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SECTIONAL CONNECTING LEMMA

S. BAUTISTA, V. SALES, Y. SÁNCHEZ.

Abstract. A hyperbolic set on a compact manifold M , satisfies
the property: given two of your any points p and q, such that
for all positive ǫ > 0, there is a trajectory in the hyperbolic set
from a point ǫ-close to p to a point ǫ-close to q, then there is a
point in M whose α-limit is that of p and whose ω-limit is that
of q. Bautista and Morales in [5], give a version of this property,
for sectional-Anosov flows (vector fields whose maximal invariant
set is sectional-hyperbolic), including some conditions; among
them that limit the dimension of M to three. In this paper, we
prove a generalization of this result, for sectional-hyperbolic sets
of codimension one in high dimensions.

1. Introduction

The sectional-hyperbolic sets are a more general class than
hyperbolic sets, since it includes these and other non-hyperbolic sets
as geometric Lorenz attractor, then it’s relevant study which
properties valid for hyperbolic sets are also satisfied by the
sectional-hyperbolic sets. A property of the Anosov flows (when
the whole manifold is a hyperbolic set), is the Anosov connecting
lemma (Theorem 1), this result was extended by Bautista and Morales
in [5], for sectional-Anosov flows (when the maximal invariant is a
sectional-hyperbolic set), in dimension three, including some necessary
conditions; this result is known as Sectional- Anosov Connecting
Lemma (Theorem 3).

Although the Anosov Connecting Lemma, it is very useful in
hyperbolic dynamics, presents the limitation of requiring that the
flow should be Anosov, however, thanks to the theory of invariant
manifolds (see [8]), the same property can be obtained for arbitrary
hyperbolic sets (Theorem 2). In this paper, our main objective is
extend the sectional-Anosov connecting Lemma to high dimensions
without the limitation of that the flow should be sectional-Anosov,
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allowing to use it directly in sectional-hyperbolic sets that contain
the unstable manifolds of their hyperbolic subsets. For this, we
including some conditions, and also generalize the characterization of
omega-limit sectional-hyperbolic sets which are closed orbits, given by
Bautista and Morales [6], from dimension three to high dimensions.
Below we will give the necessary definitions to specify our objective.

Hereafter M will be a compact manifold possibly with nonempty
boundary endowed with a Riemannian metric 〈·, ·〉 induced by norm
|| · ||. Given X an C1 vector field, inwardly transverse to the boundary
(if nonempty) we call Xt its induced flow on M . Define the maximal
invariant set of X by

M(X) =
⋂

t≥0

Xt(M).

The orbit of a point p ∈ M(X) is defined by O(p) = {Xt(p) | t ∈ R}. A
singularity is a point q where X is zero, i.e. X(q) = 0 (or equivalently
O(q) = {q})and a periodic orbit is an orbit O(p) such that XT (p) = p
for some minimal T > 0 and O(p) 6= {p}. By a closed orbit is a
singularity or a periodic orbit.

Given p ∈ M we define the omega-limit set, ωX(p) = {x ∈ M | x =
limn→∞Xtn(p) for some sequence tn → ∞}, if p ∈ M(X), define the
alpha-limit set αX(p) = {x ∈ M : x = limn→∞X−tn(p), for some
sequence tn → ∞}.

A compact subset Λ of M is called invariant if Xt(Λ) = Λ for all
t ∈ R; transitive if Λ = ωX(p) for some p ∈ Λ. A compact invariant set
Λ is attracting if there is a neighborhood U such that

Λ = ∩t≥0Xt(U),

and an attractor of X , is an attracting set Λ which is transitive. On the
other hand, a compact invariant set Λ is Lyapunov stable, if for every
neighborhood U of Λ, exists a neighborhood W such that: Xt(p) ∈ U
for all p ∈ W and t ≥ 0.

Definition 1. A compact invariant set Λ ⊆ M(X) is hyperbolic
if there are positive constants K, λ and a continuous DXt-invariant
splitting of tangent bundle TΛM = Es

Λ ⊕EX
Λ ⊕Eu

Λ, such that for every
x ∈ Λ and t ≥ 0:

(1) ‖DXt(x)v
s
x‖ ≤ Ke−λt‖vsx‖, ∀vsx ∈ Es

x;
(2) ‖DXt(x)v

u
x‖ ≥ K−1eλt‖vux‖, ∀vux ∈ Eu

x ;
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(3) EX
x = 〈X(x)〉.

If Es
x 6= 0 and Eu

x 6= 0 for all x ∈ Λ we will say that Λ is a saddle-type
hyperbolic set. A closed orbit is hyperbolic if it does as a compact
invariant set of X .
When Λ = M , we say that the flow generated byX is an Anosov flow.

The invariant manifold theory [8] asserts that ifH ⊆ M is hyperbolic
set of X and p ∈ H , then the topologic sets:

W ss(p) = {q ∈ M : lim
t→∞

d(Xt(q), Xt(p)) = 0}

and
W uu(p) = {q ∈ M : lim

t→−∞
d(Xt(q), Xt(p)) = 0}

they are C1 manifolds in M , so-called strong stable and unstable
manifolds, tangent at p to the subbundles Es

p and Eu
p respectively.

Saturating them with the flow we obtain the stable and unstable
manifolds W s(p) and W u(p) respectively, which are invariant. If
p, p′ ∈ H , we have to W ss(p) and W ss(p′) are same or disjoint
(similarly for W uu).

Definition 2. A compact invariant set Λ ⊆ M(X) is
sectional-hyperbolic if every singularity in Λ is hyperbolic (as
invariant set) and there are a continuous DXt-invariant splitting of
tangent bundle TΛM = F

s
Λ ⊕ F

c
Λ, and positive constants K, λ such that

for every x ∈ Λ and t ≥ 0:

(1) ‖DXt(x)v
s
x‖ ≤ Ke−λt‖vsx‖, ∀vsx ∈ F

s
x;

(2) ‖DXt(x)v
s
x‖·‖v

c
x‖ ≤ Ke−λt‖DXt(x)v

c
x‖·‖v

s
x‖, ∀vsx ∈ F

s
x, ∀vcx ∈

F
c
x;

(3) ‖DXt(x)u
c
x, DXt(x)v

c
x‖Xt(x) ≥ K−1eλt‖uc

x, v
c
x‖x, ∀uc

x, v
c
x ∈ F

c
x.

