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Abstract

In the space of orientation-preserving circle maps that are not necessarily surjective
nor injective, the rotation number does not vary continuously. Each map where one of
these discontinuities occurs is itself discontinuous and we can consider the possible values
of the rotation number when we modify this map only at its discontinuities. These values
are always rational numbers that necessarily obey a certain arithmetic relation. In this
paper we show that in several examples this relation totally characterizes the possible
values of the rotation number on its discontinuities, but we also prove that in certain
circumstances this relation is not sufficient for this characterization.

1 Introduction, notations, examples and result

We shall consider the space M of lifts of orientation-preserving circle maps, that is, the set
of functions f : R 7−→ R which satisfy the conditions

y > 0 ⇒ f (x+ y) > f (x) and f (x+ 1) = f (x) + 1.

It should be noted that M contains functions which are not continuous or strictly increasing
(not surjective nor injective). For each f ∈ M the limit (rotation number of f)

ν (f) = lim
n→∞

fn (x)

n

exists and is independent of x ∈ R [2].
In M the rotation number is an increasing functional, f 6 g ⇒ ν (f) 6 ν (g), and we

may have ν (f−) < ν (f+), where

f− (x) = lim
δ→0

δ>0

f (x− δ) and f+ (x) = lim
δ→0

δ>0

f (x+ δ) .

On this space M we shall consider the Lévy distance:

dH(f, g) = inf{ε > 0 : f(x− ε)− ε 6 g(x) 6 f(x+ ε) + ε, ∀x ∈ R }.

Observe that we may have dH(f, g) = 0 with f 6= g. In fact it is easy to verify that

dH(f, g) = 0 ⇔ f+ = g+ ⇔ f− = g−.

Endowed with this distance M is a pseudometric space. The following theorem is known.
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Theorem 1.1 ( [3, 1]) Let f0 ∈ M. Then for every ε > 0 there exists δ > 0 such that for
any f ∈ M satisfying dH(f, f0) < δ we have

ν
(

f−
0

)

− ε 6 ν (f) 6 ν
(

f+
0

)

+ ε.

Therefore, the set of discontinuities of the rotation number is

D ≡
{

f ∈ M : ν
(

f−
)

< ν
(

f+
) }

.

In [1] it is shown that if f ∈ D, then there exists m ∈ Z
+ such that fm is a step function,

that is to say, the image fm ([0, 1]) is a finite set. As a direct consequence of this fact we
have that if f ∈ M is continuous or strictly increasing, then f /∈ D. Observe, however, that
f ∈ D itself does not have to be a step function, see Examples 1.6 and 1.8.

On the other hand Theorem 1.1 cannot be improved as the following proposition shows.

Proposition 1.2 Given f ∈ D, δ > 0 and ν ∈ R satisfying ν (f−) < ν < ν (f+), there is a
homeomorphism g ∈ M such that

dH(g, f) < δ and ν (g) = ν.

Proof. For each δ > 0 there exist homeomorphisms h−δ and hδ ∈ M such that

h−δ 6 f 6 hδ and dH(h±δ , f) < δ.

We can then construct a family of homeomorphisms gλ ∈ M, with λ ∈ [0, 1], by the formula

gλ = (1− λ)h−δ + λhδ.

Therefore dH(gλ, f) < δ, for all λ ∈ [0, 1], and ν (g0) = ν (h−δ) 6 ν (f−) < ν (f+) 6 ν (hδ) =
ν (g1). Since the rotation number is continuous in the subspace of the homeomorphisms of
M, we have that, if ν (f−) < ν < ν (f+), then there exists λ0 ∈ [0, 1] such that ν (gλ0

) = ν.

Although in an arbitrary neighborhood of f ∈ D we have an interval of possible values
of the rotation number, the same is not true if we consider only the functions that are at a
null distance from f . In [1] is given a characterization of the possible rotation numbers for
functions in these circumstances:

Theorem 1.3 ([1]) Let f0, f1 ∈ D be such that dH(f0, f1) = 0 and ν (f0) < ν (f1), then
ν (f0) = p0

q0
and ν (f1) = p1

q1
are rationals that, when represented as irreducible fractions,

satisfy the condition
p1 − 1

q1
6

p0
q0

<
p1
q1

6
p0 + 1

q0
.

