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Abstract

We study for the first time the Cauchy problem for semilinear fractional elliptic equation.
This paper is concerned with the Gaussian white noise model for the initial Cauchy data.
We establish the ill-posedness of the problem. Then, under some assumption on the exact
solution, we propose the Fourier truncation method for stabilizing the ill-posed problem. Some
convergence rates between the exact solution and the regularized solution is established in L2

and Hq norms.

1 Introduction

The theory of fractional differential equations has received much attention over the past twenty
years, since they are important in describing the natural models such as diffusion processes, stochas-
tic processes, finance and hydrology. We refer for instance to the books [9, 13, 15, 17]. In this paper,
we consider the following Cauchy problem of fractional semi-linear elliptic equations:

Dβ
u (t, y)

Dtβ
= Au (t, y) +G (t, y,u (t, y)) , (t, y) ∈ Ω := Ω1 ×Ω2, (1.1)

associated with the zero Dirichlet boundary condition in y and the initial data and nonhomogeneous
initial velocity given by

u (0, y) = u0 (y) ,
du (t, y)

dt

∣∣∣∣
t=0

= u1 (y) , y ∈ Ω2. (1.2)

In (1.1), β ∈ (1, 2) is the fractional order and Dβ

Dtβ
denotes the Caputo fractional derivative with

respect to t, (see [8, 16]),

Dβ
u (t, y)

Dtβ
:=

1

Γ(2− β)

∫ t

0
(t− η)1−β ∂

2
u

∂η2
(η, y)dη,

where Γ is the Gamma function. The function u : Ω1 → L2 (Ω2) denotes the distribution of a body
where Ω1 := (0, a) ⊂ R and Ω2 ⊂ R

n are open, bounded and connected domains with a smooth
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boundary for n ≥ 2 and a > 0, and A is the linear second-order differential operator with variable
coefficients depending on y only:

Au (t, y) = Ayu (t, y) =

n∑

i,j=1

∂

∂yi

(
di,j (y)

∂u (t, y)

∂yj

)
+ d (y)u (t, y) .

The basic requirement for the coefficients di,j (y) and d (y) is that A is a positive, self-adjoint
operator in the Hilbert space L2 (Ω2). Consequently, there exists an orthonormal basis of L2 (Ω2),
denoted by {φp}p∈N∗

, satisfying

φp ∈ H1
0 (Ω2) ∩ C∞

(
Ω2

)
, Aφp (y) = λpφp (y) for y ∈ Ω2, (1.3)

and the corresponding discrete spectrum {λp}p∈N∗
satisfies

0 < λ1 ≤ λ2 ≤ ... lim
p→∞

λp = ∞. (1.4)

A related fractional elliptic equation with homogeneous source term, i.e, G = 0 in Eqs (1.1)-(1.2) has
been introduced in section 4.2 in [7] where the authors established the ill-posedness of the problem
in the sense of Hadamard [6]. This means that a solution of Problem (1.1)-(1.2) corresponding to
the data does not always exist, and in the case of existence, it does not depend continuously on
the given data. In fact, from small noise contaminated physical measurements, the corresponding
solutions will have large errors. Hence, one has to resort to a regularization. In [7], the authors did
not mention the regularization results for this problem.

If we replace the operator A by −A in equation (1.1) then we get the fractional wave equation
which is studied in [8]. As introduced in [8], the kinds of the equation (1.1) have many applications
in anamolous diffusion phenomenon and in heterogeneous media. Some more physical applications
can be found in [8].

Until now, to the best of our knowledge, there are no results concerning a regularization for the
nonlinear problem (1.1)-(1.2). Motivated by this reason, in this paper, we study the regularization
results for (1.1)-(1.2). In addition, one usually meets the measurement in practice, i.e. we need to
assume the presence of an approximation (uǫ

0,u
ǫ
1) ∈ L2 (Ω2)× L2 (Ω2). If the errors are generated

from uncontrollable sources (or called external reason) as environment, wind, rain, humidity, etc,
then the model is random. As we know, the problem with random data is more difficult than the
deterministic case. Hence, we study the problem (1.1)-(1.2) with the following random model

u
ǫ
0(y) = u0(y) + ǫξ(y), u

ǫ
1(y) = u1(y) + ǫξ(y) (1.5)

in which the constant ε > 0 represents the upper bound of the noise level in L2 (Ω2). And ξ is a
Gaussian white noise process. In practice, we only obtain finite errors as follows

〈uǫ
0, φp〉 = 〈u0, φp〉+ ǫ 〈ξ, φp〉 , 〈uǫ

1, φp〉 = 〈u1, φj〉+ ǫ 〈ξ, φp〉 , p = 1,N. (1.6)

where N is the natural number which is the number of steps for discrete observations. Our task
here is to find a regularized solution (called the estimator) ure for u and then investigate the rate of
convergence E‖ure−u‖ , which is called the mean integrated square error (MISE). Here E denotes
the expectation w.r.t. the distribution of the data in the model (1.5).

If G = 0 in Eqs (1.1) and u1 = 0 in (1.2), using (2.10), we can see that the solution to (1.1)-(1.2)
satisfies a following linear operator with random noise defined in (1.5)

Ku(a, y) + ”random noise” = u0(y), (1.7)

where Kv =
∑∞

p=1
1

Eβ,1(λpaβ)
〈v, φp〉. The linear random model (1.5)-(1.7) is one of many linear

inverse problems in statistics which have been studied by well-known methods including spectral
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cut-off (or called truncation method) [1, 2, 12, 10], the Tiknonov method [3], iterative regularization
methods [5]. For the nonlinear problem, we can not transform (1.1)-(1.2) into (1.7). Hence, previous
techniques for solving (1.7) are not suitable for solving the nonlinear problem (1.1)-(1.2). The main
idea in this paper is to approximate the initial data (u0,u1) by an approximate data and use this
function to establish a solution of a regularized problem by truncation method.

