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KAZHDAN CONSTANTS, CONTINUOUS PROBABILITY

MEASURES WITH LARGE FOURIER COEFFICIENTS AND

RIGIDITY SEQUENCES

by

Catalin Badea & Sophie Grivaux

To the memory of Jean-Pierre Kahane (1926-2017)

Abstract. — Exploiting a construction of rigidity sequences for weakly mixing dynamical
systems by Fayad and Thouvenot, we show that for every integers p1, . . . , pr there exists a
continuous probability measure µ on the unit circle T such that

inf
k1≥0,...,kr≥0

|µ̂(pk1

1 . . . p
kr

r )| > 0.

This results applies in particular to the Furstenberg set F = {2k3k
′

; k ≥ 0, k′ ≥ 0}, and
disproves a 1988 conjecture of Lyons inspired by Furstenberg’s famous ×2-×3 conjecture.
We also estimate the modified Kazhdan constant of F and obtain general results on rigidity
sequences which allow us to retrieve essentially all known examples of such sequences.

1. Introduction

Denote by T the unit circle T = {λ ∈ C ; |λ| = 1}, by M(T) the set of (finite) complex
Borel measures on T and by P(T) the set of Borel probability measures on T. The Fourier
coefficients of µ ∈ M(T) are defined here as

µ̂(n) =

∫

T

λn dµ(λ).

A measure µ ∈ P(T) is said to be continuous, or atomless, if µ({λ}) = 0 for every λ ∈ T.
We denote the set of continuous probability measures on T by Pc(T). According to a
theorem of Wiener and the Koopman-von Neumann lemma, µ is continuous if and only
if µ̂(n) tends to zero as n tends to infinity along a sequence in N of density one. For
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every µ ∈ P(T), we define µ̃ by setting µ̃(A) = µ(Ac) for every Borel set A ⊆ T, with
Ac = {λ ; λ ∈ A}. Then ν := µ ∗ µ̃ has the property that ν̂(n) = |µ̂(n)|2 ≥ 0 for every
n ∈ Z, and ν belongs to Pc(T) as soon as µ does.

A conjecture of Russell Lyons. — Our aim in this paper is to study some non-
lacunary sets of positive integers from a Fourier analysis point of view, and to construct
some probability measures which have large Fourier coefficients on such sets. In particular,
we disprove a 1988 conjecture of Lyons [33], called there Conjecture (C4), which reads as
follows:

Lyons’ Conjecture (C4): If S is a non-lacunary semigroup of integers, and if µ ∈
Pc(T), there exists an infinite sequence (nk)k≥1 of elements of S such that µ̂(nk) → 0
as k → +∞.

This conjecture of Lyons is inspired by Furstenberg’s famous conjecture concerning si-
multaneously invariant probability measures for two commuting automorphisms of the
unit circle T, Tp : λ 7−→ λp and Tq : λ 7−→ λq, when p and q are two multiplicatively inde-
pendent integers (i.e. p and q are not both powers of the same integer). In this setting,
Furstenberg’s conjecture states that the only continuous probability measure on T invari-
ant by both Tp and Tq is the Lebesgue measure on T. Furstenberg himself proved [23] that
if S is any non-lacunary semigroup of integers (i.e. if S is not contained in any semigroup
of the form {an ; n ≥ 0}, a ≥ 2), then the only infinite closed S-invariant subset of T is
T itself. See [10] for an elementary proof of this result and the references mentioned in

[15, Chapter 2] for several extensions. Since S = {pkqk′ ; k, k′ ≥ 0} is a non-lacunary
semigroup whenever p and q are multiplicatively independent, the only infinite closed
subset of T which is simultaneously Tp-invariant and Tq-invariant is T. Starting with the
work of Lyons in [33], Furstenberg’s conjecture has given rise to an impressive amount of
related questions and results, concerning in particular the dynamics of commuting group
automorphisms. We refer the reader to the papers [37], [14], [18] or [27] for example, as
well as to the texts [31], [28] or [38] for surveys of results related to this conjecture, as
well as for perspectives.

As written in [33], conjecture (C4) is a natural version of Furstenberg’s conjecture about
measures, but not involving invariance. If (C4) were true, it would imply an affirmative
answer to the Furstenberg conjecture (if µ ∈ Pc(T) is Tp- and Tq-invariant, applying (C4)
to each of the measures µj := Tj(µ), j ∈ Z\{0}, yields that µ̂(j) = 0 for every j ∈ Z\{0}).

Kazhdan sets and modified Kazhdan constants. — It turns out that Lyons’ con-
jecture is related to an important property of subsets of Z, namely that of being or not a
Kazhdan subset of Z. Kazhdan subsets Q of a second-countable topological group G are
those for which there exists ε > 0 such that any strongly continuous representation π of
G on a complex separable Hilbert space H admitting a vector x ∈ H with ||x|| = 1 which
is ε-invariant on Q (i.e. supg∈Q ||π(g)x − x|| < ε) has a G-invariant vector. Such an ε is
called a Kazhdan constant for Q, and the supremum of all ε’s with this property is the
Kazhdan constant of Q. Groups with Property (T), also called Kazhdan groups, are those
which admit a compact Kazhdan set. See the book [7] for more on Property (T) and its
numerous important applications.

As suggested in [7, Sec. 7.12], it is of interest to study Kazhdan sets in groups which
do not have Property (T), such as locally compact abelian groups, Heisenberg groups,
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etc. See [4] and also [17] for a study of such problems. In the case of the group Z, the
definition above is equivalent to the following one:

Definition 1.1. — (Kazhdan sets and constants) A subset Q ⊂ Z is said to be a Kazhdan
set if there exists ε > 0 such that any unitary operator U acting on a complex separable
Hilbert space H satisfies the following property: if there exists a vector x ∈ H with
||x|| = 1 such that supn∈Q ||Unx− x|| < ε, then there exists a non-zero vector y ∈ H such
that Uy = y (i.e. 1 is an eigenvalue of U). We will say in this case that (Q, ε) is a Kazhdan
pair. We define the Kazhdan constant of Q as

Kaz(Q) = inf
U

inf
‖x‖=1

sup
q∈Q

‖U qx− x‖,

where the first infimum is taken over all unitary operators U on H without fixed vectors.

It follows from [7, p. 30] that 0 ≤ Kaz(Q) ≤
√
2 for every Q ⊆ Z.

Several characterizations of Kazhdan subsets of Z were obtained in [4] as consequences
of results applying to a much wider class of groups; self-contained proofs of these charac-
terizations of Kazhdan subsets of Z, involving only classical tools from harmonic analysis,
were obtained in the paper [5]. One of the characterizations of generating Kazhdan sets
obtained in [4, Th. 6.1] (see also [5, Th. 4.12]) runs as follows. Recall that Q is said to be
generating in the group Z if the smallest subgroup containing Q is Z itself.

Theorem 1.2 ([4]). — Let Q be a generating subset of Z. Then Q is a Kazhdan subset of

Z if and only if there exists ε′ ∈ (0,
√
2] such that (Q, ε′) is a modified Kazhdan pair, that is

any unitary operator V acting on a complex separable Hilbert space H satisfies the following
property: if there exists a vector x ∈ H with ||x|| = 1 such that supn∈Q ||V nx − x|| < ε′,
then V has at least one eigenvalue.

We define now the modified Kazhdan constant of Q as

K̃az(Q) = inf
V

inf
‖x‖=1

sup
q∈Q

‖V qx− x‖,

where the first infimum is taken this time over unitary operators V on H without eigen-
values (that is, with continuous spectra). Therefore

0 ≤ Kaz(Q) ≤ K̃az(Q) ≤
√
2

and for every Q ⊆ Z, Kaz(Q) = 0 if and only if K̃az(Q) = 0 if and only if Q is a non-
Kazhdan set. The property of being or not a Kazhdan set can also be expressed in terms
of Fourier coefficients of probability measures; see Section 5 for a discussion.

The characterization of Kazhdan subsets of Z obtained by the authors in [4] (see also
[5]) implies that the generating subsets Q of Z which satisfy the property stated in (C4)
(namely that there exists for every µ ∈ Pc(T) an infinite sequence (nk)k≥1 of elements of
Q such that µ̂(nk) → 0 as k → +∞) are exactly the Kazhdan subsets of Z with modified

Kazhdan constant K̃az(Q) =
√
2. Since

√
2 is the modified Kazhdan constant of Z seen

as a subset of itself,
√
2 is the maximal modified Kazhdan constant, and thus (C4) can

be reformulated as: every generating non-lacunary semigroup S of integers is a Kazhdan
subset of Z with maximal modified Kazhdan constant

√
2. The relationship between

Furstenberg ×2-×3 conjecture and modified Kazhdan constants can be also seen directly
from Proposition 5.4 below.
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2. Main results

The first main result of this paper is the following:

Theorem 2.1. — Let p1, . . . , pr be positive distinct integers and set

E = {pk11 . . . pkrr ; k1 ≥ 0, . . . , kr ≥ 0}.
There exists a continuous probability measure µ on T such that

inf
k1≥0,...,kr≥0

|µ̂(pk11 . . . pkrr )| > 0.