Where ||·, ·||x is induced 2-norm by the Riemannian metrics
〈·, ·〉x of TxΛ, given by

||vx, ux||x =
√

〈vx, vx〉x · 〈ux, ux〉x − 〈vx, ux〉2x

for all x ∈ Λ and every ux, vx ∈ TxΛ

The third condition guarantees, the increase exponential of the area
of parallelograms in the central subbundle F

c. Since X(x) ∈ F
c
x for

all x ∈ Λ (see lemma 4 in [4]), have that dimension of the central
subbundle must be greater than or equal to 2. In the particular case
where dim(Fc

x) = 2 we will say that Λ is a sectional-hyperbolic set of
codimension 1.
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When Λ = M(X), we say that the flow generated by X is an
sectional-Anosov flow.

Also the invariant manifold theory [8] asserts that through any
point x of a sectional-hyperbolic set Λ has the strong stable manifolds
F ss(x), tangent at x to the subbundle F

s
x, which induces an foliation

over Λ; saturating them with the flow we obtain the invariant manifold
F s(x).

Unlike hyperbolic sets, the sectional-hyperbolic sets can have regular
orbits accumulating singularities. We have to:

Lemma 1. If Λ ⊆ M(X) is sectional-hyperbolic set, and σ is an
singularity in Λ then:

F ss(σ) ∩ Λ = {σ}

Proof. See corollary 2 in [4]. �

All singularity σ in an sectional-hyperbolic set, is hyperbolic, so your
invariant manifolds W uu(σ) and W ss(σ) are well defined. The strong
stable manifold sectional F ss(σ) it is a submanifold of W ss(σ), with
respect to your dimension, exists two possibilities:

(1) dim(W ss(σ)) = dim(F ss(σ)), in this case W ss(σ) = F ss(σ);
(2) dim(W ss(σ)) = dim(F ss(σ)) + 1, in this case, we say that the

singularity is Lorenz-like.

Every singularity Lorenz-like is type-saddle hyperbolic set with at
least two negative eigenvalues, one of which is real eigenvalue λ with
multiplicity one such that the real part of the other eigenvalues are
outside the closed interval [λ,−λ].

Over a Lorenz-like singularity σ ∈ Λ, we have F ss(σ) is tangent to
the subspace associated the eigenvalues with real part less than λ, and
F ss(σ) divide a W ss(σ) in two connected component. If Λ intersect
just one connected component of W ss(σ) \ F ss(σ), we say that the
singularity Lorenz Like is of boundary-type.

We say that a cross section Σ of X is associated to a Lorenz-like
singularity σ in a sectional-hyperbolic set Λ, if Σ is very close to σ,
Σ ∩ Λ 6= ∅ and one of the connected components of W ss(σ) \ F ss(σ)
contains a point in int(Σ).
Another important result about the sectional-hyperbolic sets, is the
hyperbolic lemma (see lemma 9 in [4]), which assert that any
invariant subset H without singularities of a sectional-hyperbolic
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set Λ, is hyperbolic, in this case, we have to that F
s
H = Es

H and
F
c
H = Eu

H ⊕ EX
H , so W ss(p) = F ss(p) for all p ∈ H .

Let p, q ∈ M , we say that p ≺ q if and only if for all ǫ > 0 exists a
orbit from a point ǫ-close to p to a point ǫ-close to q.

Theorem 1 (Anosov Connecting Lemma). If X is an Anosov flow on
a compact manifold M and p, q ∈ M satisfy that p ≺ q, then there is a
point x ∈ M , such that α(x) = α(p) and ω(x) = ω(q).

The following theorem is a generalization of the Anosov connecting
lemma, which allows to be used in hyperbolic sets, even when the flow
is not Anosov.

Theorem 2. Let H be a hyperbolic set of vector field X on M . If
p, q ∈ H and there are sequences zn ∈ H, tn ∈ R+ such that zn → p
and Xtn(zn) → q, then there is x ∈ M such that α(x) = α(p) and
ω(x) = ω(q).

As previously mentioned, Bautista and Morales generalized the
Theorem 1, in the sectional-hyperbolic dynamics, for sectional-Anosov
flows in dimension three:

Theorem 3 (Sectional-Anosov Connecting Lemma). If X is a
sectional-Anosov flow on a compact 3-manifold M , p ∈ M(X) and
q ∈ M , satisfy that p ≺ q, and α(p) don’t have singularities, then
there is x ∈ M such that α(x) = α(p) and ω(x) = ω(q) or ω(x) is a
singularity.

As the main result of this paper, we prove the following
generalization of the previous theorem:

Theorem 4 (Main: Sectional Connecting Lemma). Let Λ a
sectional-hyperbolic set of codimension 1 of a vector field X on M ,
such that W u(H) ⊆ Λ for all hyperbolic subset H of Λ. If p, q ∈ Λ
satisfy that p ≺ q and α(p) don’t have singularities,then there is x ∈ M
such that α(x) = α(p) and ω(x) = ω(q) or ω(x) is a singularity.

Note that in the theorem 4, two of the hypotheses of the theorem 3
are replaced by more general ones; specifically, it is not requested that
M be of dimension three, but that Λ be a sectional-hyperbolic set of
codimension one, and the hypothesis that X is a Sectional-Anosov flow
is changed by the condition that Λ contains the unstable manifolds
their hyperbolic subsets; these variations, generate a change in the
proof, however, some of the arguments are similar.

As direct consequences of the main theorem we have that:
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Corollary 1. Every sectional-hyperbolic Lyapunov stable set of
codimension 1 of a vector field X over M , satisfy that if p, q ∈ Λ,
p ≺ q and α(p) don’t have singularities, then there is x ∈ M such that
α(x) = α(p) and ω(x) = ω(q) or ω(x) is a singularity.

Corollary 2. Every sectional-Anosov flow of codimension 1 of a
vector field over M , satisfy that if p, q ∈ Λ, p ≺ q and α(p) don’t
have singularities, then there is x ∈ M such that α(x) = α(p) and
ω(x) = ω(q) or ω(x) is a singularity.

To proof our main theorem, in section 2, we will introduce the
definition of sectional partition 1, we will prove its existence for
invariant compact sets; in section 3 we will proof some properties
of these partitions on sectional-hyperbolic sets of codimension one;
in section 4, we will use the sectional partitions to characterize
of omega-limit sectional-hyperbolic sets which are closed orbits the
transitive hyperbolic sectional sets in codimension one, which are closed
orbits, and with this characterization, finally in section 5 we will proof
the main theorem.

