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1Department of Mathematics, Indian Institute of Technology Roorkee,

Roorkee-247667, Uttarakhand, India
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Abstract. Global weak solutions to the continuous Smoluchowski coagulation equation

(SCE) are constructed for coagulation kernels featuring an algebraic singularity for small

volumes and growing linearly for large volumes, thereby extending previous results obtained

in Norris (1999) and Cueto Camejo & Warnecke (2015). In particular, linear growth at infin-

ity of the coagulation kernel is included and the initial condition may have an infinite second

moment. Furthermore, all weak solutions (in a suitable sense) including the ones constructed

herein are shown to be mass-conserving, a property which was proved in Norris (1999) under

stronger assumptions. The existence proof relies on a weak compactness method in L1 and

a by-product of the analysis is that both conservative and non-conservative approximations

to the SCE lead to weak solutions which are then mass-conserving.
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1 Introduction

The kinetic process in which particles undergo changes in their physical properties is called a par-
ticulate process. The study of particulate processes is a well-known subject in various branches
of engineering, astrophysics, physics, chemistry and in many other related areas. During the
particulate process, particles merge to form larger particles or break up into smaller particles.
Due to this process, particles change their size, shape and volume, to name but a few. There are
various types of particulate processes such as coagulation, fragmentation, nucleation and growth
for instance. In particular, this article mainly deals with the coagulation process which is gov-
erned by the Smoluchowski coagulation equation (SCE). In this process, two particles coalesce
to form a larger particle at a particular instant.
The SCE is a nonlinear integral equation which describes the dynamics of evolution of the
concentration g(ζ, t) of particles of volume ζ > 0 at time t ≥ 0 [23]. The evolution of g is given
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by
∂g(ζ, t)

∂t
= Bc(g)(ζ, t) − Dc(g)(ζ, t), (ζ, t) ∈ (0,∞)2, (1.1)

with initial condition
g(ζ, 0) = gin(ζ) ≥ 0, ζ ∈ (0,∞), (1.2)

where the operator Bc and Dc are expressed as

Bc(g)(ζ, t) :=
1

2

∫ ζ

0
Ψ(ζ − η, η)g(ζ − η, t)g(η, t)dη (1.3)

and

Dc(g)(ζ, t) :=

∫ ∞

0
Ψ(ζ, η)g(ζ, t)g(η, t)dη. (1.4)

Here ∂g(ζ,t)
∂t represents the time partial derivative of the concentration of particles of volume ζ

at time t. In addition, the non-negative quantity Ψ(ζ, η) denotes the interaction rate at which
particles of volume ζ and particles of volume η coalesce to form larger particles. This rate is
also known as the coagulation kernel or coagulation coefficient. The first and last terms Bc(g)
and Dc(g) on the right-hand side to (1.1) represent the formation and disappearance of particles
of volume ζ due to coagulation events, respectively.
Let us define the total mass (volume) of the system at time t ≥ 0 as:

M1(g)(t) :=

∫ ∞

0
ζg(ζ, t)dζ. (1.5)

According to the conservation of matter, it is well known that the total mass (volume) of
particles is neither created nor destroyed. Therefore, it is expected that the total mass (volume)
of the system remains conserved throughout the time evolution prescribed by (1.1)–(1.2), that
is, M1(g)(t) = M1(g

in) for all t ≥ 0. However, it is worth to mention that, for the multiplicative
coagulation kernel Ψ(ζ, η) = ζη, the total mass conservation fails for the SCE at finite time t = 1,
see [21]. The physical interpretation is that the lost mass corresponds to “particles of infinite
volume” created by a runaway growth in the system due to the very high rate of coalescence
of very large particles. These particles, also referred to as “giant particles” [1] are interpreted
in the physics literature as a different macroscopic phase, called a gel, and its occurrence is
called the sol-gel transition or gelation transition. The earliest time Tg ≥ 0 after which mass
conservation no longer holds is called the gelling time or gelation time.
Since the works by Ball & Carr [2] and Stewart [24], several articles have been devoted to the
existence and uniqueness of solutions to the SCE for coagulation kernels which are bounded
for small volumes and unbounded for large volumes, as well as to the mass conservation and
gelation phenomenon, see [8, 12, 11, 15, 18, 22, 25], see also the survey papers [1, 17, 19] and
the references therein. However, to the best of our knowledge, there are fewer articles in which
existence and uniqueness of solutions to the SCE with singular coagulation rates have been
studied, see [5, 6, 10, 9, 22]. In [22], Norris investigates the existence and uniqueness of solutions
to the SCE locally in time when the coagulation kernel satisfies

Ψ(ζ, η) ≤ φ(ζ)φ(η), (ζ, η) ∈ (0,∞)2, (1.6)
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for some sublinear function φ : (0,∞) → [0,∞), that is, φ enjoys the property φ(aζ) ≤ aφ(ζ)
for all ζ ∈ (0,∞) and a ≥ 1, and the initial condition gin belongs to L1((0,∞);φ(ζ)2dζ). Mass-
conservation is also shown as soon as there is ε > 0 such that φ(ζ) ≥ εζ for all ζ ∈ (0,∞).
In [9, 10], global existence, uniqueness, and mass-conservation are established for coagulation
rates of the form Ψ(ζ, η) = ζµ1ηµ2 + ζµ2ηµ1 with −1 ≤ µ1 ≤ µ2 ≤ 1, µ1 + µ2 ∈ [0, 2], and
(µ1, µ2) 6= (0, 1). Recently, global existence of weak solutions to the SCE for coagulation kernels
satisfying

