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Abstract

This paper investigates the relation between the boundary geometric properties and
the boundary regularity of the solutions of elliptic equations. We prove by a new
unified method the pointwise boundary Hölder regularity under proper geometric
conditions. “Unified” means that our method is applicable for the Laplace equation,
linear elliptic equations in divergence and non-divergence form, fully nonlinear el-
liptic equations, the p−Laplace equations and the fractional Laplace equations etc.
In addition, these geometric conditions are quite general. In particular, for local
equations, the measure of the complement of the domain near the boundary point
concerned could be zero. The key observation in the method is that the strong max-
imum principle implies a decay for the solution, then a scaling argument leads to the
Hölder regularity. Moreover, we also give a geometric condition, which guarantees
the solvability of the Dirichlet problem for the Laplace equation. The geometric
meaning of this condition is more apparent than that of the Wiener criterion.

Résumé

Dans cet article, nous étudies la relation entre les propriétés géométriques des fron-
tière et la régularité frontière des solutions d’équations elliptiques. Nous prouvons par
une nouvelle méthode unifiée la régularité höldérienne ponctuelle dans des conditions
géométriques appropriées. Unifié signifie que notre méthode est applicable à l’équa-
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tion de Laplace, aux équations elliptiques linéaires sous forme de divergence et de
non-divergence, aux équations elliptiques entièrement non linéaires, aux équations
p-Laplace et aux équations fractionnelles de Laplace, etc. En outre, ces conditions
géométriques sont assez générales. En particulier, pour les équations locales, la me-
sure du complément du domaine près du point frontière concerné pourrait être nulle.
Une observation clé de notre méthode est que le principe du maximum fort implique
une décroissance de la solution, puis un argument d’échelle nous conduit à la régu-
larité de Hölder. De plus, nous donnons également une condition géométrique, qui
garantit la solvabilité du problème de Dirichlet pour l’équation de Laplace. La si-
gnification géométrique de cette condition est plus apparente que celle du critère de
Wiener.

Keywords: Boundary Hölder regularity, Elliptic equation, Strong maximum
principle, Wiener criterion
2010 MSC: 35B65, 35J25, 35B50, 35R11

1. Introduction

Let Ω ⊂ Rn be a bounded domain and g ∈ C(∂Ω). It has been taken for granted
for a time that there always exists u ∈ C(Ω̄) such that u is harmonic in Ω and u ≡ g
on ∂Ω. That is, the Dirichlet problem for the Laplace equation is solvable for any
bounded domain. However, in 1913, Lebesgue [13] constructed a bounded domain
on which the Dirichlet problem is not solvable. This indicates that the domain must
satisfy some condition for the continuity of the solution up to the boundary. In 1924,
Wiener [24] proposed a sufficient and necessary condition for the solvability of the
Dirichlet problem. This is the famous Wiener criterion which solves the Dirichlet
problem completely. The Wiener criterion has been extended to the linear equations
in divergence form [17] and quasilinear equations including the p-Laplace equations
[16, 18, 19].

However, there are some disadvantages in the Wiener criterion. It is not easy to
check whether a domain satisfies the Wiener criterion. The notion capacity is used
and calculating the capacity of a set is difficult in general. In addition, the gener-
alization to other types of equations is limited because the definition of capacity is
close to the divergence structure of the equation. Moreover, there is no continuity
modulus estimate in the Wiener criterion. It doesn’t point out which kind of con-
tinuity up to the boundary for the solution. Quantitative estimates for continuity
modulus are important in the regularity theory.

The Hölder continuity is a kind of quantitative estimate. It is usually the first
smooth regularity for solutions and the beginning for higher regularity. It can also
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provide compactness in some problems. With respect to the boundary Hölder conti-
nuity, we mention the following results in which geometric conditions are given and
quantitative estimates are also derived. If Ω satisfies the exterior cone condition at
x0 ∈ ∂Ω, then the solution is Hölder continuous at x0 (see [8, Problem 2.12] and
[20]). If Ω satisfies the exterior sphere condition at x0, then the solution is Lipschitz
continuous at x0. The later one has been generalized to exterior Dini hypersurface
condition (see [9] and [23]). To the best of our knowledge, the exterior cone condition
is the weakest geometric condition for boundary Hölder regularity.

In this paper, we provide a new method to prove the boundary Hölder regularity.
This method is not only appropriate for the Laplace equation but also applicable
for other kinds of equations, including linear elliptic equations in divergence form
and non-divergence form, fully nonlinear elliptic equations, the p−Laplace equations
and the fractional Laplace equations etc. We will propose several conditions with
clear geometric meaning and then prove the pointwise boundary Hölder regularity
for the corresponding equations. These geometric conditions are generalized widely
from the exterior cone condition. In particular, for local equations, the measure of
the complement of the domain near a boundary point could be zero. Finally, we also
give a geometric condition for the Laplace equation to guarantee the solvability of
the Dirichlet problem. We remark here that the equations considered in this paper
are only some concrete examples. This method may have a wide range of potential
applications.

Now, we clarify the key idea briefly. Instead of proving the boundary Hölder
regularity by constructing a (local) barrier or applying the Harnack inequality at
the boundary, we solve the Dirichlet problems in a sequence of balls centered at the
boundary point concerned. Then by applying the strong maximum principle, the
comparison principle and the scaling invariant property of the equations, we derive a
quantitative decay of the oscillation of the solution near the boundary point, which
implies the boundary Hölder continuity immediately. These properties used above
are occupied by many types of equations. Hence, this method is easily extended to
other types of equations.

This paper is organized as follows. In Section 2, we present the geometric condi-
tions on the domains. In Section 3, we prove the pointwise boundary Hölder regu-
larity for different elliptic equations under the corresponding conditions proposed in
Section 2. The solvability of the Dirichlet problem for the Laplace equation will be
proved in the last section.
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2. Geometric conditions

As is well known, the geometric property of the domain near some boundary
point has significant influence on the boundary regularity there. This is one of the
most important difference from the interior regularity. In this section, we introduce
some geometric conditions on the domains. The corresponding boundary regularity
will be proved in later sections.

Definition 2.1. Let {rk}
∞
k=0 be a positive sequence. We call it a quasi-geometric

sequence if there exist constants 0 < τ1 < τ2 < 1 such that

τ1rk−1 ≤ rk ≤ τ2rk−1, ∀ k ≥ 1. (2.1)

Remark 2.2. If there exist 0 < τ < 1 and a positive sequence {rk}
∞
k=0 such that rk → 0

and τrk−1 ≤ rk (k ≥ 1), then it is easy to verify that there exists a subsequence of
{rk} satisfying(2.1) with τ1 = τ 2 and τ2 = τ . Hence, the essence of(2.1) is that rk
should not decrease too rapidly.

The following geometric condition will be used to prove the boundary Hölder
regularity for the Laplace equation.

