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Abstract

In this paper, we study the local behavior of nonnegative solutions of fractional semi-

linear equations (−∆)σu = up with an isolated singularity, where σ ∈ (0, 1) and
n

n−2σ < p < n+2σ
n−2σ . We first use blow up method and a Liouville type theorem

to derive an upper bound. Then we establish a monotonicity formula and a sufficient

condition for removable singularity to give a classification of the isolated singularities.

When σ = 1, this classification result has been proved by Gidas and Spruck (Comm.

Pure Appl. Math. 34: 525-598, 1981).

Mathematics Subject Classification (2010): 35B09; 35B40; 35J70; 35R11

1 Introduction and Main results

The purpose of this paper is to study the local behavior of nonnegative solutions of

(−∆)σu = up in B1\{0} (1.1)

with an isolated singularity at the origin, where the punctured unit ball B1\{0} ⊂ R
n

with n ≥ 2, σ ∈ (0, 1) and (−∆)σ is the fractional Laplacian.

When σ = 1, the isolated singularity of nonnegative solutions for (1.1) has been

very well understand, see Lions [26] for 1 < p < n
n−2 , Aviles [4] for p = n

n−2 , Gidas-

Spruck [19] for n
n−2 < p < n+2

n−2 , Caffarelli-Gidas-Spruck [7] for n
n−2 ≤ p ≤ n+2

n−2 ,

Korevaar-Mazzeo-Pacard-Schoen [25] for p = n+2
n−2 , and Bidaut-Véron and Véron [5]

for p > n+2
n−2 .

The semi-linear equation (1.1) involving the fractional Laplacian has attracted a

great deal of interest since they are of central importance in many fields, such as

∗Supported by NSFC. E-mail addresses: hui-yang15@mails.tsinghua.edu.cn (H. Yang),

wzou@math.tsinghua.edu.cn (W. Zou)
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see [1–3, 8, 10, 12–15, 17, 20–24] and references therein. Recently, the existence of

singular solutions of equation (1.1) with prescribed isolated singularities for the crit-

ical exponent p = n+2σ
n−2σ were studied in [1, 2, 14, 15] and for the subcritical regime

n
n−2σ < p < n+2σ

n−2σ were studied in [1, 3]. Solutions of (1.1) with an isolated sin-

gularity are the simplest cases of those singular solutions. In a recent paper [8], Caf-

farelli, Jin, Sire and Xiong study the local behavior of nonnegative solution of (1.1)

with p = n+2σ
n−2σ . More precisely, let u be a nonnegative solution of (1.1) with p = n+2σ

n−2σ
and suppose that the origin is not a removable singularity. Then, near the origin

c1|x|
− n−2σ

2 ≤ u(x) ≤ c2|x|
−n−2σ

2 , (1.2)

where c1, c2 are positive constants.

In this paper, we are interested in the local behavior of nonnegative solutions of

(1.1) with n
n−2σ < p < n+2σ

n−2σ . For the classical case σ = 1, this has been proved in the

pioneering paper [19] by Gidas and Spruck.

We study the equation (1.1) via the well known extension theorem for the fractional

Laplacian (−∆)σ established by Caffarelli-Silvestre [9]. We use capital letters, such

as X = (x, t) ∈ R
n × R+, to denote points in R

n+1
+ . We also denote BR as the ball

in R
n+1 with radius R and center at the origin, B+

R as the upper half-ball BR ∩ R
n+1
+ ,

and ∂0B+
R as the flat part of ∂B+

R which is the ball BR in R
n. Then the problem (1.1)

is equivalent to the following extension problem

{
−div(t1−2σ∇U) = 0 in B+

1 ,
∂U
∂νσ (x, 0) = Up(x, 0) on ∂0B+

1 \{0},
(1.3)

where ∂U
∂νσ (x, 0) := − limt→0+ t

1−2σ∂tU(x, t). By [9], we only need to analyze the

behavior of the traces

u(x) := U(x, 0)

of the nonnegative solutionsU(x, t) of (1.3) near the origin, from which we can get the

behavior of solutions of (1.1) near the origin.

We say that U is a nonnegative solution of (1.3) if U is in the weighted Sobolev

space W 1,2(t1−2σ,B+
1 \B

+

ǫ ) for every ǫ > 0, U ≥ 0, and it satisies (1.3) in the sense

of distribution away from 0, i.e., for every nonnegativeΦ ∈ C∞
c

(
(B+

1 ∪ ∂0B+
1 )\{0}

)
,

∫

B+
1

t1−2σ∇U∇Φ =

∫

∂0B+
1

UpΦ. (1.4)

See [23] for more details on this definition. Then it follows from the regularity result

in [23] that U is locally Hölder continuous in B
+

1 \{0}. We say that the origin 0 is a

removable singularity of solution U of (1.3) if U(x, 0) can be extended as a contin-

uous function near the origin, otherwise we say that the origin 0 is a non-removable

singularity. Our main result is the following

Theorem 1.1. Let U be a nonnegative solution of (1.3). Assume

n

n− 2σ
< p <

n+ 2σ

n− 2σ
.
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Then either the singularity near 0 is removable, or there exist two positive constants c1
and c2 such that

c1|x|
− 2σ

p−1 ≤ u(x) ≤ c2|x|
− 2σ

p−1 . (1.5)

Remark 1.1. We point out that, if (1.5) holds, then the Harnack inequality (3.2) implies

that

C1|X |−
2σ

p−1 ≤ U(X) ≤ C2|X |−
2σ
p−1

holds as well, for some positive constants C1 and C2.

