/2(z)

∫

Bδ/2(z)

dx dy

|x− y|N− 2λp
p−2

) p−2
p

≤ C

(∫

RN

∫

Bδ(0)

|u(x)− u(x− y)|p
|y|N+αp

dx dy

) 2
p

,

for some C > 0, possibly depending on N , α, p and λ. Accordingly, if a family of functions
is bounded in W, then each component is bounded in Wα−λ,2(Bδ/2(z)), for any z ∈ R

N ,

and so, by [2, Theorem 7.1], we obtain compactness in L2(Bδ/2(z)). Arguing component by
component and covering K with a finite number of balls of radius δ/2, we obtain the desired
compactness in L2(K;RN ). �

Lemma 2.2. For every u, v ∈ W we have that

(2.9) (Ku)v ∈ L1(RN ).

Moreover, for every sequence {un}n ⊂ W and u ∈ W, if

(2.10) un ⇀ u weakly in W,

then

(2.11) Kun → Ku in the sense of distributions on R
N ,

as n → +∞.

Proof. We first prove (2.9). To this aim, we let u, v ∈ W. Recalling (2.5) and (H.3), and
using the Hölder inequality, we have that
∫

RN

(Ku)(x)v(x) dx

=− κp

∫

RN

∫

Bδ(0)

(u(x)− u(x− y))|u(x) − u(x− y)|p−2

|y|N+αp
v(x) dx dy

−
∫

RN

∫

Bδ(0)
∇uΨ(y,u(x) − u(x− y))v(x) dx dy

=− κp

2

∫

RN

∫

Bδ(0)

(u(x)− u(x− y))|u(x) − u(x− y)|p−2

|y|N+αp
v(x) dx dy

− κp

2

∫

RN

∫

Bδ(0)

(u(z + y)− u(z))|u(z + y) − u(z)|p−2

|y|N+αp
v(z + y) dz dy

−
∫

RN

∫

Bδ(0)
∇uΨ(y,u(x) − u(x− y))v(x) dx dy

=− κp

2

∫

RN

∫

Bδ(0)

(u(x)− u(x− y))|u(x) − u(x− y)|p−2

|y|N+αp
(v(x) − v(x − y)) dx dy
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−
∫

RN

∫

Bδ(0)
∇uΨ(y,u(x) − u(x− y))v(x) dx dy

≤κp

2

∫

RN

∫

Bδ(0)

|u(x)− u(x− y)|p−1

|y|(N+αp)/p′
|v(x) − v(x− y)|

|y|(N+αp)/p
dx dy

+

∫

RN

∫

Bδ(0)
g(y)|u(x) − u(x− y)||v(x)| dx dy

≤κp

2

(∫

RN

∫

Bδ(0)

|u(x)− u(x− y)|p
|y|N+αp

dx dy

)1/p′ (∫

RN

∫

Bδ(0)

|v(x) − v(x− y)|p
|y|N+αp

dx dy

)1/p

+

∫

RN

∫

Bδ(0)
g(y)

(
|u(x)|+ |u(x− y)|

)
|v(x)| dx dy,

namely
∫

RN

(Ku)(x)v(x) dx

≤κp

2

(∫

RN

∫

Bδ(0)

|u(x)− u(x− y)|p
|y|N+αp

dx dy

)1/p′

×

×
(∫

RN

∫

Bδ(0)

|v(x) − v(x − y)|p
|y|N+αp

dx dy

)1/p

+

∫

RN

∫

Bδ(0)
g(y)

(
|u(x)| + |u(x− y)|

)
|v(x)| dx dy,

(2.12)

Now, we observe that, for any λ > 0, x, y ∈ R
N ,

g(y)|u(x − y)| |v(x)| =2g(y)
λ√
2
|u(x− y)| 1

λ
√
2
|v(x)|

≤λ2

2
g(y) |u(x − y)|2 + 1

2λ2
g(y) |v(x)|2 ,

where we used the Young inequality. Therefore, integrating the last inequality in R
N ×Bδ(0),

we get
∫

RN

∫

Bδ(0)
g(y) |u(x − y)| |v(x)| dx dy

≤λ2

2

∫

RN

∫

Bδ(0)
g(y) |u(x − y)|2 dx dy +

1

2λ2

∫

RN

∫

Bδ(0)
g(y) |v(x)|2 dx dy

=
λ2

2

(∫

Bδ(0)
g(y) dy

) (∫

RN

|u(x)|2 dx
)
+

1

2λ2

(∫

Bδ(0)
g(y) dy

) (∫

RN

|v(x)|2 dx
)
.