In particular, if we know the values of ν (f−) and ν (f+) we have only a finite set of
possible values for ν (f). In the next proposition we give a (non-injective) parameterization
of this set where we use the floor and the ceiling integer functions respectively defined by

⌊x⌋ = max {n ∈ Z : n 6 x} and ⌈x⌉ = min {n ∈ Z : x 6 n} .

Proposition 1.4 If f ∈ D is such that ν− ≡ ν (f−) < ν (f) < ν (f+) ≡ ν+, then ν (f)
belongs to the following finite set

ν (f) ∈ Sν−,ν+ ≡

{

⌊q ν−⌋+ 1

q
:

⌈

q ν+
⌉

=
⌊

q ν−
⌋

+ 2, q ∈ Z
+

}

.

2



Proof. If ν (f) = p
q
(irreducible fraction), we know from Theorem 1.3 (applied to pairs

(f−, f) and (f, f+)) that we have, with p−
q−

= ν− and p+
q+

= ν+,

p− 1 6 q
p−
q−

< p < q
p+
q+

6 p+ 1.

Equivalently p = ⌊q ν−⌋+ 1 = ⌈q ν+⌉ − 1 and the condition ⌈q ν+⌉ = ⌊q ν−⌋+ 2 can only be
true for a finite number of values of q ∈ Z

+ since ν− < ν+ (in fact we can even show that
(q− + q+) /∆ 6 q 6 2q−q+/∆, where ∆ = p+q− − p−q+).

The purpose of this article is to evaluate the extent to which Theorem 1.3 is insightful
in describing the set of rotation number values at a discontinuity f ∈ D that we can define
symbolically by

V (f) ≡ {ν (g) : g ∈ M and dH(f, g) = 0} .

With this notation Theorem 1.3 states

V (f) ⊂
{

ν−, ν+
}

∪ Sν−,ν+ , (1)

with ν− = ν (f−), ν+ = ν (f+) and Sν−,ν+ defined in Proposition 1.4. The question that
arises is whether we can replace the inclusion by an equality. We will see in the following
examples that the answer may be affirmative, but it may be negative as well. Let us start
by looking at an example where V (f) = {ν−, ν+} ∪ Sν−,ν+ .

Example 1.5 Let f = ⌈2x⌉
2 , g1 = 1+⌈2x⌉+⌊2x⌋

4 and g2 =
1+⌈x⌉+⌊2x⌋+⌊x+ 1

2⌋
4 (see Figure 1).

We have f+ = 1+⌊2x⌋
2 , f− = g−1 = g−2 = f and g+1 = g+2 = f+. Since f (0) = 0, g41 (0) = 1,

Figure 1: Graph of f , g1, g2 and f+ from Example 1.5. Their rotation numbers are 0, 1/4,
1/3 and 1/2, respectively.

g32 (0) = 1, f+2
(0) = 1, we obtain ν (f) = 0, ν (g1) =

1
4 , ν (g2) =

1
3 and ν (f+) = 1

2 . On the
other hand S0, 1

2

=
{

1
4 ,

1
3

}

, therefore V (f) =
{

0, 12
}

∪ S0, 1
2

.

The next example shows that we can also have V (f) 6= {ν−, ν+} ∪ Sν−,ν+ .

Example 1.6 Let f (x) = min
(

x+ 1
2 , ⌈x⌉

)

(see Figure 2). We have f− = f , f (0) = 0,

f+2
(0) = f+

(

1
2

)

= 1, therefore ν (f−) = 0 and ν (f+) = 1
2 . But if g ∈ M is such that

dH(f, g) = 0 and f− 6= g 6= f+, then 0 < g (0) < 1
2 and g3 (0) = g

(

g (0) + 1
2

)

= 1; so that
ν (g) = 1

3 . Hence V (f) =
{

0, 13 ,
1
2

}

6=
{

0, 12
}

∪ S0, 1
2

=
{

0, 14 ,
1
3 ,

1
2

}

.

