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Abstract

In this paper, we study the local behavior of nonnegative solutions of fractional semi-
linear equations (—A)%u = u” with an isolated singularity, where o € (0,1) and
5 < p < % We first use blow up method and a Liouville type theorem
to derive an upper bound. Then we establish a monotonicity formula and a sufficient
condition for removable singularity to give a classification of the isolated singularities.
When o = 1, this classification result has been proved by Gidas and Spruck (Comm.

Pure Appl. Math. 34: 525-598, 1981).
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1 Introduction and Main results
The purpose of this paper is to study the local behavior of nonnegative solutions of
(—A)u=uP in B1\{0} (1.1)

with an isolated singularity at the origin, where the punctured unit ball B;\{0} C R"™
withn > 2,0 € (0,1) and (—A)? is the fractional Laplacian.

When o = 1, the isolated singularity of nonnegative solutions for (II)) has been
very well understand, see Lions [26] for 1 < p < -, Aviles [4] for p = -, Gidas-
Spruck [[19] for -2 < p < 22, Caffarelli-Gidas-Spruck [7] for 15 < p < 242,
Korevaar-Mazzeo-Pacard-Schoen [23] for p = Z—f%, and Bidaut-Véron and Véron [J3]]
forp > 142,

The semi-linear equation (I.I) involving the fractional Laplacian has attracted a
great deal of interest since they are of central importance in many fields, such as
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see [TH3L[8L[T0L 12115 [17,20-24] and references therein. Recently, the existence of
singular solutions of equation (I.1)) with prescribed isolated singularities for the crit-

ical exponent p = 2422 were studied in and for the subcritical regime

- < p< % were studied in [[1L[3]. Solutions of (I.I) with an isolated sin-
gularity are the simplest cases of those singular solutions. In a recent paper [8], Caf-
farelli, Jin, Sire and Xiong study the local behavior of nonnegative solution of (L.I)

with p = 222 More p.re?,ci.sely, letubea nonne?gative §olution of (CI) with.p.: e
and suppose that the origin is not a removable singularity. Then, near the origin
_n=2¢ _n—20
alr]” 2 <wu(z) <eclx|” T, (1.2)

where c1, co are positive constants.

In this paper, we are interested in the local behavior of nonnegative solutions of
(LI with —— < p < 2422 For the classical case o = 1, this has been proved in the
pioneering paper by Gidas and Spruck.

We study the equation (L)) via the well known extension theorem for the fractional
Laplacian (—A)“ established by Caffarelli-Silvestre [9]. We use capital letters, such
as X = (v,t) € R" x R4, to denote points in R’"'. We also denote By, as the ball
in R"*! with radius R and center at the origin, BE as the upper half-ball B N R’j_“,
and 0°B}, as the flat part of 987 which is the ball B in R"™. Then the problem (LI)

is equivalent to the following extension problem

—div(t!=2°VU) =0 in B, (1.3)
g (2,0) = UP(2,0)  ond"Bi\{0}, '
where 22 (z,0) = —lim,_,o+ t'7270,U (z,t). By [9], we only need to analyze the

behavior of the traces
u(z) == U(x,0)
of the nonnegative solutions U (z, t) of (I3) near the origin, from which we can get the
behavior of solutions of (I.I)) near the origin.
We say that U is a nonnegative solution of (I3) if U is in the weighted Sobolev
space W12 (t1=27 BT\E:) for every € > 0, U > 0, and it satisies (L3) in the sense
of distribution away from 0, i.e., for every nonnegative ® € C2° ((B; U 9°B;)\{0}).

/ t1=2VUVP = / UP®. (1.4)
B 0B}
See for more details on this definition. Then it follows from the regularity result

in [23] that U is locally Holder continuous in Ef\{o} We say that the origin 0 is a
removable singularity of solution U of (L3) if U(x,0) can be extended as a contin-
uous function near the origin, otherwise we say that the origin 0 is a non-removable
singularity. Our main result is the following

Theorem 1.1. Let U be a nonnegative solution of (I.3). Assume

n+ 20
n—2s PS5




Then either the singularity near 0 is removable, or there exist two positive constants ¢y
and co such that ) )
alz| 1 <wu(z) < colx|” P-T. (1.5)

Remark 1.1. We point out that, if (L3) holds, then the Harnack inequality 3.2) implies
that
_ 20 _ 20
G X[77=T S U(X) < Go| X[ 77T

holds as well, for some positive constants C and Cs.