Hence, the choice

λ :=




∫

RN

|u(x)|2 dx
∫

RN

|v(x)|2 dx




1
4
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allows to state∫

RN

∫

Bδ(0)
g(y) |u(x − y)| |v(x)| dx dy

≤
(∫

Bδ(0)
g(y) dx

)(∫

RN

|u(x)|2 dx
)1/2(∫

RN

|v(x)|2 dx
)1/2

.

Plugging this information into (2.12), we conclude that
∫

RN

(Ku)(x)v(x) dx

≤κp

2

(∫

RN

∫

Bδ(0)

|u(x)− u(x− y)|p
|y|N+αp

dx dy

)1/p′ (∫

RN

∫

Bδ(0)

|v(x) − v(x− y)|p
|y|N+αp

dx dy

)1/p

+ 2

(∫

Bδ(0)
g(y) dx

)(∫

RN

|u(x)|2 dx
)1/2(∫

RN

|v(x)|2 dx
)1/2

.

Since u, v ∈ W, this implies (2.9).

Now suppose that (2.10) holds true and we prove (2.11). For this, let v ∈ C∞(RN ;RN )
be such that every component has compact support. For the sake of simplicity, we use the
notation

U(x,y) :=u(x)− u(x− y),

Un(x,y) :=un(x)− un(x− y)

V(x,y) :=v(x) − v(x− y).

(2.13)

Arguing as before, we have that
∫

RN

(
(Ku)(x) − (Kun)(x)

)
v(x) dx

=− κp

2

∫

RN

∫

Bδ(0)

(U(x,y) −Un(x,y))|U(x,y)|p−2

|y|N+αp
V(x,y) dx dy

︸ ︷︷ ︸
An

− κp

2

∫

RN

∫

Bδ(0)
U(x,y)

|U(x,y)|p−2 − |Un(x,y)|p−2

|y|N+αp
V(x,y) dx dy

︸ ︷︷ ︸
Bn

−
∫

RN

∫

Bδ(0)

(
∇uΨ(y,U(x,y)) −∇uΨ(y,Un(x,y))

)
v(x) dx dy

︸ ︷︷ ︸
Cn

.

(2.14)

Now we claim that

(2.15) An → 0.

To check this, we use that each component of v is compactly supported, and we suppose that
the support is contained in some ball BR(0). Then,

1

2

∫

BR+δ(0)

∫

Bδ(0)
|Un(x,y) −U(x,y)|2 dx dy
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=
1

2

∫

BR+δ(0)

∫

Bδ(0)

∣∣(un(x)− u(x)
)
−
(
un(x− y)− u(x− y)

)∣∣2 dx dy

≤
∫

BR+δ(0)

∫

Bδ(0)
|un(x)− u(x)|2 dx dy +

∫

BR+δ(0)

∫

Bδ(0)
|un(x− y)− u(x− y)|2 dx dy,

which converges to 0 as n → +∞, thanks to Lemma 2.1. In particular, up to a subsequence,
we can assume that Un → U a.e. in BR+δ(0)×Bδ(0) as n → +∞. Consequently,

Fn(x, y) :=
Un(x,y)|U(x,y)|p−2

|y|N+αp
V(x,y) → F(x, y) :=

U(x,y)|U(x,y)|p−2

|y|N+αp
V(x,y)

a.e. in BR+δ(0)×Bδ(0) as n → +∞. We also observe that

∫

BR+δ(0)

∫

Bδ(0)
|F(x, y)| dx dy ≤

∫

BR+δ(0)

∫

Bδ(0)

|U(x,y)|p−1

|y|N+αp
|V(x,y)| dx dy

≤
(∫

BR+δ(0)

∫

Bδ(0)

|U(x,y)|p
|y|N+αp

dx dy

) p−1
p
(∫

BR+δ(0)

∫

Bδ(0)

|V(x,y)|p
|y|N+αp

dx dy

) 1
p

< +∞,

where we have used the Hölder Inequality with exponents p
p−1 and p. Consequently, F ∈

L1
(
BR+δ(0)×Bδ(0)

)
, and therefore F is finite a.e. in BR+δ(0)×Bδ(0).