The preceding examples are very particular (for being simple) and suggest several con-
jectures that are not true; so it is convenient to give two less trivial examples.
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Figure 2: Graph of functions f (x), g = 1
2 (f + f+) and f+ from Example 1.6. Their rotation

numbers are 0, 1/3 and 1/2, respectively.

Example 1.7 Letf (x) be defined by the expression

1

10

(

4 + 2 ⌈x⌉+
⌈

x− 1
10

⌉

+
⌈

x− 1
5

⌉

+ 2
⌈

x− 2
5

⌉

+
⌈

x− 1
2

⌉

+
⌈

x− 3
5

⌉

+ 2
⌈

x− 4
5

⌉)

and f1, f2, f3 and f4 according to Figure 3. Then ( s = 1, 2, 3, 4)

Figure 3: Graph of the functions f1, f2, f3 and f4 from Example 1.7. Their rotation numbers
are 2/7, 3/10, 1/3 and 3/8, respectively.

f− = f−
s = f and f+

s = f+.

By calculating the successive iterates of the point 0 by each of these functions we obtain

ν (f) = 1
4 , ν (f1) =

2
7 , ν (f2) =

3
10 , ν (f3) =

1
3 , ν (f4) =

3
8 , ν

(

f+
)

= 2
5 .

On the other hand S 1

4
, 2
5

=
{

2
7 ,

3
10 ,

1
3 ,

3
8

}

, so in this case V (f) =
{

1
4 ,

2
5

}

∪ S 1

4
, 2
5

.

The next example also shows that, in general,

V (f) 6=
{

ν
(

(1− λ) f− + λf+
)

: λ ∈ [0, 1]
}

.

Example 1.8 Given (α, β) ∈ [0, 1]2 , let fα,β ∈ M be defined on [0, 1) by

fα,β (x) =























(1 + 2α) /6 if x = 0
1/2 if 0 < x < 1/3

(1 + β) /2 if x = 1/3
1 if 1/3 < x 6 5/6

x+ 1/6 if 5/6 6 x < 1

4



and by fα,β (x) = fα,β (x− ⌊x⌋)+⌊x⌋ on the remaining points (see Figure 4). By calculating

Figure 4: Graph of the function fα,β (x) with α ∈
{

1
4 ,

1
2 ,

3
4

}

and β = 5
6 . Their rotation

numbers are 1/3, 2/5 and 1/2, respectively.

the successive iterates of the point 0 we obtain

ν (fα,β) =







1/3 if α < 1/2 or (α = 1/2 and β 6 2/3)
2/5 if α = 1/2 and 2/3 < β < 1
1/2 if (α = 1/2 and β = 1) or 1/2 < α

.

Since dH(f, f0,0) = 0 if and only if f = fα,β for some (α, β) ∈ [0, 1]2, and in this case
f− = f0,0 and f+ = f1,1; we deduce V (fα,β) =

{

1
3 ,

2
5 ,

1
2

}

, however

S 1

3
, 1
2

=
{

3
8 ,

2
5 ,

5
12 ,

3
7 ,

4
9

}

.

Note also that for λ ∈ [0, 1] (and f = fα,β) one has (1− λ) f− + λf+ = fλ,λ so that
{

ν
(

(1− λ) f− + λf+
)

: λ ∈ [0, 1]
}

=
{

1
3 ,

1
2

}

6= V (f) .

Another question that arises is whether in inclusion (1) we can replace Sν−,ν+ by a smaller
set. By defining

Vν−,ν+ ≡
{

ν (f) : f ∈ M and ν− = ν
(

f−
)

< ν (f) < ν
(

f+
)

= ν+
}

,

we obviously have V (f) ⊂ {ν−, ν+} ∪ Vν−,ν+ if ν− = ν (f−) and ν+ = ν (f+); and therefore
the problem is whether Vν−,ν+ = Sν−,ν+? This equality is verified in certain cases as shown
in Examples 1.5 and 1.7, but surprisingly it is not true in general as shown by the following
theorem which we shall prove in Section 2.