For the classical case o = 1, Theorem[I.Ilwere provedin by Gidas and Spruck.
We may also see [7] for this classical case. The similar upper bound in (I.3)) obtained
in for the classical case is very complicated and technical, here we use the blow
up method and a Liouville type theorem to prove the upper bound in (L3). To obtain
the lower bound, there are some extra difficulties, one of which is that the Pohozaev
identity is not available. More precisely, for the critical case p = Zigg, the Pohozaev
integral P(U, R) is independent of R by the Pohozaev identity (see [8] for more detalis
on P(U, R)). In [8], the authors make use of this property of the Pohozaev integral
to prove the lower bound, however, this does not hold in the subcritical case. We will
establish a useful monotonicity formula to overcome this difficulty. The others would
be those extra techniques to get the estimates of U from those of its trace u.

The paper is organized as follow. In Section 2, we recall three propositions: a Li-
ouville theorem, a Harnack inequality and a Sobolev inequality. Section 3 is devoted
to the proof of Theorem[I 1l We first derive an upper bound and a special form of Har-
nack inequality. Then we establish a monotonicity formula and a sufficient condition
of removable singularity to prove Theorem[T.1l

2 Preliminaries

In this section, we introduce some notations and some propositions which will be used
in our arguments. We denote By as the ball in R+ with radius R and center 0,
and Bp as the ball in R™ with radius R and center 0. We also denote B}, as the
upper half-ball By N R’ ™, 0TBf, = 0B} N R as the positive part of 9B}, and
"B}, = OBE\OT B}, as the flat part of 9B}, which is the ball B in R™.

We say U € W,22(t1720 R if U € Wh2(t1-27, B) for all R > 0, and

loc
U e WL2(t1-20 R\ {0}) if U € W2(t1-27 BE\B ) forall R > ¢ > 0.
We next recall three propositions, which will be used frequently in our paper. For
convenience, we state them here. Their proofs can be found in [23]]. The first one is a
Liouville type theorem.

Proposition 2.1. Let U € VVlif (t1=2, Ri“) be a nonnegative weak solution of

(4120 _ o entl
—div(t VU)=0 in R, @.1)
88;{, (x,0) = UP(z,0) onR™,
with 5
1<p< nt U.
— 20



Then
U(xz,t) =0.

The second one is a Harnack inequality, see also [6].

Proposition 2.2. Let U € VVlif (t1=27 BY") be a nonnegative weak solution of

—div(t!729VU) =0 in By,
{ glf{, (2,0) = a(z)U(z,0) on 303f, 2.2
If a € LY(By) for some q > 3=, then we have
sup U < C inf U, 2.3)

+
Bfm 31/2

where C' depends only onn, o and ||al| La(B, ).
The last one is a Sobolev type inequality.

Proposition 2.3. Let D = Q x (0, R) C R™ xRy with R > 0 and 0N Lipschitz. Then
there exists Cy, » > 0 depending only onn and o such that

HU(v O)HL%/("*?U)(Q) < Cn7gHvU||L2(t172a7D)

forallU € C*(DUd’D).

3 Classification of Isolated Singularities

In this section, we investigate the local behavior of nonnegative solutions of (I3) and
classify their isolated singularities. We first prove an upper bound and a special form of
Harnack inequality for nonnegative solutions with a possible isolated singularity. We
remark that this result will be of basic importance in classifying the isolated singulari-
ties.

Proposition 3.1. Let U be a nonnegative solution of (L3), with 1 < p < 2%22. Then,

(1) there exists a positive constant c independent of U such that
_ 20 .
u(z) < clz|” »-1 in By s; (3.1)

(2) (Harnack inequality) for all 0 < r < 1/8, we have

sup U<C inf U, (3.2)
BEABY BB,

where C' is a positive constant independent of v and U. In particular, for all
0 <r < 1/8, we have
sup U < C inf U, (3.3)
o+ B o+ B

where C'is a positive constant independent of r and U.



