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Abstract

In the recently developed theory of isospectral transformations of networks isospectral
compressions are performed with respect to some chosen characteristic (attribute) of
nodes (or edges) of networks. Each isospectral compression (when a certain charac-
teristic is fixed) defines a dynamical system on the space of all networks. It is shown
that any orbit of such dynamical system which starts at any finite network (as the initial
point of this orbit) converges to an attractor. Such attractor is a smaller network where
a chosen characteristic has the same value for all nodes (or edges). We demonstrate that
isospectral contractions of one and the same network defined by different characteristics
of nodes (or edges) may converge to the same as well as to different attractors. It is also
shown that spectrally equivalent with respect to some characteristic networks could be
non-spectrally equivalent for another characteristic of nodes (edges). These results sug-
gest a new constructive approach to analysis of networks structures and to comparison
of topologies of different networks.
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1. Introduction

Arguably the major scientific buzzword of our time is a "Big Data”. When talking
about Big Data people usually refer to (huge) natural networks in communications, bioin-
formatics, social sciences, etc, etc, etc. In all cases the first idea and hope is to somehow
reduce these enormously large networks to some smaller objects while keeping, as much
as possible, information about the original huge network.

In practice almost all the information about real world networks is contained in their
adjacency matrices [1,2]. An adjacency matrix of a network with N elements is the N x N
matrix with zero or one elements. An (i, j) element equals one if there is direct interaction
between the elements number i and number j of a network. In the graph representation
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of a network it corresponds to the existence of an edge (arrow) connecting a node i to
the node j. Otherwise an (i, j) element of the adjacency matrix of a network equals zero.
it is very rarely [1, 2] that the strength of interaction of the element (node) i with the
element (node) j is also known. In such cases a network is represented by a weighted
adjacency matrix where to each edge (i, j) corresponds (instead of one) a weight equal to
the strength of interaction along this edge.

Therefore a problem of compression of information about a network is essentially a
problem of compression of the weighted adjacency matrix of a network. It is a basic
fact of linear algebra that all the information about a matrix is contained in its spectrum
(collection of all eigenvalues of a matrix) and in its eigenvectors and generalized eigen-
vectors.

Recently a constructive rigorous mathematical theory was developed which allows
to compress (reduce) matrices and networks while keeping ALL the information about
their spectrum and eigenvalues. This approach was successfully applied to various the-
oretical and applied problems [3]. The corresponding transformations of networks were
called Isospectral Transformations. This approach is not reduced just to compression of
networks. It also allows e.g. to grow (enlarge) networks while keeping stability of their
evolution (dynamics), etc (see [3, 4]).

In the present paper we develop further this approach by demonstration that isospec-
tral compressions generate a dynamical system in the space of all networks. We prove
that any orbit of such dynamical system converges to an attractor which is a smaller net-
work than the network which was an initial point (network) of this orbit. Consider any
characteristic of nodes (or edges) of a network. Then collection of all nodes (or edges)
with a fixed value of this characteristic defines a subset of the set of all nodes (edges). Itis
important to mention that the current graph theory is lacking classification of all graphs
which have the same characteristic of the all nodes even for such basic and simplest char-
acteristics as inner and outer degrees. Clearly any full graph where any two nodes are
connected by an edge (in case of undirected graphs) or by two opposite edges (in case
of directed graphs) has the same value of any characteristic at any node. Therefore all
tull graphs are attractors of isospectral contractions. However, there are other attractors
as well for any characteristic of nodes, and there is no general classification/description
of corresponding attractors. However one can find such attractors when dealing with
a concrete network. Therefore it is a natural tool for analysis of real world networks.
We demonstrate that by choosing different characteristics of nodes or edges of networks
one gets generally different attractors. Structure of such attractors give a new important
information about a given network.

We also discuss the notions of weak and strong spectral equivalences of networks and
show that classes of equivalence with respect to a weak spectral equivalence consists of a
countable number of classes of strongly spectrally equivalent networks. Our results could
be readily applicable to analysis of any (directed or undirected, weighted or unweighted)
networks.



2. Isospectral Graph Reductions and Spectral Equivalence

In this section we recall definitions of the isospectral transformations of graphs and
networks.

Let W be the set of rational functions of the form w(1) = p(1)/q(1), where p(2), g(1) €
CI[A] are polynomials having no common linear factors, i.e., no common roots, and where
g(2) is not identically zero. W is a field under addition and multiplication [3].