Equivalently,

K̃az(E) <
√
2.

It should be noted that, as conjecture (C4) does not involve invariant measures, we do
not assume in Theorem 2.1 that the integers pj are multiplicatively independent. Notice
also that the statement of Theorem 2.1 is well-known in the lacunary case: if r = 1 it
suffices to consider the classical Riesz product associated to the sequence (pk)k≥0. In
the non-lacunary case, Theorem 2.1 disproves Conjecture (C4), as well as the related
conjectures (C5) and (C6) of [33] (which are both stronger than (C4)). It applies in

particular to the Furstenberg set F = {2k3k′ ; k, k′ ≥ 0} and shows the existence of a
measure µ ∈ Pc(T) such that

inf
k,k′≥0

µ̂(2k3k
′
) > 0.

In view of this result, one may naturally wonder for which values of δ ∈ (0, 1) there exists
a measure µ ∈ Pc(T) such that

inf
k,k′≥0

µ̂(2k3k
′
) ≥ δ,

or, equivalently, whether the Furstenberg set F is a Kazhdan set in Z, and if yes, with
which (modified) Kazhdan constant. In this direction, we prove the following result:

Theorem 2.2. — Let F = {2k3k′ ; k, k′ ≥ 0}. Then K̃az(F ) ≤ 1. More precisely, there
exists for every δ ∈ (0, 1/2) a continuous probability measure µ on T with nonnegative
Fourier coefficients such that

inf
k,k′≥0

µ̂(2k3k
′
) > δ.

Rigidity sequences. — Our strategy for proving Theorem 2.1 is to construct mea-
sures µ ∈ Pc(T) whose Fourier coefficients tend to 1 along a substantial part of the set

{pk11 . . . pkrr ; k1 ≥ 0, . . . , kr ≥ 0}. In other words, we show that certain large subsets
of this set form are, when taken in a strictly increasing order, rigidity sequences in the
sense of [8] or [19]. Recall that a dynamical system (X,B,m;T ) on a Borel probabil-
ity space is called rigid if there exists a strictly increasing sequence of integers (nk)k≥1

such that ||Unk
T f − f || → 0 as k → +∞ for every f ∈ L2(X,B,m), where UT denotes

as usual the Koopman operator f 7→ f ◦ T associated to T on L2(X,B,m). Equivalently,
m(T−nkA△A) → 0 as k → +∞ for every A ∈ B. We say in this case that the system
is rigid with respect to the sequence (nk)k≥1, or that (nk)k≥1 is a rigidity sequence for
(X,B,m;T ). The case where the system (X,B,m;T ) is weakly mixing is particularly
interesting, and is the object of the works [8] and [19]. A strictly increasing sequence
(nk)k≥1 of integers is called a rigidity sequence if there exists a weakly mixing system
which is rigid with respect to (nk)k≥1.
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Using Gaussian dynamical systems, one can show that (nk)k≥1 is a rigidity sequence if
and only if there exists a measure µ ∈ Pc(T) such that µ̂(nk) → 1 as k → +∞. The study
of rigidity sequences was initiated in [8] and [19]. Further works on this topic include the
papers [1], [3], [2], [25], [22] [21] and [24] among others. The paper [22] by Fayad and
Thouvenot is especially relevant here: the authors re-obtain a result of Adams [3], showing
that whenever (nk)k≥1 is a rigidity sequence for an ergodic rotation on the circle, it is a
rigidity sequence for a weakly mixing system. The proof of this result in [3] relies on an
involved construction of a suitable weakly mixing system by cutting and stacking, while
the authors of [22] proceed by a direct construction of suitable continuous probability
measures: they show that if λnk → 1 for some λ = e2iπθ ∈ T with θ ∈ R \ Q, there exists
µ ∈ Pc(T) such that µ̂(nk) → 1.

The most important tool for proving Theorems 2.1 and 2.2 is the following theorem,
which generalizes the result of Fayad and Thouvenot and provides some new examples of
non-Kazhdan subsets of Z:

Theorem 2.3. — Let (nk)k≥0 be a strictly increasing sequence of integers. Suppose that
the set

C = {λ ∈ T ;λnk → 1 as k → +∞}
is dense in T. Then there exists for every ε > 0 a measure µ ∈ Pc(T) such that µ̂(nk) → 1
as k → +∞ and supk≥0 |µ̂(nk) − 1| < ε. In particular, {nk ; k ≥ 0} is a non-Kazhdan
subset of Z.

Notice that C, like every subgroup of the circle group, is dense in T as soon as it is
infinite. We deduce from Theorem 2.3 the following two-dimensional statement, which is
asymmetric and involves a uniformity assumption.

Theorem 2.4. — Let (mk)k≥0 and (nk′)k′≥0 be two strictly increasing sequences of inte-
gers. Let also ψ : N −→ N be such that ψ(k) → +∞ as k → +∞, and set

Dψ = {(k, k′) ∈ N2 ; 0 ≤ k′ ≤ ψ(k)}.
Suppose that the set

C ′
ψ = {λ ∈ T ;λmknk′ → 1 as k → +∞, (k, k′) ∈ Dψ}

is dense in T. There exists for every ε > 0 a measure µ ∈ Pc(T) such that µ̂(mknk′) → 1
as k → +∞ with (k, k′) ∈ Dψ and

sup
k≥0, 0≤k′≤ψ(k)

|µ̂(mknk′)− 1| < ε.

In particular, {mknk′ ; k ≥ 0, 0 ≤ k′ ≤ ψ(k)} is a non-Kazhdan subset of Z.

Given a doubly indexed sequence (zk,k′)k,k′≥0 of complex numbers, saying that zk,k′
converges to z ∈ C as k → +∞ with (k, k′) ∈ Dψ means that there exists for every γ > 0
an integer k0 such that |zk,k′ −z| < γ for every (k, k′) ∈ N2 with k ≥ k0 and 0 ≤ k′ ≤ ψ(k).

Remark also that the assumption of Theorem 2.4 is in particular satisfied if the set

C ′ = {λ ∈ T ;λmknk′ → 1 as k → +∞ uniformly in k′}
is dense in T.

Theorem 2.3 allows us to retrieve essentially all known examples of rigidity sequences
(notable exceptions being the examples of [21] and [24]). We state separately as Corollaries
2.5 and 2.6 the parts of Theorems 2.3 and 2.4 dealing with rigidity sequences:
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Corollary 2.5. — Let (nk)k≥0 be a strictly increasing sequence of integers. Suppose that
the set

C = {λ ∈ T ;λnk → 1 as k → +∞}
is dense in T. Then (nk)k≥1 is a rigidity sequence.

Corollary 2.6. — Let (mk)k≥0 and (nk′)k′≥0 be two strictly increasing sequences of in-
tegers. Let also ψ : N −→ N be such that ψ(k) → +∞ as k → +∞, and suppose that the
set

C ′
ψ = {λ ∈ T ;λmknk′ → 1 as k → +∞, (k, k′) ∈ Dψ}

is dense in T. Then there exists a continuous probability measure µ on T such that
µ̂(mknk′) → 1 as k → +∞ with (k, k′) ∈ Dψ.

The proof of Theorem 2.3 builds on some ideas from [22]. While being an immediate
consequence of Theorem 2.3, Corollary 2.5 admits a direct proof which is very much in
the spirit of that of the main result of [22]. As Corollary 2.5 is of independent interest in
the study of rigidity sequences, we will briefly sketch this direct proof in Section 4 of the
paper.

Theorem 2.1 is obtained by first observing that the set {pk11 . . . pkrr ; p1 ≥ 0, . . . , pr ≥
0} can be split into r sets to which Theorem 2.4 (or Corollary 2.6) applies, and then
considering a convex combination of the continuous measures obtained in this way.

Organization of the paper. — The paper is structured as follows. We give in Section 3
the proof of Theorems 2.3 and 2.4, and sketch in Section 4 a direct proof of Corollaries 2.5
and 2.6, essentially following the arguments of Fayad and Thouvenot in [22]. In Section
5, we recall a characterization of generating Kazhdan subsets of Z from [4], and detail
the links between several natural constants involved in this characterization. We explain
in particular why the generating subsets of Z which satisfy the property stated in (C4)

are exactly the Kazhdan subsets of Z with modified Kazhdan constant
√
2. Section 6

is devoted to applications: we prove Theorems 2.1 and 2.2, and show how to retrieve
many examples of rigidity sequences, using Corollaries 2.5 and 2.6. We also provide an
application of Theorem 2.2 to the study of the size of the exceptional set of values θ ∈ R

for which the sequence (nkθ)k≥0 is not almost uniformly distributed modulo 1 with respect
to a (finite) complex Borel measure ν ∈ M(T), where (nk)k≥0 denotes the Furstenberg
sequence. Namely, we show that this exceptional set is uncountable, thus providing a new
example of a sublacunary sequence with uncountable exceptional set for (almost) uniform
distribution.