Theorem 1.9 If p
q
∈ Sν−,ν+ is such that p

q
is irreducible, p−1

q
= ν−, p+1

q
= ν+ and q is odd,

then there is no f ∈ M with ν (f−) = ν−, ν (f+) = ν+ and ν (f) = p
q
.

To be sure that the previous theorem is relevant we need an example of a function
f ∈ D such that for a certain irreducible fraction p

q
with odd q, we have p−1

q
= ν (f−) and

p+1
q

= ν (f+); which we shall see in the next example. In fact it would have been enough to

give examples of irreducible fractions p−
q−

, p
q
, p+
q+

such that

p+ − 1

q+
6

p−
q−

=
p− 1

q
and

p+ 1

q
=

p+
q+

6
p− + 1

q−
,

since in [1] it is shown that if p+−1
q+

6
p−
q−

< p+
q+

6
p−+1
q−

, then there exists f ∈ M with

ν (f−) = p−
q−

and ν (f+) = p+
q+

.
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Example 1.10 For f ∈ D defined by the following expression (see Figure 5),

Figure 5: Graph of the functions f , f (x)+ 1
10

(⌊

1 + x− 1
5

⌋

−
⌈

x− 1
5

⌉)

and f+ from Example
1.10. Their rotation numbers are 1/5, 1/4 and 1/3, respectively.

f (x) = 1
5

(

1 + ⌈5x⌉ − ⌈x⌉+
⌈

x− 1
10

⌉)

it is easy to verify that ν (f−) = 1
5 and ν (f+) = 1

3 . Also
4−1
15 = 1

5 and 4+1
15 = 1

3 ; so
4
15 ∈ S 1

5
, 1
3

and Theorem 1.9 shows that 4
15 /∈ V 1

5
, 1
3

. Therefore V 1

5
, 1
3

6= S 1

5
, 1
3

.

Although it is easy to see that, for example, 3
11 /∈ V (f), by constructing other examples

g ∈ M with ν (g−) = 1
5 and ν (g+) = 1

3 , it is possible to show that V 1

5
, 1
3

= S 1

5
, 1
3

\
{

4
15

}

=
{

2
9 ,

1
4 ,

3
11 ,

2
7 ,

3
10

}

.

2 Proof of Theorem 1.9

Since each f ∈ M represents a map ϕ : S1 → S1, we define an orbit of f as a set of the form

{

fk (x0) +m : k ∈ N , m ∈ Z

}

,

where x0 ∈ R. This orbit is periodic if there exist a p ∈ Z and a q ∈ Z
+ such that

f q (x0) = x0 + p.
We know from [1] that any f ∈ D has at least one periodic orbit. Also that if f0, f1 ∈ D

are such that dH(f0, f1) = 0 with ν (f0) 6= ν (f1), then any periodic orbit of f0 intersects
all periodic orbits of f1 (if this were not the case it would be possible to construct g by
modifying only the discontinuities of f0 in such a way that g maintains the periodic orbit of
f0 and also has one of f1 in contradiction to the uniqueness of the rotation number).

In the proofs bellow, we will mainly use these facts and the following trivial property:

if dH(f, g) = 0 and x < y, then f (x) 6 g (y) .

Proposition 2.1 Suppose that f, f1 ∈ D are such that dH(f, f1) = 0 and write p
q
= ν (f)

and p1
q1

= ν (f1) as irreducible fractions. If p+1
q

= p1
q1
, then every periodic orbit of f1 is

contained in a periodic orbit of f and every periodic orbit of f contains a periodic orbit of
f1.
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Proof. Let x0 be a point common to a periodic orbit of f and f1. So that

f q (x0) = x0 + p and f q1
1 (x0) = x0 + p1.