This paper is organized as follows. In section 2, we present a mild solution and show the ill-
posedness of the solution to fractional semilinear elliptic equation. In section 3, we establish a
regularized solution and investigate the convergence rates of the expectation of the difference for
the solution and the regularized solution in L2 and in the Sobolev spaces Hq for q > 0.

2 The mild solution of Cauchy problem for fractional elliptic equa-

tion

Suppose that problem (1.1)-(1.2) has a mild solution u which has the form u(t, y) =
∑∞

p=1 up(t)φp(y).
Then the function up(t) solves the following ordinary differential equation





Dβup(t)
Dtβ

− λpup(t) = 〈G(t, y,u(t, ·)), φp〉 ,

up(0) = 〈u0, φp〉
d
dt
up(0) = 〈u1, φp〉

(2.8)

By applying the method in [8, 16], we obtain the solution of (2.8) as follows

up(t) = Eβ,1(λpt
β) 〈u0, φp〉+ tEβ,2(λpt

β) 〈u1, φp〉

+

∫ t

0
(t− η)β−1Eβ,β(λp(t− η)β) 〈G(t, η,u(t, ·)), φp〉 dη (2.9)

and u is given by

u(t, y) =

∞∑

p=1

[
Eβ,1(λpt

β) 〈u0, φp〉+ tEβ,2(λpt
β) 〈u1, φp〉

]
φp(y)

+
∞∑

p=1

[ ∫ t

0
(t− η)β−1Eβ,β(λp(t− η)β) 〈G(t, η,u(t, ·)), φp〉 dη

]
φp(y) (2.10)

Next we give some lemmas that will be useful in this paper.

Lemma 2.1. Let 0 < β0 < β1 < 2 and β ∈ [β0, β1]. Then for z ∈ R, z ≥ 0 then

C̃

β
ez

1
β
≤ Eβ,1(z) ≤

C

β
ez

1
β
. (2.11)

Proof. The proof can be found in [4].

Now, we have the following Lemma

Lemma 2.2. Let 0 < β < 2 and t ∈ [0, a]. Then there exists C1, C2, C3 which does not depend on
t, such that

Eβ,1(λpt
β) ≤ C1 exp

(
λ

1
β
p t
)

(2.12)

tEβ,2(λpt
β) ≤ C2

(
1 + λ

−1
β
p

)
exp

(
λ

1
β
p t
)

(2.13)

tβ−1Eβ,β(λpt
β) ≤ C3 exp

(
λ

1
β
p t
)

(2.14)

3



Proof. Applying Proposition 2.5 in [14], we obtain

Eβ,γ(wt
β) ≤ Cβ,γ

(
1 + w

1−γ
β

)(
1 + t1−γ

)
exp

(
w

1
β t
)
, w ≥ 0, t ≥ 0. (2.15)

Let w = λp and γ = 1 into (2.15), we get

Eβ,1(λpt
β) ≤ 4Cβ,γ exp

(
w

1
β t
)
= C1 exp

(
λ

1
β
p x
)
. (2.16)

Let w = λp and γ = 2 into (2.15), we get

Eβ,2(λpt
β) ≤ Cβ,γ

(
1 + λ

−1
β
p

)(
1 + t−1

)
exp

(
λ

1
β
p t
)
. (2.17)

Multiplying both sides of the latter inequality with x, we obtain

xEβ,2(λpt
β) ≤ Cβ,γ

(
1 + λ

−1
β
p

)(
1 + a

)
exp

(
w

1
β t
)
= C2

(
1 + λ

−1
β
p

)
exp

(
λ

1
β
p t
)
. (2.18)

Let w = λp and γ = β into (2.15), we get

Eβ,β(λpt
β) ≤ Cβ,γ

(
1 + λ

1−β
β

p

)(
1 + t1−β

)
exp

(
λ

1
β
p t
)
. (2.19)

Multipying bothsides of the latter inequality to tβ−1 and noting that β > 1, we obtain

tβ−1Eβ,β(λpt
β) ≤ Cβ,γ

(
1 + λ

1−β
β

p

)(
1 + tβ−1

)
exp

(
w

1
β t
)

≤ Cβ,γ

(
1 + aβ−1

)(
1 + λ

1−β
β

1

)

︸ ︷︷ ︸
C3

exp
(
λ

1
β
p t
)
. (2.20)

2.1 The ill-posedness of problem (1.1)-(1.2) with random noise

In this section, we show that the problem (1.1)-(1.2) in a special case with random noise is ill-posed
in the sense of Hadamard.

Theorem 2.1. Problem (1.1)-(1.2) is ill-posed in the sense of Hadamard.