Condition 2.3 (H1). Let Ω ⊂ Rn be a bounded domain and x0 ∈ ∂Ω. We say
that Ω satisfies the (H1) condition at x0 if there exist a constant 0 < ν < 1 and a
quasi-geometric sequence {rk}

∞
k=0 such that

Hn−1(∂B(x0, rk) ∩ Ωc)

rn−1
k

≥ ν, ∀ k ≥ 0, (2.2)

where Hn−1 denotes the n− 1 dimensional Hausdorff measure.

For general equations, there is no explicit expression connecting the solutions with
the boundary values. Nevertheless, the strong maximum principle and the scaling
property implies a quantitative decay for the solutions. Hence, we can obtain the
boundary Hölder regularity for general equations. The following stronger (compared
to the (H1) condition) geometric condition will be used to prove boundary Hölder
regularity for general (local) elliptic equations.

Condition 2.4 (H2). Let Ω ⊂ Rn be a bounded domain and x0 ∈ ∂Ω. We say
that Ω satisfies the (H2) condition at x0 if there exist a constant 0 < ν < 1, a
quasi-geometric sequence {rk}

∞
k=0 and a sequence {yk}

∞
k=0 with yk ∈ ∂B(x0, rk) such

that
∂B(x0, rk) ∩B(yk, νrk) ⊂ Ωc, ∀ k ≥ 0. (2.3)
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Before proceeding to present other geometric conditions, we make some remarks.
We say that Ω satisfies the exterior cone condition at x0 ∈ ∂Ω if there exists a finite
right circular cone K with vertex x0 such that Ω̄ ∩ K̄ = x0. And, it is well known
that the exterior cone condition is sufficient for the boundary Hölder regularity for
the uniformly elliptic equations (see [8, Problem 2.12] and [20]). Clearly, a domain
satisfying the exterior cone condition at some boundary point satisfies the (H2)
condition at the same point with τ1 = τ2 = 1/2 and ν depending on the aperture of
the cone. Hence, the (H2) condition is a generalization of the exterior cone condition.

In addition, a Reifenberg flat domain also satisfies the (H2) condition. We in-
troduce the following definition for the Reifenberg flat domain (see [2, Definition
2.5]).

Definition 2.5 (Reifenberg flat domain). We say that Ω satisfies the exterior
(δ,R)-Reifenberg (δ < 1) flat condition at x0 ∈ ∂Ω if for any 0 < r < R, there exists
a coordinate system {y1, ..., yn} such that x0 = 0 in this coordinate system and

Br ∩ Ω ⊂ Br ∩ {yn > −δr}. (2.4)

Suppose that Ω satisfies the exterior (δ,R)-Reifenberg flat condition at some
boundary point x0. By(2.4), for any 0 < r < R, in the new coordinate, ∂Br ∩ {yn ≤
−δr} ⊂ Ωc. Hence, Ω satisfies the (H2) condition at x0 with τ1 = τ2 = 1/2 and ν
depending on δ. The Reifenberg flat domain was first introduced by Reifenberg in
1960 [21] and appears in minimal surface theory and free boundary problems. One
interesting feature of a Reifenberg flat domain is that its boundary could be a fractal.
For more research on Reifenberg flat domains, we refer to [1, 2] and the references
therein.

More generally, the corkscrew domains, including the non-tangentially accessible
domains (NTA domains for short) as a subclass, also satisfy the (H2) condition. The
following is the definition for the corkscrew domains (see [10, (3.1)]).

Definition 2.6 (Corkscrew domain). We say that Ω satisfies the exterior corkscrew
condition at x0 ∈ ∂Ω if there exist 0 < δ < 1/4 and R > 0 such that for any
0 < r < R, there exists y ∈ B(x0, r) such that B(y, δr) ⊂ Ωc.

Suppose that Ω satisfies the exterior corkscrew condition at x0 ∈ ∂Ω. Then for
any 0 < r < R, there exists y ∈ B(x0, r) such that B(y, δr) ⊂ Ωc. Let r1 = |y − x0|.
Then δr ≤ r1 ≤ (1 − δ)r and y ∈ ∂B(x0, r1). Moreover, ∂B(x0, r1) ∩ B(y, δr1) ⊂
∂B(x0, r1) ∩ B(y, δr) ⊂ Ωc. Hence, Ω satisfies the (H2) condition at x0 with τ1 = δ,
τ2 = 1 − δ and ν = δ. We remark here that the NTA domains and the corkscrew
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domains appear frequently in the study of harmonic measures and non-tangential
limits (see [10, 11]).

In fact, in the (H2) condition, we only need a sequence of uniform portion of the
(n − 1) dimensional spheres contained in Ωc rather than an n dimensional set. In
particular, the measure of the complement of the domain near the boundary point
could be zero. For example, let Γ = ∂B1/2∩B(y0, ν) where y0 ∈ ∂B1/2 and 0 < ν < 1.
Set

Ω = B1\{0}\
∞
⋃

k=0

1

2k
Γ.

Then Ω satisfies the (H2) condition at 0 ∈ ∂Ω and the Hölder regularity at 0 for
elliptic equations can be proved (see Section 2). Note that the Lebesgue measure of
B1/2 ∩ Ωc is zero.

In this paper, we also consider the fractional Laplace equations. Since they are
nonlocal equations, the condition (H2) is not appropriate here. Instead, we give the
following geometric condition.

Condition 2.7 (H3). Let Ω ⊂ Rn be a bounded domain and x0 ∈ ∂Ω. We say
that Ω satisfies the (H3) condition at x0 if there exist a constant 0 < ν < 1 and a
quasi-geometric sequence {rk}

∞
k=0 such that

|(B(x0, rk)\B(x0, rk+1)) ∩ Ωc|

rnk
≥ ν, ∀ k ≥ 0, (2.5)

where | · | denotes the n dimensional Lebesgue measure.

Remark 2.8. It is also easy to verify that if a domain satisfies the exterior cone
condition, the exterior (δ, R)-Reifenberg flat condition, or the exterior corkscrew
condition, it satisfies the (H3) condition. Hence, there is a large class of domains
on which the boundary Hölder regularity holds for the fractional Laplace equations.
Here, the measure of the complement of the domain near the boundary point can
not be zero, which is a difference from the local equations.