3. Proof of Theorems 2.3 and 2.4

Given two integers a < b, we will when the context is clear denote by [a, b] the set of
integers k such that a ≤ k ≤ b.

Proof of Theorem 2.3. — Fix ε ∈ (0, 1/2). The general strategy of the proof is the follow-
ing: we construct a sequence (λi)i≥1 of pairwise distinct elements of C, as well as a strictly
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increasing sequence of integers (Np)p≥0 and, for every p ≥ 0, a sequence (a
(p)
i )1≤i≤2p of

positive weights with
∑2p

i=1 a
(p)
i = 1, such that the probability measures

µp =

2p∑

i=1

a
(p)
i δ{λi}

satisfy certain properties stated below. At step p, we determine the elements λi for

2p−1 < i ≤ 2p as well as the integer Np and the weights a
(p)
i , 1 ≤ i ≤ 2p, in such a way

that λ1 = 1 and a
(0)
1 = 1, so that µ0 = δ{1}, N0 = 0, and

(1) for every p ≥ 1, every j ∈ [0, p − 1] and every k ∈ [Nj , Nj+1],∫

T

|λnk − 1| dµp(λ) < 3ε(1 − ε)j ;

(2) for every p ≥ 1, every q ∈ [0, p − 1], l ∈ [1, 2p−q), r ∈ [1, 2q ],

|λl2q+r − λr| < ηq

where ηq =
1

4
inf1≤i<j≤2q |λi − λj | for every q ≥ 1, and η0 = 1;

(3) for every p ≥ 1 and every k ≥ Np,∫

T

|λnk − 1| dµp(λ) < ε(1− ε)p+1;

(4) for every p ≥ 1, every q ∈ [1, p] and every r ∈ [1, 2q ],
∑

{i∈[1,2p] ; i≡r mod 2q}

µp({λi}) ≤ (1− ε)q.

Remark that property (2) implies that the sequence (λi)i≥1 satisfies

(5) for every q ≥ 0, every l ≥ 0, and every r ∈ [1, 2q ],

|λl2q+r − λr| < ηq,

and that property (4) applied to q = p yields that

(6) for every p ≥ 1 and every i ∈ [1, 2p],

µp({λi}) ≤ (1− ε)p.

Suppose that the sequences (λi)i≥1, (Np)p≥0 and (a
(p)
i )1≤i≤2p , p ≥ 0, have been con-

structed so as to satisfy properties (1) to (4) above, and let µ be a w∗-limit point of the
sequence (µp)p≥0 in P(T). Property (1) clearly implies that supk≥0 |µ̂(nk)− 1| ≤ 3ε.

Claim 3.1. — We have µ̂(nk) → 1 as k → +∞.

Proof. — For every k ≥ 0, denote by jk ≥ 0 the unique integer j such that k ∈ [Nj , Nj+1).
For every p > jk, we have by (1)

∫

T

|λnk − 1| dµp(λ) < 3ε(1 − ε)jk so that

∫

T

|λnk − 1| dµ(λ) ≤ 3ε(1 − ε)jk .

Since jk → +∞ as k → +∞,

∫

T

|λnk − 1| dµ(λ) → 0, i.e. µ̂(nk) → 1.
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Claim 3.2. — The probability measure µ is continuous.

Proof. — Fix q ≥ 1, and consider for every r ∈ [1, 2q ] the two arcs Γr and ∆r of T defined
by

Γr = {λ ∈ T ; |λ− λr| ≤ ηq} and ∆r = {λ ∈ T ; |λ− λr| <
3

2
ηq}.

The 2q arcs ∆r are pairwise disjoint. Indeed, for every r, r′ ∈ [1, 2q ] with r 6= r′, every
λ ∈ ∆r and every λ′ ∈ ∆r′ , we have by the definition of ηq that

|λ− λ′| ≥ |λr − λr′ | − 3ηq ≥ 4ηq − 3ηq = ηq > 0.

So ∆r and ∆r′ do not intersect.

Let us next estimate the quantity µp(Γr) for every r ∈ [1, 2q ] and every p ≥ q. We have

µp(Γr) =
∑

{i∈[1,2p] ; λi∈Γr}

µp({λi}).

Every i ∈ [1, 2p] can be written as i = l2q + s for some l ≥ 0 and s ∈ [1, 2q]. By (5), λi
belongs to Γs. Since the arcs ∆r′ , r

′ ∈ [1, 2q], are pairwise disjoint, it follows that

µp(∆r) = µp(Γr) =
∑

{i∈[1,2p] ; i≡r mod 2q}

µp({λi}) ≤ (1− ε)q

by (4). Also,

µp

( 2q⋃

r=1

Γr

)
= 1.

Since the arcs Γr are closed while the arcs ∆r are open, going to the limit as p goes to
infinity yields that µ(∆r) ≤ (1− ε)q for every r ∈ [1, 2q ] and

µ
( 2q⋃

r=1

Γr

)
= 1.

If λ ∈ T is such that µ({λ}) > 0, there exists an r ∈ [1, 2q ] such that λ ∈ Γr ⊂ ∆r. So
µ({λ}) ≤ µ(∆r) ≤ (1 − ε)q, a contradiction if q is sufficiently large. It follows that the
measure µ is continuous.

By Claims 3.1 and 3.2, it suffices to construct (λi)i≥0, (Np)p≥0 and (a
(p)
i )1≤i≤2p , p ≥ 0,

satisfying properties (1) to (4) in order to prove Theorem 2.3. Recall that for p = 0, we

set λ1 = 1, a
(0)
1 = 1 and N0 = 0, so that µ0 = δ{1}.

For p = 1, we choose λ2 ∈ C distinct from λ1 with |λ2 − λ1| < 1 and set µ1 =
(1− ε)δ{1} + εδ{λ2}. We have for every k ≥ 0

∫

T

|λnk − 1| dµ1(λ) = ε|λnk
2 − 1| ≤ 2ε < 3ε.

Hence property (1) is satisfied whatever the choice of N1. Since η0 = 1 and |λ2 − λ1| < 1,
property (2) is satisfied. We now have to choose N1 in such a way that property (3) is
satisfied. Since λ2 belongs to C,

∫

T

|λnk − 1| dµ1(λ) = ε|λnk
2 − 1| → 0 as k → +∞,
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so we can choose N1 so large that
∫

T

|λnk − 1| dµ1(λ) < ε(1− ε)2 for every k ≥ N1.

Moreover, µ1({1}) = 1− ε and µ2({λ2}) = ε < 1− ε, so (4), which we only need to check
for q = p = 1, is true. This terminates the construction for p = 1.

Suppose now that the construction has been carried out until step p, i.e. that the

quantities λi, i ∈ [1, 2p], (a
(l)
i )1≤i≤2l , and Nl, l ∈ [0, p], have been constructed satisfying

properties (1) to (4).

We construct by induction on s ∈ [1, 2p] elements λ2p+s of C, measures µp,s ∈ P(T) of
the form

µp,s =

2p+s∑

i=1

b
(p,s)
i δ{λi} with b

(p,s)
i > 0 and

2p+s∑

i=1

b
(p,s)
i = 1,

and integers Np,s in such a way that the elements λi, i ∈ [1, 2p+1], are all distinct, Np <
Np,1 < · · · < Np,2p , and the following five properties are satisfied:

(a) for every j ∈ [0, p − 1] and every k ∈ [Nj , Nj+1],
∫

T

|λnk − 1| dµp,s(λ) < 3ε(1 − ε)j ;

(b) for every k ≥ Np, ∫

T

|λnk − 1| dµp,s(λ) < 3ε(1− ε)p;

(c) for every k ≥ Np,s,
∫

T

|λnk − 1| dµp,s(λ) < 3ε(1 − ε)p+2;

(d) µp,s({λi}) = µp({λi}) for every i ∈ (s, 2p] and

µp,s({λi}) + µp,s({λ2p+i}) = µp({λi}) for every i ∈ [1, s];

(e) µp,s({λi}) ≤ (1− ε)p+1 for every i ∈ [1, s] ∪ [2p + 1, 2p + s].

Let us start with the construction of λ2p+1. By density of C, one can choose λ2p+1

distinct from all the elements λi, i ∈ [1, 2p], with |λ2p+1 − λ1| arbitrarily small. We define
µp,1 as

µp,1 = µp + µp({1}) ε (δ{λ2p+1} − δ{λ1})

= µp({1}) (1 − ε) δ{λ1} +
2p∑

i=2

µp({λi}) δ{λi} + µp({1}) ε δ{λ2p+1}.