Ψ(ζ, η) ≤ k∗(1 + ζ + η)λ(ζη)−σ, (ζ, η) ∈ (0,∞)2,

with σ ∈ [0, 1/2], λ− σ ∈ [0, 1), and k∗ > 0, is obtained in [5] and further extended in [6] to the
broader class of coagulation kernels

Ψ(ζ, η) ≤ k∗(1 + ζ)λ(1 + η)λ(ζη)−σ, (ζ, η) ∈ (0,∞)2, (1.7)

with σ ≥ 0, λ − σ ∈ [0, 1), and k∗ > 0. In [6], multiple fragmentation is also included and
uniqueness is shown for the following restricted class of coagulation kernels

Ψ2(ζ, η) ≤ k∗(ζ−σ + ζλ−σ)(η−σ + ηλ−σ), (ζ, η) ∈ (0,∞)2,

where σ ≥ 0 and λ− σ ∈ [0, 1/2].
The main aim of this article is to extend and complete the previous results in two directions. We
actually consider coagulation kernels satisfying the growth condition (1.6) for the non-negative
function

φβ(ζ) := max
{

ζ−β, ζ
}

, ζ ∈ (0,∞),

and prove the existence of a global mass-conserving solution of the SCE (1.1)–(1.2) with initial
conditions in L1((0,∞); (ζ−2β + ζ)dζ), thereby removing the finiteness of the second moment
required to apply the existence result of [22] and relaxing the assumption λ < σ + 1 used in
[6] for coagulation kernels satisfying (1.7). Besides this, we show that any weak solution in the
sense of Definition 2.2 below is mass-conserving, a feature which was enjoyed by the solution
constructed in [22] but not investigated in [5, 6]. An important consequence of this property is
that it gives some flexibility in the choice of the method to construct a weak solution to the SCE
(1.1)–(1.2) since it will be mass-conserving whatever the approach. Recall that there are two
different approximations of the SCE (1.1) by truncation have been employed in recent years,
the so-called conservative and non-conservative approximations, see (4.4) below. While it is
expected and actually verified in several papers that the conservative approximation leads to a
mass-conserving solution to the SCE, a similar conclusion is not awaited when using the non-
conservative approximation which has rather been designed to study the gelation phenomenon, in
particular from a numerical point of view [14, 4]. Still, it is by now known that, for the SCE with
locally bounded coagulation kernels growing at most linearly at infinity, the non-conservative
approximation also allows one to construct mass-conserving solutions [13, 3]. The last outcome
of our analysis is that, in our case, the conservative and non-conservative approximations can
be handled simultaneously and both lead to a weak solution to the SCE which might not be the
same due to the lack of a general uniqueness result but is mass-conserving.
We now outline the results of the paper: In the next section, we state precisely our hypotheses
on coagulation kernel and on the initial data together with the definition of solutions and the
main result. In Section 3, all weak solutions are shown to be mass-conserving. Finally, in the last
section, the existence of a weak solution to the SCE (1.1)–(1.2) is obtained by using a weak L1

compactness method applied to either the non-conservative or the conservative approximations
of the SCE.
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2 Main result

We assume that the coagulation kernel Ψ satisfies the following hypotheses.

Hypotheses 2.1. (H1) Ψ is a non-negative measurable function on (0,∞) × (0,∞),
(H2) There are β > 0 and k > 0 such that

0 ≤ Ψ(ζ, η) = Ψ(η, ζ) ≤ k(ζη)−β, (ζ, η) ∈ (0, 1)2,
0 ≤ Ψ(ζ, η) = Ψ(η, ζ) ≤ kηζ−β, (ζ, η) ∈ (0, 1) × (1,∞),
0 ≤ Ψ(ζ, η) = Ψ(η, ζ) ≤ k(ζ + η), (ζ, η) ∈ (1,∞)2.

Observe that (H2) implies that

Ψ(ζ, η) ≤ kmax
{

ζ−β, ζ
}

max
{

η−β , η
}

, (ζ, η) ∈ (0,∞)2.

Let us now mention the following interesting singular coagulation kernels satisfying hypothe-
ses 2.1.

(a) Smoluchowski’s coagulation kernel [23] (with β = 1/3)

Ψ(ζ, η) =
(

ζ1/3 + η1/3
)(

ζ−1/3 + η−1/3
)

, (ζ, η) ∈ (0,∞)2.

(b) Granulation kernel [16]

Ψ(ζ, η) =
(ζ + η)θ1

(ζη)θ2
, where θ1 ≤ 1 and θ2 ≥ 0.

(c) Stochastic stirred froths [7]

Ψ(ζ, η) = (ζη)−β , where β > 0.

Before providing the statement of Theorem 2.3, we recall the following definition of weak solu-
tions to the SCE (1.1)–(1.2). We set L1

−2β,1(0,∞) := L1((0,∞); (ζ−2β + ζ)dζ).