Proof. Suppose by contradiction that there exists a sequence of points {x}} C By s
and a sequence of solutions {Uy, } of (L3), such that

|xk|%uk(xk) — 400 ask — oo. 3.4
As in [8]], we define
| P A
vg(T) = > — k| ug(z), | —ap| < —-

Let
Ly _
2/Lk = T_lxk_xk .
Then

|2k |2k
0<22up < — d — —
P S 5 an B

By the definition of vy, we have

lo —xk| > V| — 2| < e

20 _ _ 20 _
(2p) 7T ur(@k) = vr(Zk) = ve(@) = ()P Tun(z) Y |z — Zp| < g
Hence, we obtain
20

Zﬁuk(jk) > uk(x) v |I — J_Tk| < M- 3.5

Moreover, by (3.4), we also have

1
) 7T (Tg) = v (Tn) = vlan) = <@> ur(zp) — +oo  ask — oo.
(3.6)
Now, we define
1 Y t
Wi y,t) = —U | ) + —, — , Y, t EQk,
1) up(Zy) < uk(;fk)pz_al uk(@)%) )
where
n+1 = Y 3 +
Qk = (ya t) € R-{- | Tk + _ p—1> _ p—1 € Bl \{O} .
ug(Tk) 7 uk(Tr) 7
Let wy(y) := Wi (y,0). Then W}, satisfies w(0) = 1 and
—div(tl_%VWk) =0 in Qp,
W (1,0) = w? on 9°Q ©D
oo ) — Wi k-



Furthermore, by (3.3) and (3.6), we have

20

wi(y) < 291 in Bpg,

with »
Ry, = uku(i“k)g_a — 400 ask — oo.

By Proposition2.2] for any 7" > 0, we have
0<W,<C(T) inBg,s x[0,T),

where the constant C(T") depends only on n, o and T'. By Corollary 2.10 and Theorem
2.15in there exists a > 0 such that for every R > 1,

HW/C”Wlﬂ(tl*%,B;) + HWk”ca(g;) + HwkHcm(ER) < C(R),

where C'(R) is independent of k. Therefore, there is a subsequence of k — oo, still
denoted by itself, and a nonnegative function W € W2 (¢1-2 R nog (R
such that, as k — oo,

Wi, — W  weaklyin Wh2( =2 R,
Wi —W in Crr2 (R,
Wy, — w in C? (R"),

where w(y) = W (y, 0). Moreover, W satisfies w(0) = 1 and

—div(t!72°VW) =0 in R,
oW p n (3.8)
al,d(xuo):w OHR .

This contradicts Proposition [2.1]and proves part (1) of the proposition.
Now we prove the Harnack inequality, which is actually a consequence of the upper
bound (3.1). Let
Vo (X) =U(rX)

for each r € (0, 3] and for < |X| < 4. Obviously, V, satisfies

—diV(tliQUv‘/r) =0 in 34\31/45 (3 9)
8V (2,0) = a,(x)v,(2) on By\Bj 4, .

where v,.(z) = V,.(z,0) and a,(z) = 72 (u(rz))?~". It follows (3.I) that
lar(z)| < C  forall 1/4 < |x| < 4,

where C' is a positive constant independent of  and U. By the Harnack inequality in
Proposition and the standard Harnack inequality for uniformly elliptic equations,
we have

sup V(X)) <C inf V.(X),
1<IX|<2 3SIX|<2

where C'is another positive constant independent of 7 and U. Hence, we get 3.2). O



In order to prove the lower bound in (T.3), we need to establish a monotonicity
formula for the nonnegative solutions U of (I3). More precisely, take a nonnegative
solutions U of (I.3), let 0 < r < 1 and define

ptl)o oUu 2 oU
E(rU) =255 r/ Rl e L / 12U
o+ B ov p—1 Jorpt v

12 (Ao o rzﬁflgunfl/ 120772
2p—1\p-1 o+B;

TSI E F / iy — / up“]-
2 Jo+Byr p+1Jop,

Then, we have the following monotonicity formula.

Proposition 3.2. Let U be a nonnegative solution of (L3) with 1 < p < "2 Then,
E(r;U) is non-decreasing inr € (0, 1).