In other words, we split the point mass δ{λ1} appearing in the expression of µp into
(1− ε)δ{λ1} + εδ{λ2p+1}. We have for every k ≥ 0

∫

T

|λnk − 1| dµp,1(λ) ≤
∫

T

|λnk − 1| dµp(λ) + µp({1}) ε |λnk
2p+1 − λnk

1 |(7)

≤
∫

T

|λnk − 1| dµp(λ) + (1− ε)p ε |λnk
2p+1 − λnk

1 |
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since µp({1}) ≤ (1− ε)p by (6). If |λ2p+1 − λ1| is sufficiently small, we have by (1) that
∫

T

|λnk − 1| dµp,1(λ) < 3ε(1 − ε)j

for every j ∈ [0, p − 1] and every k ∈ [Nj , Nj+1] (the set of pairs of integers (j, k) with
j ∈ [0, p − 1] and k ∈ [Nj , Nj+1] is finite). So (a) holds true. Also, (7) and (3) imply that
for every k ≥ Np,∫

T

|λnk − 1| dµp,1(λ) < ε (1 − ε)p+1 + 2ε (1 − ε)p < 3ε (1 − ε)p

so that (b) holds true. Since all the elements λi, i ∈ [1, 2p + 1], belong to C, there exists
Np,1 > Np such that

∫

T

|λnk − 1| dµp,1(λ) < 3ε(1 − ε)p+2 for every k ≥ Np,1.

Property (d) is clear from the expression of µp,1, and property (e) is satisfied since
µp,1({1}) = µp({1}) (1 − ε) ≤ (1 − ε)p+1 and µp,1({λ2p+1}) = µp({1}) ε ≤ ε (1 − ε)p ≤
(1− ε)p+1 by (6). Properties (a) to (e) are thus satisfied for s = 1.

Suppose now that λ2p+s′ , µ2p+s′ , and N2p+s′ have been constructed for s′ < s. Let
λ2p+s ∈ C \ {λ1, . . . , λ2p+s−1} be very close to λs, and set

(8) µp,s = µp,s−1 + µp,s−1({λs}) ε (δ{λ2p+s} − δ{λs}).

This time, the point mass δ{λs} appearing in µp is split as (1− ε)δ{λs} + εδ{λ2p+s}. Since,

by (6),

(9)

∫

T

|λnk − 1| dµp,s(λ) ≤
∫

T

|λnk − 1| dµp,s−1(λ) + (1− ε)p ε |λnk
2p+s − λnk

s |,

for every k ≥ 0, the induction assumption implies that (a) holds true provided |λ2p+s−λs|
is sufficiently small. As to (b), we have to consider separately the cases Np ≤ k < Np,s−1

and k ≥ Np,s−1. If |λ2p+s − λs| is sufficiently small, we have by (9) and (b) for s− 1 that
∫

T

|λnk − 1| dµp,s(λ) < 3ε (1 − ε)p for every Np ≤ k < Np,s−1.

By property (c) at step s− 1 and (9),
∫

T

|λnk − 1| dµp,s(λ) < ε (1− ε)p+2 + 2ε (1 − ε)p < 3ε (1 − ε)p

for every k ≥ Np,s−1. Hence (b) is satisfied at step s. Property (c) is satisfied if Np,s is
chosen sufficiently large since all the elements λi, i ∈ [1, 2p + s], belong to C.

Property (d) follows from (8) and property (d) at step s − 1. Indeed, µp,s({λi}) =
µp,s−1({λi}) for every i 6∈ {s, 2p + s}. Also, µp,s−1({λi}) = µp({λi}) for every i ∈ [s, 2p],
so that µp,s({λi}) = µp({λi}) for every i ∈ (s, 2p]. Observe next that µp,s({λi}) +
µp,s({λ2p+i}) = µp,s−1({λi}) + µp,s−1({λ2p+i}) = µp({λi}) for every i ∈ [1, s − 1]. Lastly,
µp,s({λs}) + µp,s({λ2p+s}) = µp,s−1({λs}) = µp({λs}). So property (d) is true at step s.

As to property (e), we have µp,s({λi}) = µp,s−1({λi}) for every i 6∈ {s, 2p + s}. So
µp,s({λi}) ≤ (1− ε)p+1 for every i ∈ [1, s) ∪ [2p + 1, 2p + s). Also

µp,s({λs}) = µp,s−1({λs}) (1 − ε) = µp({λs}) (1 − ε) ≤ (1− ε)p+1

by (6), while µp,s({λ2p+s}) = µp,s−1({λs}) ε ≤ (1 − ε)p+1, again by (6). So (e) holds true
at step s. This terminates the construction of the measures µp,s.
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Let us now set µp+1 = µp,2p and Np+1 = Np,2p . It remains to check that with these
choices of λi, i ∈ [1, 2p+1], µp+1 and Np+1, properties (1) to (4) are satisfied.

By (a), property (1) is satisfied for every j ∈ [0, p − 1]. The case where j = p follows
from (b). So (1) is true. Property (3) follows immediately from (c). Property (4) is a
consequence of (d) and (e). Indeed, suppose first that q ∈ [1, p]. Then

∑

{i∈[1,2p+1] ; i≡r mod 2q}

µp+1({λi}) =
∑

{i∈[1,2p] ; i≡r mod 2q}

(µp+1({λi}) + µp+1({λ2p+i}))

=
∑

{i∈[1,2p] ; i≡r mod 2q}

µp({λi}) ≤ (1− ε)q

by (d) above and (4) at step p. If q = p+ 1, (4) follows immediately from (e). So it only
remains to check (2).

Fix q ∈ [0, p], l ∈ [1, 2p+1−q) and r ∈ [1, 2q ]. Consider first the case where q = p. In
this case l = 1, and the quantities under consideration have the form |λ2p+r − λr|, with
r ∈ [1, 2p]. One can ensure in the construction that |λ2p+r − λr| < ηp for every r ∈ [1, 2p]
and then (2) holds true for q = p.

Suppose then that q ∈ [0, p − 1], and write l as l = l′ + ε2p−q with ε ∈ {0, 1} and l′ ∈
[1, 2p−q). Then l2q+r = l′2q+r+ε2p. Set s = l′2q+r. Then 1 ≤ s ≤ (2p−q−1)2q+2q = 2p,
i.e. s ∈ [1, 2p]. We have

|λl2q+r − λr| ≤ |λs+ε2p − λs|+ |λl′2q+r − λr|.
If ε = 0, the first term is zero; if ε = 1, it is equal to |λ2p+s − λs|, which can be assumed
to be as small as we wish in the construction. As to the second term, it is less than ηq by
property (2) at step p, since l′ ∈ [1, 2p−q) and r ∈ [1, 2q ] with q ∈ [0, p − 1]. We can thus
ensure that

|λl2q+r − λr| < ηq

for every q ∈ [0, p], l ∈ [1, 2p+1−q), and r ∈ [1, 2q]. So property (2) is satisfied at step p+1,
and this concludes the proof of Theorem 2.3.

Theorem 2.4 is now a formal consequence of Theorem 2.3.

Proof of Theorem 2.4. — Recall that Dψ = {(k, k′) ∈ N2 ; 0 ≤ k′ ≤ ψ(k)} and

C ′
ψ = {λ ∈ T ;λmknk′ → 1 as k → +∞, (k, k′) ∈ Dψ}.

Order the set {mknk′ ; (k, k
′) ∈ Dψ} as a strictly increasing sequence (pl)l≥0 of integers.

Since there exists for every integer k1 ≥ 0 an integer l1 ≥ 0 such that

{pl ; l ≥ l1} ⊆ {mknk′ ; (k, k
′) ∈ Dψ, k ≥ k1},

every element λ ∈ C ′
ψ has the property that λpl → 1 as l → +∞. By Theorem 2.3 applied

to the sequence (pl)l≥1, there exists for every ε > 0 a measure µ ∈ Pc(T) such that
µ̂(pl) → 1 as l → +∞ and supl≥0 |µ̂(pl)− 1| < ε. Then

sup
k≥0, 0≤k′≤ψ(k)

|µ̂(mknk′)− 1| < ε.

Using this time the fact that there exists for every integer l2 ≥ 0 an integer k2 ≥ 0 such
that

{mknk′ ; (k, k
′) ∈ Dψ, k ≥ k2} ⊆ {pl ; l ≥ l2},

we deduce that µ̂(mknk′) → 1 as k → +∞ with (k, k′) ∈ Dψ. Theorem 2.4 is proved.
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4. A direct proof of Corollaries 2.5 and 2.6

We sketch in this section a direct proof of Corollary 2.5 (Corollary 2.6 is a formal con-
sequence of it), following almost step by step the construction given in [22] and bypassing
the additional technical difficulties of the proof of Theorem 2.3.