Definition 2.2. Let T ∈ (0,∞] and gin ∈ L1
−2β,1(0,∞), gin ≥ 0 a.e. in (0,∞). A non-

negative real valued function g = g(ζ, t) is a weak solution to equations (1.1)–(1.2) on [0, T ) if
g ∈ C ([0, T );L1(0,∞))

⋂

L∞(0, T ;L1
−2β,1(0,∞)) and satisfies

∫ ∞

0
[g(ζ, t)− gin(ζ)]ω(ζ)dζ =

1

2

∫ t

0

∫ ∞

0

∫ ∞

0
ω̃(ζ, η)Ψ(ζ, η)g(ζ, s)g(η, s)dηdζds, (2.1)

for every t ∈ (0, T ) and ω ∈ L∞(0,∞), where

ω̃(ζ, η) := ω(ζ + η)− ω(ζ)− ω(η), (ζ, η) ∈ (0,∞)2.

Now, we are in a position to state the main theorem of this paper.

Theorem 2.3. Assume that the coagulation kernel satisfies hypotheses (H1)–(H2) and con-
sider a non-negative initial condition gin ∈ L1

−2β,1(0,∞). There exists at least one mass-
conserving weak solution g to the SCE (1.1)–(1.2) on [0,∞), that is, g is a weak solution to
(1.1)–(1.2) in the sense of Definition 2.2 satisfying M1(g)(t) = M1(g

in) for all t ≥ 0, the total
mass M1(g) being defined in (1.5).
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3 Weak solutions are mass-conserving

In this section, we establish that any weak solution g to (1.1)–(1.2) on [0, T ), T ∈ (0,∞], in the
sense of Definition 2.2 is mass-conserving, that is, satisfies

M1(g)(t) = M1(g
in), t ≥ 0. (3.1)

To this end, we adapt an argument designed in [2, Section 3] to investigate the same issue for
the discrete coagulation-fragmentation equations and show that the behaviour of g for small
volumes required in Definition 2.2 allows us to control the possible singularity of Ψ.

Theorem 3.1. Suppose that (H1)–(H2) hold. Let g be a weak solution to (1.1)–(1.2) on [0, T )
for some T ∈ (0,∞]. Then g satisfies the mass-conserving property (3.1) for all t ∈ (0, T ).

In order to prove Theorem 3.1, we need the following sequence of lemmas.

Lemma 3.2. Assume that (H1)–(H2) hold. Let g be a weak solution to (1.1)–(1.2) on [0, T ).
Then, for q ∈ (0,∞) and t ∈ (0, T ),

∫ q

0
ζg(ζ, t)dζ −

∫ q

0
ζgin(ζ)dζ = −

∫ t

0

∫ q

0

∫ ∞

q−ζ
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζds. (3.2)

Proof. Set ω(ζ) = ζχ(0,q)(ζ) for ζ ∈ (0,∞) and note that

ω̃(ζ, η) =































0, if ζ + η ∈ (0, q),

−(ζ + η), if ζ + η ≥ q, (ζ, η) ∈ (0, q)2,

−ζ, if (ζ, η) ∈ (0, q) × [q,∞),

−η, if (ζ, η) ∈ [q,∞)× (0, q),

0, if (ζ, η) ∈ [q,∞)2.

Inserting the above values of ω̃ into (2.1) and using the symmetry of Ψ, we have

∫ q

0
[g(ζ, t)− gin(ζ)]ζdζ =

1

2

∫ t

0

∫ ∞

0

∫ ∞

0
ω̃(ζ, η)Ψ(ζ, η)g(ζ, s)g(η, s)dηdζds

=−
1

2

∫ t

0

∫ q

0

∫ q

q−ζ
(ζ + η)Ψ(ζ, η)g(ζ, s)g(η, s)dηdζds

−
1

2

∫ t

0

∫ q

0

∫ ∞

q
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζds

−
1

2

∫ t

0

∫ ∞

q

∫ q

0
ηΨ(ζ, η)g(ζ, s)g(η, s)dηdζds

=−

∫ t

0

∫ q

0

∫ q

q−ζ
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζds

−

∫ t

0

∫ q

0

∫ ∞

q
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζds,

which completes the proof of Lemma 3.2.
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In order to complete the proof of Theorem 3.1, it is sufficient to show that the right-hand side
of (3.2) goes to zero as q → ∞. The first step in that direction is the following result.

Lemma 3.3. Assume that (H1)–(H2) hold. Let g be a solution to (1.1)–(1.2) on [0, T ) and
consider t ∈ (0, T ). Then

(i)

∫ ∞

q
[g(ζ, t)− gin(ζ)]dζ =−

1

2

∫ t

0

∫ ∞

q

∫ ∞

q
Ψ(ζ, η)g(ζ, s)g(η, s)dηdζds

+
1

2

∫ t

0

∫ q

0

∫ q

q−ζ
Ψ(ζ, η)g(ζ, s)g(η, s)dηdζds,

(ii) lim
q→∞

∫ t

0
q

[
∫ q

0

∫ q

q−ζ
Ψ(ζ, η)g(ζ, s)g(η, s)dηdζ −

∫ ∞

q

∫ ∞

q
Ψ(ζ, η)g(ζ, s)g(η, s)dηdζ

]

ds = 0.