For the classical case σ = 1, Theorem 1.1 were proved in [19] by Gidas and Spruck.

We may also see [7] for this classical case. The similar upper bound in (1.5) obtained

in [19] for the classical case is very complicated and technical, here we use the blow

up method and a Liouville type theorem to prove the upper bound in (1.5). To obtain

the lower bound, there are some extra difficulties, one of which is that the Pohozaev

identity is not available. More precisely, for the critical case p = n+2σ
n−2σ , the Pohozaev

integral P (U,R) is independent ofR by the Pohozaev identity (see [8] for more detalis

on P (U,R)). In [8], the authors make use of this property of the Pohozaev integral

to prove the lower bound, however, this does not hold in the subcritical case. We will

establish a useful monotonicity formula to overcome this difficulty. The others would

be those extra techniques to get the estimates of U from those of its trace u.

The paper is organized as follow. In Section 2, we recall three propositions: a Li-

ouville theorem, a Harnack inequality and a Sobolev inequality. Section 3 is devoted

to the proof of Theorem 1.1. We first derive an upper bound and a special form of Har-

nack inequality. Then we establish a monotonicity formula and a sufficient condition

of removable singularity to prove Theorem 1.1.

2 Preliminaries

In this section, we introduce some notations and some propositions which will be used

in our arguments. We denote BR as the ball in R
n+1 with radius R and center 0,

and BR as the ball in R
n with radius R and center 0. We also denote B+

R as the

upper half-ball BR ∩ R
n+1
+ , ∂+B+

R = ∂B+
R ∩ R

n+1
+ as the positive part of ∂B+

R , and

∂0B+
R = ∂B+

R\∂
+B+

R as the flat part of ∂B+
R which is the ball BR in R

n.

We say U ∈ W 1,2
loc (t

1−2σ,Rn+1
+ ) if U ∈ W 1,2(t1−2σ,B+

R) for all R > 0, and

U ∈W 1,2
loc (t

1−2σ,Rn+1
+ \{0}) if U ∈ W 1,2(t1−2σ,B+

R\B
+

ǫ ) for all R > ǫ > 0.

We next recall three propositions, which will be used frequently in our paper. For

convenience, we state them here. Their proofs can be found in [23]. The first one is a

Liouville type theorem.

Proposition 2.1. Let U ∈ W 1,2
loc (t

1−2σ,Rn+1
+ ) be a nonnegative weak solution of

{
−div(t1−2σ∇U) = 0 in R

n+1
+ ,

∂U
∂νσ (x, 0) = Up(x, 0) on R

n,
(2.1)

with

1 ≤ p <
n+ 2σ

n− 2σ
.
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Then

U(x, t) ≡ 0.

The second one is a Harnack inequality, see also [6].

Proposition 2.2. Let U ∈ W 1,2
loc (t

1−2σ,B+
1 ) be a nonnegative weak solution of

{
−div(t1−2σ∇U) = 0 in B+

1 ,
∂U
∂νσ (x, 0) = a(x)U(x, 0) on ∂0B+

1 ,
(2.2)

If a ∈ Lq(B1) for some q > n
2σ , then we have

sup
B+

1/2

U ≤ C inf
B+

1/2

U, (2.3)

where C depends only on n, σ and ‖a‖Lq(B1).

The last one is a Sobolev type inequality.

Proposition 2.3. Let D = Ω× (0, R) ⊂ R
n×R+ with R > 0 and ∂Ω Lipschitz. Then

there exists Cn,σ > 0 depending only on n and σ such that

‖U(·, 0)‖L2n/(n−2σ)(Ω) ≤ Cn,σ‖∇U‖L2(t1−2σ ,D)

for all U ∈ C∞
c (D ∪ ∂0D).

3 Classification of Isolated Singularities

In this section, we investigate the local behavior of nonnegative solutions of (1.3) and

classify their isolated singularities. We first prove an upper bound and a special form of

Harnack inequality for nonnegative solutions with a possible isolated singularity. We

remark that this result will be of basic importance in classifying the isolated singulari-

ties.

Proposition 3.1. Let U be a nonnegative solution of (1.3), with 1 < p < n+2σ
n−2σ . Then,

(1) there exists a positive constant c independent of U such that

u(x) ≤ c|x|−
2σ
p−1 in B1/2; (3.1)

(2) (Harnack inequality) for all 0 < r < 1/8, we have

sup
B+

2r\B
+
r/2

U ≤ C inf
B+

2r\B
+
r/2

U, (3.2)

where C is a positive constant independent of r and U . In particular, for all

0 < r < 1/8, we have

sup
∂+B+

r

U ≤ C inf
∂+B+

r

U, (3.3)

where C is a positive constant independent of r and U .
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Proof. Suppose by contradiction that there exists a sequence of points {xk} ⊂ B1/2

and a sequence of solutions {Uk} of (1.3), such that

|xk|
2σ
p−1uk(xk) → +∞ as k → ∞. (3.4)

As in [8], we define

vk(x) :=

(
|xk|

2
− |x− xk|

) 2σ
p−1

uk(x), |x− xk| ≤
|xk|

2
.