Proof. Take standard polar coordinates in R’ ™': X = (z,¢) = r6, where r = |X | and
0= % Let6; = ﬁ denote the component of 6 in the ¢ direction and

St ={XeR :r=1,6, >0}

denote the upper unit half-sphere.
We use the classical change of variable in Fowler [18]],

Vs, 0) = rec1 U(r,0), s=Inr.

Direct calculations show that V' satisfies

Vis — JiVi — oV + 077 tdive (0127 VeV) = 0 in (—o0,0) x S7,
—limg, o+ 0,727 0p,V = VP on (—00,0) x OS?,
(3.10)
where
Ji= 20 (N—2), =20 (n—QU— 20 )
p—1 p—1 p—1

Multiplying (3.10) by V, and integrating, we have

/ 012V, V, — Jy / o120, /
sn s

S T
:Jl/ 01727 (V,)2.
S

n
+

9%*20v9V~vevs+/ VPV,
asn

(3.11)
For any s € (—o0,0), we define

~ 1 J: 1
Bs) =y [ 01w = 2 [ otmvio g [ gl w,vp
1

— [y
p+1Josn



Then, by (3.11)), we get

d ~
ZB(s) = Jy / 0127 (V)2 > 0. (3.12)
ds IS

n
+

Here we have used the fact J; > 0 because 1 < p < 222 Hence, E(s) is non-
decreasing in s € (—00,0).
Now, rescaling back, we have

o2 (V.?

57
20 2 2 2
:/ gi=20 (—Tp_gl_lU‘FTp_glUr) r?
sn p—1
:rw%f”_"/ pze (A0, Ao AL
o+ B (p—1)° p—1 v v

J

_ (p+l)o
01|V V[P = r? 5 "'H/

oy ou
oo (Ivup - 1508
o+Bf v

o272 = TQ@;%I)(’fnfl =202,
ot Bt

(p+1)o
/ yrtl — 2 "+1/ uPtL,
st OB,

Substituting these into (3.12) and noting that s = In r is non-decreasing in r, we easily
obtain that E(r; U) is also non-decreasing in r € (0, 1). O

n
+

n
St

By the monotonicity of E(r;U) we prove the following proposition, which will
play an essential role in deriving the lower bound in (L.3).

Proposition 3.3. Let U be a nonnegative solution of (L3) with —%— < p < 222 Jf

n—2o n—2o

lim inf |x|%u(x) =0,
|z|—0

then )
lim |z|>-Tu(z) = 0.

|z|—0

Proof. Suppose by contradiction that

lim inf |:v|%u(x) =0 and limsup |x|%u(:v) =C>0.
|| —0 || =0

Therefore, there exist two sequences of points {x;} and {y;} satisfying

z; =0, y; =0 asi— oo,



such that
|xz|%u(xl) — 0 and |yz|%u(yl) —C>0 asi— oo.

Let g(r) = P a(r), where u(r) = W—ng J5p. u denotes the spherical average of u
over OB,.. Then, by the Harnack inequality (3.3), we have
lim i(I)lf g(r)=0 and limsupg(r)=C > 0.

r— r—0

Hence, there exists a sequence of local minimum points 7; of g(r) with

lim r;, =0 and lim g(r;) =0.

1—> 00 71— 00

Let

U (mel) ’
where e; = (1,0, -+ ,0). It follows from the Harnack inequality (3.2)) that V; is locally
uniformly bounded away from the origin and satisfies

Vi(x) =

—div(t'=2°VV;) =0 in R,
oV 20 -1 (3.13)
os (#,0) = (1 U(rier) Vi (x,0) on R™\{0}.

20
Note that by the Harnack inequality 33), 77~ ' U(r;e1) — 0 as ¢ — oo. Then by
Corollary 2.10 and Theorem 2.15 in that there exists o > 0 such that for every
R>1>r>0

|W;||W1,2(t1—2a73§\gj) + ||‘/7;||CQ(BE\E:’) + ||’U7;||02‘0‘(BR\B7') < C(R,r‘),

where v;(x) = V;(x,0) and C'(R,r) is independent of i. Then after passing to a sub-

sequence, {V;} converges to a nonnegative function V' € Wﬁ)f (#1-27 R\ {0})
Oﬁ;c(Riﬂ\{O}) satisfying

(3.14)

—div(t'727VV) =0 in R,
IV (2,0) =0 on R™\{0}.