Proof. Set ω(ζ) = χ[q,∞)(ζ) for ζ ∈ (0,∞) and the corresponding ω̃ is

ω̃(ζ, η) =































0, if ζ + η ∈ (0, q),

1, if ζ + η ∈ [q,∞), (ζ, η) ∈ (0, q)2,

0, if (ζ, η) ∈ (0, q) × [q,∞),

0, if (ζ, η) ∈ [q,∞)× (0, q),

−1, if (ζ, η) ∈ [q,∞)2.

Inserting the above values of ω̃ into (2.1), we obtain Lemma 3.3 (i).

Next, we readily infer from the integrability of ζ 7→ ζg(ζ, t) and ζ 7→ ζgin(ζ) and Lebesgue’s
dominated convergence theorem that

lim
q→∞

q

∫ ∞

q
[g(ζ, t) − gin(ζ)]dζ ≤ lim

q→∞

∫ ∞

q
ζ[g(ζ, t) + gin(ζ)]dζ = 0.

Multiplying the identity stated in Lemma 3.3 (i) by q, we deduce from the previous statement
that the left-hand side of the thus obtained identity converges to zero as q → ∞. Then so does
its right-hand side, which proves Lemma 3.3 (ii).

Lemma 3.4. Assume that (H1)–(H2) hold. Let g be a weak solution to (1.1)–(1.2) on [0, T ).
Then, for t ∈ (0, T ),

(i) lim
q→∞

∫ t

0

∫ q

0

∫ ∞

q
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζds = 0,

and

(ii) lim
q→∞

q

∫ t

0

∫ ∞

q

∫ ∞

q
Ψ(ζ, η)g(ζ, s)g(η, s)dηdζds = 0.
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Proof. Let q > 1, t ∈ (0, T ), and s ∈ (0, t). To prove the first part of Lemma 3.4, we split the
integral as follows

∫ q

0

∫ ∞

q
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζ = J1(q, s) + J2(q, s),

with

J1(q, s) :=

∫ 1

0

∫ ∞

q
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζ,

J2(q, s) :=

∫ q

1

∫ ∞

q
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζ.

On the one hand, it follows from (H2) and Young’s inequality that

J1(q, s) ≤ k

∫ 1

0

∫ ∞

q
ζ1−βηg(ζ, s)g(η, s)dηdζ

≤ k

(
∫ ∞

0
ζ1−βg(ζ, s)dζ

)(
∫ ∞

q
ηg(η, s)dη

)

≤ k‖g(s)‖L1
−2β,1

(0,∞)

∫ ∞

q
ηg(η, s)dη

and the integrability properties of g from Definition 2.2 and Lebesgue’s dominated convergence
theorem entail that

lim
q→∞

∫ t

0
J1(q, s)ds = 0. (3.3)

On the other hand, we infer from (H2) that

J2(q, s) ≤ k

∫ q

1

∫ ∞

q
ζ(ζ + η)g(ζ, s)g(η, s)dηdζ

≤ 2k

∫ q

1

∫ ∞

q
ζηg(ζ, s)g(η, s)dηdζ

≤ 2kM1(g)(s)

∫ ∞

q
ηg(η, s)dη,

and we argue as above to conclude that

lim
q→∞

∫ t

0
J2(q, s)ds = 0.

Recalling (3.3), we have proved Lemma 3.4 (i).

Similarly, by (H2),

q

∫ ∞

q

∫ ∞

q
Ψ(ζ, η)g(ζ, s)g(η, s)dηdζ ≤ k

∫ ∞

q

∫ ∞

q
(qζ + qη)g(ζ, s)g(η, s)dηdζ

≤ 2k

∫ ∞

q

∫ ∞

q
ζηg(ζ, s)g(η, s)dηdζ

≤ 2kM1(g)(s)

∫ ∞

q
ηg(η, s)dη,

and we use once more the previous argument to obtain Lemma 3.4 (ii).

7



Now, we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let t ∈ (0, T ). From Lemma 3.4 (i), we obtain

lim
q→∞

∫ t

0

∫ q

0

∫ ∞

q
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζds = 0, (3.4)

while Lemma 3.3 (ii) and Lemma 3.4 (ii) imply that

lim
q→∞

q

∫ t

0

∫ q

0

∫ q

q−ζ
Ψ(ζ, η)g(ζ, s)g(η, s)dηdζds = 0. (3.5)

Since
∫ t

0

∫ q

0

∫ ∞

q−ζ
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζds ≤ q

∫ t

0

∫ q

0

∫ q

q−ζ
Ψ(ζ, η)g(ζ, s)g(η, s)dηdζds

+

∫ t

0

∫ q

0

∫ ∞

q
ζΨ(ζ, η)g(ζ, s)g(η, s)dηdζds,

it readily follows from (3.4) and (3.5) that the right-hand side of (3.2) converges to zero as
q → ∞. Consequently,

M1(g)(t) = lim
q→∞

∫ q

0
ζg(ζ, s)dζ = lim

q→∞

∫ q

0
ζgin(ζ)dζ = M1(g

in).