Proof. Now, we give an example which shows that Problem (1.1)-(1.2) has a unique solution and
its solution is not stable. For simple computation, we assume that Ω2 = (0, π) , A = −∆ where
∆ is the Laplacian operator, and the function u1 = 0. It immediately follows that λN = N

2.
Let us consider the following parabolic equation




Dβ
VN(ǫ) (t, y)

dtβ
= AVN(ǫ) (t, y) +G

(
t, y,VN(ǫ) (t, y)

)
, (t, y) ∈ Ω := Ω1 × Ω2

VN(ǫ)(t, 0) = VN(ǫ)(t, π) = 0,

VN(ǫ)(0, y) = UN(ǫ)(y),
dVN(ǫ)(0, y)

dt
= 0

(2.21)

where G is given by

G(t, y, v(t, y)) =

∞∑

p=1

exp
(
λ

1
β
p (t− a)

)

2aC3
〈v(t, ·), φp〉φp(y) (2.22)
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for any v ∈ L2(Ω2), and φp(y) =
√

2
π
sin(py) and C3 is defined in Lemma (2.2). Let UN(ǫ) ∈ L2(Ω2)

be such that

UN(ǫ)(y) =

N(ǫ)∑

p=1

〈uǫ
0, φp〉φp(y) (2.23)

where u
ǫ
0 is defined by

〈uǫ
0, φj〉 = ǫ 〈ξ, φj〉 , j = 1,N(ǫ). (2.24)

By the usual MISE (mean integrated squared error) decomposition which involves a variance term
and a bias term (see p.9, [11]), we get

E‖UN(ǫ)‖
2
L2(Ω) = E

(N(δ)∑

j=1

〈uǫ
0, φj〉

2
)
= ǫ2E

(N(ǫ)∑

j=1

ξ2j

)
= ǫ2N(ǫ). (2.25)

The solution of Problem (2.21) is given by Fourier series

VN(ǫ)(t, y)

=
∞∑

p=1

[
Eβ,1

(
λpt

β
) 〈

UN(ǫ), φp

〉
+

∫ t

0
(t− η)β−1Eβ,β

(
λp(t− η)β

) 〈
G
(
η, ·,VN(ǫ) (η, ·)

)
, φp

〉
dη

]
φp (y) .

(2.26)

We show that Problem (2.26) has a unique solution VN(ǫ) ∈ C([0, a];L2(Ω2)). Let us consider

Hv :

=

∞∑

p=1

[
Eβ,1

(
λpt

β
) 〈

UN(ǫ), φp

〉
+

∫ t

0
(t− η)β−1Eβ,β

(
λp(t− η)β

) 〈
G (η, ·, v (η, ·)) , φp

〉
dη

]
φp (y) .

(2.27)

For any v1, v2 ∈ C([0, a];L2(Ω2)), using Hölder inequality and Lemma (2.2), we have for all t ∈ [0, a]

‖Hv1(t)−Hv2(t)‖
2 =

∞∑

p=1

[∫ t

0
(t− η)β−1Eβ,β

(
λp(t− η)β

) 〈
G (η, ·, v1 (η, ·))−G (η, ·, v2 (η, ·)) , φp

〉
dη

]2

≤ a

∞∑

p=1

∫ t

0

∣∣∣(t− η)β−1Eβ,β

(
λp(t− η)β

) ∣∣∣
2∣∣∣
〈
G (η, ·, v1 (ξ, ·))−G (η, ·, v2 (η, ·)) , φp

〉2
dη

≤
1

4a

∞∑

p=1

∫ t

0
exp

(
2λ

1
β
p (t− a)

)〈
v1(η)− v2(η), φp

〉2
dη

≤
1

4
‖v1 − v2‖

2
C([0,a];L2(Ω2))

. (2.28)

Hence, we obtain that

‖Hv1 −Hv2‖|C([0,a];L2(Ω2)) ≤
1

2
‖v1 − v2‖C([0,a];L2(Ω2)). (2.29)

This implies that H is a contraction. Using the Banach fixed-point theorem, we conclude that
the equation H(w) = w has a unique solution VN(ǫ) ∈ C([0, a];L2(Ω2)). Using the inequality

5



a2 + b2 ≥ 1
2(a− b)2, a, b ∈ R, we have the following estimate

∥∥∥VN(ǫ)

∥∥∥
2

L2(Ω2)
≥

1

2

∥∥∥
∞∑

p=1

Eβ,1

(
λpt

β
) 〈

UN(ǫ), φp

〉
φp(y)

∥∥∥
2

L2(Ω2)

︸ ︷︷ ︸
I1

−
∥∥∥

∞∑

p=1

[∫ t

0
(t− η)β−1Eβ,β

(
λp(t− η)β

) 〈
G
(
η, ·,VN(ǫ) (η, ·)

)
, φp

〉
dη

]
φp (y)

∥∥∥
2

L2(Ω2)

︸ ︷︷ ︸
I2

.

(2.30)

First, using Hölder’s inequality and Lemma (2.2), we get

I2 =

∞∑

p=1

[∫ t

0
(t− ξ)β−1Eβ,β

(
λp(t− η)β

) 〈
G
(
η, ·,VN(ǫ) (η, ·)

)
, φp

〉
dη

]2

≤ a

∞∑

p=1

∫ t

0

∣∣∣(t− η)β−1Eβ,β

(
λp(t− η)β

) ∣∣∣
2 〈

G
(
η, ·,VN(ǫ) (η, ·)

)
, φp

〉2
dη

≤
1

4a

∞∑

p=1

∫ t

0
exp

(
2λ

1
β
p (t− a)

)〈
VN(ǫ), φp

〉2
dη

≤
1

4
‖VN(ǫ)‖

2
C([0,a];L2(Ω2))

. (2.31)