Let xj be an increasing enumeration of the periodic orbit of f passing through x0, that is,

{xj : j ∈ Z} =
{

fk (x0) +m : k ∈ N , m ∈ Z

}

,

with xj < xj+1 for all j ∈ Z. Hence

xj+q = xj + 1 and f (xj) = xj+p.

We will prove the proposition by showing that for every k ∈ N we have

fk
1 (x0) = xk(p+1). (2)

Let us first see that this relation (2) is true when k is a multiple of qq1. In fact (using
p+1
q

= p1
q1
)

fnqq1
1 (x0) = x0 + nqp1 = x0 + nq1 (p+ 1) = xnqq1(p+1).

On the other hand, if xk(p+1) 6 fk
1 (x0) is true for some k ∈ Z

+, then

f
(

x(k−1)(p+1)

)

= xk(p+1)−1 < xk(p+1) 6 fk
1 (x0) = f1 ◦ f

k−1
1 (x0)

and therefore we must have x(k−1)(p+1) 6 fk−1
1 (x0). Then we conclude by descending induc-

tion that for every k ∈ N we have

xk(p+1) 6 fk
1 (x0) .

Also, if fk
1 (x0) 6 xk(p+1) is true for some k ∈ Z

+, then, since xk(p+1) < xk(p+1)+1, we obtain

fk+1
1 (x0) 6 f1

(

xk(p+1)

)

6 f
(

xk(p+1)+1

)

= xk(p+1)+1+p = x(k+1)(p+1),

which proves by induction that the relation

fk
1 (x0) 6 xk(p+1)

is also true for all k ∈ N; so that the proposition is proved.

Proposition 2.2 Suppose that f0, f ∈ D are such that dH(f0, f) = 0 and write p0
q0

= ν (f0)

and p
q

= ν (f) as irreducible fractions. If p0
q0

= p−1
q
, then every periodic orbit of f0 is

contained in a periodic orbit of f and every periodic orbit of f contains a periodic orbit of
f0.

Proof. Similarly to the proof of Proposition 2.1, using the same notation for xj , where now
x0 is a point common to a periodic orbit of f and f0, we prove successively that fnqq0

0 (x0) =
xnqq0(p−1), that fk

0 (x0) 6 xk(p−1) by descending induction and that xk(p−1) 6 fk
0 (x0) by

usual induction. We obtain
fk
0 (x0) = xk(p−1) (3)

for all k ∈ N, which was what we wanted to prove.

7



Proposition 2.3 Suppose that f ∈ D, p
q
= ν (f) is an irreducible fraction, p−1

q
= ν (f−)

and p+1
q

= ν (f+). Then p is odd.

Proof. Let x0 be a point common to a periodic orbit of f− and f+. By the previous
propositions, x0 belongs to a periodic orbit of f which, as before, we denote by {xj : j ∈ Z}
with xj < xj+1. Using the relations (2) and (3) we have for every k ∈ N

f− k
(x0) = xk(p−1) and f+ k

(x0) = xk(p+1).

Let us first note that p 6= 0; in fact Theorem 1.3 applied to f− and f+ shows in particular
that ν (f−) ν (f+) > 0 and then ν (f−) < p

q
< ν (f+) implies p 6= 0.

If p were even, then p − 1 and p + 1 would be coprime of the same sign, so that there
would exist k0 and k1 in N such that

k0 (p− 1)− k1 (p+ 1) = 1.

Hence xk1(p+1) < xk0(p−1) and therefore

x(k1+1)(p+1) = f+
(

xk1(p+1)

)

6 f−
(

xk0(p−1)

)

= x(k0+1)(p−1),

in contradiction to
(k0 + 1) (p− 1)− (k1 + 1) (p+ 1) = −1 < 0,

which implies x(k0+1)(p−1) < x(k1+1)(p+1). Hence p must be odd.
We can now easily prove Theorem 1.9 by applying Proposition 2.3 to f and f +1, which

have rotation numbers ν (f) = p
q
and ν (f + 1) = p+q

q
. We find that p and p + q are odd,

and therefore q is even.
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