Finally, for the Laplace equation, there exists an explicit relationship between
the solution and the boundary values via the Poisson integral. Hence, we have clear
quantitative estimate for the decay of the solution around some boundary point. This
allows us to obtain other boundary continuity under the corresponding geometric
conditions. We give the following geometric condition for example and prove the
boundary continuity of the solution in the last section.
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Condition 2.9 (H4). Let Ω ⊂ Rn be a bounded domain and x0 ∈ ∂Ω. We say that
Ω satisfies the (H4) condition at x0 if there exist a quasi-geometric sequence {rk}

∞
k=0

such that
∞
∑

k=0

Hn−1(∂B(x0, rk) ∩ Ωc)

rn−1
k

= +∞. (2.6)

Remark 2.10. We will prove the continuity up to x0 under(2.6). The famous Wiener
criterion states (see [8, Chap. 2.9] and [24]) that for the Laplace equation, the
solution continues up to x0 if and only if

∞
∑

k=0

cap
(

B(x0, r
k) ∩ Ωc

)

rk(n−2)
= +∞, (2.7)

where 0 < r < 1 and cap denotes the capacity which is defined as the following (see
[8, Chap. 2.9]). For any Ω ⊂ Rn, define

cap Ω = inf
v∈K

∫

|Dv|2,

where
K =

{

v ∈ C1
0(R

n)|v = 1 on Ω
}

.

Note that the form of(2.6) is similar to that of(2.7). However,(2.6) shows apparent
geometric meaning whereas the capacity is used in(2.7).

In the rest of this paper, if we say that a domain satisfies the (H1), (H2), (H3)
or (H4) condition at some boundary point, it indicates the quasi-geometric sequence
{rk}

∞
k=0 with 0 < τ1 < τ2 < 1 and r0 = 1, the constant 0 < ν < 1, and the sequence

{yk}
∞
k=0.

3. Boundary Hölder regularity

Let Ω ⊂ Rn be a bounded domain and f is a function defined on Ω̄. We say that
f is Cα at x0 ∈ Ω̄ or f ∈ Cα(x0) if there exists a constant C such that

|f(x)− f(x0)| ≤ C|x− x0|
α, ∀ x ∈ Ω̄.

Then, define [f ]Cα(x0) = C and ‖f‖Cα(x0) = ‖f‖L∞(Ω) + [f ]Cα(x0).
In the following, we will prove the boundary Hölder regularity for different elliptic

equations under the corresponding geometric conditions presented in the last section.
The idea and the sketch of the proofs have been motivated by [14]. For simplicity, we
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assume that all solutions concerned are continuous up to the boundary throughout
this paper. In fact, this assumption is not essential and we may derive the exis-
tence of a solution which is Hölder continuous up the boundary point at which the
corresponding geometric condition is satisfied (see Theorem 4.2).

To demonstrate our idea clearly, we first consider the Laplace equation in a
simple form. Although the problem is simple, the proof has contained the essential
ingredients for the boundary Hölder regularity.

Theorem 3.1. Suppose that Ω satisfies the (H1) condition at 0 ∈ ∂Ω. Let 0 ≤ u ≤ 1
satisfy

{

∆u = 0 in Ω;

u = 0 on ∂Ω ∩ B1.

Then u is Cα at 0 and
u(x) ≤ 2|x|α, ∀ x ∈ Ω ∩ B1,

where 0 < α < 1 depends only on n, τ1, τ2 and ν. Here, τ1, τ2 and ν are constants
from Definition 2.1 and the (H1) condition.

Proof. Let

g(x) ≡

{

0 on ∂B1 ∩ Ωc;

1 on ∂B1 ∩ Ω

and v be the Poisson integral of g on B1, i.e.,

v(x) =
1− |x|2

nωn

∫

∂B1

g(y)ds

|x− y|n
,

where x ∈ B1 and ωn denotes the volume of B1.
Then v is a positive harmonic function in B1 and thus

lim inf
x→∂Ω∩B̄1

v ≥ 0.

Since Ω is open, g is continuous at any point x ∈ ∂B1 ∩Ω (g ≡ 1 near x). Note that
v is the Poisson integral of g. Hence, v is continuous up to x and v(x) = 1 (see the
proof of [8, Theorem 2.6] for the continuity of v at x). Then, we have

lim inf
x→∂(Ω∩B1)

(v − u) ≥ 0.

By the maximum principle (see [8, Theorem 3.1]),

v − u ≥ 0 on Ω ∩ B1. (3.1)
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On the other hand, by the (H1) condition and the definition of g,

v ≤ 1− µ in Bτ2 , (3.2)

where 0 < µ < 1 depends only on n, τ2 and ν. Combining(3.1) and(3.2), we have

sup
Ω∩Br1

u ≤ sup
Ω∩Bτ2

v ≤ 1− µ.

Now, we prove the following by induction

sup
Ω∩Brk

u ≤ (1− µ)k, ∀ k ≥ 1. (3.3)

In above argument, we have proved that it holds for k = 1. Suppose that it holds
for k and we need to prove it for k + 1. Let y = x/rk, w(y) = u(x)/(1 − µ)k and
Ω̃ = Ω/rk. Then w and Ω̃ satisfy the conditions of this theorem. Hence, from above
argument, we have

sup
Ω∩Bτ2

w ≤ 1− µ.

By rescaling back to u, we have

sup
Ω∩Bτ2rk

u ≤ (1− µ)k+1.

Hence,
sup

Ω∩Brk+1

u ≤ sup
Ω∩Bτ2rk

u ≤ (1− µ)k+1.

Then(3.3) implies the Hölder continuity of u at 0. Indeed, for any x ∈ Ω ∩ B1,
there exists k such that rk+1 ≤ |x| ≤ rk. Then by letting 1− µ = τα1 ,

u(x) ≤ (1− µ)k =
τ
(k+1)α
1

1− µ
≤

rαk+1

(1− µ)
≤

|x|α

(1− µ)
≤ 2|x|α.

Remark 3.2. It is clear from the proof that larger Hn−1(∂B1 ∩ Ωc) implies bigger
µ, which leads to faster oscillation decay for u. That is, u has higher continuity.
This gives the explanation that a more portion of Ωc near a boundary point implies
a higher continuity up to the boundary. For example, the exterior cone condition
implies the boundary Hölder continuity; the exterior sphere condition implies the
boundary Lipschitz continuity.
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Now we prove the full result for the Laplace operator with the inhomogeneous
boundary condition:

{

∆u = f in Ω;

u = g on ∂Ω.
(3.4)

Theorem 3.3. Suppose that Ω satisfies the (H1) condition at 0 ∈ ∂Ω. Let u sat-
isfy(3.4) where f ∈ Lp(Ω) with p > n/2 and g is Cα at 0. Then u is Cβ at 0
and

|u(x)− u(0)| ≤ C|x|β
(

‖u‖L∞(Ω∩B1) + ‖f‖Lp(Ω∩B1) + [g]Cα(0)

)

, ∀ x ∈ Ω ∩B1, (3.5)

where 0 < β ≤ min(2 − n/p, α) depends only on n, τ1, τ2 and ν; C depends only on
n, τ2, ν and p. Here, τ1, τ2 and ν are constants from Definition 2.1 and the (H1)
condition.