And using Lemma 2.1, we have the lower bound for I1 as follows

EI1 =
1

2

∞∑

p=1

∣∣∣Eβ,1

(
λpt

β
) ∣∣∣

2∣∣∣E
〈
UN(ǫ), φp

〉2

=
1

2

N(ǫ)∑

p=1

ǫ2
∣∣∣Eβ,1

(
λpt

β
) ∣∣∣

2
≥

C̃

2β
ǫ2 exp

(
2t|λN(ǫ)|

1
β

)
. (2.32)

Combining (2.30), (2.31), (2.32), we obtain

E

∥∥∥VN(ǫ)

∥∥∥
2

L2(Ω2)
+

1

4
E‖VN(ǫ)‖

2
C([0,a];L2(Ω2))

≥
C̃

2β
ǫ2 exp

(
2t|N(ǫ)|

2
β

)
. (2.33)

By taking supremum of both sides on [0, a], we get

E‖VN(ǫ)‖
2
C([0,a];L2(Ω2))

≥
2C

5
sup

0≤t≤a
ǫ2 exp

(
2t|N(ǫ)|

2
β

)
=

2C̃ǫ2

5β
exp

(
2a|N(ǫ)|

2
β

)
. (2.34)

Let us choose N := N(ǫ) =
[(

2
a
ln(1

ǫ
)
)β

2
]
+1, where [z] is the greatest integer less than or equal to

z. Then using (2.33), we obtain

E‖UN(ǫ)‖
2
L2(Ω2)

= ǫ2N(ǫ) ≤ ǫ2
(2
a
ln(

1

ǫ
)
) β

2
+ ǫ2 → 0, when ǫ → 0. (2.35)

and by (2.34), we get

E‖VN(ǫ)‖
2
C([0,a];L2(Ω2))

≥
2C̃

5βǫ2
→ +∞, when ǫ → 0. (2.36)

From (2.35) and (2.36), the expectation of input data UN(ǫ) tends to zero, while the expectation
of output data VN(ǫ) tends to infinity. Hence, we can conclude that Problem (1.1)-(1.2) is ill-posed
in the sense of Hadamard.
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3 Regularization and error estimate

Next we prove the following lemma

Lemma 3.1. Let U
0
N(ǫ), U

1
N(ǫ) ∈ L2(Ω2) be such that

U
0
N(ǫ)(y) =

N(ǫ)∑

p=1

〈uǫ
0, φp〉φp(y), U

1
N(ǫ)(y) =

N(ǫ)∑

p=1

〈uǫ
1, φp〉φp(y) (3.37)

Suppose that u0, u1 ∈ H2γ(Ω2). Then we have the following estimates

E‖U
0
N(ǫ) − u0‖

2
L2(Ω2)

≤ ǫ2N(ǫ) +
1

λ
2γ
N(ǫ)

‖u0‖
2
H2γ (Ω2)

E‖U
1
N(ǫ) − u1‖

2
L2(Ω2)

≤ ǫ2N(ǫ) +
1

λ
2γ
N(ǫ)

‖u1‖
2
H2γ (Ω2)

(3.38)

for any γ ≥ 0. Here N depends on ǫ and satisfies that limǫ→0N(ǫ) = +∞ and limǫ→0 ǫ
2
N(ǫ) = 0.

Proof. For the following proof, we consider the genuine model (1.6). By the usual MISE decompo-
sition which involves a variance term and a bias term, we get

E‖U
0
N(ǫ) − u0‖

2
L2(Ω2)

= E

(N(ǫ)∑

p=1

〈uǫ
0 − u0, φp〉

2
)
+

∑

p≥N(ǫ)+1

〈u0, φp〉
2

= ǫ2E
(N(ǫ)∑

p=1

ξ2j

)
+

∑

p≥N(ǫ)+1

λ−2γ
p λ2γ

p 〈u0, φp〉
2 . (3.39)

Since ξj
iid
∼ N(0, 1), it follows that Eξ2j = 1, so the proof is completed.

In this paper, we apply the truncation method to establish a regularized solution as follows

u
ǫ
N(ǫ) (t, y) =

∞∑

p=1

R(λp,N(ǫ))
[
Eβ,1

(
λpt

β
)〈

U
0
N(ǫ), φp

〉
+ tEβ,2

(
λpt

β
)〈

U
1
N(ǫ), φp

〉

+

∫ t

0
(t− η)β−1Eβ,β

(
λp(t− η)β

)〈
G
(
η, ·,uǫ

N(ǫ) (η, ·)
)
, φp

〉
dη

]
φp (y) , (t, y) ∈ Ω.

(3.40)

Here R(λp,N(ǫ)) = 1 if λp ≤ BN(ǫ) and is zero if λp > BN(ǫ) and BN(ǫ) is called a parameter of
regularization which will be chosen later.

Our main result is as follows

Theorem 3.1. The integral equation (3.40) has a unique solution u
ǫ
N(ǫ) ∈ C([0, a];L2(Ω2)). Sup-

pose that u0,u1 ∈ Hγ(Ω2) that satisfy

‖u0‖H2γ (Ω2) + ‖u1‖H2γ (Ω2) ≤ M0.