We claim that

(2.16) Fn is uniformly integrable.

To prove this, fix ε > 0 and let ηε > 0 be such that for any measurable E ⊂ BR+δ(0)×Bδ(0)
with measure less than ηε we have that

∫∫

E

|V(x,y)|p
|y|N+αp

dx dy ≤ ε.

Then, exploiting the Hölder Inequality with exponents p, p
p−2 and p,

∫∫

E
Fn(x,y) dx dy ≤

∫∫

E

|Un(x,y)|
|y|

N+αp
p

· |U(x,y)|p−2

|y|
(N+αp)(p−2)

p

· |V(x,y)|
|y|

N+αp
p

dx dy

≤
[∫∫

E

|Un(x,y)|p
|y|N+αp

dx dy

] 1
p
[∫∫

E

|U(x,y)|p
|y|N+αp

dx dy

] p−2
p
[∫∫

E

|V(x,y)|p
|y|N+αp

dx dy

] 1
p

≤C ε
1
p ,

for some C > 0. This establishes (2.16). From it, using Vitali Convergence Theorem, we
obtain (2.15).

Similarly, one can prove that

Bn → 0 and Cn → 0

as n → +∞. Using these pieces of information together with (2.14) we obtain the desired
result (2.11). �
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2.3. Definition of weak solutions and main results. In order to look for solutions of (2.1),
we need to introduce a suitable functional setting. For this, we denote by X the functional
space defined as follows:

(2.17) X :=

{
u : RN × [0,∞) → R

N ;
u ∈ L∞(0, T ;W), T > 0

∂tu ∈ L∞(0,∞;L2(RN ;RN ))

}
.

With this, we can give the following definition of weak solutions:

Definition 2.3. Let u : RN × [0,∞) → R
N . We say that u is a weak solution of the Cauchy

problem (2.1) if

(D.1) u ∈ X ;
(D.2) for every test function v ∈ C∞(RN+1;RN ) such that every component has compact

support, it holds that
∫ ∞

0

∫

RN

(
u(x, t) · ∂2

t v(x, t) − (Ku(·, t))(x) · v(x, t)
)
dt dx

−
∫

RN

v0(x) · v(x, 0) dx +

∫

RN

u0(x) · ∂tv(x, 0) dx = 0.

(2.18)

We can therefore state the main results of this paper:

Theorem 2.4 (Existence). Let (H.1), (H.2), and (H.3) be satisfied. Then, for every initial
datum (u0, v0) such that

u0 ∈ L2(RN ;RN ), v0 ∈ L2(RN ;RN ),

and

∫

RN

∫

Bδ(0)
Φ(y,u0(x)− u0(x− y)) dx dy < ∞,

(2.19)

the Cauchy problem (2.1) admits at least one weak solution in the sense of Definition 2.3 such
that

(2.20) E[u](t) ≤ E[u](0), for a.e. t ≥ 0.

Theorem 2.5 (Uniqueness and Stability). Let (H.1), (H.2), and (H.3) be satisfied, and
let

(2.21) p = 2.

If u and ũ are weak solutions of (2.1) obtained in correspondence of the initial data (u0, v0)
and (ũ0, ṽ0), respectively, satisfying (2.19), then the following stability estimate holds true:

‖∂tu(·, t)− ∂tũ(·, t)‖2L2(RN )

+ κ

∫

RN

∫

Bδ(0)

|u(x, t)− u(x− y, t)− ũ(x, t) + ũ(x− y, t)|2
|y|N+2α

dx dy

≤ e(λ+
1
κ)t ‖v0 − ṽ0‖2L2(RN )

+ κe(λ+
1
κ)t
∫

RN

∫

Bδ(0)

|u0(x)− u0(x− y) − ũ0(x) + ũ0(x− y)|2
|y|N+2α

dx dy

(2.22)

for every t > 0, where

λ :=

∫

Bδ(0)
g2(y)|y|N+2α dy,
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and κ is the one appearing in (H.3).

In the forthcoming Sections 3 and 4 we will give the proofs of Theorems 2.4 and 2.5,
respectively.

3. Proof of Theorem 2.4

In this section we prove Theorem 2.4. The arguments rely on the compactness of the
solutions of suitable approximations of (2.1).