Proof. Without loss of generality, we assume that g(0) = 0. Otherwise, we may
consider u − g(0) instead. Let M = ‖u‖L∞(Ω∩B1) + ‖f‖Lp(Ω∩B1) + [g]Cα(0) and Ωr =
Ω ∩Br. To prove(3.5), we only need to prove the following:

There exist constants 0 < β ≤ min(2− n/p, α) depending only on n, τ1, τ2 and ν,
and Ĉ depending only on n, τ2, ν and p such that for all k ≥ 0,

‖u‖L∞(Ωrk
) ≤ ĈMrβk . (3.6)

We prove(3.6) by induction. For k = 0, it holds clearly. Suppose that it holds for
k. We need to prove that it holds for k + 1.

Take the zero extension of f to the whole Rn (similarly hereinafter) and let

g̃(x) ≡

{

Mrαk on ∂Brk ∩ Ωc;

ĈMrβk on ∂Brk ∩ Ω.

Define

v(x) =
r2k − |x|2

nωnrk

∫

∂Brk

g̃(y)ds

|x− y|n
+

∫

Brk

G(x, y)(−|f |(y))dy,

where x ∈ Brk and G is the Green’s function for Brk . Then

∆(v − u) ≤ 0 in Ωrk .

Next, similar to the proof of Theorem 3.1, we have

lim inf
x→∂Ω∩B̄rk

v ≥ Mrαk , (3.7)
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since v ≥ Mrαk in Brk . Note also that v is continuous and equals to ĈMrβk at any
point x ∈ ∂Brk ∩ Ω. Hence, combining with(3.6) and(3.7), we have

lim inf
x→∂Ωrk

(v − u) ≥ 0.

By the maximum principle, we have

u ≤ v in Ωrk .

For x ∈ Brk+1
, we have as before

r2k − |x|2

nωnrk

∫

∂Brk

g̃(y)ds

|x− y|n
≤ (1− µ)

(

ĈMrβk −Mrαk

)

+Mrαk , (3.8)

where 0 < µ < 1 depends only on n, τ2 and ν. It can also be verified easily that
∫

Brk

|G(x, y)f(y)|dy ≤ CMr
2−n/p
k ,

where C depends only on n and p. Hence,

‖v‖L∞(Brk+1
) ≤ (1− µ)

(

ĈMrβk −Mrαk

)

+Mrαk + CMr
2−n/p
k

≤ ĈMrβk+1 ·
1− µ

τβ1
+ µMrβk + CMrβk

≤ ĈMrβk+1

(

1− µ

τβ1
+

µ

Ĉτβ1
+

C

Ĉτβ1

)

.

Take β small enough and Ĉ large enough such that

1− µ

τβ1
+

µ

Ĉτβ1
+

C

Ĉτβ1
≤ 1.

Then
sup
Ωrk+1

u ≤ sup
Ωrk+1

v ≤ ĈMrβk+1.

The proof for
inf

Ωrk+1

u ≥ −ĈMrβk+1

is similar and we omit here. Therefore,

‖u‖L∞(Ωrk+1
) ≤ ĈMrβk+1.

Hence,(3.6) holds for k + 1. By induction, the proof is completed.
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Remark 3.4. In above theorem, we do not indicate which kind of solutions we con-
sider. In fact, the key points are the strong maximum principle in proving an estimate
similar to(3.8) (see the following proofs for details), and the scaling. Hence, the solu-
tion can be understood in any sense (such as in the sense of weak solution or strong
solution etc.) only if the strong maximum principle holds.

In the following, we will prove the boundary Hölder regularity for general elliptic
equations under the (H2) condition. First, we introduce a sequence functions based
on the (H2) condition. Choose and fix one gν ∈ C∞(∂B1) with 0 ≤ gν ≤ 1 and

gν(x) ≡

{

0 on ∂B1 ∩B(e1, ν/2);

1 on ∂B1\B(e1, ν),
(3.9)

where e1 = (1, 0, 0, ..., 0). Clearly, gν depends only on n and ν. Next, for each k ≥ 1,
define

g̃k(x) = gν(x/rk),

which is defined on ∂Brk . Since yk ∈ ∂Brk , there exists an orthogonal matrix Tk such
that rke1 = Tkyk. Finally, introduce

gk(x) = g̃k(Tkx) = gν(Tkx/rk). (3.10)

Then

gk(x) ≡

{

0 on ∂Brk ∩B(yk, νrk/2);

1 on ∂Brk\B(yk, νrk).

In above definition, ν, {rk} and {yk} are as in the (H2) condition.
First, we consider the uniformly elliptic equations in divergence form. We begin

with the following lemma.

Lemma 3.5. Let aij be uniformly elliptic with constants λ and Λ, and v be a weak
solution of

{

(aijvi)j = 0 in B1;

v = g on ∂B1,

where g ∈ C∞(∂B1), 0 ≤ g ≤ 1 and g ≡ 0 on a portion of ∂B1. Then for any
0 < δ < 1,

sup
Bδ

v ≤ 1− µ,

where 0 < µ < 1 depends only on n, λ,Λ, δ and g.

12



Proof. By the global Hölder estimate (see [8, Theorem 8.29]),

‖v‖Cγ(B̄1) ≤ C0‖g‖C1(B̄1),

where 0 < γ < 1 and C0 depend only on n, λ and Λ. Let x0 ∈ ∂B1 with g(x0) = 0.
Take 0 < t < 1− δ small enough (depending only on n, λ,Λ, δ and g) such that

v((1− t)x0) = v((1− t)x0)− v(x0) ≤ tγC0‖g‖C1(B̄1) ≤ 1/2.

By the interior Harnack inequality (see [8, Theorem 8.20]),

1− v(x) ≥ c0 (1− v((1− t)x0)) ≥ c0/2, ∀ x ∈ ∂B1−t,

where c0 depends only on n, λ,Λ and t. Hence,

sup
Bδ

v ≤ sup
B1−t

v ≤ 1− c0/2 := 1− µ.

Based on above result, the boundary Hölder regularity can be derived for linear
elliptic equations in divergence form:

{

(aijui)j = f in Ω;

u = g on ∂Ω.
(3.11)

Theorem 3.6. Suppose that Ω satisfies the (H2) condition at 0 ∈ ∂Ω. Let u be a
weak solution of (3.11) where aij is uniformly elliptic with λ and Λ, f ∈ Lp(Ω) with
p > n/2 and g ∈ Cα(0). Then u is Cβ at 0 and

|u(x)− u(0)| ≤ C|x|β
(

‖u‖L∞(Ω∩B1) + ‖f‖Lp(Ω∩B1) + [g]Cα(0)

)

, ∀ x ∈ Ω ∩B1,

where 0 < β ≤ min(2 − n/p, α) depends only on n, λ,Λ, τ1, τ2, ν and p; C depends
only on n, λ,Λ, τ2, ν and p. Here, τ1, τ2 and ν are constants from Definition 2.1 and
the (H2) condition.