Proof. — Using the notation of the proof of Theorem 2.3, we construct a sequence (λi)i≥1

of pairwise distinct elements of C, as well as a strictly increasing sequence of integers
(Np)p≥0, such that the measures

µp = 2−p
2p∑

i=1

δ{λi}, p ≥ 0

satisfy

(1’) for every p ≥ 1, every j ∈ [0, p − 1] and every k ∈ [Nj , Nj+1],∫

T

|λnk − 1| dµp(λ) < 2−(j−1);

(2’) for every p ≥ 1, every q ∈ [0, p − 1], l ∈ [1, 2p−q), r ∈ [1, 2q ],

|λl2q+r − λr| < ηq

where ηq =
1

4
inf1≤i<j≤2q |λi − λj | for every q ≥ 1, and η0 = 1;

(3’) for every p ≥ 1 and every k ≥ Np,∫

T

|λnk − 1| dµp(λ) < 2−(p+1).

Again, property (2’) implies that

(4’) for every q ≥ 0, every l ≥ 0, and every r ∈ [1, 2q ],

|λl2q+r − λr| < ηq.

Then an argument similar to the one given in the proof of Theorem 2.3 shows that any
w∗-limit point µ of (µp)p≥0 will be a continuous measure which satisfies µ̂(nk) → 1 as
k → +∞.

For p = 0, we set λ1 = 1, N0 = 0, and µ0 = δ{1}. For p = 1, we choose λ2 ∈ C \ {λ1}
with |λ2 − λ1| < 1 and set µ1 =

1
2(δ{1} + δ{λ2}). We have

∫

T

|λnk − 1| dµ1(λ) =
1

2
|λnk

2 − 1| ≤ 1 < 2 for every k ≥ 0.

Hence property (1’) is satisfied whatever the choice of N1. Since |λ2−λ1| < 1, (2’) is true.
If N1 is chosen sufficiently large, µ1 satisfies (3’).

Suppose now that the construction has been carried out until step p. We can then
construct by induction on s ∈ [1, 2p] measures µp,s which satisfy

(a’) every j ∈ [0, p − 1] and every k ∈ [Nj , Nj+1],∫

T

|λnk − 1| dµp,s(λ) < 2−(j−1);
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(b’) for every k ≥ Np, ∫

T

|λnk − 1| dµp,s(λ) < 2−(p−1);

(c’) for every k ≥ Np,s, ∫

T

|λnk − 1| dµp,s(λ) < 2−(p+2).

We define µp,1 as

µp,1 = µp + 2−(p+1)
(
δ{λ2p+1} − δ{λ1}

)

where λ2p+1 ∈ C \ {λ1, . . . , λ2p} is such that |λ2p+1 − λ1| is very small. Then for every
k ≥ 0,

(10)

∫

T

|λnk − 1| dµp,1(λ) ≤
∫

T

|λnk − 1| dµp(λ) + 2−(p+1) |λnk
2p+1 − λnk

1 |.

It follows that (a’) holds true for µp,1, provided that |λ2p+1−λ1| is sufficiently small. Also,
we have by (10) and (3’) that for every k ≥ Np,

∫

T

|λnk − 1| dµp,1(λ) < 2−(p+1) + 2−p < 2−(p−1)

which is (b’). If Np,1 is sufficiently large, (c’) is true.

Supposing now that s ≥ 2 and that the construction has been carried out for every
s′ < s, we choose λ2p+s ∈ C \ {λ1, . . . , λ2p+s−1} very close to λs, and set

µp,s = µp,s−1 + 2−(p+1)
(
δ{λ2p+s} − δ{λs}

)
.

Since, for every k ≥ 0,

(11)

∫

T

|λnk − 1| dµp,s(λ) ≤
∫

T

|λnk − 1| dµp,s−1(λ) + 2−(p+1)|λnk
2p+s − λnk

s |,

the induction assumption implies that (a’) holds true provided |λ2p+s − λs| is sufficiently
small. As to (b’), we consider separately the cases Np ≤ k < Np,s−1 and k ≥ Np,s−1. If
|λ2p+s − λs| is sufficiently small,

∫

T

|λnk − 1| dµp,s(λ) < 2−(p−1) for every Np ≤ k < Np,s−1.

By property (c’) at step s− 1 and (11),
∫

T

|λnk − 1| dµp,s(λ) < 2−(p+2) + 2−p < 2−(p−1)

for every k ≥ Np,s−1. Hence (b’) is satisfied at step s. Property (c’) is satisfied if Np,s is
chosen sufficiently large. This terminates the construction of the measures µp,s.

We then set µp+1 = µp,2p and Np+1 = Np,2p and check as in the proof of Theorem 2.3
that properties (1’), (2’), and (3’) are satisfied.

Remark 4.1. — Suppose that the set

C ′ = {λ ∈ T ;λmknk′ → 1 as k → +∞ uniformly in k′}
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is dense in T. It is natural to wonder whether there exists a measure µ ∈ Pc(T) such that
µ̂(mknk′) → 1 as k → +∞ uniformly in k′. The following example shows that it is not
the case: set mk = 2k and nk′ = k′ for every k, k′ ≥ 0. The set

C ′ = {λ ∈ T ; λmknk′ → 1 as k → +∞ uniformly in k′}
contains all 2k-th roots of 1, and so is dense in T. Suppose that µ ∈ P(T) is such that
µ̂(2kk′) → 1 as k → +∞ uniformly in k′. Then there exists an integer k0 ≥ 1 such that
|µ̂(2k0k′)| ≥ 1/2 for every k′ ≥ 0. Consider the measure ν = T2k0 (µ). Since ν̂(n) = µ̂(2k0n)

for every n ∈ Z, ν cannot be continuous. Also, ν({λ0}) = µ({λ ∈ T ; λ2
k0 = λ0}) for every

λ0 ∈ T, and so the measure µ itself cannot be continuous.

So the conclusion of Corollary 2.6 seems to be essentially optimal.

5. From Conjecture (C4) to the study of some non-Kazhdan subsets of Z

5.1. Kazhdan constants and Fourier coefficients of probability measures. —
We begin this section by recalling a characterization of generating Kazhdan subsets of
Z, obtained in [4, Th. 6.1] (see also [5, Th. 4.12]) and presenting some facts concerning
the (modified) Kazhdan constants of such sets. We state it here in a slightly modified
way (condition (ii) is not exactly the same as in [5, Th. 4.12]), and include a discussion
concerning the links between the various constants appearing in the equivalent conditions.

Theorem 5.1. — Let Q be a generating subset of Z. Then Q is a Kazhdan subset of Z

if and only if one of the following equivalent assertions holds true:

(i) there exists ε ∈ (0,
√
2) such that (Q, ε) is a modified Kazhdan pair. Equivalently,

K̃az(Q) ≥ ε;
(ii) there exists γ ∈ (0, 1) such that any measure µ ∈ P(T) with supn∈Q(1−ℜe µ̂(n)) < γ

has a discrete part;
(iii) there exists δ ∈ (0, 1) such that any measure µ ∈ P(T) with infn∈Q |µ̂(n)| > δ has a

discrete part.

Moreover:

– (i) is satisfied for ε ∈ (0,
√
2) if and only if (ii) is satisfied for γ = ε2/2;

– if (ii) is satisfied for γ ∈ (0, 1), (iii) is satisfied for δ =
√
1− γ, while if (iii) is

satisfied for δ ∈ (0, 1), (ii) is satisfied for γ = 1− δ;

– hence if (i) is satisfied for ε ∈ (0,
√
2), (iii) is satisfied for δ =

√
1− ε2/2 , while if

(iii) is satisfied for δ ∈ (0, 1), (i) holds true for ε =
√
2(1 − δ).

We prove briefly here the statement concerning the relations between the constants ε,
γ, and δ appearing in (i), (ii), and (iii) respectively, following [4] and [5].

Proof. — Suppose that (i) is satisfied for ε ∈ (0,
√
2), and let µ ∈ P(T). Consider the

unitary operator U = Mλ of multiplication by λ on L2(T, µ). Let f be the function
constantly equal to 1. Then ||Unf − f ||2 = 2(1−ℜe µ̂(n)). If supn∈Q(1−ℜe µ̂(n)) < ε2/2,

U has an eigenvalue since K̃az(Q) ≥ ε, and so µ has a discrete part.

Conversely, suppose that (ii) is satisfied for γ ∈ (0, 1). Let U be a unitary operator on
a separable Hilbert space H, and let x ∈ H with ||x|| = 1 be such that

sup
n∈Q

||Unx− x|| <
√

2γ.



CONTINUOUS PROBABILITY MEASURES WITH LARGE FOURIER COEFFICIENTS 15

The proof of [5, Th. 4.6] shows then that there exists µ ∈ P(T) such that

2 sup
n∈Q

(1−ℜe µ̂(n)) = sup
n∈Q

||Unx− x||2 < 2γ.

So supn∈Q(1 − ℜe µ̂(n)) < γ. By (ii), µ has a discrete part, and so U has an eigenvalue.

Hence K̃az(Q) ≥ √
2γ.

Suppose next that property (ii) is satisfied for γ ∈ (0, 1). Let µ ∈ P(T) be such that
infn∈Q |µ̂(n)| > √

1− γ. Set ν = µ ∗ µ̃. Then infn∈Q ν̂(n) > 1 − γ. It follows that
supn∈Q(1− ν̂(n)) < γ, and ν has a discrete part. So µ itself has a discrete part.