Take x̄k satisfy |x̄k − xk| <
|xk|
2 and

vk(x̄k) = max
|x−xk|≤

|xk|

2

vk(x).

Let

2µk :=
|xk|

2
− |x̄k − xk|.

Then

0 < 2µk ≤
|xk|

2
and

|xk|

2
− |x− xk| ≥ µk ∀ |x− x̄k| ≤ µk.

By the definition of vk, we have

(2µk)
2σ

p−1 uk(x̄k) = vk(x̄k) ≥ vk(x) ≥ (µk)
2σ

p−1uk(x) ∀ |x− x̄k| ≤ µk.

Hence, we obtain

2
2σ
p−1uk(x̄k) ≥ uk(x) ∀ |x− x̄k| ≤ µk. (3.5)

Moreover, by (3.4), we also have

(2µk)
2σ

p−1 uk(x̄k) = vk(x̄k) ≥ vk(xk) =

(
|xk|

2

) 2σ
p−1

uk(xk) → +∞ as k → ∞.

(3.6)

Now, we define

Wk(y, t) :=
1

uk(x̄k)
Uk

(
x̄k +

y

uk(x̄k)
p−1
2σ

,
t

uk(x̄k)
p−1
2σ

)
, (y, t) ∈ Ωk,

where

Ωk :=

{
(y, t) ∈ R

n+1
+ |

(
x̄k +

y

uk(x̄k)
p−1
2σ

,
t

uk(x̄k)
p−1
2σ

)
∈ B+

1 \{0}

}
.

Let wk(y) :=Wk(y, 0). Then Wk satisfies wk(0) = 1 and

{
−div(t1−2σ∇Wk) = 0 in Ωk,
∂Wk

∂νσ (x, 0) = wp
k on ∂0Ωk.

(3.7)
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Furthermore, by (3.5) and (3.6), we have

wk(y) ≤ 2
2σ
p−1 in BRk

with

Rk := µku(x̄k)
p−1
2σ → +∞ as k → ∞.

By Proposition 2.2, for any T > 0, we have

0 ≤Wk ≤ C(T ) in BRk/2 × [0, T ),

where the constant C(T ) depends only on n, σ and T . By Corollary 2.10 and Theorem

2.15 in [23] there exists α > 0 such that for every R > 1,

‖Wk‖W 1,2(t1−2σ ,B+
R) + ‖Wk‖Cα(B

+
R)

+ ‖wk‖C2,α(BR) ≤ C(R),

where C(R) is independent of k. Therefore, there is a subsequence of k → ∞, still

denoted by itself, and a nonnegative function W ∈ W 1,2
loc (t

1−2σ,Rn+1
+ ) ∩ Cα

loc(R
n+1
+ )

such that, as k → ∞,





Wk →W weakly in W 1,2
loc (t

1−2σ,Rn+1
+ ),

Wk →W in C
α/2
loc (Rn+1

+ ),

wk → w in C2
loc(R

n),

where w(y) =W (y, 0). Moreover,W satisfies w(0) = 1 and

{
−div(t1−2σ∇W ) = 0 in R

n+1
+ ,

∂W
∂νσ (x, 0) = wp on R

n.
(3.8)

This contradicts Proposition 2.1 and proves part (1) of the proposition.

Now we prove the Harnack inequality, which is actually a consequence of the upper

bound (3.1). Let

Vr(X) = U(rX)

for each r ∈ (0, 18 ] and for 1
4 ≤ |X | ≤ 4. Obviously, Vr satisfies

{
−div(t1−2σ∇Vr) = 0 in B4\B1/4,
∂Vr

∂νσ (x, 0) = ar(x)vr(x) on B4\B1/4,
(3.9)

where vr(x) = Vr(x, 0) and ar(x) = r2σ (u(rx))p−1
. It follows (3.1) that

|ar(x)| ≤ C for all 1/4 ≤ |x| ≤ 4,

where C is a positive constant independent of r and U . By the Harnack inequality in

Proposition 2.2 and the standard Harnack inequality for uniformly elliptic equations,

we have

sup
1
2≤|X|≤2

Vr(X) ≤ C inf
1
2≤|X|≤2

Vr(X),

where C is another positive constant independent of r and U . Hence, we get (3.2).
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In order to prove the lower bound in (1.5), we need to establish a monotonicity

formula for the nonnegative solutions U of (1.3). More precisely, take a nonnegative

solutions U of (1.3), let 0 < r < 1 and define

E(r;U) :=r2
(p+1)σ
p−1 −n

[
r

∫

∂+B+
r

t1−2σ|
∂U

∂ν
|2 +

2σ

p− 1

∫

∂+B+
r

t1−2σ ∂U

∂ν
U

]

+
1

2

2σ

p− 1

(
4σ

p− 1
− (n− 2σ)

)
r2

(p+1)σ
p−1 −n−1

∫

∂+B+
r

t1−2σU2

− r2
(p+1)σ
p−1 −n+1

[
1

2

∫

∂+B+
r

t1−2σ|∇U |2 −
1

p+ 1

∫

∂Br

up+1

]
.