2. Sectional Partition

Denote by R′ = {S1, S2, ...Sk} a finite collection of cross sections,
then we define:

R =
k⋃

i=1

Si , ∂R =
k⋃

i=1

∂Si , int(R) =
k⋃

i=1

int(Si).

The diameter of R is given by the max of the diameters of the elements
of R′, we say that is of the time ǫ if R∩X[−ǫ,ǫ](y) = {y} for all y ∈ R.

Definition 3. A sectional partition of a compact invariant set H of X
is a finite and disjoint collection of cross sections R′ of X with nonzero
time, such that:

Sing(X) ∩H = {y ∈ H : Xt(y) /∈ int(R), ∀t ∈ R}.

Theorem 5 (Existence of sectional partitions). Let Λ be a compact and
invariant set of the field X over M . If Λ is not a singularity and every
singularity of Λ is hyperbolic, then for all δ > 0 there is a sectional
partition of diameter less than δ.

1This definition results from making a modification to the definition of the
singular partition introduced in [6]
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Proof. Let δ > 0, as all the singularities of Λ are hyperbolic, we know
that Λ has a finite number of singularities, so there exists δ0 such that:

Sing(X) ∩ Λ =
⋂

t∈R

Xt


 ⋃

σ∈Sing(X)∩Λ

Bδ0(σ)


 .

We define:

H = Λ\


 ⋃

σ∈Sing(X)∩Λ

Bδ0(σ)


 .

If H = ∅, then Λ does not contain regular orbits, in this case it is
a singularity, this contradicts the hypothesis, then H 6= ∅ and H ∩
Sing(X) = ∅. Then for all z ∈ H there is a cross section Rz with
z ∈ int(Rz), of arbitrarily small diameter. We consider this diameter
much smaller than δ and defined:

Vz =
⋃

t∈(−1,1)

Xt(int(Rz));

clearly z ∈ Vz, so we have that {Vz : z ∈ H} is an open covering of
H , but since H is compact (a closed set inside a compact set), there is
{z1, ..., zr} such that:

H ⊆
r⋃

i=1

Vzi .

Let us consider the rectangles Rz1, Rz2 , ..., Rzr , if necessary we can move
them through the flow and assume that they are pairwise disjoint. Now
observe that

R′ = {Rz1 , ..., Rzr};

satisfies the conditions of sectional partition. If x /∈ Λ∩Sing(X), then

x /∈
⋂

t∈R

Xt


 ⋃

σ∈Sing(X)∩Λ

Bδ0(σ)


 = Sing(X) ∩ Λ

so there is t0 ∈ R such that

Xt0(x) /∈
⋃

σ∈Sing(X)∩Λ

Bδ0(σ)

therefore Xt0(x) ∈ H and Xt0(x) ∈ Vzi for some 1 ≤ i ≤ r. We can
say that Xt0(x) = Xt1(w) for some −1 < t1 < 1 and w ∈ int(Rzi), so
Xt0−t1(x) = w ∈ int(Rzi) ⊆ int(R), where

x /∈ {y ∈ Λ : Xt(y) /∈ int(R), ∀t ∈ R}
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Therefore

{y ∈ Λ : Xt(y) /∈ int(R), ∀t ∈ R} ⊆ Sing(X) ∩ Λ

since the other containment is immediate, we get the result.
�

Given a sectional partition R′ of a compact invariant set H of a field
X we define the function

Π(R,int(R)) : Dom(Π(R,int(R)) ⊆ R → int(R)

with

Dom(Π(R,int(R)) = {x ∈ R : Xt(x) ∈ int(R) for some t > 0}

given by
Π(R,int(R))(x) = Xt(x)(x),

where t(x) is the time of return, i.e., the first t > 0 for which
Xt(x) ∈ int(R). In the remainder of this section we shall represent
Π(R,int(R)) only by Π.

Given x ∈ Si ∈ R′ we define Bǫ(x,R) = Bǫ(x) ∩ Si.

Lemma 2. Let R′ a sectional partition of the invariant compact set H
of X, with all its hyperbolic singularities, then we have the following
properties:

(1) H ∩ R ∩ Dom(Π) ⊆ int(Dom(Π)) in R and Π is C1 in a
neighborhood of H ∩ int(R) in R;

(2) (H ∩R)\Dom(Π) ⊆
⋃

σ∈Sing(X)∩H W s(σ).

Proof. For simplicity, we denote H0 = H ∩ R

(1) Let x ∈ H0 ∩Dom(Π), so Xt(x)(x) ∈ int(Si) for some Si ∈ R′

and t(x) > 0, due to continuous dependence of the flow, there
is ǫx > 0, such that O+(y)∩ int(Si) 6= ∅ for all y ∈ Bǫx(x), then
Bǫx(x,R) ⊆ Dom(Π), thereby x ∈ int(Dom(Π)) in R. Define

U =
⋃

x∈H0∩Dom(Π)

Bǫx(x,R)

we have that U is a neighborhood of H0 in R such that Π is
C1.

(2) Let p ∈ H0\Dom(Π), thus O+(p) ∩ int(R) = ∅. Suppose there
is a regular point r ∈ ω(p) ⊆ H , then by the definition of
sectional partition, there exists t0 ∈ R such that Xt0(r) ∈
int(R), thus Xt0(r) ∈ int(Sj) for some Sj ∈ R′. Given
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that Xt0(r) ∈ ω(p) there is a sequence tn → ∞ such that
Xtn(p) → Xt0(r) and since Sj is transversal to the flow we
have to O+(p) ∩ int(Sj) 6= ∅ this is a contradiction. Thus ω(p)
is a singularity and p ∈

⋃
σ∈Sing(X)∩H W s(σ).

�

Lemma 3. Given q ∈ M if ω(q) is not a singularity and R′ is a
sectional partition of ω(q), so we have that O+(q)∩int(R) = {q1, q2, ...}
is an infinite sequence ordered in a way that Π(qn) = qn+1.