Lastly, suppose that (iii) is satisfied for δ ∈ (0, 1). Let µ ∈ P(T) be a measure satisfying
supn∈Q(1−ℜe µ̂(n)) < 1− δ. Then infn∈Q |µ̂(n)| ≥ infn∈Qℜe µ̂(n) > δ, so µ has a discrete
part.

Remark 5.2. — Given a subset Q of Z, one can prove, using the spectral theorem for
unitary operators, that the following assertions are equivalent (see [5, Th. 4.6]):

(i’) Q is a Kazhdan subset of Z, i.e. there exists ε ∈ (0,
√
2) such that (Q, ε) is a Kazhdan

pair;
(ii’) there exists γ ∈ (0, 1) such that any measure µ ∈ P(T) with supn∈Q(1−ℜe µ̂(n)) < γ

is such that µ({1}) > 0.

Moreover (i’) holds true for a certain constant ε ∈ (0,
√
2) (i.e. Kaz(Q) ≥ ε) if and only if

(ii’) holds true for γ = ε2/2.

It is interesting to note that these two conditions (i’) and (ii’) are not equivalent to the
natural version (iii’) of (iii) (namely, that there exists δ ∈ (0, 1) such that any measure
µ ∈ P(T) with infn∈Q |µ̂(n)| > δ satisfies µ({1}) > 0). Indeed, (iii’) is satisfied for any
Dirac mass δ{λ}, λ ∈ T. The proof that (ii) implies (iii) in Theorem 5.1 above uses in a
crucial way the fact that if µ ∈ P(T) is such that µ ∗ µ̃ has a discrete part, µ itself has a
discrete part. But µ ∗ µ̃ may very well satisfy µ ∗ µ̃({1}) > 0 while µ({1}) = 0, and so (ii’)
does not imply (iii’).

Theorem 5.1 is related to Conjecture (C4) in the following way:

Corollary 5.3. — Let Q be a generating subset of Z. The following assertions are equi-
valent:

(α) Q is a Kazhdan subset of Z with K̃az(Q) =
√
2;

(β) any measure µ ∈ Pc(T) satisfies infn∈Q |µ̂(n)| = 0;
(γ) any measure µ ∈ Pc(T) satisfies lim inf |n|→+∞

n∈Q

|µ̂(n)| = 0.

Proof. — The equivalence between (α) and (β) follows immediately from Theorem 5.1.
So only the implication (β)=⇒(γ) requires a proof. Suppose that any µ ∈ Pc(T) satis-
fies infn∈Q |µ̂(n)| = 0. We want to show that the conclusion can be reinforced into
lim inf |n|→+∞

n∈Q

|µ̂(n)| = 0. Let ρ ∈ Pc(T) be a Rajchman measure with positive coeffi-

cients, that is such that lim|n|→+∞ ρ̂(n) = 0 and ρ̂(n) > 0 for every n ∈ Z. Consider
the measure ν = (µ ∗ µ̃ + ρ)/2. It is continuous and satisfies ν(n) > 0 for every n ∈ Z.
Since infn∈Q ν̂(n) = 0 and ν(n) > 0 for every n ∈ Z, lim inf |n|→+∞

n∈Q

ν̂(n) = 0. Hence

lim inf |n|→+∞
n∈Q

|µ̂(n)|2 = 0, and the conclusion follows.
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So Conjecture (C4) is equivalent to the statement that any non-lacunary semigroup of

integers has modified Kazhdan constant
√
2. We can also estimate the Fourier coefficients

of a continuous probability measure on T which is T2- and T3-invariant in terms of the
modified Kazhdan constant κ̃ > 0 of the Furstenberg set. Notice that Proposition 5.4 is
meaningful only if κ̃ > 0.

Proposition 5.4. — Let F = {2k3k′ ; k, k′ ≥ 0} and set κ̃ = K̃az(F ). Let µ be a
continuous probability measure on T which is T2- and T3-invariant. Then

|µ̂(j)| ≤ 1− κ̃2

2
for every j ∈ Z \ {0}.

Proof. — Set, for every j ∈ Z \ {0}, µj = Tjµ. Then µj is a continuous measure which

satisfies µ̂j(2
k3k

′
) = µ̂(j) for every k, k′ ≥ 0 It follows that if δ ∈ (0, 1) is such that (iii) of

Theorem 5.1 is satisfied, δ ≥ |µ̂(j)|. Hence, by Theorem 5.1 again, κ̃ ≤
√

2(1 − |µ̂(j)|).

Remark 5.5. — Although a generating subset Q of Z is a Kazhdan set if and only if

K̃az(Q) > 0, there is no link between the Kazhdan constant and the modified Kazhdan
constant of Q. Indeed, there exist Kazhdan subsets Q of Z with maximal modified con-

stant K̃az(Q) =
√
2 and arbitrarily small Kazhdan constant Kaz(Q). This relies on the

following observation, which can be extracted from the proof of [5, Th 7.1] and results
from Proposition 6.10 below.

Proposition 5.6. — Let (nk)k≥0 be a strictly increasing sequence of integers with n0 = 1
such that (nkθ)k≥0 is uniformly distributed modulo 1 for every θ ∈ R \ D, where D is
countable subset of R. Then the set Q = {nk ; k ≥ 0} is a Kazhdan subset of Z which

satisfies K̃az(Q) =
√
2.

Consider, for every integer p ≥ 2, the set Qp = pN + 1. By Proposition 5.6, Qp is a

Kazhdan subset of Z with K̃az(Qp) =
√
2. But the measure µ = δ{e2iπ/p} satisfies

sup
n∈Qp

(1−ℜe µ̂(n)) = 1− cos(2π/p).

Hence Kaz(Qp) ≤
√

2(1− cos(2π/p)), which can be arbitrarily small if p is sufficiently
large.

6. Applications

6.1. Proof of Theorem 2.1. — Our first and main application of Theorem 2.4 (or
Corollary 2.6) is Theorem 2.1, which solves in particular Conjecture (C4) and shows
that the invariance assumption on the measure is indeed essential in the statement of
Furstenberg’s ×2 -×3 conjecture.

Proof of Theorem 2.1. — If r = 1, Theorem 2.1 claims the existence, for every integer
p ≥ 2, of a measure µ ∈ Pc(T) such that infk≥0 |µ̂(pk)| > 0. As mentioned in Section 2,
this statement is well-known: it suffices to consider the classical Riesz product associated
to the sequence (pk)k≥0. One can also show, either as in [8] or [19], or as an application
of Corollary 2.5, that (pk)k≥0 is a rigidity sequence, so that there exists µ ∈ Pc(T) with

µ̂(pk) → 1 as k → +∞.
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Suppose now that r ≥ 2, and consider, for every fixed index 1 ≤ j ≤ r, the set

C ′
j = {e2iπnp

−l
j ; n, l ≥ 0}

of roots of all powers of pj. It is dense in T, and has the following property: there exists

for every λ ∈ C ′
j an integer lj such that λp

k1
1 p

k2
2 ... p

kr
r = 1 for every kj ≥ lj and ki ≥ 0,

1 ≤ i ≤ r with i 6= j. Hence

sup
ki≥0

1≤i≤r, i6=j

∣∣λp
k1
1 ... p

kr
r − 1

∣∣ → 0 as kj → +∞.

Consider the two sequences (mk)k≥0 and (nk′)k′≥0 obtained by setting mk = pkj , k ≥ 0,
and ordering the set

{
pk11 . . . p

kj−1

j−1 p
kj+1

j+1 . . . p
kr
r ; ki ≥ 0, 1 ≤ i ≤ r with i 6= j

}

as a strictly increasing sequence (nk′)k′≥0, and let ψ : N −→ N be a strictly increasing
function such that

{
pk11 . . . p

kj−1

j−1 p
kj+1

j+1 . . . p
kr
r ; 0 ≤ ki ≤ k, 1 ≤ i ≤ r with i 6= r

}

is contained in the set {nk′ ; 0 ≤ k′ ≤ ψ(k)} for every k ≥ 0. By Corollary 2.6, there

exists a measure µj ∈ Pc(T) such that µ̂j(p
k1
1 . . . pkrr ) → 1 as kj → +∞ with 0 ≤ ki ≤ kj ,

1 ≤ i ≤ r with i 6= j. Replacing, for every 1 ≤ j ≤ r, µj by µj ∗ µ̃j, we can suppose
without loss of generality that µ̂j(n) ≥ 0 for every n ∈ Z.

Let now ρ ∈ Pc(T) be such that ρ̂(n) > 0 for every n ∈ Z, and set

µ =
1

r + 1

( r∑

j=1

µj + ρ
)
.