More precisely, let ε > 0 and uε be the unique smooth solution of the fourth order problem

(3.1)





∂2
t uε(x, t) = (Kuε(·, t))(x) − ε∆2uε, x ∈ R

N , t > 0,

uε(x, 0) = u0,ε(x), x ∈ R
N ,

∂tuε(x, 0) = v0,ε(x), x ∈ R
N ,

where u0,ε and v0,ε are smooth approximations of u0 and v0, respectively, such that

u0,ε, v0,ε ∈ C∞(RN ;RN ), for any ε > 0,

u0,ε → u0, v0,ε → v0 a.e. in R
N and in L2(RN ;RN ) as ε → 0,

lim
ε→0

∫

RN

∫

Bδ(0)
Φ
(
y,u0,ε(x)− u0,ε(x− y)

)
dx dy

=

∫

RN

∫

Bδ(0)
Φ
(
y,u0(x)− u0(x− y)

)
dx dy,

lim
ε→0

√
ε ‖∆u0,ε‖L2(RN ) = 0.

(3.2)

The well-posedness of (3.1), hence the existence of smooth solutions for that problem, follows
by classical semigroup based arguments, see e.g. [10].

Recalling the notation introduced in Subsections 2.2 and 2.3, the main compactness result
of this section is the following:

Lemma 3.1. Let (H.1), (H.2) and (H.3) be satisfied. Then, there exist a sequence {εk}k ⊂
(0,∞) and a function u ∈ X such that, as k → ∞,

uεk → u a.e. in R
N × [0,∞) and in L2

loc(R
N × (0,∞);RN ),(3.3)

∂tuεk ⇀ ∂tu in Lr(0, T ;L2(RN ;RN )), for any 1 ≤ r < ∞, and T > 0,(3.4)

uεk ⇀ u a.e. in R
N × [0,∞) and in Lr(0, T ;W), for any 1 ≤ r < ∞ and T > 0,(3.5)

u is a weak solution of (3.1) in the sense of Definition 2.3.(3.6)

In order to prove Lemma 3.1 we need the following preliminary results:
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Lemma 3.2 (Energy estimate). Let (H.1), (H.2) and (H.3) be satisfied. Then, the fol-
lowing formula holds true:

‖∂tuε(·, t)‖2L2(RN ) + ε ‖∆uε(·, t)‖2L2(RN )

2

+

∫

RN

∫

Bδ(0)
Φ
(
y,uε(x, t)− uε(x− y, t)

)
dx dy

=
‖v0,ε‖2L2(RN ) + ε ‖∆u0,ε‖2L2(RN )

2

+
1

2

∫

RN

∫

Bδ(0)
Φ
(
y,u0,ε(x)− u0,ε(x− y)

)
dx dy ≤ C,

(3.7)

for every t ≥ 0 and for some constant C > 0 independent on ε.

Proof. Multiplying the equation in (3.1) by ∂tuε, integrating over R
N and recalling (2.2), we

get

0 =

∫

RN

∂2
t uε∂tuε dx−

∫

RN

(Kuε(·, t))(x)∂tuε dx+ ε

∫

RN

∆2uε∂tuε dx

=

∫

RN

∂2
t uε∂tuε dx−

∫

RN

(Kuε(·, t))(x)∂tuε dx+ ε

∫

RN

∆uε∂t∆uε dx

=
d

dt

∫

RN

|∂tuε|2 + ε|∆uε|2
2

dx

+

∫

RN

∫

Bδ(0)
f(y,uε(x, t)− uε(x− y, t))∂tuε(x, t) dx dy.

(3.8)

Now we use (H.2) to see that
∫

RN

∫

Bδ(0)
f(y,uε(x, t)− uε(x− y, t))∂tuε(x, t) dx dy

=
1

2

∫

RN

∫

Bδ(0)
f(y,uε(x, t) − uε(x− y, t))∂tuε(x, t) dx dy

+
1

2

∫

Bδ(0)

(∫

RN

f(y,uε(x, t) − uε(x− y, t))∂tuε(x, t) dx

)
dy

=
1

2

∫

RN

∫

Bδ(0)
f(y,uε(x, t) − uε(x− y, t))∂tuε(x, t) dx dy

+
1

2

∫

Bδ(0)