This completes the proof of Theorem 3.1.

4 Existence of weak solutions

This section is devoted to the construction of weak solutions to the SCE (1.1)–(1.2) with a non-
negative initial condition gin ∈ L1

−2β,1(0,∞). It is achieved by a classical compactness technique,

the appropriate functional setting being here the space L1(0,∞) endowed with its weak topology
first used in the seminal work [24] and subsequently further developed in [3, 5, 6, 11, 13, 15, 18].
Given a non-negative initial condition gin ∈ L1

−2β,1(0,∞), the starting point of this approach is
the choice of an approximation of the SCE (1.1)–(1.2), which we set here to be

∂gn(ζ, t)

∂t
= Bc(gn)(ζ, t)− D

θ
c,n(gn)(ζ, t), (ζ, t) ∈ (0, n)× (0,∞), (4.1)

with truncated initial condition

gn(ζ, 0) = ginn (ζ) := gin(ζ)χ(0,n)(ζ), ζ ∈ (0, n), (4.2)

where n ≥ 1 is a positive integer, θ ∈ {0, 1},

Ψθ
n(ζ, η) := Ψ(ζ, η)χ(1/n,n)(ζ)χ(1/n,n)(η)

[

1− θ + θχ(0,n)(ζ + η)
]

(4.3)

for (ζ, η) ∈ (0,∞)2 and

D
θ
c,n(g)(ζ) :=

∫ n−θζ

0
Ψθ

n(ζ, η)g(ζ)g(η)dη, ζ ∈ (0, n), (4.4)
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the gain term Bc(g)(ζ) being still defined by (1.3) for ζ ∈ (0, n). The introduction of the
additional parameter θ ∈ {0, 1} allows us to handle simultaneously the so-called conservative
approximation (θ = 1) and non-conservative approximation (θ = 0) and thereby prove that
both approximations allow us to construct weak solutions to the SCE (1.1)–(1.2), a feature
which is of interest when no general uniqueness result is available. Note that we also truncate
the coagulation for small volumes to guarantee the boundedness of Ψθ

n which is a straightforward
consequence of (H2) and (4.3). Thanks to this property, it follows from [24] (θ = 1) and [13]
(θ = 0) that there is a unique non-negative solution gn ∈ C 1([0,∞);L1(0, n)) to (4.1)–(4.2) (we
do not indicate the dependence upon θ for notational simplicity) which satisfies

∫ n

0
ζgn(ζ, t)dζ =

∫ n

0
ζginn (ζ)dζ − (1− θ)

∫ t

0

∫ n

0

∫ n

n−ζ
ζΨθ

n(ζ, η)gn(ζ, s)gn(η, s)dηdζds (4.5)

for t ≥ 0. The second term in the right-hand side of (4.5) vanishes for θ = 1 and the total mass
of gn remains constant throughout time evolution, which is the reason for this approximation
to be called conservative. In contrast, when θ = 0, the total mass of gn decreases as a function
of time. In both cases, it readily follows from (4.5) that

∫ n

0
ζgn(ζ, t)dζ ≤

∫ n

0
ζginn (ζ)dζ ≤ M1(g

in), t ≥ 0. (4.6)

For further use, we next state the weak formulation of (4.1)–(4.2): for t > 0 and ω ∈ L∞(0, n),
there holds

∫ n

0
ω(ζ)[gn(ζ, t)− ginn (ζ)]dζ =

1

2

∫ t

0

∫ n

1/n

∫ n

1/n
Hθ

ω,n(ζ, η)Ψ
θ
n(ζ, η)gn(ζ, s)gn(η, s)dηdζds, (4.7)

where
Hθ

ω,n(ζ, η) := ω(ζ + η)χ(0,n)(ζ + η)− [ω(ζ) + ω(η)]
(

1− θ + θχ(0,n)(ζ + η)
)

for (ζ, η) ∈ (0, n)2.
In order to prove Theorem 2.3, we shall show the convergence (with respect to an appropriate
topology) of a subsequence of (gn)n≥1 towards a weak solution to (1.1)–(1.2). For that purpose,
we now derive several estimates and first recall that, since gin ∈ L1

−2β,1(0,∞), a refined version
of de la Vallée-Poussin theorem, see [20] or [17, Theorem 8], guarantees that there exist two
non-negative and convex functions σ1 and σ2 in C 2([0,∞)) such that σ′

1 and σ′
2 are concave,

σi(0) = σ′
i(0) = 0, lim

x→∞

σi(x)

x
= ∞, i = 1, 2, (4.8)

and

I1 :=

∫ ∞

0
σ1(ζ)g

in(ζ)dζ < ∞, and I2 :=

∫ ∞

0
σ2

(

ζ−βgin(ζ)
)

dζ < ∞. (4.9)

Let us state the following properties of the above defined functions σ1 and σ2 which are required
to prove Theorem 2.3.

Lemma 4.1. For (x, y) ∈ (0,∞)2, there holds

(i) σ2(x) ≤ xσ′
2(x) ≤ 2σ2(x),
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(ii) xσ′
2(y) ≤ σ2(x) + σ2(y),

and

(iii) 0 ≤ σ1(x+ y)− σ1(x)− σ1(y) ≤ 2
xσ1(y) + yσ1(x)

x+ y
.