Proof. Since the singularities are isolated and ω(q) is not a singularity,
then ω(q) contains regular orbits and by the definition of a sectional
partition, every regular orbit of ω(q) intersects int(R). Given x ∈
ω(q)∩int(R), we have x ∈ int(Sj) for some Sj ∈ R′. As Sj is transverse
to the flow and O+(q) accumulates x there is a sequence of points in
O+(q)∩ int(Sj), that accumulate x. Then O+(q)∩ int(R) is an infinite
set and since the cross sections in R′ are finite, disjoint and transverse
to the flow, it follows that O+(p)∩ int(R) is a countable set, which we
order according to the time of return to the interior of R. �

3. Sectional partition and Sectional-hyperbolic sets

Given TΛM = F
s
Λ ⊕ F

c
Λ the sectional decomposition of a

sectional-hyperbolic set Λ, this can be extended to TUΛ
M = F

s
UΛ

⊕ F
c
UΛ

where UΛ is a neighborhood of Λ, this extension is done continuously
for Fc

U and integrable for Fs
U .

Let Σ ⊂ UΛ a cross section, we will denote by F s
Σ the vertical

foliation of Σ obtained by the projection of F ss over Σ along the flow
X , (i.e., F s(x,Σ) is a leaf in Σ obtained by the projection of the leaf
F ss(x) over Σ along the flow X , for all x ∈ Σ). We also denote ∂vΣ
and ∂hΣ the vertical and horizontal border of Σ respectively. We
assume that the components of the vertical border ∂vΣ are conformed
by foliation leaves of F s

Σ, and ∂hΣ is transversal to F s
Σ.

Given a sectional partition R′, of a sectional-hyperbolic set Λ, such
that R ⊆ UΛ, the foliation of R, F s

R, is determined by the foliation of
the cross sections which makes contains.

Theorem 6. Let ω(q) is a sectional-hyperbolic set of codimension 1, if
ω(q) is not a singularity, then for all α > 0 there is a sectional partition
R′ of ω(q), with diameter less than α, such that:
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(1) int(R) ∩ O+(q) = {q1, q2, ...} with Π(qn−1) = qn,
(2) there is δ > 0 and N ∈ N such that if n ≥ N then one of the

following statements is true:

(A) Bδ(qn,R) ⊆ Dom(Π) and Π|Bδ(qn,R) is C
1, or

(B) B+
δ (qn,R) ⊆ Dom(Π) and Π|B+

δ
(qn,R) is C

1,

where B+
δ (qn,R) denotes the connected component of

Bδ(qn,R)\sn which contains qn, and sn is a submanifold
contained in the intersection of

⋃
σ∈Sing(X)∩ω(q) W

s(σ) with

Bδ(qn,R).

Proof. By Theorem 5 there exists a sectional partition R′ of ω(q) of
arbitrarily small diameter such that R ⊆ Uω(q), and by Lemma 3 we
have (1).

Now, by being an omega-limit sectional hyperbolic set, all
singularities of ω(q) are Lorenz-like, and by codimension 1 we have
that W u(σ) is one-dimensional; therefore W s(σ) is a manifold of
dimension n − 1. On the other hand O+(q) ∩ W s(σ) = ∅ for all
singularities since ω(q) is not a singularity.

For simplicity we will denote:

A1 = ω(q) ∩ R ∩Dom(Π)

A2 = (ω(q) ∩ int(R)) \Dom(Π)

A3 =
(
ω(q) ∩ ∂(R) ∩ Cl

[
O+(q) ∩ int(R)

])
\Dom(Π)

A4 = (ω(q) ∩ ∂(R)) \
(
Dom(Π) ∩ Cl

[
O+(q) ∩ int(R)

])

Observe that A1∪A2∪A3∪A4 = ω(q)∩R, and besides these sets, they
are pairwise disjoint. Next, to each point x ∈ ω(q)∩R, we associate a
δx > 0, according to the set to which it belongs, as follows:

Case 1. If x ∈ A1, then by the Lemma 2 we choose δx, such that

Bδx(x,R) ⊆ Dom(Π) and Π|Bδx (x,R) is C
1(Eq. i)

For the cases A2 and A3, observe first that x ∈ ω(q) ∩ R \Dom(Π)
implies x ∈ Sj for some Sj ∈ R′. By Lemma 2, there is
σx ∈ ω(q) ∩ Sing(x) such that x ∈ W s(σx). We have that Sj

and W s(σx) are manifolds of dimension n− 1 and x ∈ W s(σx)∩ Sj , in
addition W s(σx) is invariant and Sj is transversal to the flow, so the
connected component of Sj ∩W s(σx) containing x is a submanifold of
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dimension n − 2 which we denote sx. On the other hand, F s(x) is a
invariant manifold of dimension n − 1, then F s(x, Sj) is of dimension
n− 2 and we have F s(x) ⊆ W s(σx) and x ∈ W s(σx), then by Lemma
1, F s(x, Sj) = sx.

Now, as W u(σx) is one-dimensional, then W u(σx)\{σx} is divided
into two connected components W+ y W− and as O+(q)∩W s(σx) = ∅,
O+(q) must accumulate at least one connected component. Therefore,
we have one of the following statements:

(a) W+ ⊆ ω(q) and W− ⊆ ω(q);
(b) W+ ⊆ ω(q) and W− * ω(q);
(c) W+ * ω(q) and W− ⊆ ω(q).

We consider βx small, such that O+(y) accumulates W u(σx) for all
y ∈ Bβx

(x,R)\sx.

Case 2. If y ∈ A2 then y ∈ int(Sj). If the statement (a) occurs,
then W+ ⊆ ω(q) and W− ⊆ ω(q). Since W+ and W− are
regular orbits, by the definition of sectional partition we have
W+ ∩ int(R) 6= ∅ and W− ∩ int(R) 6= ∅. Then there are
Si, Sk ∈ R′ such that W+∩int(Si) 6= ∅ and W−∩int(Sk) 6= ∅.
Using the continuous dependency of the flow, there is δy < βy

small enough, so thatO+(p)∩int(Si) 6= ∅ orO+(p)∩int(Sk) 6=
∅ thus p ∈ Bδy(y,R) \ sy. Therefore

Bδy(y,R)\sy ⊆ Dom(Π) and Π|Bδy (y,R)\sy es C1.(Eq. ii)

If the statement (b) occurs, we have W+ ⊆ ω(q) and W− *
ω(q). Then, there is Si ∈ R′ such that W+∩int(Si) 6= ∅. Also
O+(q) does not accumulate on W−. For every γ, sy, divide
Bγ(y,R) into two connected components, we callB+

γ (y,R) the
component that accumulates on W+ y B−

γ (y,R) the other; we
take δy < βy small enough, so that O+(q) does not intersect
B−

δy
(y,R) and O+(p) ∩ int(Si) 6= ∅ for all p ∈ B+

δy
(y,R).