(∫

RN

f(y,uε(z+ y, t) − uε(z, t))∂tuε(z+ y, t) dz

)
dy

=
1

2

∫

RN

∫

Bδ(0)
f(y,uε(x, t) − uε(x− y, t))∂tuε(x, t) dx dy

+
1

2

∫

RN

(∫

Bδ(0)
f(−y,uε(z− y, t)− uε(z, t))∂tuε(z− y, t) dy

)
dz

=
1

2

∫

RN

∫

Bδ(0)
f(y,uε(x, t) − uε(x− y, t))∂tuε(x, t) dx dy
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− 1

2

∫

RN

(∫

Bδ(0)
f(y,uε(z, t) − uε(z− y, t))∂tuε(z− y, t) dy

)
dz

=
1

2

∫

RN

∫

Bδ(0)
f(y,uε(x, t) − uε(x− y, t))

(
∂tuε(x, t)− ∂tuε(x− y, t)

)
dx dy.

Plugging this information into (3.8), we conclude that

0 =
d

dt

∫

RN

|∂tuε|2 + ε|∆uε|2
2

dx

+
1

2

∫

RN

∫

Bδ(0)
f(y,uε(x, t) − uε(x− y, t))

(
∂tuε(x, t)− ∂tuε(x− y, t)

)
dx dy.

As a consequence, using (H.3),

0 =
d

dt

∫

RN

|∂tuε|2 + ε|∆uε|2
2

dx

+
1

2

∫

RN

∫

Bδ(0)
∇uΦ(y,uε(x, t) − uε(x− y, t))

(
∂tuε(x, t)− ∂tuε(x− y, t)

)
dx dy

=
d

dt

[∫

RN

|∂tuε|2 + ε|∆uε|2
2

dx+
1

2

∫

RN

∫

Bδ(0)
Φ(y,uε(x, t)− uε(x− y, t)) dx dy

]
.

Hence, an integration over (0, t) gives the desired equality in (3.7). Furthermore, the bound-
edness of the quantity in (3.7) follows from the convergence assumptions in (3.2). The proof
of Lemma 3.2 is thus complete. �

Lemma 3.3 (L2−estimate). Let (H.1), (H.2), and (H.3) be satisfied. Then, the following
estimate holds true:

(3.9) ‖uε(·, t)‖L2(RN ) ≤ C(1 + t),

for every t ≥ 0 and for some constant C > 0 independent on ε.

Proof. We observe that

|uε(x, t)| ≤|u0,ε(x)|+
∫ t

0
|∂tuε(x, s)| ds

≤|u0,ε(x)|+
√
t

√∫ t

0
|∂tuε(x, s)|2 ds.

(3.10)

Taking the square of both sides of (3.10) and integrating over R
n, we have that

∫

RN

|uε(x, t)|2 dx ≤ 2

∫

RN

|u0,ε(x)|2 dx+ 2t

∫ t

0

∫

RN

|∂tuε(x, s)|2 ds dx

≤ 2 ‖u0,ε‖2L2(RN ) + 2t2 sup
t≥0

‖∂tuε(·, t)‖2L2(RN ) .

Therefore, the desired estimate follows from (3.2) and (3.7). �

Proof of Lemma 3.1. We notice that, by virtue of Lemma 3.2,

(3.11) {∂tuε}ε is a bounded sequence in L∞(0,∞;L2(RN ;RN )).
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Furthermore, using again Lemmas 3.2 and 3.3 and assumption (H.3) we obtain that

(3.12) {uε}ε is a bounded sequence in L∞(0, T ;W) for every T > 0.

Therefore, by Lemma 2.1, we have that there exist a subsequence {uεk}k and a function u ∈
L2
loc(R

N ;RN ) such that (3.3) holds true.
As a matter of fact, by virtue of (3.11) and (3.12) we have that u ∈ L∞(0, T ;W) for every

T > 0, and {∂tuε}ε ∈ L∞(0,∞;L2(RN ;RN )). That is, recalling the definition of X in (2.17),
the function u ∈ X . Thus, condition (D.1) in Definition 2.3 holds true for u.