Proof. We assume that g(0) = 0 as before. Let M = ‖u‖L∞(Ω∩B1) + ‖f‖Lp(Ω∩B1) +
[g]Cα(0) and Ωr = Ω ∩ Br. We only need to prove the following:

There exist constants 0 < β ≤ min(2−n/p, α) depending only on n, λ,Λ, τ1, τ2, ν
and p, and Ĉ depending only on n, λ,Λ, τ2, ν and p such that for all k ≥ 0,

‖u‖L∞(Ωrk
) ≤ ĈMrβk . (3.12)
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We prove(3.12) by induction. For k = 0, it holds clearly. Suppose that it holds
for k. We need to prove that it holds for k + 1.

Let v solve (see [12, Theorem 5.2])

{

(aijvi)j = 0 in Brk ;

v = g̃ on ∂Brk ,

where g̃ = (ĈMrβk −Mrαk )gk +Mrαk and gk is defined in(3.10). Let w solve (see also
[12, Theorem 5.2])

{

(aijwi)j = −|f | in Brk ;

w = 0 on ∂Brk .

Then
(aij(u− v − w)i)j ≥ 0 in Ωrk .

Note that gk ≥ 0 on ∂Brk and w ≥ 0 in Brk . Thus,

u = g ≤ Mrαk = min
∂Brk

g̃ ≤ v ≤ v + w on ∂Ω ∩ B̄rk .

On the other hand, since gk ≥ 1 on ∂Brk ∩ Ω,

u ≤ ĈMrβk ≤ g̃ on ∂Brk ∩ Ω.

Hence,
u ≤ v + w on ∂Ωrk .

Similarly, we have
u ≥ −(v + w) on ∂Ωrk .

Then by the maximum principle (see [8, Theorem 8.1]),

− v − w ≤ u ≤ v + w in Ωrk . (3.13)

Now, we estimate v and w respectively. Let y = Tkx/rk and

ṽ(y) =
v(x)−Mrαk

ĈMrβk −Mrαk
.

Then ṽ satisfy
{

(ãij ṽi)j = 0 in B1;

ṽ = gν on ∂B1,

14



where ãij(y) = aij(x)T li
k T

mj
k is uniformly elliptic with λ and Λ. By Lemma 3.5 we

have
sup
Bτ2

v ≤ 1− µ,

where 0 < µ < 1 depends only on n, λ,Λ, τ2 and gν . Since gν is determined by ν
(see(3.9)), µ depends only on n, λ,Λ, τ2 and ν. Rescaling back to v, we have

sup
Brk+1

v ≤ sup
Bτ2rk

v ≤ (1− µ)
(

ĈMrβk −Mrαk

)

+Mrαk

≤ ĈMrβk+1 ·
1− µ

τβ1
+ µMrβk

≤ ĈMrβk+1

(

1− µ

τβ1
+

µ

Ĉτβ1

)

.

(3.14)

By the Alexandrov-Bakel’man-Pucci maximum principle for w (see [8, Theorem
8.16]), we have

‖w‖L∞(Brk+1
) ≤ CMr

2−n/p
k ≤ ĈMrβk+1 ·

C

Ĉτβ1
, (3.15)

where C depends only on n, λ,Λ and p.
Take β small enough and Ĉ large enough such that

1− µ

τβ1
+

µ

Ĉτβ1
+

C

Ĉτβ1
≤ 1.

Then combining(3.13),(3.14) and(3.15), we have

‖u‖L∞(Ωrk+1
) ≤ ĈMrβk+1.

By induction, the proof is completed.

Remark 3.7. In above proof, the only used tools are the solvability of v in a ball,
the strong maximum principle for v, the comparison principle between u and v and
a scaling argument. These are valid for many types of equations. The benefit of the
method is that it does not need to construct directly a barrier which is difficult for
domains with complicated geometric structures.
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Our method is also applicable for elliptic equations in non-divergence form. More
generally, we consider the fully nonlinear elliptic equations in non-divergence form:

{

u ∈ S(λ,Λ, f) in Ω;

u = g on ∂Ω.
(3.16)

Here, we consider the viscosity solutions and the notations are adopted from [3] (see
also [4] and [6]).

Theorem 3.8. Suppose that Ω satisfies the (H2) condition at 0 ∈ ∂Ω. Let u be a
viscosity solution of (3.16) where f ∈ Ln(Ω) and g ∈ Cα(0). Then u is Cβ at 0 and

|u(x)− u(0)| ≤ C|x|β
(

‖u‖L∞(Ω∩B1) + ‖f‖Ln(Ω∩B1) + [g]Cα(0)

)

, ∀ x ∈ Ω ∩B1,

where 0 < β ≤ α depends only on n, λ,Λ, τ1, τ2 and ν; C depend only on n, λ,Λ, τ2
and ν. Here, τ1, τ2 and ν are constants from Definition 2.1 and the (H2) condition.

Proof. We assume that g(0) = 0 as before. Let M = ‖u‖L∞(Ω∩B1) + ‖f‖Ln(Ω∩B1) +
[g]Cα(0) and Ωr = Ω ∩ Br. We only need to prove the following:

There exist constants 0 < β ≤ α depending only on n, λ,Λ, τ1, τ2 and ν, and Ĉ
depending only on n, λ,Λ, τ2 and ν such that for all k ≥ 0,

‖u‖L∞(Ωrk
) ≤ ĈMrβk . (3.17)

We prove(3.17) by induction. For k = 0, it holds clearly. Suppose that it holds
for k. We need to prove that it holds for k + 1.

Let v solve (see [4, Corollary 3.10])
{

M+(D2v, λ,Λ) = 0 in Brk ;

v = g̃ on ∂Brk ,

where g̃ = (ĈMrβk −Mrαk )gk +Mrαk . Let w solve (see also [4, Corollary 3.10])
{

M+(D2w, λ,Λ) = −|f | in Brk ;

w = 0 on ∂Brk .

Then
M+(D2(v + w), λ,Λ) ≤ f in Ωrk .

As in the proof of Theorem 3.6, it can be verified similarly that

u ≤ v + w on ∂Ωrk .
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Hence, by the comparison principle (see [6, Theorem 3.3]), we have

u ≤ v + w in Ωrk . (3.18)

Similar to the proof of Theorem 3.6, we estimate v and w respectively. Let
y = Tkx/rk and

ṽ(y) =
v(x)−Mrαk

ĈMrβk −Mrαk
.

Then ṽ satisfy
{

M+(D2ṽ, λ,Λ) = 0 in B1;

ṽ = gν on ∂B1.