By a Bocher type theorem in 23], we have

a

VX = xp=e

+ b,

where a, b are nonnegative constants. Recall that r; are local minimum of g(r) for
every ¢ and note that

o o 1 1 o 1
PTG (r) = e Vi = = (i) = ——————g(rir).

|0B,| Jop, " Ulrier)



Hence, for every ¢, we have

- Jr)=0. (3.15)
r=1 Ulrie)r)™"

Let v(z) = V(z,0). Then we know that v;(x) — v(z) in CZ _(R"\{0}). By (3.13),
we obtain

d -
. [r% 17(7“)} =0,
r=1
which implies that
20 20b
—(n—2 =0. 1
a<p_1 (n U)>+p_1 0 (3.16)
On the other hand, by V(e1) = 1, we have
a+tb=1. (3.17)
Combine (3.16) with (B.17), we get
20 20
a=——+—— and b=1-——1——.
(p—1)(n—20) (p—1)(n —20)

Since 5~ < p, we have 0 < a,b < 1. Now we compute E(r; U).
It follows from Proposition 2.19 in that |V, V;| and [t17279,V;| are locally
R\ {0}) for some 3 > 0. Hence, there exists a constant

uniformly bounded in Cﬁm
C > 0 such that

20 _
IV.U(X)| < Ori U(rier) = o(L)r; 7 forall |X| = r;

and
1-270,U(X)| < Cr7 2 U(rier) = o(L)r; 7> forall [ X| = ;.
Thus, by a direct computation, we can get
lim E(r;;U) = 0.
i—00
By the monotonicity of E(r; U), we obtain

E(r;U) >0 forallr € (0,1).

On the other hand, by the scaling invariance of E(r; U), for every i, we have

20 20
0<E(r;U)=FE (1;riplU(riX)) E (1;riP1U(mel)Vi) .

10



Hence, for every ¢, we have

OS/ t1—20|%|2+ 20 / tl_%%Vi
o+B} o p=1Jspf v

1 20 ( o _ (n— 20)> / 12072
2p—1\p—-1 o+ B} v
1 1 20, pet
J— / tl—?o’lvv;lZ L (,r,ipl U('f‘i@l)) V;_P"rl'
2 Jo+sy p+1Jop

Letting 7 — oo, we obtain

0< / t172a|8_v|2 + 20 / t1*2"8—vV
o+ B} o' p—1Josipr v
1 2 4 1
+--=2 ( 7 - (n— 2U)> / tH27y2 —/ 27|V 2
2p—1\p—-1 o+BY 2 Jo+Bf

2
=a?(n— 20)2/ 1727 —a(n — 20) 7 / 20
o+ By p—1Jo+pr
1 2 4 1
_ g ( g _ (n _ 20.)) / tl—ZU _ —a2(n _ 20,)2/ tl—2a
2p—1\p-1 o+Bf 2 o+tBy

2
p—1\p—-1 o+ By

Note that in the last inequality we have used the fact pQT"l — (n —20) < 0 because

n_”% < p. Obviously, we get a contradiction. O

To characterize the “order” of an isolated singularity we establish the following
sufficient condition for removability of isolated singularities. For its proof, we adapt
the arguments from [[19], but there are extra difficulties. Such as, we need extra efforts
to derive the estimates of U from its trace u.

Proposition 3.4. Let U be a nonnegative solution of (L3) with —-— < p < 222 _f
(p—1)n
/ u 20 <c< 400 (3.18)
e<lzl<1

with c independent of €, then the singularity at the origin is removable, i.e., u(x) can be
extended to a continuous solution in the entire ball By.

Proof. Let

n— 20 n 1 1n—20
Po =5 (p—n_%) and  go = 5(po+1)=5——(p—1).

Following Serrin 28], we define, for ¢ > ¢o,1 > 0

Flu) ul for0 < u <1,
u) =
ol 0u% 4 (g0 — g1 forl <u,

11



and
G(u) = F(u)F'(u) — q.