Hence, to prove (3.6), we now focus on proving that u satisfies (D.2) in Definition 2.3.
To this aim, let v ∈ C∞(RN+1;RN ) be a given test function such that every component has
compact support. Multiplying (3.1) by v and integrating over (0,∞)× R

N , we get

∫ ∞

0

∫

RN

(
uεk(x, t) · ∂2

t v(x, t) − (Kuεk(·, t))(x) · v(x, t)
)
dt dx

−
∫

RN

v0,εk(x) · v(x, 0) dx +

∫

RN

u0,εk(x) · ∂tv(x, 0) dx

= − εk

∫ ∞

0

∫

RN

uεk(x, t) ·∆2v(x, t) dt dx.

(3.13)

Hence, sending k → ∞ in (3.13) and using Lemma 2.2 and formula (3.2), we obtain (D.2).
Therefore, u is a weak solution of (3.1) in the sense of Definition 2.3. This proves (3.6),

and so the proof of Lemma 3.1 is complete. �

Proof of Theorem 2.4. Thanks to Lemma 3.1, in order to complete the proof of Theorem 2.4,
it remains to prove that u satisfies (2.20). For this, we use (H.3) and (3.7) to see that

‖∂tuεk(·, t)‖2L2(RN )

2
+

κ

2

∫

RN

∫

Bδ(0)

|uεk(x) − uεk(x− y)|p
|y|N+αp

dx dy

+
1

2

∫

BR(0)

∫

Bδ(0)
Ψ
(
y,uεk(x, t)− uεk(x− y, t)

)
dx dy

≤
‖v0,εk‖2L2(RN ) + εk ‖∆u0,εk‖2L2(RN )

2

+
1

2

∫

RN

∫

Bδ(0)
Φ
(
y,u0,εk(x)− u0,εk(x− y)

)
dx dy,

(3.14)

for every R > 0. Now, making use of (3.2) and recalling (2.6), we can say that

lim
k

(
‖v0,εk‖2L2(RN ) + εk ‖∆u0,εk‖2L2(RN )

2

+

∫

RN

∫

Bδ(0)
Φ(y,u0,εk(x)− u0,εk(x− y)) dx dy

)

=
‖∂tu(·, t)‖2L2(RN )

2
+

1

2

∫

RN

∫

Bδ(0)
Φ(y,u(x, t) − u(x− y, t)) dx dy = E[u](0).

(3.15)
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Moreover, the Dominated Convergence Theorem, (H.3) and (3.3) give that, for a.e. t > 0,

lim
k

‖∂tuεk(·, t)‖2L2(RN ) ≥ ‖∂tu(·, t)‖2L2(RN ) ,

lim
k

∫

BR(0)

∫

Bδ(0)
Ψ(y,uεk(x, t)− uεk(x− y, t)) dx dy

=

∫

BR(0)

∫

Bδ(0)
Ψ(y,u(x, t) − u(x− y, t)) dx dy,

lim inf
k

∫

RN

∫

Bδ(0)

|uεk(x)− uεk(x− y)|p
|y|N+αp

dxdy

≥
∫

RN

∫

Bδ(0)

|u(x) − u(x− y)|p
|y|N+αp

dx dy.

(3.16)

Therefore, sending k → ∞ in (3.14) we get

‖∂tu(·, t)‖2L2(RN )

2
+

κ

2

∫

RN

∫

Bδ(0)

|u(x)− u(x− y)|p
|y|N+αp

dx dy

+
1

2

∫

BR(0)

∫

Bδ(0)
Ψ(y,u(x, t) − u(x− y, t)) dx dy ≤ E[u](0).

(3.17)

Sending R → ∞ in (3.17) and recalling again (2.6), we gain (2.20), as desired. �

4. Uniqueness, stability and proof of Theorem 2.5

This section is devoted to the proof of Theorem 2.5.

Proof of Theorem 2.5. Let u and ũ be two weak solutions of (2.1) according to Definition 2.3,
and define

(4.1) w := u− ũ.

We claim that w solves the equation

∂2
tw(x, t) =− 2κ

∫

Bδ(0)

w(x, t)−w(x− y, t)

|y|N+2α
dy

−
∫

Bδ(0)

∫ 1

0
F(θ,x,y, t)

(
w(x, t)−w(x− y, t)

)
dy dθ.

(4.2)

where

(4.3) F(θ,x,y, t) := D2
u
Ψ
(
y, θ
(
u(x, t) − u(x− y, t)

)
+ (1− θ)

(
ũ(x, t) − ũ(x− y, t)

))
.