By the strong maximum principle (see [3, Proposition 4.9]), we have

sup
Bτ2

ṽ ≤ 1− µ,

where 0 < µ < 1. Note that µ is determined obviously by τ2 and ṽ, and the later
is uniquely determined by the operator M+, the domain B1 and the boundary value
gν . Since M+ depends only on λ and Λ, B1 depends only on n and gν depends only
on n and ν, µ depends only on n, λ,Λ, τ2 and ν.

Rescaling back to v, we have

sup
Brk+1

v ≤ sup
Bτ2rk

v ≤ (1− µ)
(

ĈMrβk −Mrαk

)

+Mrαk

≤ ĈMrβk+1 ·
1− µ

τβ1
+ µMrβk

≤ ĈMrβk+1

(

1− µ

τβ1
+

µ

Ĉτβ1

)

.

(3.19)

By the Alexandrov-Bakel’man-Pucci maximum principle for w (see [3, Theorem
3.2]), we have

‖w‖L∞(Brk+1
) ≤ CMrk ≤ ĈMrβk+1 ·

C

Ĉτβ1
, (3.20)

where C depends only on n, λ and Λ.
Take β small enough and Ĉ large enough such that

1− µ

τβ1
+

µ

Ĉτβ1
+

C

Ĉτβ1
≤ 1.
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Then combining(3.18),(3.19) and(3.20), we have

sup
Ωrk+1

u ≤ ĈMrβk+1.

The proof for
inf

Ωrk+1

u ≥ −ĈMrβk+1

is similar and we omit here. Therefore,

‖u‖L∞(Ωrk+1
) ≤ ĈMrβk+1.

By induction, the proof is completed.

Quasilinear elliptic equations can also be treated. We prove the boundary Hölder
regularity for p−Laplace equations:

{

div(|∇u|p−2∇u) = 0 in Ω;

u = g on ∂Ω.
(3.21)

Theorem 3.9. Suppose that Ω satisfies the (H2) condition at 0 ∈ ∂Ω. Let u be a
weak solution of (3.21) where 1 < p < +∞ and g ∈ Cα(0). Then u is Cβ at 0 and

|u(x)− u(0)| ≤ 8|x|β
(

‖u‖L∞(Ω∩B1) + [g]Cα(0)

)

, ∀ x ∈ Ω ∩B1,

where 0 < β ≤ α depends only on n, τ1, τ2, ν and p. Here, τ1, τ2 and ν are constants
from Definition 2.1 and the (H2) condition.

Proof. We assume that g(0) = 0 as before. Let M = ‖u‖L∞(Ω∩B1) + [g]Cα(0) and
Ωr = Ω ∩ Br. We only need to prove the following:

There exist a constant 0 < β ≤ α depending only on n, τ1, τ2, ν and p such that

τβ1 ≥
1

2
(3.22)

and for all k ≥ 0,
‖u‖L∞(Ωrk

) ≤ 4Mrβk . (3.23)

We prove(3.23) by induction. For k = 0, it holds clearly. Suppose that it holds
for k. We need to prove that it holds for k + 1.
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Let v solve (see [15, Theorem 2.16])

{

div(|∇v|p−2∇v) = 0 in Brk ;

v = g̃ on ∂Brk ,

where g̃ = (4Mrβk −Mrαk )gk+Mrαk . As in the proof of Theorem 3.6, it can be verified
similarly that

−v ≤ u ≤ v on ∂Ωrk .

Hence, by the comparison principle (see [15, Theorem 2.16]), we have

− v ≤ u ≤ v in Ωrk . (3.24)

Similarly to the previous proof, let y = Tkx/rk and

ṽ(y) =
v(x)−Mrαk

ĈMrβk −Mrαk
.

Then ṽ satisfy
{

div(|∇ṽ|p−2∇ṽ) = 0 in B1;

ṽ = gν on ∂B1.

By the strong maximum principle (see [15, Corollary 2.21]), we have

sup
Bτ2

ṽ ≤ 1− µ,

where 0 < µ < 1. Note that µ is determined obviously by τ2 and ṽ, and the later is
uniquely determined by the p−Laplace operator (depending only on p), the domain
B1 (depending only on n) and the boundary value gν (depending only on n and ν).
Hence, µ depends only on n, τ2, ν and p.

Rescaling back to v, we have

sup
Brk+1

v ≤ sup
Bτ2rk

v ≤ (1− µ)
(

4Mrβk −Mrαk

)

+Mrαk

≤ 4Mrβk+1 ·
1− µ

τβ1
+ µMrβk

≤ 4Mrβk+1

(

1− µ

τβ1
+

µ

4τβ1

)

.

(3.25)
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Take β small enough such that(3.22) holds and

1− µ

τβ1
< 1−

µ

2
.

Then combining(3.24) and(3.25), we have

‖u‖L∞(Ωrk+1
) ≤ 4Mrβk+1.

By induction, the proof is completed.

Remark 3.10. Although we apply weak solutions in Theorem 3.6 and Theorem 3.9,
and viscosity solutions in Theorem 3.8, the kinds of solutions do not play a key role
in the theory since the critical elements are the strong maximum principle and the
scaling.

Finally, we consider the fractional Laplace equations:

{

(−∆)s/2u = f in Ω;

u = g in Ωc,
(3.26)

where 0 < s < 2. For the fundamental theory of the fractional Laplace equations,
we refer to [5]. We have the following boundary Hölder regularity corresponding
to(3.26).

Theorem 3.11. Suppose that Ω satisfies the (H3) condition at 0 ∈ ∂Ω. Let u
satisfy(3.26) where f ∈ Lp(Ω) with p > n/s, and g is bounded and Cα at 0. Then u
is Cβ at 0 and

|u(x)− u(0)| ≤ C|x|β ·
(

‖u‖L∞(Ω∩B1) + ‖f‖Lp(Ω∩B1) + ‖g‖Cα(0)

)

, ∀ x ∈ Ω ∩ B1,

where 0 < β ≤ min(s − n/p, α) depends only on n, s, τ1, τ2 and ν; C depends only
on n, s, τ1, τ2, ν and p. Here, τ1, τ2 and ν are constants from Definition 2.1 and the
(H3) condition.

Remark 3.12. Ros-Oton and Serra [22] proved the boundary Hölder regularity for(3.26)
with f ∈ L∞, g ≡ 0 and the exterior sphere condition at 0.

Proof of Theorem 3.11. The essential of the proof is the same as previous and we
also assume that g(0) = 0. Let M = ‖u‖L∞(Ω∩B1) + ‖f‖Lp(Ω∩B1) + ‖g‖Cα(0). We only
need to prove the following:
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There exist constants 0 < β ≤ min(s − n/p, α) and k0 ≥ 1 depending only
on n, s, τ1, τ2 and ν, Ĉ depending only on n, s, τ1, τ2, ν and p, and a sequence of
nonnegative functions {vk}

∞
k=1 with v1 ≡ M such that for k ≥ 2,











(−∆)s/2vk = |f | in Br(k−1)k0
;

− vk ≤ u ≤ vk in Rn;

vk ≤ ĈMrβkk0 in Brkk0
.