Let G be the class of all weighted directed graphs with edge weights in W. More
precisely, a graph G € G is an ordered triple G = (V,E,w) where V = {1,2,...,n} is the
vertex set, E C V x V is the set of directed edges, and w : E — W is the weight function.
Denote by Mg = (W(i, j))i jev the weighted adjacency matrix of G, with the convention that
w(i, j) = 0 whenever (i, j) ¢ E. We will alternatively refer to graphs as networks because
weighted adjacency matrices define all static (i.e. non evolving) real world networks.

Observe that the entries of M are rational functions. Let’s write M;(1) instead of Mg
here to emphasize the role of 1 as a variable. For Ms(1) € W™, we define the spectrum,
or multiset of eigenvalues to be

oc(Ms(1) ={4,€C,i=1,...,n:det(Mg(1) — AI) = 0}.

A path y = (iy,...,i,) in the graph G = (V,E,w) is an ordered sequence of distinct
vertices iy, ...,i, € V such that (i, i) € E for 0 <[ < p — 1. The vertices iy, ...,i,_; € V of
vy are called interior vertices. If iy = i, then y is a cycle. A cycle is called a loop if p = 1 and
ip = I;. The length of a path y = (i, ..., i,) is the integer p. Note that there are no paths of
length 0 and that every edge (i, j) € E is a path of length 1.

If S c Vis a subset of all the vertices, we will write § = V \ S and denote by |S| the
cardinality of the set §.

Definition 1. (structural set). Let G = (V,E,w) € G. A nonempty vertex set S C Visa
structural set of G if

e each cycle of G, that is not a loop, contains a vertex in §;
e w(i,i)# AforeachieS.

In particular, if a structural set S also satisfies w(i, i) # Ao, Vi € S for some A, € C, then
S is called a Ay—structural set.

Remark 1. It is easy to see that the complement of any single node is a structural set.
Therefore for any subset A of nodes of a network G, it is always possible to isospectrally
compress the network G to a network whose nodes belong to A by removing the nodes
in the complement of A one after another.

Definition 2. Given a structural set S, a branch of (G,S) is a path 8 = (i, i1, ...,i,-1,i))
such that ip,i, € Vand all ij,...,i,-; € S.



We denote by B8 = B s the set of all branches of (G, S). Given vertices i, j € V, we
denote by B; ; the set of all branches in 8 that start in i and end in j. For each branch

B = (i, i1, ...,i,-1,i,) we define the weight of § as follows:
P Wi i)
e 1> Ut
W(ﬁ’ /l) = W(ZO’ ll) ll:_ll 11— W(i[, l[) (1)
Given i, j e V set
RijG,S, )= ) w(,A). 2

IEEB,"J'

Definition 3. (Isospectral reduction). Given G € G and a structural set S, the reduced ad-
jacency matrix Rs(G, 1) is the |S| X |S|-matrix with the entries R; ;(G, S, 1),i,j € S. This
adjacency matrix Rs(G, 1) on S defines the reduced graph which is the isospectral reduc-
tion of the original graph G.

Now we recall the notion of spectral equivalence of networks (graphs).

Let W, c W be the set of rational functions p(1)/q(1) such that deg(p) < deg(g), where
deg(p) is the degree of the polynomial p(1). And let G, c G be the set of graphs G =
(V, E,w) such that w : E — W,. Every graph in G, can be isospectrally reduced [3].

Two weighted directed graphs G, = (Vi, E\,w)) and G, = (Va, E», wy) are isomorphic if
there is a bijection b : V| — V, such that there is an edge ¢;; in G, from v; to v; if and only if
there is an edge ¢;; between b(v;) and b(v;) in G, with w,(&;;) = wi(e;;). If the map b exists,
it is called an isomorphism, and we write G, =~ G,.

An isomorphism is essentially a relabeling of the vertices of a graph. Therefore, if two
graphs are isomorphic, then their spectra are identical. The relation of being isomorphic
is reflexive, symmetric, and transitive; in other words, it’s an equivalence relation.

In [3] was introduced a notion of spectral equivalence of graphs (networks). It says
that two networks G and H are spectrally equivalent if they reduce to isomorphic graphs
in one step under the same rule for subset selection. Then in [5] was introduced less
restrictive notion of generalized spectral equivalence of graphs (networks). Namely, two
networks are weakly spectrally equivalent if they reduce to isomorphic graphs in finite
steps (not necessarily the same number of steps) under the same rule for subset selection.