Then, we have the following monotonicity formula.

Proposition 3.2. Let U be a nonnegative solution of (1.3) with 1 < p < n+2σ
n−2σ . Then,

E(r;U) is non-decreasing in r ∈ (0, 1).

Proof. Take standard polar coordinates in R
n+1
+ : X = (x, t) = rθ, where r = |X | and

θ = X
|X| . Let θ1 = t

|X| denote the component of θ in the t direction and

S
n
+ = {X ∈ R

n+1
+ : r = 1, θ1 > 0}

denote the upper unit half-sphere.

We use the classical change of variable in Fowler [18],

V (s, θ) = r
2σ
p−1U(r, θ), s = ln r.

Direct calculations show that V satisfies
{
Vss − J1Vs − J2V + θ2σ−1

1 divθ(θ
1−2σ
1 ∇θV ) = 0 in (−∞, 0)× S

n
+,

− limθ1→0+ θ
1−2σ
1 ∂θ1V = V p on (−∞, 0)× ∂Sn+,

(3.10)

where

J1 =
4σ

p− 1
− (N − 2σ), J2 =

2σ

p− 1

(
n− 2σ −

2σ

p− 1

)
.

Multiplying (3.10) by Vs and integrating, we have

∫

Sn+

θ1−2σ
1 VssVs − J2

∫

Sn+

θ1−2σ
1 V Vs −

∫

Sn+

θ1−2σ
1 ∇θV · ∇θVs +

∫

∂Sn+

V pVs

= J1

∫

Sn+

θ1−2σ
1 (Vs)

2.

(3.11)

For any s ∈ (−∞, 0), we define

Ẽ(s) :=
1

2

∫

Sn+

θ1−2σ
1 (Vs)

2 −
J2
2

∫

Sn+

θ1−2σ
1 V 2 −

1

2

∫

Sn+

θ1−2σ
1 |∇θV |2

+
1

p+ 1

∫

∂Sn+

V p+1.
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Then, by (3.11), we get

d

ds
Ẽ(s) = J1

∫

Sn+

θ1−2σ
1 (Vs)

2 ≥ 0. (3.12)

Here we have used the fact J1 > 0 because 1 < p < n+2σ
n−2σ . Hence, Ẽ(s) is non-

decreasing in s ∈ (−∞, 0).
Now, rescaling back, we have

∫

Sn+

θ1−2σ
1 (Vs)

2

=

∫

Sn+

θ1−2σ
1

(
2σ

p− 1
r

2σ
p−1−1U + r

2σ
p−1Ur

)2

r2

= r2
(p+1)σ
p−1 −n

∫

∂+B+
r

t1−2σ

(
4σ2

(p− 1)2
r−1U2 +

4σ

p− 1
U
∂U

∂ν
+ r|

∂U

∂ν
|2
)
,

∫

Sn+

θ1−2σ
1 |∇θV |2 = r2

(p+1)σ
p−1 −n+1

∫

∂+B+
r

t1−2σ

(
|∇U |2 − |

∂U

∂ν
|2
)
,

∫

Sn+

θ1−2σ
1 V 2 = r2

(p+1)σ
p−1 −n−1

∫

∂+B+
r

t1−2σU2,

∫

∂Sn+

V p+1 = r2
(p+1)σ
p−1 −n+1

∫

∂Br

up+1.

Substituting these into (3.12) and noting that s = ln r is non-decreasing in r, we easily

obtain that E(r;U) is also non-decreasing in r ∈ (0, 1).

By the monotonicity of E(r;U) we prove the following proposition, which will

play an essential role in deriving the lower bound in (1.5).

Proposition 3.3. Let U be a nonnegative solution of (1.3) with n
n−2σ < p < n+2σ

n−2σ . If

lim inf
|x|→0

|x|
2σ
p−1u(x) = 0,

then

lim
|x|→0

|x|
2σ
p−1u(x) = 0.

Proof. Suppose by contradiction that

lim inf
|x|→0

|x|
2σ
p−1u(x) = 0 and lim sup

|x|→0

|x|
2σ
p−1u(x) = C > 0.

Therefore, there exist two sequences of points {xi} and {yi} satisfying

xi → 0, yi → 0 as i→ ∞,

8



such that

|xi|
2σ
p−1u(xi) → 0 and |yi|

2σ
p−1u(yi) → C > 0 as i→ ∞.

Let g(r) = r
2σ
p−1 ū(r), where ū(r) = 1

|∂Br |

∫
∂Br

u denotes the spherical average of u

over ∂Br. Then, by the Harnack inequality (3.3), we have

lim inf
r→0

g(r) = 0 and lim sup
r→0

g(r) = C > 0.