(3.27)

Indeed, by(3.27), we have

‖u‖L∞(Brkk0
) ≤ ĈMrβkk0,

which implies the boundary Hölder regularity in the same way as previous.
We prove(3.27) by induction. For k = 2, let

v2(x) =

∫

Bc
rk0

Prk0
(x, y)v1(y)dy +

∫

Brk0

G(x, y)|f |(y)dy,

where x ∈ Brk0
, Pr is the Poisson kernel (see [5, Chap. 4.1]) for Br with

Pr(x, y) =
Γ(n/2)

πn/2+1
· sin

πs

2
·

(

r2 − |x|2

|y|2 − r2

)s/2

·
1

|x− y|n
, x ∈ Br, y ∈ Bc

r ,

and G(x, y) is the Green function (see [5, Chap. 2.2]) with

G(x, y) =
C(n, s)

|x− y|n−s
+

c(n, s)

|x− y|n−s

for some positive constants C(n, s) and c(n, s) depending only on n and s. Then v
satisfies (see [5, Chap. 4.1])

{

(−∆)s/2v2 = |f | in Brk0
;

v2 = M in Bc
rk0

.

In aid of the maximum principle, the first two terms in(3.27) hold clearly. Since
Prk0

is the Poisson kernel,

∫

Bc
rk0

Prk0
(x, y)v1(y)dy =

∫

Bc
rk0

Prk0
(x, y)Mdy ≡ M.
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By Hölder’s inequality,

∫

Brk0

G(x, y)|f |(y)dy ≤ C1Mr
s−n/p
k0 (3.28)

for some constant C1 depending only on n, s and p. Hence,

v2(x) ≤ M + C1Mr
s−n/p
k0

≤ M + C1Mrβk0

≤ ĈMrβ2k0

(

1

Ĉτ 2k0β1

+
C1

Ĉτk0β1

)

.

(3.29)

Take proper k0 and β (to be specified later) such that

τ 2k0β1 ≥ 1/2. (3.30)

Next, take Ĉ large enough such that

1

Ĉτ 2k0β1

+
C1

Ĉτk0β1

≤ 1. (3.31)

Then we have
sup
Br2k0

v2 ≤ ĈMrβ2k0 .

That is, the third term in(3.27) holds. Hence,(3.27) holds for k = 2.
Suppose that(3.27) holds for k. We need to prove that(3.27) holds for k+ 1. Let

g̃(x) ≡















Mrα(k−1)k0
, in (Br(k−1)k0

\Brkk0
) ∩ Ωc;

ĈMrβ(k−1)k0
, in (Br(k−1)k0

\Brkk0
) ∩ Ω;

vk, in Rn\Br(k−1)k0
.

Then, it is easy to check that −g̃ ≤ u ≤ g̃ in Bc
rkk0

. Let

vk+1(x) =

∫

Bc
rkk0

Prkk0
(x, y)g̃(y)dy +

∫

Brkk0

G(x, y)|f |(y)dy, (3.32)

where x ∈ Brkk0
. Then the first two terms in(3.27) hold clearly.
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Split the first term in(3.32) into two parts:
∫

Bc
rkk0

Prkk0
g̃dy =

∫

Br(k−1)k0
\Brkk0

Prkk0
g̃dy +

∫

Bc
r(k−1)k0

Prkk0
g̃dy. (3.33)

Now, we estimate them separately. Let A = (Brkk0−1
\Brkk0

) ∩ Ωc, x̃ = x/rkk0, ỹ =

y/rkk0 and Ã = A/rkk0. For x ∈ Brkk0
,

∫

A

Prkk0
(x, y)dy

= C

∫

A

(

r2kk0 − |x|2

|y|2 − r2kk0

)s/2

·
1

|x− y|n
dy

= C

∫

Ã

(

1− |x̃|2

|ỹ|2 − 1

)s/2

·
1

|x̃− ỹ|n
dỹ,

where C depends only on n and s. By the (H3) condition, |Ã| ≥ ν. Since x̃ ∈ B1,
ỹ ∈ B1/τ1 and the integrand is positive,

∫

A

Prkk0
(x, y)dy = C

∫

Ã

(

1− |x̃|2

|ỹ|2 − 1

)s/2

·
1

|x̃− ỹ|n
dỹ ≥ µ, (3.34)

where µ depends only on n, s, τ1, τ2 and ν. Let

ĝ =
g̃ −Mrα(k−1)k0

ĈMrβ(k−1)k0
−Mrα(k−1)k0

.

Then ĝ ≤ 1 in Br(k−1)k0
and ĝ ≤ 0 in Br(k−1)k0

∩ Ωc. Thus,

∫

Br(k−1)k0
\Brkk0

Prkk0
(x, y)ĝ(y)dy

=

∫

Br(k−1)k0
\Brkk0

Prkk0
(x, y)dy +

∫

Br(k−1)k0
\Brkk0

Prkk0
(x, y)(ĝ(y)− 1)dy

≤

∫

Bc
rkk0

Prkk0
(x, y)dy −

∫

(Br(k−1)k0
\Brkk0

)∩Ωc

Prkk0
(x, y)dy

≤ 1−

∫

(Brkk0−1
\Brkk0

)∩Ωc

Prkk0
(x, y)dy

≤ 1− µ by(3.34).
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Therefore,
∫

Br(k−1)k0
\Brkk0

Prkk0
(x, y)g̃(y)dy

≤ (1− µ)
(

ĈMrβ(k−1)k0
−Mrα(k−1)k0

)

+Mrβ(k−1)k0

≤ ĈMrβ(k+1)k0
·
1− µ

τ 2βk01

+ µMrβ(k−1)k0

≤ ĈMrβ(k+1)k0

(

1− µ

τ 2βk01

+
µ

Ĉτ 2βk01

)

,

(3.35)

where 0 < µ < 1 depends only on n, s, τ1, τ2 and ν.
Now, we estimate the second part in(3.33) for x ∈ Br(k+1)k0

. Take k0 large enough
such that

τk02 ≤ 1/4. (3.36)

Then it is easy to check that |y − x̃| ≤ 2|y − x| for any x̃ ∈ Brkk0
and y ∈ Bc

r(k−1)k0
.