A proof of the following theorem can be found in [3].

Theorem 1 (Generalized Spectral Equivalence of Graphs). Suppose that for each graph
G = (V,E,w) in Gy, 7 is a rule that selects a unique nonempty subset 7(G) c V. Let R; be
the isospectral reduction of G onto 7(G). Then R; induces an equivalence relation ~ on
the set G,, where G ~ H if R"(G) ~ R*(H) for some m, k € N.

Remark 2. Observe that we do not require 7(G) to be a structural subset of G. However
there is a unique isospectral reduction [3] (possibly via a sequence of isospectral reduc-
tions to structural sets if 7(G) is not a structural subset of G) of G onto 7(G).

The notion of generalized spectral equivalence of networks (graphs) is weaker than
the one considered in [3], where it was required that m = k = 1. Therefore the classes of
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weakly spectrally equivalent networks are larger than the classes of spectrally equivalent
networks considered in [3]. Namely each class of equivalence in the weak sense consists
of a countable number of equivalence classes in the (strong) sense of [3]. In what fol-
lows we will refer to the spectral equivalence in the form introduced in [3] as to a strong
spectral equivalence, and to the notion of spectral equivalence introduced in [5] as to the
weak spectral equivalence. Both of the strong and weak notions of spectral equivalence
could be of use for analysis of real world networks many of which have a hierarchical
structure [6], [7].

3. Attractors of Isospectral Reductions

Isospectral reductions of networks (graphs) define a dynamical system on the space of
all networks. This dynamical system arises by picking any node (edge) of a network and
isospectrally reducing this network to a network where the set of nodes is a complement
to a chosen node. The fact that such isospectral reductions form a dynamical system
follows from the Commutativity theorem proved in [3] which states that sequence of
isospectral contractions over a set of nodes A and then over the set of nodes B gives the
same result as isospectral reduction over B followed by the one over A. Therefore to one
and the same network (graph) G correspond different orbits depending on the order in
which we pick nodes of G for reductions.

By doing that again and again it is possible to isospectrally reduce any network to
a trivial network which has just one node, i.e. any node of G. It is clearly a senseless
operation. However we can choose a reasonable rule which will help to recover and un-
derstand some intrinsic feature(s) of the structure (topology) of the network G. Generally
a network can have many different structural sets. To make the isospectral contraction
focused on specific properties of networks, we can add some specific rules to the selection
of structural sets.

Before we do that, let us recall a few characteristics of nodes in a graph. (There are
about ten-fifteen such characteristics of nodes and edges of networks which are all bor-
rowed from the graph theory).

For a graph G = (V, E, w), the indegree for a node v € V, d~(v), is the number of edges
that end in v. The outdegree d*(v) is the number of edges that start at v. Let’s define
d(v) = d~(v) + d*(v) to be the sum of the indegree and outdegree for any node.

Let o be the total number of shortest paths from node s to node ¢, and o(v) is the
number of those paths that pass through v. Note that o,(v) = 0 if v € {s, 1} or if v does not
lie on any shortest path from s to r. We call

HOEDIPIC)

the centrality /betweenness of node v.

Theorem 2. For any network and any characteristic of its nodes (edges), any orbit of a
dynamical system generated by isospectral reductions with respect to the chosen charac-
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teristic, converges to an attractor which is such a network that all its nodes (edges) have
one and the same value of this characteristic of nodes (edges).

Proof. Each reduction removes at least one vertex (edge). Thus an orbit of a network
under consecutive isospectral reductions becomes an attractor in no more than N steps,
where N := |V| (or N := |E|). Therefore an orbit of a finite network G approaches an attrac-
tor in a finite number of steps which does not exceed the number of nodes (edges) in G.
Such attractor always exists because any network can be isospectrally reduced to a graph
with just one node. A process of consecutive isospectral reductions (i.e. an orbit of the
corresponding dynamical system) will terminate at one node, if no one of the networks
along this orbit had all its nodes (edges) with the same value of the characteristic that
defined the isospectral reductions (i.e. the corresponding dynamical system). Clearly in
case of a "network” with only one node (edge) the values of all characteristics of all nodes
(edges) are the same because there is only one node (edge). If G is an infinite network
then the corresponding orbit could be finite or infinite.