Proof. A proof of the statements (i) and (iii) may be found in [17, Proposition 14] while (ii)
can easily be deduced from (i) and the convexity of σ2.

We recall that throughout this section, the coagulation kernel Ψ is assumed to satisfy (H1)–(H2)
and gin is a non-negative function in L1

−2β,1(0,∞).

4.1 Moment estimates

We begin with a uniform bound in L1
−2β,1(0,∞).

Lemma 4.2. There exists a positive constant B > 0 depending only on gin such that, for t ≥ 0,

∫ n

0

(

ζ + ζ−2β
)

gn(ζ, t)dζ ≤ B.

Proof. Let δ ∈ (0, 1) and take ω(ζ) = (ζ + δ)−2β , ζ ∈ (0, n), in (4.7). With this choice of ω,

Hθ
ω,n(ζ, η) ≤

[

(ζ + η + δ)−2β − (ζ + δ)−2β − (η + δ)−2β
]

χ(0,n)(ζ + η) ≤ 0

for all (ζ, η) ∈ (0, n)2, so that (4.7) entails that, for t ≥ 0,

∫ n

0
(ζ + δ)−2βgn(ζ, t)dζ ≤

∫ n

0
(ζ + δ)−2βginn (ζ)dζ ≤

∫ ∞

0
ζ−2βgin(ζ)dζ.

We then let δ → 0 in the previous inequality and deduce from Fatou’s lemma that

∫ n

0
ζ−2βgn(ζ, t)dζ ≤

∫ ∞

0
ζ−2βgin(ζ)dζ, t ≥ 0.

Combining the previous estimate with (4.6) gives Lemma 4.2 with B := ‖gin‖L1
−2β,1

(0,∞).

We next turn to the control of the tail behavior of gn for large volumes, a step which is instru-
mental in the proof of the convergence of each integral on the right-hand side of (4.1) to their
respective limits on the right-hand side of (1.1).

Lemma 4.3. For T > 0, there is a positive constant Γ(T ) depending on k, σ1, g
in, and T such

that,

(i) sup
t∈[0,T ]

∫ n

0
σ1(ζ)gn(ζ, t)dζ ≤ Γ(T ),

and

(ii) (1− θ)

∫ T

0

∫ n

1

∫ n

1
σ1(ζ)χ(0,n)(ζ + η)Ψ(ζ, η)gn(ζ, s)gn(η, s)dηdζds ≤ Γ(T ).
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Proof. Let T > 0 and t ∈ (0, T ). We set ω(ζ) = σ1(ζ), ζ ∈ (0, n), into (4.7) and obtain

∫ n

0
σ1(ζ)[gn(ζ, t)− ginn (ζ)]dζ

=
1

2

∫ t

0

∫ n

1/n

∫ n

1/n
σ̃1(ζ, η)χ(0,n)(ζ + η)Ψ(ζ, η)gn(ζ, s)gn(η, s)dηdζds

−
1− θ

2

∫ t

0

∫ n

1/n

∫ n

1/n
[σ1(ζ) + σ1(η)]χ[n,∞)(ζ + η)Ψ(ζ, η)gn(ζ, s)gn(η, s)dηdζds,

recalling that σ̃1(ζ, η) = σ1(ζ + η)− σ1(ζ)− σ1(η), hence, using (H2) and Lemma 4.1,

∫ n

0
σ1(ζ)[gn(ζ, t)− ginn (ζ)]dζ ≤

k

2

4
∑

i=1

Ji,n(t)− (1− θ)Rn(t),

with

J1,n(t) :=

∫ t

0

∫ 1

0

∫ 1

0
σ̃1(ζ, η)(ζη)

−βgn(ζ, s)gn(η, s)dηdζds,

J2,n(t) :=

∫ t

0

∫ 1

0

∫ n

1
σ̃1(ζ, η)ζ

−βηgn(ζ, s)gn(η, s)dηdζds,

J3,n(t) :=

∫ t

0

∫ n

1

∫ 1

0
σ̃1(ζ, η)ζη

−βgn(ζ, s)gn(η, s)dηdζds,

J4,n(t) :=

∫ t

0

∫ n

1

∫ n

1
σ̃1(ζ, η)(ζ + η)gn(ζ, s)gn(η, s)dηdζds,

and

Rn(t) :=

∫ t

0

∫ n

1/n

∫ n

1/n
σ1(ζ)χ[n,∞)(ζ + η)Ψ(ζ, η)gn(ζ, s)gn(η, s)dηdζds.