Therefore

B+
δy
(y,R)\sy ⊆ Dom(Π) , Π|B+

δy
(y,R)\sy

is C1.(Eq. iii)

If the statement (c) occurs, we consider B+
δy
(y,R) as the

component that approaches W− and the result follows
similarly to when we have (b).

Case 3. If z ∈ A3 then z ∈ ∂(Sj). If z ∈ ∂v(Sj) then sz ⊆ ∂v(Sj)
and consequently Bβz

(z,R) \ sz accumulates only on one of
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the components W+ or W−. Without loss of generality we
can assume that it accumulates on W+. Let Si ∈ R, such
that W+ intersects the interior of Si, we choose δz < βz small
enough, so thatO+(p)∩(int(Si)) 6= ∅, for all p ∈ Bδz(z,R)\sz.
Then we obtain

Bδz(z,R)\sz ⊆ Dom(Π) and Π|Bδz (z,R)\sz is C1.(Eq. iv)

Now if z ∈ ∂h(Sj), then sz divides Bβz
(z,R) into two

connected components, and reasoning in the same way as in
the case of A2, we obtain that

Bδz(z,R)\sz ⊆ Dom(Π) and Π|Bδz (z,R)\sz es C1.(Eq. v)

or

B+
δz
(z,R)\sz ⊆ Dom(Π) , Π|B+

δz
(z,R)\sz

is C1.(Eq. vi)

Case 4. If w ∈ A4, then w ∈ ∂(Sj) for some Sj ∈ R′, we can choose

δw <
diam(Sj )

2
such that Bδw(w,R) ∩ [O+(q) ∩ int(R)] = ∅.

Note that ω(q) ∩ R\Dom(Π) is contained in

 ⋃

yj∈A2

B δyj
2

(yj,R)


∪

( ⋃

zk∈A3

B δzk
2

(zk,R)

)
∪

( ⋃

wm∈A4

B δwm
2

(wm,R)

)
,

and since ω(q) ∩ R\Dom(Π) is compact, then is contained in
(

l2⋃

k=1

B δyk
2

(yk,R)

)
∪

(
l3⋃

j=1

B δzj
2

(zj ,R)

)
∪

(
l4⋃

m=1

B δwm
2

(wm,R)

)
.

We define

B2 =

l1⋃

j=1

B δyj
2

(yj,R), B3 =

l3⋃

k=1

B δzk
2

(zk,R), B4 =

l4⋃

m=1

B δwm
2

(wm,R)

and

H = ω(q) ∩ R\(B2 ∪B3 ∪B4)

Observe that H ⊆ ω(q) ∩ R ∩Dom(Π). Thus

H ⊆
⋃

xi∈A1

B δxi
2

(xi,R),
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Since H is compact we obtain

H ⊆
l1⋃

i=1

Bβxi
2

(xi,R) = B1.

Also, as ω(q)∩R ⊆ H ∪ (ω(q)∩R\Dom(Π)) then (B1∪B2 ∪B3 ∪B4)
is a open covering of ω(q) ∩ R.

Now, as O+(q) ∩ int(R) = {q1, q2, ...}, it follows that {qn}n∈N
accumulates on ω(q) ∩ R, so there exists a large enough N ∈ N such
that for all n > N , we obtain qn ∈ B1 ∪B2 ∪B3, we exclude B4 by the
way we define A4 and the Bδw(w,R).

Take δ = min

{
δxi

8
,
δyj
8
,
δzk
8

: 1 ≤ i ≤ l1, 1 ≤ j ≤ l2, 1 ≤ k ≤ l3

}
,

we have three possibilities: Bδ(qn,R) ⊆ Bδxi
(xi,R), Bδ(qn,R) ⊆

Bδyj
(yj,R) or Bδ(qn,R) ⊆ Bδzk

(zk,R).

If Bδ(qn,R) ⊆ Bδxi
(xi,R) then by Eq. i, we have to

Bδ(qn,R) ⊆ Dom(Π) y Π|Bδ(qn,R) is C1. In this case we obtain
(A).

If Bδ(qn,R) ⊆ Bδyj
(yj,R), define sn = syj ∩ Bδ(qn,R), qn /∈ sn

because otherwise ω(q) would be a singularity. Therefore we have
qn ∈ Bδ(qn,R)\sn. We definite B+

δ (qn,R) as the connected component
of Bδ(qn,R)\sn which contains qn. Here we have two subcases
depending on whether we have Eq. ii or Eq. iii.

If Eq. ii occurs, B+
δ (qn,R)\sn ⊆ Bδyj

(yj,R)\syj , therefore

B+
δ (qn,R) ⊆ Dom(Π), and Π|B+

δ
(qn,R) is C

1.

If Eq. iii is satisfied, since qn ∈ O+(q), then qn ∈ B+
δyj

(yj,R), from

where B+
δ (qn,R) ⊆ B+

δyj
(yj,R). Thus B+

δ (qn,R) \ sn ⊆ Dom(Π) y

Π|B+
δ
(qn,R)\sn

is C1. Then for both subcases we get (B).

If Bδ(qn,R) ⊆ Bδzk
(zk,R), analogously to the previous case we

obtain (B).

Then, for all n ≥ N we have (A) or (B) which proves the theorem.
�
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4. Characterizing omega-limit sets which are closed

orbits in codimension one

Definition 4. A point q ∈ M satisfies the property P(Σ) if there exists
an interval I ⊆ M with q ∈ ∂I and a closed set Σ ⊆ M such that:

(1) Cl(O+(q) ∩ Σ) = ∅,
(2) O+(p) ∩ Σ 6= ∅ for all p ∈ I.

Lemma 4. Let q ∈ M a point satisfying the property (P )Σ for some
closed subset Σ with ω(q) a sectional-hyperbolic set of codimension 1.
If ω(q) is not a singularity, then there is a sectional partition R′ of
ω(q), δ > 0, S ∈ R′, a sequence {q̂n}n∈N of points in int(S) ∩ O+(q)

and a sequence of intervals Ĵ1, Ĵ2, ... ⊆ S in the positive orbit of I with

q̂i ∈ ∂(Ĵi) and l(Ĵi) ≥ δ for all i.