O

Theorem 3. The attractors of isospectral reductions with respect to different characteris-
tics of one and the same network are generally different.

Figure 1: A network which is an attractor with respect to degree but not with respect to centrality

Proof. (i) In the example shown in the figure [Il all nodes have degree 4. This graph
cannot be further reduced based on degree of nodes. However, the centrality of the nodes
are different. If we count the number of shortest paths through each node, we can see
e(1) = ¢c2) = c(3) = ¢(8) = c(9) = c(10) = 1,c(d) = ¢(6) = (7) = c(11) = 27,¢(5) = 66.
This graph can be further reduced based on centrality. Therefore for this network (graph)
attractors with respect to degree and to centrality are different.

(ii) The complete graph, where each and every node and edge have the same proper-
ties, can not be further reduced based on degree or other characteristics of a network. It
is always an attractor. If we consider isospectral expansion (see [4]) of a complete graph
with respect to two different characteristics, then we get two different graphs (networks)
with the same attractor with respect to these two characteristics. Clearly this attractor
will be the initial complete graph. o



The result of theorem 3 is not surprising because different characteristics of nodes
(or edges) define different dynamical systems on the space of all networks, and orbits of
these different dynamical systems are also different.

The following statement establishes that weakly as well as strongly spectrally equiv-
alent networks have the same attractor if isospectral contractions are generated by the
very same characteristic with respect to which these networks are spectrally equivalent.

Theorem 4. Strongly as well as weakly spectrally equivalent with respect to some charac-
teristic graphs have the same attractor under the dynamical system generated by isospec-
tral compressions according to this characteristic.

Proof. Suppose graph G is strongly spectrally equivalent to H with respect to rule 7, i.e.
R.(G) = R.(H) = R, and G is weakly spectrally equivalent to K w.r.t 7, i.e. RZT(G) ~ R(K) =
S.

If R is an attractor under 7, then the attractor for G as well as for H is R. So G and H
have the same attractor R. Otherwise G and H have the same attractor, the attractor for R.

Similarly G and K have the same attractor.

Therefore the attractors for all three graphs, G, H, K are the same under rule 7. So all
three networks (graphs) have the same attractor with respect to the rule 7. o

Very important fact is that networks could be spectrally equivalent with respect to
one characteristic of nodes (edges) but not spectrally equivalent with respect to another
characteristic. Therefore spectral equivalences built on different characteristics of nodes
and edges allow to uncover various intrinsic (hidden) features of networks’ topology.

We now present an example where networks are isomorphic for one characteristic but
not for another.

Consider the graphs G and H in figure 2|

1/

O

1/a 2/ 1/4
1 1
1 1 1
@3 1/2 @3 1/2
© 0]
Graph G Graph H

Figure 2: Original networks



Their adjacency matrices are

Ja 1 1 100 22 1 1 00
0 1/2 1 010
0 0 1/2 00 1 O /a1 10
Mo=| | o o 00 ofMe=|0 0 1201
0 1 0 00
O 1 0 000 o 0 1 00
0O 0 1 000

We can always remove one node in an isospectral reduction. Let us remove node 4
from graph G. The weights of the edges after reduction become

w4, j)

.
But w(i,4) = O for all i = 2,3,5,6, and w(4, j) = 0 for j = 2,3,5,6. The only weight that
actually changes after the reduction is R(1,1) = w(1,1) + w(l,4)w(4,1)/4 = 2/A. All the
other weights satisfy R(i, j) = w(i, j),i # 1 or j # 1. The reduced graph after removing
node 4 is identical to graph H.

Therefore H is an isospectral reduction of G. The networks H and G will have the
same reduction as long as we pick the same subset of vertices to reduce on.

We introduce now a few useful notations. For any graph G = (V, E, w), denote the max-
imum indegree by m~ = max{d~(v) : v € V}, the maximum outdegree by m* = max{d*(v) :
v € V}, and the maximum sum of indegree and outdegree as m = max{d(v) : v € V}. We
define a few different rules for picking a subset of the vertices of a graph.

R(@, j) = w(i, j) + w(i,4) i,j=1,2,3,5,6.

TG ={veV:.dy)>m/2L,(G)={veV.:dW)>2m /2};13(G)={veV .:d () >m /4}.