Hence, there exists a sequence of local minimum points ri of g(r) with

lim
i→∞

ri = 0 and lim
i→∞

g(ri) = 0.

Let

Vi(X) =
U(riX)

U(rie1)
,

where e1 = (1, 0, · · · , 0). It follows from the Harnack inequality (3.2) that Vi is locally

uniformly bounded away from the origin and satisfies






−div(t1−2σ∇Vi) = 0 in R
n+1
+ ,

∂Vi

∂νσ (x, 0) =

(
r

2σ
p−1

i U(rie1)

)p−1

V p
i (x, 0) on R

n\{0}.
(3.13)

Note that by the Harnack inequality (3.3), r
2σ
p−1

i U(rie1) → 0 as i → ∞. Then by

Corollary 2.10 and Theorem 2.15 in [23] that there exists α > 0 such that for every

R > 1 > r > 0

‖Vi‖W 1,2(t1−2σ ,B+
R\B

+
r )

+ ‖Vi‖Cα(B+
R\B

+
r )

+ ‖vi‖C2,α(BR\Br) ≤ C(R, r),

where vi(x) = Vi(x, 0) and C(R, r) is independent of i. Then after passing to a sub-

sequence, {Vi} converges to a nonnegative function V ∈ W 1,2
loc (t

1−2σ,Rn+1
+ \{0}) ∩

Cα
loc(R

n+1
+ \{0}) satisfying

{
−div(t1−2σ∇V ) = 0 in R

n+1
+ ,

∂V
∂νσ (x, 0) = 0 on R

n\{0}.
(3.14)

By a Bôcher type theorem in [23], we have

V (X) =
a

|X |n−2σ
+ b,

where a, b are nonnegative constants. Recall that ri are local minimum of g(r) for

every i and note that

r
2σ
p−1 v̄i(r) = r

2σ
p−1

1

|∂Br|

∫

∂Br

vi =
1

U(rie1)
r

2σ
p−1 ū(rir) =

1

U(rie1)r
2σ
p−1

i

g(rir).
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Hence, for every i, we have

d

dr

[
r

2σ
p−1 v̄i(r)

] ∣∣∣∣∣
r=1

=
ri

U(rie1)r
2σ
p−1

i

g′(ri) = 0. (3.15)

Let v(x) = V (x, 0). Then we know that vi(x) → v(x) in C2
loc(R

n\{0}). By (3.15),

we obtain

d

dr

[
r

2σ
p−1 v̄(r)

] ∣∣∣∣∣
r=1

= 0,

which implies that

a

(
2σ

p− 1
− (n− 2σ)

)
+

2σb

p− 1
= 0. (3.16)

On the other hand, by V (e1) = 1, we have

a+ b = 1. (3.17)

Combine (3.16) with (3.17), we get

a =
2σ

(p− 1)(n− 2σ)
and b = 1−

2σ

(p− 1)(n− 2σ)
.

Since n
n−2σ < p, we have 0 < a, b < 1. Now we computeE(r;U).

It follows from Proposition 2.19 in [23] that |∇xVi| and |t1−2σ∂tVi| are locally

uniformly bounded in Cβ
loc(R

n+1
+ \{0}) for some β > 0. Hence, there exists a constant

C > 0 such that

|∇xU(X)| ≤ Cr−1
i U(rie1) = o(1)r

− 2σ
p−1−1

i for all |X | = ri

and

|t1−2σ∂tU(X)| ≤ Cr−2σ
i U(rie1) = o(1)r

− 2σ
p−1−2σ

i for all |X | = ri.

Thus, by a direct computation, we can get

lim
i→∞

E(ri;U) = 0.

By the monotonicity of E(r;U), we obtain

E(r;U) ≥ 0 for all r ∈ (0, 1).

On the other hand, by the scaling invariance of E(r;U), for every i, we have

0 ≤ E(ri;U) = E

(
1; r

2σ
p−1

i U(riX)

)
= E

(
1; r

2σ
p−1

i U(rie1)Vi

)
.

10



Hence, for every i, we have

0 ≤

∫

∂+B+
1

t1−2σ|
∂Vi
∂ν

|2 +
2σ

p− 1

∫

∂+B+
1

t1−2σ ∂Vi
∂ν

Vi

+
1

2

2σ

p− 1

(
4σ

p− 1
− (n− 2σ)

)∫

∂+B+
1

t1−2σV 2
i

−
1

2

∫

∂+B+
1

t1−2σ|∇Vi|
2 +

1

p+ 1

∫

∂B1

(
r

2σ
p−1

i U(rie1)

)p−1

V p+1
i .