Proof. Without loss of generality we can assume that q ∈ Uω(q) and
the arc I that refers to property (P )Σ, is tangent to F

c and transverse
to the flow. Since Cl(O+(q)) and Σ are disjoint, there exists a
compact neighborhood W ⊆ Uω(q) of ω(q) such that W ∩ Σ = ∅ and
O+(q) ⊆ W , then by the theorem 6, we have a sectional partition
R′ = {S1, S2, ..., Sk} of ω(q) contained in int(W ) (since we can
take the diameter of R arbitrarily small), and N ∈ N such that
O+(q) ∩ int(R) = {q1, q2, ...}, and for all n ≥ N , qn satisfies (A) or
(B). We will assume N = 1.

For all n there is Sjn ∈ R′, such that qn ∈ int(Sjn). As q ∈ ∂(I),
for the continuous dependence we have to qn must be a border point of
the positive orbit of I, and since Sjn is transverse to the flow as well as
I, we can guarantee that exists I1 in the positive orbit of I such that:

I1 ⊆ Sj1 ∩Dom(Π) and q1 ∈ ∂(I1).

If necessary we can reduce it to I so that I1 ⊆ int(Bδ(q1,R)) or
I1 ⊆ int(B+

δ (q1,R)) depending on whether occurs (A) or (B) for q1;
we define Ii = Π(Ii−1) = Πi(I1) for i > 1 and while Ii−1 ⊆ Bδ(qi−1,R)
or Ii−1 ⊆ B+

δ (qi−1,R) again depending on whether occurs (A) or (B)
for qi−1. Since W ∩Σ = ∅ and the positive orbit of I intersects Σ, there
exists a first index i1 such that:

Ii1 * Bδ(qi1 ,R) or Ii1 * B+
δ (qi1 ,R).

We define Ji1 ⊆ Ii1 as the connected component of Ii1 ∩ Bδ(qi1 ,R) (or
Ii1∩B

+
δ (qi1,R)) which bounded with qi1 , and some point in ∂(Bδ(qi1R))

(or in ∂(B+
δ (qi1 ,R)). Remember that si1 ⊆

⋃
σ∈Sing(X)∩ω(q) W

s(σ)

and O+(Ii1) ∩ Σ 6= ∅ we have Ii1 ∩ si1 = ∅ and we can conclude that



SECTIONAL CONNECTING LEMMA 15

l(Ji1) ≥ δ.

Now, if necessary, we reduce Ii1 so that Π(Ii1) ⊆ Bδ(qi1+1,R) (or
Π(Ii1) ⊆ B+

δ (qi1+1,R)) and repeat the argument used in I1 for Ii1
and in this way find an index i2 and construct the interval Ji2 ⊆ Ii2
satisfies same conditions of Ji1, then we would reduce if necessary to
Ii2 to repeat the process and so on, then we get a sequence {Jim}m∈N

such that Jim ⊆ Sjim
, qim ∈ ∂(Jim) y l(Jim) ≥ δ for all m.

Since R is a finite collection we have that this sequence has a
subsequence {Jims

}s∈N such that Jims
⊆ Sr for some Sr ∈ R′,

considering S = Sr, Ĵs = Jims
and q̂s = qims

the result is obtained. �

Theorem 7. Let q ∈ M be a point satisfying the property (P )Σ for
some subset Σ closed and ω(q) is a sectional hyperbolic codimension 1
set. If ω(q) is not a singularity, then ω(q) is a periodic orbit.

Proof. Let W and R′ as in the proof of the Lemma 4, since ω(q) is

not a singularity, then there is S ∈ R′, q̂i, Ĵi and δ > 0 such that

q̂i ∈ int(S) ∩ O+(q), Ĵi ⊆ O+(I) ∩ S, q̂i ∈ ∂Ĵi, and l(Ĵi) ≥ δ for all
i ∈ N, also, suppose there is x ∈ ω(q)∩S, such that q̂i accumulates on x.

If x ∈ ∂v(S), then q̂i /∈ F s(x, S) for all i, since F s(x, S) ∈ ∂(S).

Since ĵi is tangent a F
c
U and transverse to X then the angle between

the arc ĵi and F s
Σ is bounded away from zero for all i, also as l(Ĵi) ≥ δ

and q̂i → x there will eventually z such that:

z ∈ Ĵr ∩ F s(q̂j, S)

for some pair r, k ∈ N. Since z ∈ Ĵr ⊆ O+(I), then O+(z) ∩ Σ 6= ∅,
on the other hand z ∈ F s(q̂j , S) so O+(z) is asymptotic at O+(q) and
as W is compact, then O+(z) ⊆ W so O+(z) ∩ Σ = ∅; which is a
contradiction, therefore x /∈ ∂v(S).

Now, if x ∈ ∂h(S) or x ∈ int(S), we have that {q̂1, q̂2, ...} \ F
s(x, S)

has a finite number of elements, otherwise we would find again that

there is z ∈ Ĵr ∩ F s(q̂j, S) for some pair r, k ∈ N and we have a
contradiction. Thus {q̂1, q̂2, ...} ∩ F s(x, S) is a infinite set and we can
organize as a succession {qn}n∈N, such that qi belongs to positive orbit
of qi−1, and so, the hypotheses of the Lemma 112 in [11] are satisfied,
then there is p ∈ Per(X)∩ω(q) such that qn ∈ F s(p) but as qn ∈ O+(q)
therefore we can conclude that ω(q) = γ = O(p). �

2Although this is presented in dimension three, it is valid in arbitrary dimension
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Theorem 8. Let q ∈ M , such that ω(q) is a sectional-hyperbolic set of
codimension 1. If ω(q) is a closed orbit, then q satisfies the property
(P )Σ for some closed subset Σ.

Proof. See Theorem 4 in [11] �

As a direct consequence of the Theorems 7 and 8, we obtain:

Theorem 9. Let ω(q) a sectional-hyperbolic set of codimension 1 of a
vector field X on M , then q satisfies the property P(Σ) if and only if
ω(q) is a closed orbit.

5. Proof the main theorem

For the proof, we will first analyze two particular cases and then the
general case.