Then µ is a continuous probability measure on T with µ̂(n) > 0 for every n ∈ Z. Moreover,
we have

(12) lim inf µ̂
(
pk11 p

k2
2 . . . pkrr

)
≥ 1

r + 1
as max(k1, . . . , kr) → +∞.

Indeed, if (k
(l)
1 , . . . , k

(l)
r )l≥1 is an infinite sequence of elements of Nr, one can extract from

it a sequence (still denoted by (k
(l)
1 , . . . , k

(l)
r )l≥1) with the following property: there exists

1 ≤ j ≤ r such that k
(l)
i ≤ k

(l)
j for every 1 ≤ i ≤ r. Then

lim inf
l→+∞

µ̂
(
p
k
(l)
1

1 . . . pk
(l)
r
r

)
≥ 1

r + 1
lim inf
l→+∞

µ̂j
(
p
k
(l)
1

1 . . . pk
(l)
r
r

)
=

1

r + 1
·

This yields (12). Since µ̂(n) > 0 for every n ≥ 0, it follows that

inf
ki≥0
1≤i≤r

µ̂
(
pk11 . . . pkrr

)
> 0,

and Theorem 2.1 is proved.
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6.2. The case of the Furstenberg set. — Theorem 2.1 applies to the Furstenberg
set F = {2k3k′ ; k, k′ ≥ 0} and shows the existence of a measure µ ∈ Pc(T) such that

inf
k,k′≥0

µ̂(2k3k
′
) > 0

(the fact that the measure µ can be supposed to have nonnegative Fourier coefficients can
be extracted from the proof of Theorem 2.1, or deduced formally from Theorem 2.1 by

considering the measure µ ∗ µ̃). By Corollary 5.3, this means that K̃az(F ) <
√
2.

As mentioned in the introduction, it is natural to look for the optimal constant δ ∈ (0, 1)
for which there exists a measure µ ∈ Pc(T) such that

(13) inf
k,k′≥0

µ̂(2k3k
′
) ≥ δ

This is equivalent to asking whether F is a Kazhdan set in Z, and if yes, with which
(modified) Kazhdan constant. The best result which can be obtained via the methods
presented here is that there exists a measure µ ∈ Pc(T) satisfying (13) for every δ ∈
(0, 1/2): this is the content of Theorem 2.2, which we now prove.

Proof of Theorem 2.2. — The proof goes along the same lines as that of Theorem 2.1, but
it requires the full force of Theorem 2.4 rather than the weaker statement of Corollary 2.6.

Fix δ ∈ (0, 1/2). There exist by Theorem 2.4 two measures µ1, µ2 ∈ Pc(T) such that

|µ̂1(2k3k
′
)| ≥

√
2δ for every k ≥ 0 and every 0 ≤ k′ ≤ k

and

|µ̂2(2k3k
′
)| ≥

√
2δ for every k′ ≥ 0 and every 0 ≤ k ≤ k′.

The measure µ = 1
2 (µ1 ∗ µ̃1 + µ2 ∗ µ̃2) has nonnegative Fourier coefficients and satisfies

µ̂(2k3k
′
) ≥ δ for every k, k′ ≥ 0.

It then follows from Theorem 5.1 that if {2k3k′ ; k, k′ ≥ 0} is a Kazhdan subset of Z,

its modified Kazhdan constant must be less than
√

2(1− δ) for every δ ∈ (0, 1/2), so must
be at most 1.

That the bound 1/2 can be further improved does not seem clear at all, and we do not
know whether there exists for every δ ∈ [1/2, 1) a measure µ ∈ Pc(T) such that

inf
k,k′≥0

µ̂(2k3k
′
) ≥ δ.

Question 6.1. — Is the Furstenberg set {2k3k′ ; k, k′ ≥ 0} a Kazhdan set in Z?

Note that a lacunary semigroup {an ; n ≥ 0}, a ≥ 2, cannot be a Kazhdan set (see [5,
Ex. 5.2]). We also observe that Theorem 2.4 immediately yields

Corollary 6.2. — For any function ψ : N → N with ψ(k) → +∞ as k → +∞, the sets

{2k3k′ ; k ≥ 0, 0 ≤ k′ ≤ ψ(k)} and {2k3k′ ; k′ ≥ 0, 0 ≤ k ≤ ψ(k′)}

are non-Kazhdan sets in Z.
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Along the same lines, one can also ask for which values of δ ∈ (0, 1] there exists a measure

µ ∈ Pc(T) such that lim inf µ̂(2k3k
′
) ≥ δ as max(k, k′) → +∞. The proof of Theorem 2.1

allows us to exhibit a measure µ ∈ Pc(T) with nonnegative Fourier coefficients (namely

µ = (µ1 + µ2)/2) such that lim inf µ̂(2k3k
′
) ≥ 1/2 as max(k, k′) → +∞. Again, we do not

know whether the constant 1/2 can be improved. The strongest statement which could be

expected in this direction is the existence of a measure µ ∈ Pc(T) such that µ̂(2k3k
′
) → 1 as

max(k, k′) → +∞. This would show that the Furstenberg sequence is a rigidity sequence
for weakly mixing dynamical systems. This natural question is raised in Remark 3.12 (b)
of [8] Remark 3.29 c) of [8], and we record it anew here:

Question 6.3. — Is the Furstenberg sequence a rigidity sequence for weakly mixing dy-
namical systems?

6.3. Examples of rigidity sequences. — Corollaries 2.5 and 2.6 allow us to retrieve
directly all known examples of rigidity sequences from [8], [19], [2], [1] and [22]. The
only examples of rigidity sequences not covered by our results are those of [21] and [24].
Indeed, Fayad and Kanigowski construct in [21] examples of rigidity sequences (nk)k≥0

such that {λnk ; k ≥ 0} is dense in T for every λ = e2iπθ ∈ T with θ ∈ R \ Q, and there
exist for every integer p ≥ 2 infinitely many integers k such that p does not divide nk. So
such sequences never satisfy the assumption of Corollary 2.5. Griesmer strengthens this
result in [24] by showing the existence of rigidity sequences (nk)k≥0 such that {nk ; k ≥ 0}
is dense in Z in the Bohr topology.

We briefly list here some of the examples of rigidity sequences which can be obtained
from Corollaries 2.5 and 2.6. Our first example is that of Fayad and Thouvenot in [22].

Example 6.4. — [22] If the sequence (nk)k≥0 is such that there exists λ = e2iπθ ∈ T,
with θ ∈ R \ Q, such that λnk → 1 as k → +∞, (nk)k≥0 is a rigidity sequence.

This result of [22] follows directly from Corollary 2.5. Indeed, if λnk → 1 with λ = e2iπθ,
θ ∈ R \ Q, λpnk → 1 for every p ∈ Z. Since θ is irrational, the set {λp ; p ∈ Z} is dense in
T, and Corollary 2.5 applies.

Example 6.5. — [8], [19] If (nk)k≥0 is a strictly increasing sequence of integers such that
nk|nk+1 for every k ≥ 0, (nk)k≥0 is a rigidity sequence.

Indeed, under the assumption of Example 6.5, the set C = {λ ∈ T ; λnk → 1} contains
all nk-th roots of 1, k ≥ 0, and is hence dense in T.

Corollary 2.6 shows that Example 6.5 can be improved into

Example 6.6. — Let (mk)k≥0 be a strictly increasing sequence of integers such that
mk|mk+1 for every k ≥ 0. Let ψ : N −→ N be a strictly increasing function. Order the set
{k′mk ; k ≥ 0 , 1 ≤ k′ ≤ ψ(k)} as a strictly increasing sequence (nk)k≥0. Then (nk)k≥0 is
a rigidity sequence.

Indeed, the set C ′ = {λ ∈ T ; λk
′mk → 1 as k → +∞uniformly in k′} contains all mk-th

roots of 1, and is dense in T. So Corollary 2.6 applies.

For instance, if (rk)k≥0 is any sequence of positive integers, the sequence (nk)k≥0 ob-
tained by ordering the set {k′2k ; k ≥ 0, 1 ≤ k′ ≤ rk} in a strictly increasing sequence is
a rigidity sequence. This provides new examples of rigidity sequences (nk)k≥0 such that
nk+1

nk
→ 1 as k → +∞.
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Example 6.7. — Let (rk)k≥0 be any sequence of positive integers with rk → +∞ as
k → +∞. The sequence (nl)l≥0 obtained by ordering in a strictly increasing fashion the
set {j2k ; k ≥ 0, 1 ≤ j ≤ rk} is a rigidity sequence which satisfies

nl+1

nl
→ 1 as l → +∞.

Proof. — It suffices to show that for every ε > 0 and every l sufficiently large there exists
l′ > l such that

nl′

nl
< 1 + ε.

– Suppose first that nl = j2k for some k ≥ 0 and some 1/ε < j < rk. Then taking

nl′ = (j + 1)2k, we have
nl′

nl
= j+1

j
< 1 + ε.