Letting i→ ∞, we obtain

0 ≤

∫

∂+B+
1

t1−2σ|
∂V

∂ν
|2 +

2σ

p− 1

∫

∂+B+
1

t1−2σ ∂V

∂ν
V

+
1

2

2σ

p− 1

(
4σ

p− 1
− (n− 2σ)

)∫

∂+B+
1

t1−2σV 2 −
1

2

∫

∂+B+
1

t1−2σ|∇V |2

= a2(n− 2σ)2
∫

∂+B+
1

t1−2σ − a(n− 2σ)
2σ

p− 1

∫

∂+B+
1

t1−2σ

+
1

2

2σ

p− 1

(
4σ

p− 1
− (n− 2σ)

)∫

∂+B+
1

t1−2σ −
1

2
a2(n− 2σ)2

∫

∂+B+
1

t1−2σ

=
σ

p− 1

(
2σ

p− 1
− (n− 2σ)

)∫

∂+B+
1

t1−2σ < 0.

Note that in the last inequality we have used the fact 2σ
p−1 − (n − 2σ) < 0 because

n
n−2σ < p. Obviously, we get a contradiction.

To characterize the ”order” of an isolated singularity we establish the following

sufficient condition for removability of isolated singularities. For its proof, we adapt

the arguments from [19], but there are extra difficulties. Such as, we need extra efforts

to derive the estimates of U from its trace u.

Proposition 3.4. Let U be a nonnegative solution of (1.3) with n
n−2σ < p < n+2σ

n−2σ . If

∫

ǫ≤|x|≤1

u
(p−1)n

2σ ≤ c < +∞ (3.18)

with c independent of ǫ, then the singularity at the origin is removable, i.e., u(x) can be

extended to a continuous solution in the entire ball B1.

Proof. Let

p0 =
n− 2σ

2σ

(
p−

n

n− 2σ

)
and q0 =

1

2
(p0 + 1) =

1

2

n− 2σ

2σ
(p− 1).

Following Serrin [28], we define, for q ≥ q0, l > 0

F (u) =

{
uq for 0 < u ≤ l,
1
q0

[qlq−q0uq0 + (q0 − q)lq] for l ≤ u,

11



and

G(u) = F (u)F ′(u)− q.

Clearly, F is a C1 function of u and G is a piecewise smooth function of u with a

corner at u = l. Moreover, since p0 > 0 (implied by n
n−2σ < p), F,G satisfy

F ≤
q

q0
lq−q0uq0 , uF ′ ≤ qF, (3.19)

|G| ≤ FF ′, (3.20)

G′ ≥

{
1
q pF

′2 for 0 < u < l,
1
q0
p0F

′2 for l ≤ u.
(3.21)

For any 0 < R < 1, let η and η̄ be nonnegative C∞ function with 0 ≤ η, η̄ ≤ 1 in

BR = {X ∈ R
n+1 : |X | < R}, η having compact support in BR, and η̄ vanishing

in some neighborhood of the origin. Take (ηη̄)2G(U) as a test function into (1.4), we

have
∫

B+
R

t1−2σ(ηη̄)2G′(U)|∇U |2 + 2

∫

B+
R

t1−2σηη̄G(U)∇U · ∇(ηη̄)

=

∫

BR

(ηη̄)2G(u)up.

(3.22)

Using (3.19) – (3.21) and simplifying we obtain from (3.22)

∫

B+
R

t1−2σ(ηη̄)2|∇(F (U))|2 ≤ C(q)

{∫

B+
R

t1−2σ|∇(ηη̄)|2F 2+

∫

BR

(ηη̄)2up−1F 2

}
.

(3.23)

By Hölder and Proposition 2.3, we have

∫

BR

(ηη̄)2up−1F 2 ≤

(∫

BR

(up−1)
n
2σ

) 2σ
n
(∫

BR

(ηη̄F )
2n

n−2σ

)n−2σ
n

≤ C2
n,σ

(∫

BR

(up−1)
n
2σ

) 2σ
n

(∫

B+
R

t1−2σ|∇(ηη̄F )|2

)

≤ C2
n,σ‖u

p−1‖
L

n
2σ (BR)

{∫

B+
R

t1−2σ(ηη̄)2|∇F |2

+

∫

B+
R

t1−2σ|∇(ηη̄)|2F 2

}
.

By the assumption (3.18), we can choose R small enough (depending on q, n and σ )

such that

‖up−1‖
L

n
2σ (BR)

≤
1

2

1

C(q)C2
n,σ

,

Hence, from (3.23), we obtain
∫

B+
R

t1−2σ(ηη̄)2|∇(F (U))|2 ≤ C(q)

∫

B+
R

t1−2σ|∇(ηη̄)|2F 2 (3.24)
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with a new constant C(q). Therefore, we have from (3.24)

∫

B+
R

t1−2σ(ηη̄)2|∇(F (U))|2 ≤ C(q)

{∫

B+
R

t1−2σ|∇η|2F 2 +

∫

B+
R

t1−2σ|∇η̄|2F 2

}

(3.25)

and

(∫

BR

(ηη̄F )
2n

n−2σ

)n−2σ
n

≤ C(q)

{∫

B+
R

t1−2σ|∇η|2F 2 +

∫

B+
R

t1−2σ|∇η̄|2F 2

}
.