Owing to the concavity of σ′
1 and the property σ1(0) = 0, there holds

σ̃1(ζ, η) =

∫ ζ

0

∫ η

0
σ′′
1 (x+ y)dydx ≤ σ′′

1(0)ζη , (ζ, η) ∈ (0,∞)2. (4.10)

By (4.10), Lemma 4.2, and Young’s inequality,

J1,n(t) ≤ σ′′
1(0)

∫ t

0

∫ 1

0

∫ 1

0
ζ1−βη−βgn(ζ, s)gn(η, s)dηdζds

≤ σ′′
1(0)

∫ t

0

[
∫ 1

0

(

ζ + ζ−2β
)

gn(ζ, s)dζ

]2

ds ≤ σ′′
1(0)B

2t.
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Next, Lemma 4.1 (iii), Lemma 4.2, and Young’s inequality give

J2,n(t) = J3,n(t) ≤ 2

∫ t

0

∫ 1

0

∫ n

1

ζσ1(η) + ησ1(ζ)

ζ + η
ζ−βηgn(ζ, s)gn(η, s)dηdζds

≤ 2

∫ t

0

∫ 1

0

∫ n

1

[

ζ1−βσ1(η) + σ1(1)ζ
−βη

]

gn(ζ, s)gn(η, s)dηdζds

≤ 2

∫ t

0

[
∫ 1

0

(

ζ + ζ−2β
)

gn(ζ, s)dζ

] [
∫ n

1
σ1(η)gn(η, s)dη

]

ds

+ σ1(1)

∫ t

0

[
∫ 1

0

(

ζ + ζ−2β
)

gn(ζ, s)dζ

] [
∫ n

1
ηgn(η, s)dη

]

ds

≤ 2σ1(1)B
2t+ 2B

∫ t

0

∫ n

0
σ1(η)gn(η, s)dηds,

and

J4,n(t) ≤ 2

∫ t

0

∫ n

1

∫ n

1
(ησ1(ζ) + ζσ1(η)) gn(ζ, s)gn(η, s)dηdζds

≤ 4B

∫ t

0

∫ n

0
σ1(η)gn(η, s)dηds.

Gathering the previous estimates, we end up with

∫ n

0
σ1(ζ)[gn(ζ, t)− ginn (ζ)]dζ ≤ k

(

σ′′
1(0)

2
+ 2σ1(1)

)

B
2t

+ 4kB

∫ t

0

∫ n

0
σ1(η)gn(η, s)dηds − (1− θ)Rn(t),

and we infer from Gronwall’s lemma and (4.9) that

∫ n

0
σ1(ζ)gn(ζ, t)dζ + (1− θ)Rn(t) ≤ e4kBt

∫ n

0
σ1(ζ)g

in
n (ζ)dζ +

(

σ′′
1 (0)

8
+

σ1(1)

2

)

Be4kBt

≤
[

I +
(

σ′′
1 (0) + σ1(1)

)

B
]

e4kBt.

This completes the proof of Lemma 4.3.

4.2 Uniform integrability

Next, our aim being to apply Dunford-Pettis’ theorem, we have to prevent concentration of the
sequence (gn)n≥1 on sets of arbitrary small measure. For that purpose, we need to show the
following result.

Lemma 4.4. For any T > 0 and λ > 0, there is a positive constant L1(λ, T ) depending only
on k, σ2, g

in, λ, and T such that

sup
t∈[0,T ]

∫ λ

0
σ2

(

ζ−βgn(ζ, t)
)

dζ ≤ L1(λ, T ).
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Proof. For (ζ, t) ∈ (0, n) × (0,∞), we set un(ζ, t) := ζ−βgn(ζ, t). Let λ ∈ (1, n), T > 0, and
t ∈ (0, T ). Using Leibniz’s rule, Fubini’s theorem, and (4.1), we obtain

d

dt

∫ λ

0
σ2(un(ζ, t))dζ ≤

1

2

∫ λ

0

∫ λ−η

0
σ2

′(un(ζ + η, t))(ζ + η)−βΨθ
n(ζ, η)gn(ζ, t)gn(η, t)dζdη. (4.11)

It also follows from (H2) that

Ψθ
n(ζ, η) ≤ Ψ(ζ, η) ≤ 2kλ1+2β(ζη)−β, (ζ, η) ∈ (0, λ)2. (4.12)

We then infer from (4.11), (4.12), Lemma 4.1 (ii) and Lemma 4.2 that

d

dt

∫ λ

0
σ2(un(ζ, t))dζ ≤kλ1+2β

∫ λ

0

∫ λ−η

0
σ

′

2(un(ζ + η, t))(ζ + η)−βun(ζ, t)un(η, t)dζdη

≤kλ1+2β

∫ λ

0

∫ λ−η

0
η−β [σ2(un(ζ + η, t)) + σ2(un(ζ, t))] un(η, t)dζdη

≤2kλ1+2β

∫ λ

0
η−2βgn(η, t)

∫ λ−η

0
σ2(un(ζ + η, t))dζdη

≤2kλ1+2β
B

∫ λ

0
σ2(un(ζ, t))dζ.

Then, using Gronwall’s lemma, the monotonicity of σ2, and (4.9), we obtain

∫ λ

0
σ2(ζ

−βgn(ζ, t))dζ ≤ L1(λ, T ),

where L1(λ, T ) := I2e
2kλ1+2βBT , and the proof is complete.

4.3 Time equicontinuity

The outcome of the previous sections settles the (weak) compactness issue with respect to the
volume variable. We now turn to the time variable.