7, picks the nodes whose sum of indegree and outdegree is greater than half of the
maximum. 7, picks the nodes whose indegree is greater than or equal to half of the max-
imum. And 73 picks the nodes whose indegree is greater than a quarter of the maximum.

Now we apply these rules to G and H and see what happens. Consider the degrees of
all the nodes in the two graphs. We list them in the following table[Il

Table 1: The degrees of each node in G and H

graph G H
node 1/2|3|4|5|6|1|2]|3|5]|6
indegree 2|13(4|1(1]|1(1|3|4|1|1
outdegree 4132|111 (3|3|2|1|1
sum of indegree and outdegree |6 (6 |6 (22|24 |66 |22

Let us consider 7, first. Both G and H have maximum sum of indegree and outdegree
6. 71(G) = 71(H) = {1,2,3}. G and H reduce to the same graph in one step under rule 7y, as
shown in figure[8l So G and H are spectrally equivalent by rule 7, with respect to both the
1-step definition in [3] and the multi-step definition we have here. Also the reduced graph
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A, is an attractor for rule 7. The 3 nodes have the same sum of indegree and outdegree,
which is 4. To be more precise, if we write down the indegree, outdegree and the sum of
the two, (d7,d", d) as an ordered triple for each node, all the nodes in A, are node 1 with
(1,3,4), node 2 with (2,2,4) and node 3 with (3,1,4),d(1) = d(2) = d(3) = m(A)).

vl v

1&@1 1&@1

2/ 2/

1/4

@/“

attractor A,

@3 2/2

Figure 3: Isospectral reductions by rule 7,

Similarly, for rule 1,, we have 7,(G) = {1,2,3} # 12(H) = {2,3}. Howeve, 72(12(G)) =
{2,3} = 7(H). Under rule 1,, graph G takes 2 reductions to reach the attractor A, while
graph H takes only one step (see figure d). So G and H are spectrally equivalent with our
generalized definition but not w.r.t. [3]. In graph A,, the degree triplet vectors for each
node are node 2 with (1, 2, 3) and node 3 with (2,1,3). d(2) = 1 = 1/2m (A;) = 1/2d"(3).
One can see A, is an attractor by rule 7, but not by rule 7, sinced (1) = 1 < 1/2d~(3) = 3/2.

@cﬁ g

attractor A,

Figure 4: Isospectral reductions by rule 7,

Lastly, for 73, 73(G) = {1, 2, 3} = 73(13(G)), 13(H) = {2, 3} = 13(73(H)). G and H both reach
9



an attractor in one step. But the attractors they reach are different. Under rule 73, graph
G and H are not isospectrally equivalent by either definition (see figure [5).

Here A, and A, are both attractors for rule 3. For A;,d~(1) = 1,d~(2) = 2,d"(3) = 3. For
A, we have d~(2) = 1,d"(3) = 2. So A, is an attractor under rule 7; and 73 but not under
7. A, is an attractor for all 3 rules we used in this example.

2/4 2/4
2/4 2/4
1
a B1G)
A 1 1
(3 >2/ A;

Figure 5: Isospectral reductions by rule 3

Theorem 5. Let G = (V,E,w) withw : E — C. S is a structural subset for graph G, then it
remains to be a structural subset for any isospectral reduction (which contains §) of the
graph G.

Proof. Suppose S ¢ S’ ¢ V. Now we will show § is also a structural subset for the
reduced graph Ry (G).

(i) Any cycle (not a loop) in Rs/(G) comes from a cycle in G, it has to contain a vertex
inS.

(ii) For any i € §” \ §, the new weight in Rs/(G)

w(J, 1) o wli k) w(k, D)
" WD WG Atk T

w(i, i) = w(i, i) + w(i, J) —
jevz/;v A=w(j, J) j#k, ke VS

Since w(i, i), w(j, j), w(k, k) € C, the expression above shows Ww(i,i) # 4. We have § is a
structural subset of Rs/(G). O

Remark 3. If we allow the original graph to take weights in W, the above proof still holds
as long as w(i,i) # A4,¥i € §'\ §. Since it’s a zero measure set among all the possible values
Ww(i, i)’s can take, we can say generally, the theorem is true for any graph with weights in
W except for unusual cases.

By the uniqueness of sequential graph reductions, we can see isospectral reduction is
a dynamical system.
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