Assume that problem (1.1)-(1.2) has a unique mild solution u which satisfies that

∞∑

p=1

λµ
p exp

(
2(a− t)λ

1
β
p

)
〈u(t, ·), φp〉

2 ≤ M, t ∈ [0, a], (3.41)

7



for some positive constants µ,M. Assume that BN(ǫ) satisfy

lim
ǫ→0

BN(ǫ) = +∞, lim
ǫ→0

exp
(
2|BN(ǫ)|

1
β a
)
ǫ2N(ǫ) = lim

ǫ→0

exp
(
2|BN(ǫ)|

1
β a
)

λ
2γ
N(ǫ)

= 0. (3.42)

Then the following estimate holds

E‖uǫ
N(ǫ) (t, .)− u (t, .) ‖2L2(Ω2)

≤ 2C1 exp
(
2|BN(ǫ)|

1
β t
)
(
2ǫ2N(ǫ) +

M0

λ
2γ
N(ǫ)

)
+ 2D1 exp

(
− 2(a− t)|BN(ǫ)|

1
β

)
λ
−µ
N(ǫ)M

2.

(3.43)

Remark 3.1. From the theorem above, it is easy to see that E‖uǫ
N(ǫ) (t, .) − u (t, .) ‖2

L2(Ω2)
is of

order

max

[
λ
−µ
N(ǫ) exp

(
− 2(a− t)|BN(ǫ)|

1
β

)
, ǫ2N(ǫ)e2a|BN(ǫ)|

1
β
,
e2a|BN(ǫ)|

1
β

λ
2γ
N(ǫ)

]
. (3.44)

We give one example for the choice of N(ǫ) which satisfies the condition (3.42). It is well-known

that λN(ǫ) ∼ (N(ǫ))
2

d , we can choose N(ǫ) such that N(ǫ) = [ǫ
−2b

2m+1 ] for some b > 0 and

eka|BN(ǫ)|
1
β
= (N(ǫ))m, 0 < m <

2γ

d
.

Then, we get

BN(ǫ) =
(m
ka

log(N(ǫ))
)β

Then the error E‖uǫ
N(ǫ) (t, .)− u (t, .) ‖2

L2(Ω2)
is of order

ǫ
4bm(a−x)
(2m+1)a max

(
ǫ2−2b, ǫ

2b(4γ−2md)
(2m+1)d , ǫ

4bµ
(2m+1)d

)
. (3.45)

Proof of Theorem 3.1. We divide the proof into some smaller parts.
Part 1. The existence and uniqueness of the solution of the nonlinear integral equation (3.40) .

For v ∈ C([0, a];L2(Ω2))), we put

F(v)(t, y) =

∞∑

p=1

R(λp,N(ǫ))

[
Eβ,1

(
λpt

β
)〈

U
0
N(ǫ), φp

〉
+ tEβ,2

(
λpt

β
)〈

U
1
N(ǫ), φp

〉

+

∫ t

0
(t− η)β−1Eβ,β

(
λp(t− η)β

)
〈G (η, ·, v (η, ·)) , φp〉 dη

]
φp (y) . (3.46)

We will prove by induction that if v1, v2 ∈ C([0, a];L2(Ω2))) then

∥∥∥Fm(w1)(t, .) −Fm(w2)(t, .)
∥∥∥
L2(Ω2)

≤

(
K2a2A2

1λ
2−2β

β

1 exp
(
2|BN(ǫ)|

1
β a
)

β2

)m
tm

m!
‖w1 −w2‖C([0,a];L2(Ω2)). (3.47)
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For m = 1, we have by using Lemma 2.2 and the fact that G is Lipchitz

‖F(v1)−F(v2)‖
2
L2(Ω2)

≤ t

∞∑

p=1

|R(λp,N(ǫ))|2
∫ t

0
(t− η)2β−2|Eβ,β

(
λp(t− η)β

)
|2 〈G (η, ·, v1 (η, ·))−G (η, ·, v2 (η, ·)) , φp〉

2 dη

≤
a2A2

1

β2
λ

2−2β
β

1

∫ t

0
exp

(
2|BN(ǫ)|

1
β (t− η)

)∥∥∥G (η, ·, v1 (η, ·))−G (η, ·, v2 (η, ·))
∥∥∥
2

L2(Ω2)
dη

≤
K2a2A2

1λ
2−2β

β

1 t

β2
exp

(
2|BN(ǫ)|

1
β a
)∥∥∥v1 − v2

∥∥∥
2

C([0,a];L2(Ω2))
. (3.48)

Assume that (3.47) holds for m = p. We show that (3.47) holds for m = p+ 1. In fact, we have

‖Fp+1(v1)−Fp+1(v2)‖
2
L2(Ω2)

≤ t

∞∑

p=1

|R(λp,N(ǫ))|2
∫ t

0
(t− η)2β−2|Eβ,β

(
λp(t− η)β

)
|2 〈G (η, ·,Fp(v1) (η, ·))−G (η, ·,Fp(v2) (η, ·)) , φp〉

2 dη

≤
a2A2

1λ
2−2β

β

1

β2

∫ t

0
exp

(
2|BN(ǫ)|

1
β (t− η)

)∥∥∥G (η, ·,Fp(v1) (η, ·))−G (η, ·,Fp(v2) (η, ·))
∥∥∥
2

L2(Ω1)
dη

≤
K2a2A2

1λ
2−2β

β

1 t

β2
exp

(
2|BN(ǫ)|

1
β a
)∥∥∥Fp(v1)−Fp(v2)

∥∥∥
2

C([0,a];L2(Ω2))

≤

(
K2a2A2

1λ
2−2β

β

1 exp
(
2λ

1
β

N(ǫ)a
)