Clearly, F is a C! function of u and G is a piecewise smooth function of u with a

F<Lya-aoyn  yF < gF (3.19)
q0
G| < FF', (3.20)
o %pF’2 for0 < u <, (321)
= LpoF? forl < u. '
¢I0p

For any 0 < R < 1, let » and 7 be nonnegative C*° function with 0 < 1,7 < 1in
Br = {X € R*""! . |X| < R}, n having compact support in Bg, and 7 vanishing
in some neighborhood of the origin. Take (77)?G(U) as a test function into (L4), we
have

LG @UR v [ 1) v - V)
B}, Br (3.22)
- | e,

Using (3.19) — (3.21) and simplifying we obtain from (3:22))

[ oo <cwd [ e vamerts [ ot

BR
(3.23)
By Hoélder and Proposition[2.3] we have

[ ([ ) (o)
Br Br BR
<c?, ( (P~ ) ) ’ ( £ 2°'|V<nnF>|>

< Lol s ] [ 0otV
F

s [ e }

R

By the assumption (3I8)), we can choose R small enough (depending on ¢,n and o )
such that

—1
Hup HL%(BR)

Hence, from (3.23)), we obtain

/B PV EW)P < C) / VPR (24)

12



with a new constant C'(g). Therefore, we have from (3.24)

/ tl2“<nﬁ>2|v<F<U>>|2sc<q>{ [ emwapr s | t”°'|vm2F2}
Bf, Bf, Bf,

(3.25)
and

—20
< / <nﬁF>n%) ' sc<q>{ [ emwapr s | tlQ”IVﬁIQFQ}-
Br BE B;

(3.26)

For any € > 0 small enough, we choose 7. satisfy

0 for|X|<e,
7e(X) = = 3.27
(%) {1 for 2¢ < [X| < R, 820

and [V (X)| < € forall X € Bg. By Holder inequality

2
o
/ t172a|vﬁ6|2F2 S / t172a|vﬁ€|n+272o / tl QUFQ +2 20
By B3, B3,
e wiro%s
< % </ t120> </ - 20F2"+22526>
€ B3, B3,
%
<C 120 27 w2 Zo
= B+ b)
(3.28)

where C is a positive constant independent of €. Since, by (3.19), the Harnack inequal-

ity (3.3) and (3.1), we have

/ =20 222 <O(l q)/ 2077200 252
B3, B3,

n—20

) nt2—20

n+2—20

2e 200 "5 50
< C(l,q)/ sup U s 1729 s
0 \o+Bf

[ Mowr PSR CE E T
<C(l,q) inf U r=Dn=20) g ds
0o \otBf

2¢ 290 7055 .

- . e

< C(l,q)/o (é%f u) s" T ds
2e

< C(Lq)/ (L u2q0nn2(r> s Lds
o \|0Bs[ Jog,

(p—1)n

< Cllq) / w0t = (1, q) / w5
BQG BZe

(3.29)

13



Here we have used the fact 2qp = (=Un 1 because P

2%
have from (318), (3.28) and (m

/ 27|V ?F? =0 ase — 0.
B+

R

This together with (3:23) and (3.26), we obtain

[ ARV EO)E <) [0 e (330
R R
and
n—2o0
(/ (nF)”%> < C(g) /B+ G\l (3.31)
Br R
Let ! — +o0, since F'(u) — u?, we have
| e <ct [ oo (3:32)
B, B,
and
n—2o
( / (nu‘ﬂﬁ) <Clq) /B T onPUR. (3.33)
Br R

By a similar estimate as in (3.29), we can obtain

R
/B+ 1727V PUtt < C(Q)/ < inf U205 )) s"Lds
0

+
;S o+ B}

(3.34)

1_q70 2(1—20)
q n—20
< C(g) ( / u2")
Br
Inequality (3.32), (3.33) and (3.34) can be iterated a finite number of times to show that
UeWh2(#'727 Bf) and we LYBg) forallg> 0.
Furthermore, U satisfies

div(tP%VU) =0 in B},
IU (2,0) = UP(x,0) on 0°By,.