(3.26)

For any ǫ > 0 small enough, we choose η̄ǫ satisfy

η̄ǫ(X) =

{
0 for |X | ≤ ǫ,

1 for 2ǫ ≤ |X | < R,
(3.27)

and |∇η̄ǫ(X)| ≤ c
ǫ for all X ∈ BR. By Hölder inequality

∫

B+
R

t1−2σ|∇η̄ǫ|
2F 2 ≤

(∫

B+
2ǫ

t1−2σ|∇η̄ǫ|
n+2−2σ

) 2
n+2−2σ

(∫

B+
2ǫ

t1−2σF 2n+2−2σ
n−2σ

) n−2σ
n+2−2σ

≤
C

ǫ2

(∫

B+
2ǫ

t1−2σ

) 2
n+2−2σ

(∫

B+
2ǫ

t1−2σF 2n+2−2σ
n−2σ

) n−2σ
n+2−2σ

≤ C

(∫

B+
2ǫ

t1−2σF 2n+2−2σ
n−2σ

) n−2σ
n+2−2σ

,

(3.28)

where C is a positive constant independent of ǫ. Since, by (3.19), the Harnack inequal-

ity (3.3) and (3.1), we have

∫

B+
2ǫ

t1−2σF 2n+2−2σ
n−2σ ≤ C(l, q)

∫

B+
2ǫ

t1−2σU2q0
n+2−2σ
n−2σ

≤ C(l, q)

∫ 2ǫ

0

(
sup
∂+B+

s

U

)2q0
n+2−2σ
n−2σ

sn+1−2σds

≤ C(l, q)

∫ 2ǫ

0

(
inf

∂+B+
s

U

)2q0
n

n−2σ

s−2q0
4σ(1−σ)

(p−1)(n−2σ) sn+1−2σds

≤ C(l, q)

∫ 2ǫ

0

(
inf
∂Bs

u

)2q0
n

n−2σ

sn−1ds

≤ C(l, q)

∫ 2ǫ

0

(
1

|∂Bs|

∫

∂Bs

u2q0
n

n−2σ

)
sn−1ds

≤ C(l, q)

∫

B2ǫ

u2q0
n

n−2σ = C(l, q)

∫

B2ǫ

u
(p−1)n

2σ .

(3.29)
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Here we have used the fact 2q0
n

n−2σ = (p−1)n
2σ > 1 because p− 1 > 2σ

n−2σ . Now, we

have from (3.18), (3.28) and (3.29)
∫

B+
R

t1−2σ|∇η̄ǫ|
2F 2 → 0 as ǫ→ 0.

This together with (3.25) and (3.26), we obtain
∫

B+
R

t1−2ση2|∇(F (U))|2 ≤ C(q)

∫

B+
R

t1−2σ|∇η|2F 2 (3.30)

and (∫

BR

(ηF )
2n

n−2σ

)n−2σ
n

≤ C(q)

∫

B+
R

t1−2σ|∇η|2F 2. (3.31)

Let l → +∞, since F (u) → uq , we have

∫

B+
R

t1−2ση2|∇U q|2 ≤ C(q)

∫

B+
R

t1−2σ|∇η|2U2q (3.32)

and (∫

BR

(ηuq)
2n

n−2σ

)n−2σ
n

≤ C(q)

∫

B+
R

t1−2σ|∇η|2U2q. (3.33)

By a similar estimate as in (3.29), we can obtain

∫

B+
R

t1−2σ|∇η|2U2q ≤ C(q)

∫ R

0

(
inf

∂+B+
s

U2q−2q0
2(1−σ)
n−2σ

)
sn−1ds

≤ C(q)

(∫

BR

u2q
)1−

q0
q

2(1−σ)
n−2σ

(3.34)

Inequality (3.32), (3.33) and (3.34) can be iterated a finite number of times to show that

U ∈W 1,2(t1−2σ,B+
R) and u ∈ Lq(BR) for all q > 0.

Furthermore, U satisfies
{
−div(t1−2σ∇U) = 0 in B+

R ,
∂U
∂νσ (x, 0) = Up(x, 0) on ∂0B+

R .

Indeed, for ǫ > 0 small, let η̄ǫ be a smooth cut-off function as in (3.27). Let ψ ∈
C∞

c (B+
R ∪ ∂0B+

R). It follows from (1.4) that

∫

B+
R

t1−2σ∇U∇(ψη̄ǫ) =

∫

∂0B+
R

Upψη̄ǫ. (3.35)

Since
∣∣∣∣∣

∫

B+
R

t1−2σ∇U∇η̄ǫψ

∣∣∣∣∣ ≤ Cǫ
n−2σ

2

∫

B+
R

t1−2σ|∇U |2 → 0 as ǫ→ 0,
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by the dominated convergence theorem, let ǫ→ 0 in (3.35), we obtain

∫

B+
R

t1−2σ∇U∇ψ =

∫

∂0B+
R

Upψ.

Since u ∈ Lq(BR) for some q > n
2σ , it follows from Proposition 2.10 in [23] that U is

Hölder continuous in B+
R/2. The proof of the proposition is completed.

Corollary 3.1. Let U be a nonnegative solution of (1.3) with n
n−2σ < p < n+2σ

n−2σ .