Let t = max(r(k+1)k0/rkk0, rkk0/r(k−1)k0) and x̃ = x/t ∈ Brkk0
. Then

∫

Bc
r(k−1)k0

Prkk0
(x, y)g̃(y)dy =

∫

Bc
r(k−1)k0

Prkk0
(x, y)vk(y)dy

= C

∫

Bc
r(k−1)k0

(

r2kk0 − |x|2

|y|2 − r2kk0

)s/2

·
vk(y)

|x− y|n
dy

= Cts
∫

Bc
r(k−1)k0

(

r2kk0/t
2 − |x̃|2

|y|2 − r2kk0

)s/2

·
vk(y)

|x− y|n
dy

≤ Cts
∫

Bc
r(k−1)k0

(

r2(k−1)k0
− |x̃|2

|y|2 − r2(k−1)k0

)s/2

·
vk(y)

|x̃− y|n
dy

= C2t
s

∫

Bc
r(k−1)k0

Pr(k−1)k0
(x̃, y)vk(y)dy

≤ C2t
s‖vk‖L∞(Brkk0

)

≤ C2t
sĈMrβkk0

= ĈMrβ(k+1)k0
· C2

tsrβkk0
rβ(k+1)k0

,

(3.37)
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where C2 depends only on n. On the other hand,

∫

Brkk0

G(x, y)|f |(y)dy ≤ C1Mr
s−n/p
kk0

≤ C1Mrβkk0 ≤ ĈMrβ(k+1)k0
·

C1

Ĉτβk01

. (3.38)

Take k0 large enough such that(3.36) holds and

C2τ
k0s/2
2 ≤ µ/8.

Then, take β small enough such that(3.30) holds,

1− µ

τ 2βk01

≤ 1− µ/2

and
τ
s/2
2 ≤ τβ1 .

Hence,

C2

tsrβkk0
rβ(k+1)k0

≤ C2
τk0s2

τk0β1

≤ C2τ
k0s/2
2 ≤ µ/8.

Finally, take Ĉ large enough such that(3.31) holds,

µ

Ĉτ 2βk01

≤ µ/8

and
C1

Ĉτβk01

≤ µ/8.

Thus, combining(3.32)-(3.35),(3.37) and(3.38), we have

sup
Br(k+1)k0

vk+1 ≤ ĈMrβ(k+1)k0
.

Therefore, the(3.27) holds for k + 1. By induction, (3.27) holds for any k ≥ 2 and
the proof is completed.
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4. Solvability of the Dirichlet problem for the Laplace equation

As it is pointed out above, for the Laplace equation, there exists an explicit
relationship between the solution and the boundary value via the Poisson integral.
Hence, we have clear quantitative estimate for the decay around some boundary
point. This allows us to obtain more general boundary regularity. Here, we derive
the continuity of the solution up to the boundary, i.e., solve the Dirichlet problem
for the Laplace equation.

Let g be continuous at x0. Then denote its modulus of continuity at x0 by

ωg;x0(r) = sup
|x−x0|≤r

|g(x)− g(x0)|.

Hence, ωg;x0(r) is nondecreasing and tends to 0 as r → 0. If x0 is the origin, write
ωg(r) = ωg;0(r) for short.

Now we introduce a modified Perron’s method from [8, Chap. 2.8]. Let g be a
bounded function on ∂Ω and v be continuous in Ω. The v will be called a subfunction
relative to g if for every ball B ⊂ Rn and every harmonic function h in B satisfying







lim inf
x→x0

h(x) ≥ v(x0), x0 ∈ ∂B ∩ Ω;

lim inf
x→x0

h(x) ≥ lim sup
x→x0

g(x), x0 ∈ ∂Ω ∩ B̄,

we have v ≤ h in Ω ∩ B. Define

Sg =
{

v ∈ C(Ω)
∣

∣v is a subfunction relative to g
}

.

It is easy to check that if v ∈ Sg and v̄ is the harmonic lifting of v in B for some
ball B ⊂⊂ Ω, then v̄ ∈ Sg. And it can be proved the following (see [8, Chap. 2.8]):

Lemma 4.1. The function u(x) = supv∈Sg
v(x) is harmonic in Ω.

Now, we prove the boundary continuity for the solution of the Laplace equation.

Theorem 4.2. Suppose that Ω satisfies the (H4) condition at 0 ∈ ∂Ω. Let g be
bounded on ∂Ω and continuous at 0. Then there exists a harmonic function u in Ω,
which is continuous up to 0 and

|u(x)− u(0)| ≤ ω(|x|), ∀ x ∈ Ω ∩ B1,

where ω is a modulus of continuity depending only on ωg and the quantities in the
(H4) condition.
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Proof. Let u be defined as in Lemma 4.1. We only need to prove that u is continuous
up to 0. We assume that g(0) = 0 as previous and let Ωr = Ω ∩ Br. For k ≥ 0, let
Γk = ∂Brk ∩ Ωc, ak = Hn−1(Γk)/r

n−1
k ,

g̃k(x) ≡

{

0 on Γk;

1 on ∂Brk\Γk,

and

vk(x) =
r2k − |x|2

nωnrk

∫

∂Brk

g̃k(y)ds

|x− y|n
.

Then
vk ≤ 1− c0ak on Brk+1

, (4.1)

where 0 < c0 < 1 depends only on n and τ2. By the (H4) condition,
∑∞

k=0 ak = ∞,
which is equivalent to

∞
∏

k=0

(1− c0ak) = 0.

Let A0 = ‖g‖L∞(Ω). For k ≥ 1, define Ak as follows:

Ak = max
(

ωg(rk), (1− c0ak−1/2)Ak−1

)

.

Then it is easy to check that Ak → 0 decreasingly as k → ∞.
To prove that u is continuous up to 0, we only need to prove

‖u‖L∞(Ωrk
) ≤ 2Ak. (4.2)

We prove above by induction. For k = 0,(4.2) holds clearly. Suppose that it holds
for k. We need to prove that it holds for k + 1.

Let ḡk =
(

2Ak − ωg(rk)
)

g̃k + ωg(rk) and

v̄k(x) =
r2k − |x|2

nωnrk

∫

∂Brk

ḡk(y)ds

|x− y|n
.

Then it is easy to verify as before that

u ≤ v̄k in Ωrk .

On the other hand, it can be checked that max(u,−v̄k) ∈ Sg and hence

−v̄k ≤ u in Ωrk .
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From(4.1), we have for x ∈ Brk+1
,

v̄k(x) ≤ (1− c0ak) (2Ak − ωg(rk)) + ωg(rk).

Hence,
‖u‖L∞(Brk+1

) ≤ (1− c0ak) (2Ak − ωg(rk)) + ωg(rk)

= 2Ak (1− c0ak) + c0akωg(rk)

≤ 2Ak (1− c0ak/2)

≤ 2Ak+1.

Thus,(4.2) holds for k + 1. By induction, the proof is completed.

An immediate corollary is

Corollary 4.3. Let Ω satisfy the (H4) condition at every point of ∂Ω. Then the
Dirichlet problem

{

∆u = 0 in Ω;

u = g on ∂Ω

is uniquely solvable for any continuous function g. That is, there exists a unique
harmonic function in Ω, which is continuous on Ω̄ and coincides with g on ∂Ω.
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