Theorem 10. Let Λ be a sectional-hyperbolic set of codimension 1 from
a field X on M , such that W u(H) ⊆ Λ for every hyperbolic subset H
of Λ. If p, σ ∈ Λ satisfy p ≺ σ where p a periodic point and σ a
singularity, then there exists x ∈ Λ such that α(x) = α(p) and ω(x) is
a singularity.

Proof. Since p ≺ q, then there are successions (zn)n∈N with zn → p,
and (tn)n∈N with tn > 0 such that Xtn(zn) → σ; we can take tn → ∞
and without loss of generality we can assume that zn ∈ UΛ for all
n ∈ N. We denote by O = O(p) the periodic orbit containing p, as
O ⊆ Λ is hyperbolic we have W uu(p) is well defined and by hypothesis
contained in Λ, in addition F ss(p) = W ss(p). Now for the continuity
of F ss(p) and given that zn → p, for n sufficiently large F ss(zn)
intersects W uu(p) at a point z′n. Since zn and z′n have the same strong
stable manifold, Xtn(zn) → σ and tn → ∞, we have Xtn(z

′
n) → σ. But

z′n ∈ W u(O) which is invariant, then σ ∈ Cl(W u(O)), therefore, σ is
Lorenz-like.

We choose two cross-sections Σ1 ⊆ UΛ and Σ2 ⊆ UΛ, associated
with σ such that the intersection of Σ1 with one of the connected
components of W ss(σ) \ F ss(σ) is a point y1 ∈ int(Σ1) and the
intersection of Σ2 with the other component is a point y2 ∈ int(Σ2).
We take this sections of small size, so that O ∩ (Σ1 ∪ Σ2) = ∅. Since
Λ ∩ F ss(σ) = {σ}, then we can establish (∂hΣ1 ∪ ∂hΣ2) ∩ Λ = ∅. Let
F s

Σ1
y F s

Σ2
the vertical foliations of Σ1 and Σ2.

On the other hand as W u(O) accumulates on σ then accumulates on
F s(y1,Σ1), F

s(y2,Σ2) or both. Assume without loss of generality that
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accumulates on F s(y1,Σ1). We can select a point c ∈ W uu(p)∩int(Σ1),
as the first point where W uu(p) that intersects int(Σ1). Taking the
negative orbit of c and using the fact that dim(W uu(p)) = 1, we obtain
a fundamental domain Du = [a, b] of W uu(p) such that Du ∩ Σ = ∅.
Furthermore, b is in the positive orbit of a and in the negative orbit of c.

We define the function ΠD : Dom(ΠD) ⊆ Du → int(Σ1) with

Dom(ΠD) = {x ∈ Du : Xt(x) ∈ int(Σ1) for some t > 0}

given by ΠD(x) = Xt(x)(x), where t(x) is the return time, that is, the
first t > 0 for which Xt(x) ∈ int(Σ1).

By construction you have a, b ∈ Dom(ΠD), and since b is in the
positive orbit of a it follows that ΠD(a) = ΠD(b) = c ∈ int(Σ1). Define

q∗ = Sup{s ∈ [a, b] : [a, s] ⊆ Dom(ΠD),ΠD([a, s]) ⊆ int(Σ)

and ΠD|[a,s] is C
1}

q∗∗ = Inf{s ∈ [a, b] : [s, b] ⊆ Dom(ΠD),ΠD([s, b]) ⊆ int(Σ)

and ΠD|[s,b] is C
1}

Since ΠD(a),ΠD(b) ∈ int(Σ), by the continuous dependence of the
flow, q∗ y q∗∗ are well defined and a < q∗ y q∗∗ < b; now if q∗ = b,
q∗∗ = a o q∗ = q∗∗, we would have ΠD([a, b]) is a curve closed l in
int(Σ1) (without a point in the third case) and therefore tangent to F s

Σ1

in at least one point, but as Du ⊆ W uu(p), then the vectors tangent to
l belong to the central subspace Fc, meaning that l is transversal to the
strong stable foliation in Λ and therefore to the foliation F s

Σ1
, which

contradicts that it is closed, then a < q∗ < q∗∗ < b, also again by the
continuous dependency we have that q∗, q∗∗ /∈ Dom(ΠD), otherwise q∗

would not be a supremum or q∗∗ an infimum.

Let c∗, c∗∗ ∈ int(Σ1), the open extreme of the semi-open arcs
ΠD([a, q

∗)) and ΠD((q
∗∗, b]) respectively and l = ΠD([a, q

∗) ∪ (q∗∗, b]),
as ΠD(a) = ΠD(b) = c, we have l, it is an open connected arc with ends
c∗ y c∗∗, in addition ([a, q∗)∪ (q∗∗, b]) ⊆ W uu(p), then l is transverse to
F s

Σ1
. On the other hand, since Λ has codimension 1, F s(y1,Σ1) divide

a Σ1 into two connected components. Two cases are presented:

Case 1: If c∗ and c∗∗ are in different sides of F s(y1,Σ1), then, the
arc l intersects the leaf F s(y1,Σ1), that is, there exists
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x ∈ W s(σ) ∩W uu(p), then α(x) = α(p) and ω(x) = {σ}.

Case 2: If c∗ and c∗∗ are on the same side of F s(y1,Σ1), or
c∗ ∈ F s(y1,Σ1) or c∗∗ ∈ F s(y1,Σ1). Assume without loss
of generality that c∗ is closer to F s(y1,Σ1), than c∗∗. Consider
the cross section Σ0 ⊆ Σ1, given by the leaves F s(y1,Σ1),
F s(ΠD(r),Σ1), and all the leaves F s

Σ1
between them, at where

r ∈ (q∗∗, b). We have that O+(q∗) does not intersect the
interior of Σ1 and ∂hΣ0 ∩ Λ = ∅, then q∗ satisfies the property
P(Σ0) by taking I = (a, q∗).

Since q∗ ∈ Λ sectional-hyperbolic, ω(q∗) is also
sectional-hyperbolic, then by the theorem 8, ω(q∗) is a periodic
orbit or a singularity. If ω(q∗) = O(p̂) with p̂ ∈ Λ ∩ Per(X),
then follows from Inclination Lemma (see lemma 2.15 in
[1]), that the positive orbit I accumulates on W u(O(p̂)). In
particular, the positive orbit of I contains an open arc I∗

arbitrarily close to D̂u = [â, b̂], where D̂u is a fundamental
domain of W uu(p̂).