Then either the origin 0 is a removable singularity or lim|X|→0 U(x, t) = +∞.

Proof. By Proposition 3.4, if the origin is not a removable singularity, then there exists

a sequence of points {xj} such that

rj = |xj | → 0 and U(xj , 0) → +∞ as j → ∞.

By the Harnack inequality (3.2), we have

inf
|X|=rj

U(X) ≥ C−1U(xj , 0).

By the maximum principle,

U(X) ≥ inf
|X|=rj,rj+1

U(X) ≥ C−1 min(U(xj , 0), U(xj+1, 0)) in rj+1 ≤ |X | ≤ rj .

Hence, we have U(X) → +∞ as |X | → 0.

Proof of Theorem 1.1. By Proposition 3.1,

u(x) ≤ c|x|−
2σ
p−1 .

If (1.5) does not hold, then

lim inf
x→0

|x|
2σ
p−1u(x) = 0.

It follows Proposition 3.3 that

lim
x→0

|x|
2σ
p−1u(x) = 0 (3.36)

We will prove that the origin is a removable singularity. It suffices to establish (3.18)

by Proposition 3.4.

Let τ = n−2σ
p−1 (p− n

n−2σ ) and 0 < δ < 1. Define

Φ = |X |−τ − δt2σ|X |−(τ+2σ).

Then we can choose δ small (depending only on n , σ and p) such that

{
−div(t1−2σ∇Φ) ≥ 0 in R

n+1
+ ,

∂Φ
∂νσ (x, 0) = 2δσ|x|−2σφ(x) on R

n\{0},
(3.37)
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where φ(x) = Φ(x, 0) = |x|−τ . Take ξ1(s) ∈ C∞
c (R) satisfying 0 ≤ ξ1 ≤ 1 in R and

ξ1(s) =

{
0 if |s| ≤ 1,

1 if |s| ≥ 2.

Take ξ2(s) ∈ C∞
c (R) satisfying 0 ≤ ξ2 ≤ 1 in R and

ξ2(s) =

{
1 if |s| ≤ 1

2 ,

0 if |s| ≥ 3
4 .

For any ǫ > 0 small, we choose ζ(X) ∈ C∞
c (ǫ < |X | < 1) as follow

ζ(X) =

{
ξ1(

|X|
ǫ ) if |X | ≤ 1

2 ,

ξ2(|X |) if |X | ≥ 1
2 .

Using ζΦ as a test function in (1.4), and the divergence theorem we obtain

∫

B1

uζφ

(
1

φ

∂Φ

∂νσ
− up−1

)
=

∫

B+
1

U

{
div(t1−2σ∇Φ)ζ + 2t1−2σ∇ζ · ∇Φ

+ div(t1−2σ∇ζ)Φ

}
−

∫

B1

uφ
∂ζ

∂νσ
.

(3.38)

Since ζ is radial, we have

∂ζ

∂νσ
(x, 0) = − lim

t→0+
t1−2σ∂tζ = 0 in B1. (3.39)

By (3.37), we obtain ∫

B+
1

Udiv(t1−2σ∇Φ)ζ ≤ 0. (3.40)

Using (3.1) and the Harnack inequality (3.2), we have

∫

B+
1

U

{
2t1−2σ∇ζ · ∇Φ+ div(t1−2σ∇ζ)Φ

}

≤ C1 +

∫

B+
2ǫ\B

+
ǫ

U

{
2t1−2σ|∇ζ||∇Φ|+ |div(t1−2σ∇ζ)|Φ

}

≤ C1 + Cǫ−
2σ
p−1−1

∫

B+
2ǫ\B

+
ǫ

(
t1−2σ|X |−(τ+1) + |X |−(τ+2σ)

)

+ Cǫ−
2σ
p−1−τ

∫

B+
2ǫ\B

+
ǫ

t1−2σ

(
|∆ζ|+ ǫ−1

∣∣∣∣ξ
′
1(
|X |

ǫ
)

∣∣∣∣
1

|X |

)

≤ C1 + Cǫn−(τ+2σ)− 2σ
p−1 ≤ C < +∞

(3.41)

with C independent of ǫ. Hence, we obtain

∫

B1

uζφ

(
1

φ

∂Φ

∂νσ
− up−1

)
≤ C < +∞.
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By (3.36), we have up−1 = o(|x|−2σ), and while

1

φ

∂Φ

∂νσ
= 2δσ|x|−2σ in B1\{0}.

Therefore ∫

B1

uζ|x|−(n− 2σ
p−1 ) =

∫

B1

uζ|x|−(τ+2σ) ≤ C < +∞ (3.42)

with C independent of ǫ. Again by (3.1), we have
∫

2ǫ≤|x|≤1/2

u
(p−1)n

2σ ≤ C

∫

2ǫ≤|x|≤1/2

u|x|−
2σ

p−1 [
(p−1)n

2σ −1]

≤ C

∫

B1

uζ|x|−(n− 2σ
p−1 ) ≤ C < +∞

with C independent of ǫ. Thus, we establish (3.18) and complete the proof of Theorem

1.1. �
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