Indeed, for ¢ > 0 small, let 7. be a smooth cut-off function as in (3.27). Let ¥ €
C° (B, U 9°BY). It follows from (L4) that

I,

R

tH2°VUV (Yi) = / UP1pie. (3.35)
298},

Since

/B+ t1=20V UV )

R

< C’en;%/ 27|\ VU =0 ase— 0,
Bt

R
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by the dominated convergence theorem, let ¢ — 0 in (3.33), we obtain

/+ t1=2°VUVY = UP1).
B

+
R OOBR

Since u € L9(Bg) for some g > -, it follows from Proposition 2.10 in [23] that U is

Holder continuous in B; /20 The proof of the proposition is completed. |
Corollary 3.1. Let U be a nonnegative solution of (L3) with -~ < p < 2422,

Then either the origin 0 is a removable singularity or lim|x|_,o U(x,t) = +o00.

Proof. By Proposition[3.4] if the origin is not a removable singularity, then there exists
a sequence of points {xz; } such that

rj=l|z;] =0 and U(z;,0) = +oco asj — 0.
By the Harnack inequality (3.2), we have

IXiF_f U(X)>C'U(z,0).

By the maximum principle,

UX)> inf  U(X)>C 'min(U(z,0),U(z;51,0) inrj < |X| <7

T X|=rrie
Hence, we have U(X) — +oo as | X| — 0. O
Proof of Theorem[L.1l By Proposition[3.11
u(z) < c|x|_%.
If (L3) does not hold, then

lim inf |x|%u(x) =0.
z—0

It follows Proposition[3.3] that

lim |27~ Tu(z) = 0 (3.36)

x—0

We will prove that the origin is a removable singularity. It suffices to establish (3.18)

by Proposition[3.4
Let 7 = ”p*_21‘7 (p — 7755 ) and 0 < 6 < 1. Define

O = |X|77 ot X |7

Then we can choose ¢ small (depending only on n , o and p) such that

: 1—-20 : n+1
—div(t Vo) >0 in R, (3.37)
88:1:, (7,0) = 200 |x| =27 ¢(z) on R™\ {0},

15



where ¢(z) = ®(x,0) = |z| 7. Take & (s) € C°(R) satisfying 0 < & < linR and

0 if [s| <1,
fus) = {1 if 5] > 2.
Take &5(s) € C°(R) satisfying 0 < & < 1in R and
1 if |s| < 3,
Sa(s) = {0 if |s| > 3.
For any € > 0 small, we choose ((X) € C2°(e < |X| < 1) as follow
&2(1XT) if [X] > 5

Using (P as a test function in (T.4), and the divergence theorem we obtain

1 09 1\
/Bluc¢(gw—u’7 )—

Since ( is radial, we have

ac B
w((ﬂ, O) =

By (3.37), we obtain

/ U{div(tl—%v@c +261727V¢ - V@
Bf

+ div(tlQ"VC)@} — [ uo

By

— lim t'17%°9,( =0 in B,

t—0+

/ Udiv(t'27V®)¢ < 0.
Bf

Using (3.1) and the Harnack inequality (3.2), we have

/+ U{2t1_2"V§ VO + div(tl—%vg)@}
Bl

¢

oo’

< +/ U{2t12"|VC||V<I>| + |div(t12"V§)|<I>}
B \BE

<C 4+ Ce vt /
B3\

+ Ce*%”/ ¢1=20 (|A§| +et
BIA\BS

Bt

X1

€

&1

<O+ 022 < 0 < 400

with C' independent of €. Hence, we obtain

Jo el

100

¢ Ov°

16

upl) < C < +o0.

(t172U|X|7(T+1) + |X|7(T+20))

)

(3.38)

(3.39)

(3.40)

(3.41)



By (3.36), we have u?~! = o(|z|~27), and while

1 09
b 250|z|~2%  in By\{0}.
Therefore
/ ullz|” ) :/ uClz| =) < C < 400 (3.42)
Bl Bl

with C' independent of €. Again by (3.1I), we have

1 (p—1)n
[ mecof e
2e<[a|<1/2 2e<|2|<1/2

< C/ u(|x|_("_%) <C < +o0
B

with C independent of e. Thus, we establish (3.18)) and complete the proof of Theorem
L1 O
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