β2

)p+1
xp+1

(p+ 1)!
‖v1 − v2‖C([0,a];L2(Ω2)). (3.49)

Therefore, by induction, we have (3.47) for all w, v ∈ C([0, a];L2(Ω2)). Since

lim
m→+∞

(
K2a2A2

1λ
2−2β

β

1 exp
(
2|BN(ǫ)|

1
β a
)

β2

)m
am

m!
= 0

there exists a positive integer m0 such that Fm0 is a contraction. It follows that the equation
Fm0w = w has a unique solution uǫ

N(ǫ) ∈ C([0, a];L2(Ω2)). We claim that F(uǫ
N(ǫ)) = uǫ

N(ǫ). In

fact, since Fm0(uǫ
N(ǫ)) = uǫ

N(ǫ), we know that F
(
Fm0(uǫ

N(ǫ))
)
= F(uǫ

N(ǫ)). This is equavilent to

Fm0

(
F(uǫ

N(ǫ))
)
= F(uǫ

N(ǫ)). Hence, F(uǫ
N(ǫ)) is a fixed point of Fm0 . Moreover, as noted above,

uǫ
N(ǫ) is a fixed point of Fm0 .
Part 2. Estimate the expectation of the error between the exact solution u and the regularized

solution u
ǫ
N(ǫ).

Let us consider the following integral equation

v
ǫ
N(ǫ) (t, y) =

∞∑

p=1

R(λp,N)
[
Eβ,1

(
λpt

β
)
〈u0, φp〉+ tEβ,2

(
λpt

β
)
〈u1, φp〉

+

∫ t

0
(t− η)β−1Eβ,β

(
λp(x− η)β

)〈
G
(
η, ·,vǫ

N(ǫ) (η, ·)
)
, φp

〉
dη

]
φp (y) , (t, y) ∈ Ω,

(3.50)
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Combining (3.40) and (3.50) and taking the expectation of both sides of the norm in L2, we get

E‖uǫ
N(ǫ) (t, .)− v

ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

≤ 3E

(
∑

λp≤BN(ǫ)

|Eβ,1

(
λpt

β
)
|2
〈
U

0
N(ǫ) − u0, φp

〉2
)

+ 3E

(
∑

λp≤BN(ǫ)

|tEβ,2

(
λpt

β
)
|2
〈
U

1
N(ǫ) − u1, φp

〉2
)

+ 3E

(
∑

λp≤BN(ǫ)

[∫ t

0
(t− η)β−1Eβ,β

(
λp(t− η)β

)〈
G
(
η, ·,uǫ

N(ǫ) (η, ·)
)
−G

(
η, ·,vǫ

N(ǫ) (η, ·)
)
, φp

〉
dη

]2)
.

(3.51)

Where above we have used the inequality (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 for real numbers a, b, c.

Using Lema 3.1 and the Hölder inequality, we deduce that

E‖uǫ
N(ǫ) (t, .)− v

ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

≤
3A2

1

β2
exp

(
2|BN(ǫ)|

1
β t
)
E‖U

0
N(ǫ) − u0‖

2
L2(Ω2)

+
3A2

1

β2
λ
− 2

β

1 exp
(
2|BN(ǫ)|

1
β t
)
E‖U

1
N(ǫ) − u1‖

2
L2(Ω2)

+
3k2aA2

1

β2
λ

2−2β
β

1

∫ t

0
exp

(
2|BN(ǫ)|

1
β (t− η)

)
E‖uǫ

N(ǫ) (η, .) − v
ǫ
N(ǫ) (η, .) ‖

2
L2(Ω2)

dη. (3.52)

Multiplying both sides with exp
(
− 2|BN(ǫ)|

1
β t
)
, we obtain

exp
(
− 2|BN(ǫ)|

1
β t
)
E‖uǫ

N(ǫ) (t, .)− v
ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

≤
3A2

1

β2
E‖U

0
N(ǫ) − u0‖

2
L2(Ωy)

+
3A2

1

β2
λ
− 2

β

1 E‖U
1
N(ǫ) − u1‖

2
L2(Ω2)

+
3k2aA2

1

β2
λ

2−2β
β

1

∫ t

0
exp

(
− 2|BN(ǫ)|

1
β η
)
E‖uǫ

N(ǫ) (η, .)− v
ǫ
N(ǫ) (η, .) ‖

2
L2(Ω2)

dη. (3.53)

Applying Gronwall’s inequality, we get

exp
(
− 2|BN(ǫ)|

1
β t
)
E‖uǫ

N(ǫ) (t, .)− v
ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

≤
3A2

1

β2
max

(
1, λ

2−2β
β

1

)
exp

(3k2aA2
1

β2
λ

2−2β
β

1

)(
E‖U

0
N(ǫ) − u0‖

2
L2(Ω2)

+E‖U
1
N(ǫ) − u1‖

2
L2(Ω2)

)

≤
3A2

1

β2
max

(
1, λ

2−2β
β

1

)
exp

(3k2aA2
1

β2
λ

2−2β
β

1

)

︸ ︷︷ ︸
C1:=C1(β,A1,a,k,λ1)

(
2ǫ2N(ǫ) +

‖u0‖
2
H2γ (Ω2)

+ ‖u1‖
2
H2γ (Ωy)

λ
2γ
N(ǫ)

)

≤ C1

(
2ǫ2N(ǫ) +

M0

λ
2γ
N(ǫ)

)
. (3.54)