Lemma 4.5. Let t2 ≥ t1 ≥ 0 and λ ∈ (1, n). There is a positive constant L2(λ) depending only
on k, gin, and λ such that

∫ λ

0
ζ−β|gn(ζ, t2)− gn(ζ, t1)|dζ ≤ L2(λ)(t2 − t1).

Proof. Let t > 0. On the one hand, by Fubini’s theorem, (4.12), and Lemma 4.2,

∫ λ

0
ζ−β

Bc(gn)(ζ, t)dζ ≤
1

2

∫ λ

0

∫ λ−ζ

0
(ζ + η)−βΨ(ζ, η)gn(ζ, t)gn(η, t)dηdζ

≤ kλ1+2β

∫ λ

0

∫ λ

0
ζ−βη−2βgn(ζ, t)gn(η, t)dηdζ

≤ kλ1+3β

(
∫ λ

0
ζ−2βgn(ζ, t)dζ

)2

≤ kλ1+3β
B

2.
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On the other hand, since

Ψθ
n(ζ, η) ≤ Ψ(ζ, η) ≤ 2kλβηζ−β, 0 < ζ < λ < η < n,

we infer from (4.12) and Lemma 4.2 that

∫ λ

0
ζ−β

D
θ
c,n(gn)(ζ, t)dζ ≤

∫ λ

0

∫ n

0
ζ−βΨ(ζ, η)gn(ζ, t)gn(η, t)dηdζ

≤ 2kλ1+2β

∫ λ

0

∫ λ

0
ζ−2βη−βgn(ζ, t)gn(η, t)dηdζ

+ 2kλβ

∫ λ

0

∫ n

λ
ζ−βηgn(ζ, t)gn(η, t)dηdζ

≤ 2kB
2(1 + λ1+β)λβ.

Consequently, by (4.1),

∫ λ

0
ζ−β|gn(ζ, t2)− gn(ζ, t1)|dζ ≤

∫ t2

t1

∫ λ

0
ζ−β

∣

∣

∣

∣

∂gn
∂t

(ζ, t)

∣

∣

∣

∣

dζdt

≤

∫ t2

t1

∫ λ

0
ζ−β

[

Bc(gn)(ζ, t) + D
θ
c,n(gn)(ζ, t)

]

dζ

≤ kB
2(2 + 2λ1+β + λ1+2β)λβ(t2 − t1),

which completes the proof with L2(λ) := kB2(2 + 2λ1+β + λ1+2β)λβ .

4.4 Convergence

We are now in a position to complete the proof of the existence of a weak solution to the SCE
(1.1)–(1.2).

Proof of Theorem 2.3. For (ζ, t) ∈ (0, n) × (0,∞), we set un(ζ, t) := ζ−βgn(ζ, t). Let T > 0
and λ > 1. Owing to the superlinear growth (4.8) of σ2 at infinity and Lemma 4.4, we infer
from Dunford-Pettis’ theorem that there is a weakly compact subset Kλ,T of L1(0, λ) such
that (un(t))n≥1 lies in Kλ,T for all t ∈ [0, T ]. Moreover, by Lemma 4.5, (un)n≥1 is strongly
equicontinuous in L1(0, λ) at all t ∈ (0, T ) and thus also weakly equicontinuous in L1(0, λ) at
all t ∈ (0, T ). A variant of Arzelà-Ascoli’s theorem [26, Theorem 1.3.2] then guarantees that
(un)n≥1 is relatively compact in Cw([0, T ];L

1(0, λ)). This property being valid for all T > 0
and λ > 1, we use a diagonal process to obtain a subsequence of (gn)n≥1 (not relabeled) and a
non-negative function g such that

gn −→ g in Cw([0, T ];L
1(0, λ))

for all T > 0 and λ > 1. Owing to Lemma 4.3 and the superlinear growth (4.8) of σ1 at infinity,
a by-now classical argument allows us to improve the previous convergence to

gn −→ g in Cw([0, T ];L
1((0,∞); (ζ−β + ζ)dζ)). (4.13)

To complete the proof of Theorem 2.3, it remains to show that g is a weak solution to the SCE
(1.1)–(1.2) on [0,∞) in the sense of Definition 2.2. This step is carried out by the classical

14



approach of [24] with some modifications as in [5, 6] and [18] to handle the convergence of the
integrals for small and large volumes, respectively. In particular, on the one hand, the behavior
for large volumes is controlled by the estimates of Lemma 4.3 with the help of the superlinear
growth (4.8) of σ1 at infinity and the linear growth (H2) of Ψ. On the other hand, the behavior
for small volumes is handled by (H2), Lemma 4.2, and (4.13).

Finally, g being a weak solution to (1.1)–(1.2) on [0,∞) in the sense of Definition 2.2, it is
mass-conserving according to Theorem 3.1, which completes the proof of Theorem 2.3.
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[10] M. Escobedo, S. Mischler and M. Rodriguez Ricard, On self-similarity and stationary problem
for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. non Linéaire, 22 (2005),
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[21] F. Leyvraz and H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A,
14 (1981), 3389–3405.

[22] J. R. Norris, Smoluchowski’s coagulation equation: uniqueness, non-uniqueness and hydrodynamic
limit for the stochastic coalescent, Ann. Appl. Probab., 9 (1999), 78–109.

[23] M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider
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