To prove (4.2), we recall (2.21) and we use (2.1), (2.2), ((H.2)) and (H.3) to see that

∂2
tw(x, t) =∂2

t u(x, t)− ∂2
t ũ(x, t)

=(Ku(·, t))(x) − (Kũ(·, t))(x)

=

∫

Bδ(0)

(
f(−y,u(x − y, t)− u(x, t)) − f(−y, ũ(x− y, t)− ũ(x, t))

)
dy

=−
∫

Bδ(0)

(
f(y,u(x, t) − u(x− y, t))− f(y, ũ(x, t)− ũ(x− y, t))

)
dy
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=− 2κ

∫

Bδ(0)

w(x, t)−w(x− y, t)

|y|N+2α
dy

−
∫

Bδ(0)

(
∇uΨ

(
y,u(x, t) − u(x− y, t)

)
−∇uΨ

(
y, ũ(x, t) − ũ(x− y, t)

))
dy

=− 2κ

∫

Bδ(0)

w(x, t)−w(x− y, t)

|y|N+2α
dy

−
∫

Bδ(0)

∫ 1

0
F(θ,x,y, t)

(
w(x, t) −w(x− y, t)

)
dy dθ,

where F is defined in (4.3). This proves (4.2).
Now, we multiply (4.2) by ∂tw and we integrate over R

N . In this way, making again use
of (H.2) and (H.3), we get

0 =

∫

RN

∂2
tw ∂tw dx+ 2κ

∫

RN

∫

Bδ(0)

w(x, t) −w(x− y, t)

|y|N+2α
∂tw(x, t) dx dy

+

∫

RN

∫

Bδ(0)

∫ 1

0
F(θ,x,y, t)

(
w(x, t)−w(x− y, t)

)
∂tw(x, t) dx dy dθ

=

∫

RN

∂2
tw ∂tw dx+ κ

∫

RN

∫

Bδ(0)

w(x, t)−w(x− y, t)

|y|N+2α
∂t
(
w(x, t)−w(x− y, t)

)
dx dy

+

∫

RN

∫

Bδ(0)

∫ 1

0
F(θ,x,y, t)

(
w(x, t)−w(x− y, t)

)
∂tw(x, t) dx dy dθ

=
d

dt

∫

RN

|∂tw|2
2

dx+
κ

2

d

dt

∫

RN

∫

Bδ(0)

|w(x, t) −w(x− y, t)|2
|y|N+2α

dx dy

+

∫

RN

∫

Bδ(0)

∫ 1

0
F(θ,x,y, t)

(
w(x, t)−w(x− y, t)

)
∂tw(x, t) dx dy dθ.

Therefore, thanks to (H.3),

d

dt

(∫

RN

|∂tw|2
2

dx+
κ

2

∫

RN

∫

Bδ(0)

|w(x, t) −w(x− y, t)|2
|y|N+2α

dx dy

)

=−
∫

RN

∫

Bδ(0)

∫ 1

0
F(θ,x,y, t)

(
w(x, t)−w(x− y, t)

)
∂tw(x, t) dx dy dθ

≤
∫

RN

∫

Bδ(0)
g(y)

∣∣w(x, t)−w(x− y, t)
∣∣ |∂tw(x, t)| dx dy

≤1

2

(∫

Bδ(0)
g2(y)|y|N+2α dy

)

︸ ︷︷ ︸
λ

∫

RN

|∂tw(x, t)|2 dx

+
1

2

∫

RN

∫

Bδ(0)

|w(x, t) −w(x− y, t)|2
|y|N+2α

dx dy

≤
(
λ+

1

κ

)(∫

RN

|∂tw(x, t)|2
2

dx+
κ

2

∫

RN

∫

Bδ(0)

|w(x, t)−w(x− y, t)|2
|y|N+2α

dx dy

)
.
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Hence, applying the Gronwall Lemma, we conclude that
∫

RN

|∂tw(x, t)|2
2

dx+
κ

2

∫

RN

∫

Bδ(0)

|w(x, t) −w(x− y, t)|2
|y|N+2α

dx dy

≤e(λ+
1
κ)t

(∫

RN

|∂tw(x, 0)|2
2

dx+
κ

2

∫

RN

∫

Bδ(0)

|w(x, 0) −w(x− y, 0)|2
|y|N+2α

dx dy

)
.

Consequently, recalling (4.1), we obtain (2.22), as desired. �
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