Now, we continue to estimate ‖u(t, .)−v
ǫ
N(ǫ) (t, .) ‖L2(Ω2). Indeed, using Hölder inequality, globally

10



Lipschitzp roperty of G, and equations (2.10) and (2.26) we get

‖u(t, .) − v
ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

≤ 2
∑

λp≤BN(ǫ)

[∫ t

0
(t− η)β−1Eβ,β

(
λp(t− η)β

)〈
G (η, ·,u (η, ·))−G

(
η, ·,vǫ

N(ǫ) (η, ·)
)
, φp

〉
dη

]2

+ 2
∑

λp>BN(ǫ)

〈u(t, y), φp〉
2

≤ 2
∑

λp>BN(ǫ)

λ−µ
p exp

(
− 2(a− t)λ

1
β
p

)
λµ
p

(
2(a− t)λ

1
β
p

)
〈u(t, y), φp〉

2

+
2k2aA2

1

β2
λ

2−2β
β

1

∫ t

0
exp

(
2B

1
α

N(ǫ)(t− η)
)∥∥u (η, .) − v

ǫ
N(ǫ) (η, .)

∥∥2
L2(Ω2)

dη

≤ |BN(ǫ)|
−µ exp

(
− 2(a− t)|BN(ǫ)|

1
β

)
M2

+
2k2aA2

1

β2
λ

2−2β
β

1

∫ t

0
exp

(
2|BN(ǫ)|

1
β (t− η)

)∥∥u (η, .) − v
ǫ
N(ǫ) (η, .)

∥∥2
L2(Ω2)

dη.

Multiplying both sides with exp
(
2(a− t)|BN(ǫ)|

1
β

)
, we obtain

exp
(
2(a− t)|BN(ǫ)|

1
β

)
‖u(t, .) − v

ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

≤ |BN(ǫ)|
−µM2 +

2k2aA2
1

β2
λ

2−2β
β

1

∫ t

0
exp

(
2|BN(ǫ)|

1
β (a− η)

)∥∥u (η, .)− v
ǫ
N(ǫ) (η, .)

∥∥2
L2(Ω2)

dη.

(3.55)

Gronwall’s inequality implies that

exp
(
2(a− t)|BN(ǫ)|

1
β

)
‖u(t, .) − v

ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

≤ exp
(2k2aA2

1t

β2
λ

2−2β
β

1

)

︸ ︷︷ ︸
D1:=D1(k,a,A1,β)

|BN(ǫ)|
−µM2. (3.56)

This together with the estimate (3.54) leads to

E‖uǫ
N(ǫ) (t, .)− u (t, .) ‖2L2(Ω2)

≤ 2E‖uǫ
N(ǫ) (t, .)− v

ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

+ 2‖u(t, .) − v
ǫ
N(ǫ) (t, .) ‖L2(Ω2)

≤ 2C1 exp
(
2|BN(ǫ)|

1
β t
)
(
2ǫ2N(ǫ) +

M0

λ
2γ
N(ǫ)

)
+ 2D1 exp

(
− 2(a − t)|BN(ǫ)|

1
β

)
|BN(ǫ)|

−µM2

(3.57)

which completes our proof.

The next result provides an error estimate in the Sobolev space Hq(Ω2) which is equipped with
a norm defined by

‖g‖2Hq(Ω2)
=

∞∑

p=1

λq
p

〈
g, φp

〉2
. (3.58)

To estimate the error in the Hq norm, we need stronger assumption on solution u.

11



Theorem 3.2. Suppose that the problem (1.1)-(1.2) has unique solution u such that

∞∑

p=1

exp
(
2(a − t+ r)λ

1
β
p

)
〈u(t, y), φp〉

2 ≤ M1, t ∈ [0, a], (3.59)

for any r > 0. Let N(ǫ), BN(ǫ) be as in Theorem (3.1). Then the following estimate holds

E‖uǫ
N(ǫ) (t, .)− u(t, .)‖2Hq(Ω2)

≤ 4|BN(ǫ)|
q exp

(
2|BN(ǫ)|

1
β t
)
C1

(
2ǫ2N(ǫ) +

M0

λ
2γ
N(ǫ)

)
+M2

1(2D1 + 1)|BN(ǫ)|
q exp

(
− 2(a− t+ r)|BN(ǫ)|

1
β

)

(3.60)

Remark 3.2. In physical modelling and engineering, the estimation on a Hilbert scale space, for
example Hq(Ω) is important. Furthermore, the problem of estimating the error in this space more
difficult than L2(Ω). Hence, the above theorem is a new and interesting result.

Proof. First, we have

E‖uǫ
N(ǫ) (t, .)−QBN(ǫ)

u(t, .)‖2Hq(Ω2)
= E




∑

λp≤BN(ǫ)

λ
q
j

〈
u
ǫ
N(ǫ) (t, .)− u(t, .), φp(y)

〉2



≤ |BN(ǫ)|
q
E




∑

λp≤BN(ǫ)

〈
u
ǫ
N(ǫ) (t, .)− u(t, .), φp(y)

〉2



≤ |BN(ǫ)|
q
E‖uǫ

N(ǫ) (t, .)− u(t, .)‖2L2(Ω2)
. (3.61)

where QBN(ǫ)
u(t, .) =

∑
λp≤BN(ǫ)

〈u(t, .), φp(y)〉φp(y). Under the assumption (3.59), we get

‖u(t, .) − v
ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

≤ 2
∑

λp≤BN(ǫ)

[∫ t

0
(t− η)β−1Eβ,β

(
λp(t− η)β

)〈
G (η, ·,u (η, ·))−G

(
η, ·,vǫ

N(ǫ) (η, ·)
)
, φp

〉
dη

]2

+ 2
∑

λp>BN(ǫ)

〈u(t, y), φp〉
2

≤ 2
∑

λp>BN(ǫ)

exp
(
− 2(a− t+ r)λ

1
β
p

)
exp

(
2(a− t+ r)λ

1
β
p

)
〈u(t, y), φp〉

2

+
2k2aA2

1

β2
λ

2−2β
β

1

∫ t

0
exp

(
2|BN(ǫ)|

1
β (t− η)

)∥∥u (η, .) − v
ǫ
N(ǫ) (η, .)