– Suppose next that n′l = j2k for some k ≥ 0 and some 1 ≤ j ≤ 1/ε. Fix an integer
p such that 2−p < ε. If l is sufficiently large, we have rk−p > 2p/ε. Set j′ = j2p. Since

j′ ≤ 2p/ε < rk−p, the integer nl′ = (j′ + 1)2k−p appears in the sequence (nl)l≥0. Also,

since nl′ = (j′ + 1)2k−p > j2k = nl, we have l′ > l, and

nl′

nl
=

(j′ + 1)2k−p

j2k
=

(j′ + 1)

j
2−p ≤ j + 2−p

j
< 1 + 2−p < 1 + ε.

– The last case we have to deal with is when nl = rk2
k for some k ≥ 0. Let j′ ≥ 1 be

such that j′ ≤ rk/2 < j′ + 1. Then j′ < rk+1, and if we set nl′ = (j′ + 1)2k+1, the integer
nl′ appears in the sequence (nl)l≥0. We have

nl′

nl
=

(j′ + 1)2k+1

rk2k
=

2(j′ + 1)

rk
≤ 1 +

2

rk
< 1 + ε

if k is sufficiently large, and this terminates the proof.

Example 6.8. — [1] (a) Let (dk)k≥0 be a strictly increasing sequence of positive integers
of density zero. There exists a strictly increasing sequence of integers (nk)k≥0 which is a
rigidity sequence and satisfies nk ≤ dk for every k ≥ 0.

(b) Let (dk)k≥0 be a sequence of real numbers with dk ≥ k for every k ≥ 0 and
dk
k

→ +∞ as k → +∞. There exists a strictly increasing sequence of integers (nk)k≥0

which is a rigidity sequence and satisfies nk ≤ dk for every k ≥ 0.

This has been proved by Aaronson in [1, Th. 4]; a simpler construction with the weaker
conclusion that nk ≤ dk for infinitely many k was given in [8, Prop. 3.18]. The proof
given below uses Corollary 2.5 and a result of Bugeaud [16].

Proof. — As the statement (a) is a simple consequence of (b), we only give the proof of
(b). Set g0 = 1 and gk = dk/k for every k ≥ 1. Then (gk)k≥0 is a sequence of reals with
gk ≥ 1 for every k ≥ 0 which tends to infinity (notice that for (a) this holds since (dk)k≥0

is a sequence of density zero). Using (a particular case of) [16, Th. 1], we obtain that
there exists for every fixed irrational number θ an increasing sequence (nk)k≥0 of positive
integers such that nk ≤ kgk = dk for every k ≥ 1 and exp(2iπθ)nk → 1. It follows from
Example 6.4 that (nk)k≥0 is a rigidity sequence.

Example 6.9. — Let (mk)k≥0 be a strictly increasing sequence of positive integers with
mk+1 −mk → +∞. There exists a strictly increasing sequence of integers (nk)k≥0 which
is a rigidity sequence and satisfies mk ≤ nk < mk+1 for every k ≥ 0.

Proof. — The proof is exactly the same as the preceding one, replacing the result from
[16] by [9, Obs. 1.36].
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6.4. Exceptional sets for (almost) uniform distribution. — Let (nk)k≥0 be a
strictly increasing sequence of integers, and let ν ∈ M(T) be a (finite) complex Borel
measure on T. We stress that ν is not necessarily a probability measure. Given θ ∈ R,
the sequence (nkθ)k≥0 is said ([32], [30, p. 53]) to be almost uniformly distributed with
respect to ν if there exists a strictly increasing sequence (Nj)j≥1 of positive integers such
that for every arc I ⊂ T whose endpoints are not atoms (mass-points) for ν one has

lim
j→+∞

1

Nj

# {n ≤ Nj : exp(2iπnkθ) ∈ I} = ν(I).

The analog of Weyl’s criterion states that (nkθ)k≥0 is almost uniformly distributed with
respect to ν if and only if there exists a strictly increasing sequence (Nj)j≥1 of positive
integers such that

lim
j→∞

1

Nj

Nj∑

k=1

exp(m2iπnkθ) exists for every m ∈ Z.

In this case, the limit is ν̂(m). It can also be proved that (nkθ)k≥0 is almost uniformly
distributed with respect to ν if and only if there exists a strictly increasing sequence
(Nj)j≥1 of positive integers such that

1

Nj

Nj∑

k=1

f
(
e2iπnkθ

)
//

∫

T

f dµ as j // +∞ for every f ∈ C(T).

We now denote by W ((nk)k≥0, ν), the exceptional set of almost uniform distribution of
(nk) with respect to ν. This is the set of all θ ∈ R such that (nkθ)k≥0 is not almost
uniformly distributed with respect to ν. We will write U((nk)k≥0, ν) for the exceptional
set of (classical) uniform distribution of (nk) with respect to ν, which corresponds to the
case where Nj = j for every j ≥ 1.

The size of the exceptional set U((nk)k≥0, ν) has been studied in many works, in partic-
ular in the case where ν is the normalized Lebesgue measure on T. In this case, we write it
as U((nk)k≥0). If the sequence (nk)k≥0 is lacunary, U((nk)k≥0) is uncountable, and even
of Hausdorff dimension 1 ([20], see also [26]). See also [36] and [34] for a stronger result.
On the other hand, it is known (see [11], [13]) that among various natural classes of ran-
dom sequences of integers, almost all sequences (nk)k≥0 satisfy U((nk)k≥0) = Q. These
typical random sequences (nk)k≥0 are sublacunary, i.e. satisfy nk+1/nk → 1 as k → +∞
Nonetheless, examples of sublacunary sequences (nk)k≥0 with U((nk)k≥0) uncountable
were constructed in [20] (see also [6]). Concerning the size of W ((nk)k≥0, ν) we refer for
instance to [35], [26] and [29]. See also [15] for other references.

Our results about the size ofW ((nk)k≥0, ν) rely on the following generalization of Propo-
sition 5.6, which provides a link between the size of the exceptional set W ((nk)k≥0, ν) and
the modified Kazhdan constant of the set {nk ; k ≥ 0}.

Proposition 6.10. — Let (nk)k≥0 be a strictly increasing sequence of positive integers
with n0 = 1, and let ν ∈ M(T) with ν 6= δ{1}. If W ((nk)k≥0, ν) is finite or countable
infinite, Q = {nk ; k ≥ 0} is a Kazhdan subset of Z, and

K̃az(Q) ≥
√

2(1 −ℜe ν̂(1)).
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Proof. — Fix γ ∈ (0, 1 − ℜe ν̂(1)), and let µ be a probability measure on T such that
supk≥0(1−ℜe µ̂(nk)) < γ. Then

1−ℜe
∫

T

( 1

N

N∑

k=1

λnk

)
dµ(λ) < γ for every N ≥ 1.

Suppose that the measure µ is continuous. Since there exists a strictly increasing sequence
(Nj)j≥1 of integers such that

1

Nj

Nj∑

k=1

λnk → ν̂(1) as j → +∞ for every λ ∈ T \ C,

where C is a finite or countable infinite subset of T, we have 1 − ℜe ν̂(1) ≤ γ, which
contradicts our initial assumption. So µ has a discrete part. It then follows from Theorem
5.1 that the modified Kazhdan constant of Q is at least

√
2(1 −ℜe ν̂(1)).

The following result provides an example of a nonlacunary semigroup (nk)k≥0 whose
associated exceptional sets W ((nk)k≥0, ν) with respect to ν are uncountable for a large
class of measures ν ∈ M(T).

Theorem 6.11. — Denote by (nk)k≥0 the sequence obtained by ordering the Furstenberg

set F = {2k3k′ ; k, k′ ≥ 0} in a strictly increasing fashion. For every measure ν ∈ M(T)
such that ℜe ν̂(1) < 1/2, the set W ((nk)k≥0, ν) is uncountable.

Proof of Theorem 6.11. — Fix ν ∈ M(T), and suppose that U((nk)k≥0, ν) is at most

countable. Since K̃az(F ) ≤ 1 by Theorem 2.2, it follows from Proposition 6.10 that√
2(1−ℜe ν̂(1)) ≤ 1, i.e. that ℜe ν̂(1) ≥ 1/2. This proves Theorem 6.11.
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[34] B. de Mathan, Sur un problème de densité modulo 1, C. R. Acad. Sci. Paris 287 (1978),
277–279.

[35] I. Piatetski-Shapiro, On the laws of distribution of the fractional parts of an exponential
function, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 47–52 (in Russian).

[36] A. Pollington, On the density of sequence (nkξ), Illinois J. Math. 23 (1979), 511–515.

[37] D. Rudolph, ×2 and ×3 invariant measures and entropy, Erg. Th. Dynam. Syst. 10 (1990),
395–406.



24 CATALIN BADEA & SOPHIE GRIVAUX

[38] A. Venkatesh, The work of Einsiedler, Katok and Lindenstrauss on the Littlewood conjec-
ture, Bull. Amer. Math. Soc. 45 (2008), 117–134.
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