We define the function ΠD̂ : Dom(ΠD̂) ⊆ D̂u → int(Σ1) with

Dom(ΠD̂) = {x ∈ D̂u : Xt(x) ∈ int(Σ1) for some t > 0}

given by Π
D̂
(x) = Xt(x)(x), where t(x) is the return time, that

is, the first t > 0 for which Xt(x) ∈ int(Σ1).

By projecting I∗ onto D̂u along the strong stable manifolds

of the points in I∗, we can conclude that D̂u ⊆ Dom(Π
D̂
),

then ΠD̂(D̂
u) is a closed curve l̂ ⊆ int(Σ1), but since D̂u is

a fundamental domain of W uu(p̂) ⊆ Λ, then l̂ is transversal

to F s
Σ1
, which contradicts that l̂ is closed. From the above

contradiction we conclude that ω(q∗) is a singularity, therefore
q∗ ∈ W s(σ∗)∩W uu(p) for some singularity σ∗ ∈ Λ. Then taking
x = q∗, we get the result.

�

Theorem 11. Let Λ be a sectional-hyperbolic set of codimension 1 from
a field X over M , such that W u(H) ⊆ Λ for every hyperbolic subset H
of Λ. If p, σ ∈ Λ satisfies p ≺ σ, α(p) does not contain singularities
and σ is a singularity, then there exists x ∈ M such that α(x) = α(p)
and ω(x) is a singularity.
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Proof. We have that α(p) hyperbolic since it has no singularities. We
fix y ∈ α(p), then there is a sequence (tn)n∈N with tn → ∞ such that
X−tn(p) → y. We extend the hyperbolic decomposition of α(p) to a
neighborhood Uα(p), as the negative orbit of p becomes close to α(p), we
can assume that X−tn(p) ∈ Uα(p), we can use graphics transformation
techniques [8, 7], to find a ǫ > 0 and a succession of open intervals
(In)n∈N where In = (X−tn(p) − ǫ,X−tn(p) + ǫ) ⊆ W uu(X−tn(p)),
converging to the open interval I = (y − ǫ, y + ǫ) ⊆ W uu(y).

On the other hand, by applying the Shadowing Lemma [9] to the
negative orbit of p, we can establish a succession of periodic hyperbolic
points {pn}n∈N so that pn → y and pn ∈ Uα(p). For n large enough,
by the continuity W ss

Uα(p)
, we have W ss(pn) intersect W uu(y) at a

point qn, given that pn and qn have the same strong stable manifold
ω(qn) = ω(pn) = O(pn) and as qn ∈ W uu(y) ⊆ Λ, then pn ∈ Λ.

In addition, strong unstable manifolds W uu(pn) have uniformly
large size and approach to I when n → ∞. Then both W uu(pn) and
In approximate the interval I when n → ∞; this allows us to fix
n0, n1 ∈ N such that pn1 ∈ Λ and satisfies the property:

Property (Q) The strong stable manifold of each point close
to X−tn0

(p) intersects W uu(pn1), and conversely, the strong stable
manifold of any point close to pn1 intersects In0

Now, since p ≺ σ, so we also have to X−tn0
(p) ≺ σ, from where,

there are successions (zm)m∈N con zm → X−tn0
(p) and (tm)m∈N with

tm > 0 such that Xtm(zm) → σ. Then the property (Q) implies
that there is another sequence (z′m)m∈N ⊆ W uu(pn1) ∩ W ss(zm); then
Xtm(z

′
m) → σ, therefore pn1 ≺ σ. Applying the theorem 10, we have

that exists x∗ ∈ Λ such that α(x∗) = α(pn1) y ω(x∗) is a singularity
σ∗.

Taking the negative orbit of x∗, we can assume that x∗ is close enough
to pn1. Then the property (Q) implies that W ss(x∗) intersects In0 at
some point x. Then as In0 ⊆ W uu(X−tn0

(p)) and α(X−tn0
(p)) = α(p),

then you have α(x) = α(p), we have x ∈ W ss(x∗) thenω(x) = ω(x∗) =
σ∗, which proves the result. �

Proof main theorem. The result is immediate if q ∈ O+(p), then
assume that q ∈ O+(p). If ω(p) or ω(q) contain a singularity σ, then
p ≺ σ, similarly if α(q) contains a singularity σ, then the continuity of
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the flow Xt, and the fact that q /∈ O+(p) implies that p ≺ σ; then the
result follows from the previous theorem.
We will assume that the set α(p)∪ω(p)∪α(q)∪ω(q) has no singularities,
then there is δ1 > 0 such that p and q are in H1 defined by:

H1 =
⋂

t∈R

Xt(Λ \Bδ1(Sing(X))).

Since H1 has no singularities, then it is a hyperbolic set, for which
W uu(p) is well defined, and by hypothesis contained in Λ, reasoning
analogously to the beginning of the proof of theorem 10, there exists
a sequence {z′n}n∈N, such that z′n ∈ W uu(p) and Xtn(z

′
n) → q with

z′n → p and tn → ∞.

Suppose for a moment that for all k ∈ N there is σk ∈ Sing(X) such
that

σk ∈ Cl

(
∞⋃

n=k

O+(z′n)

)

Since the number of singularities in Λ is finite, we can assume that
σ = σk does not depend on k. As z′n → p, then it is concluded that
p ≺ σ; then the result follows from the theorem 11. Then we can
assume that there is k0 ∈ N y 0 < δ2 < δ1 such that

(
∞⋃

n=k0

O+(z′n)

)
∩Bδ2(Sing(X)) = ∅

Observe that O(z′n) ⊆ Λ, for which,

O+(zn0) ⊆ Λ \Bδ2(Sing(X))

for all n ≥ k0. On the other hand, z′n ∈ W uu(p), then α(z′n) = α(p)
that has no singularities. Then, like z′n0

→ p, we conclude that there
exists δ3 < δ2 such that O−(z′n) ⊆ U \ Bδ3(Sing(X)), for all n ≥ k0.
Consequently (z′n)n≥k0 ⊆ H where:

H =
⋂

t∈R

Xt(U \Bδ3(Sing(X)))

which has no singularities and therefore is hyperbolic. Then as
Xtn(z

′
n) → q y H is hyperbolic, by the theorem 2, there is x ∈ M

such that α(x) = α(p) and ω(x) = ω(q). �
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