∥∥2
L2(Ω2)

dη

≤ exp
(
− 2(a− t+ r)|BN(ǫ)|

1
β

)
M2

1

+
2k2aA2

1

β2
λ

2−2β
β

1

∫ t

0
exp

(
2|BN(ǫ)|

1
β (t− η)

)∥∥u (η, .) − v
ǫ
N(ǫ) (η, .)

∥∥2
L2(Ω2)

dη

Multiplying both sides with exp
(
2(a− t)|BN(ǫ)|

1
β

)
, we obtain

exp
(
2(a− t)|BN(ǫ)|

1
β

)
‖u(t, .) − v

ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

≤ exp
(
− 2r|BN(ǫ)|

1
β

)
M2

1

+
2k2aA2

1

β2
λ

2−2β
β

1

∫ t

0
exp

(
2|BN(ǫ)|

1
β (a− η)

)∥∥u (η, .) − v
ǫ
N(ǫ) (η, .)

∥∥2
L2(Ω2)

dη. (3.62)
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Then Gronwall’s inequality implies that

exp
(
2(a− t)|BN(ǫ)|

1
β

)
‖u(t, .) − v

ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

≤ D1 exp
(
− 2r|BN(ǫ)|

1
β

)
M2

1 (3.63)

This latter estimate together with the estimate (3.54) leads to

E‖uǫ
N(ǫ) (t, .)− u (t, .) ‖2L2(Ω2)

≤ 2E‖uǫ
N(ǫ) (t, .)− v

ǫ
N(ǫ) (t, .) ‖

2
L2(Ω2)

+ 2‖u(t, .) − v
ǫ
N(ǫ) (t, .) ‖L2(Ω2)

≤ exp
(
2|BN(ǫ)|

1
β t
)
[
2C1

(
2ǫ2N(ǫ) +

M0

λ
2γ
N(ǫ)

)
+ 2D1 exp

(
− 2(r + a)|BN(ǫ)|

1
β

)
M2

1

]
. (3.64)

It follows from (3.61) that

E‖uǫ
N(ǫ) (t, .)−QBN(ǫ)

u(t, .)‖2Hq(Ω2)

≤ |BN(ǫ)|
q exp

(
2B

1
α

N(ǫ)
t
)
[
2C1

(
2ǫ2N(ǫ) +

M0

λ
2γ
N(ǫ)

)
+ 2D1 exp

(
− 2(r + a)λ

1
β

N(ǫ)

)
M2

1

]
. (3.65)

On the other hand, consider the function

G(z) = zqe−Dz, D > 0, (3.66)

From the derivative of G is G′(z) = zq−1e−Dz(q −Dz), we know that G is strictly decreasing when
Dz ≥ q. Since limǫ→0BN(ǫ) = +∞, we see that if ǫ small enough then 2rBN(ǫ) ≥ q. Replacing
D = 2(a− t+ r), z = BN(ǫ) into (3.66), we obtain for λp > BN(ǫ)

G(λp) = λq
p exp

(
− 2(a− t+ r)λ

1
β
p

)
≤ G(BN(ǫ)) = |BN(ǫ)|

q exp
(
− 2(a− t+ r)|BN(ǫ)|

1
β

)

The latter equality leads to

‖u (t, .)−QBN(ǫ)
u(t, .)‖2Hq (Ω2)

=
∑

λp>BN(ǫ)

λq
p 〈u(t, y), φp(y)〉

2

=
∑

λp>BN(ǫ)

G(λp) exp
(
2(a− t+ r)λ

1
β
p

)
〈u(t, y), φp(y)〉

2

≤ G(BN(ǫ))
∑

λp>BN(ǫ)

exp
(
2(a− t+ r)λ

1
β
p

)
〈u(t, y), φp(y)〉

2

≤ M2
1|BN(ǫ)|

q exp
(
− 2(a− t+ r)|BN(ǫ)|

1
β

)
(3.67)

where we use the assumption (3.59) for the latter inequality. Combining (3.61), (3.64) and (3.67),
we deduce that

E‖uǫ
N(ǫ) (t, .)− u(t, .)‖2Hq(Ω2)

≤ 2E‖uǫ
N(ǫ) (t, .)−QBN(ǫ)

u(t, .)‖2Hq(Ω2)
+ 2‖u (t, .)−QBN(ǫ)

u(t, .)‖2Hq (Ω2)

≤ 4|BN(ǫ)|
q exp

(
2|BN(ǫ)|

1
β t
)
C1

(
2ǫ2N(ǫ) +

M0

λ
2γ
N(ǫ)

)
+M2

1(2D1 + 1)|BN(ǫ)|
q exp

(
− 2(a− t+ r)|BN(ǫ)|

1
β

)

(3.68)

which completes the proof.
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