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Cutting and shuffling with diffusion: Evidence for cut-offs in interval exchange maps
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Low-dimensional dynamical systems are fruitful models for mixing in fluid and granular flows. We
study a one-dimensional discontinuous dynamical system (termed “cutting and shuffling” of a line
segment), and we present a comprehensive computational study of its finite-time mixing properties
including the effect of diffusion. To explore a large parameter space, we introduce fit functions for
two mixing metrics of choice: the number of cutting interfaces (a standard quantity in dynamical
systems theory of interval exchange transformations) and a mixing norm (a more physical measure
of mixing). We compute averages of the mixing metrics across different permutations (shuffling
protocols), showing that the latter averages are a robust descriptor of mixing for any permutation
choice. If the decay of the normalized mixing norm is plotted against the number of map iterations
rescaled by the characteristic e-folding time, then universality emerges: mixing norm decay curves
across all cutting and shuffling protocols collapse onto a single stretched-exponential profile. Next,
we predict this critical number of iterations using the average length of unmixed subsegments of
continuous color during cutting and shuffling and a Batchelor-scale-type diffusion argument. This
prediction, called a “stopping time” for finite Markov chains, compares well with the e-folding time
of the stretched-exponential fit. Finally, we quantify the effect of diffusion on cutting and shuffling
through a Péclet number (a dimensionless inverse diffusivity), showing that the system transitions
more sharply from an unmixed initial state to a mixed final state as the Péclet number becomes
large. Our numerical investigation of cutting and shuffling of a line segment in the presence of
diffusion thus present evidence for the latter phenomenon, known as a “cut-off” for finite Markov
chains, in interval exchange maps.

I. INTRODUCTION

Even simple discontinuous dynamical systems can ex-
hibit highly nontrivial dynamics and mixing behaviors.
One recently studied class of such systems are piecewise

isometries (PWIs) [1–3]. Unlike the stretching and fold-

ing mechanism of chaotic fluid mixing [4], which is un-
derpinned by horseshoe dynamics [4, 5] and is sometimes
provably the “best” mixing possible [6], cutting and shuf-

fling underlies granular mixing [7–10]. Cutting and shuf-
fling, much like the “mixing” of a deck of cards, involves
breaking apart the material being mixed into discrete
pieces and then putting it back together in a length-
preserving (i.e., isometric) way [11]. Mixing by cutting
and shuffling via PWIs on non-Euclidean spaces (e.g.,
the surface of a hemispherical shell) remains an active
topic of research [12, 13]. Meanwhile, fluid mixing by
stretching and folding dynamics in physical space is, by
now, well-understood [4, 5, 14]. The interaction between
stretching and folding and cutting and shuffling, on the
other hand, remains a research frontier in the field of
dynamical systems. As evidence for the latter point,
we refer the reader to the detailed studies by Smith et

al. [15–17] of shear maps coupled to discontinuous mo-
tions (such as “slip deformations”), showing a wealth of
distinct types of dynamical behaviors including enhanced
mixing and exotic bifurcations.
The simplest example of cutting and shuffling is the

one-dimensional PWI known as an interval exchange
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transformation (IET) [18, §14.5]. Recently, a class of
IETs relevant to granular mixing and their mixing prop-
erties were studied by Krotter et al. [19]. This IET
construction and its requisite simulation methodology
were introduced to model the intuitive process of cut-
ting and shuffling a line segment. Yu et al. [20] extended
the work in [19] to account for possible uncertainty in
the location of cuts along the line segment, as might
be the case when fractionating a granular material such
as a powder. Consequently, the length of each portion
of the cut and shuffled line segment is random, poten-
tially leading to enhanced mixing. Most recently Smith
et al. [21] introduced a new metric to quantify mixing by
IETs, combining the length of the largest uncut subseg-
ment and the evenness of color distribution across sub-
segments. They demonstrated that cutting the longest
unmixed subsegment of distinct color in half at each it-
eration, which proves to be computationally inexpensive,
can lead to optimal mixing in the sense of minimizing the
proposed mixing metric. Such “optimal” mixing can also
be achieved with a fixed shuffling protocol if the cut loca-
tions change at each iteration (beyond just the addition
of uncertainty in cut locations as in [20]). Beyond the
computational work of [19–21], the mathematical theory
of IETs is, in fact, quite daunting. The “weak mixing”
properties of IETs were only recently established [22, 23]
in work that required the development of abstract math-
ematical notions at such a high level that one of the au-
thors of [23] (A. Avila) received the 2014 Fields Medal
for his contributions to dynamical systems theory [24].
The IET construction introduced by Krotter et al. [19]

has several parameters that can be varied to produce
distinct mixing behaviors, including pathological poor-
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mixing cases that were examined in detail therein. Some
connections between abstract mathematical notions of
mixing and numerical experiments with IETs were also
summarized in [19, 20], leading to several basic “design
principles” for how to best cut and shuffle a line seg-
ment. Specifically, the number of cuts (subsegments,
N , introduced in each cutting step) can be varied, the
shuffling order (a permutation, Π, of the integers up to
N) can be changed, and the lengths of each subsegment
(parametrized by a fixed adjacent subsegment length ra-
tio r) can be chosen so as to enhance mixing. In [19, 20],
mixing was quantified through the percentage of the line
segment’s length that is unmixed (i.e., the proportion
of the line segment composed of the same continuous
“color”) or as measured by the number of cutting inter-
faces (i.e., interfaces between different “colors” present).
Yu et al. [20] additionally showed that even slightly per-
turbing the cut locations stochastically can break peri-
odicity in the system, again leading to mixing.
Our study of cutting and shuffling is also motivated,

in part, by the shuffling of a deck of cards. Numeri-
cal results by Trefethen and Trefethen [25] illustrate a
well-known phenomenon of “cut-offs” in card shuffling.
Specifically, it is known from work by Diaconis et al. [26–
28], based on probability theory of finite Markov chains,
that it takes about seven riffle shuffles to randomize a
fifty-two card deck (see also the New York Times article
[29] on this fascinating result) [30]. Any further shuf-
fling does not significantly improve the “mixedness” of
the deck. Hence, seven shuffles represents a stopping time

for the shuffling process, and the dynamical system ex-
hibits a cut-off there, at which a sudden change in the
mixedness of the cards from poorly to well mixed occurs;
cf. [26, Fig. 2] and the discussion thereof.
Recently, such cut-offs were demonstrated [31] through

the numerical simulation of chaotic fluid mixing in a
staggered-herringbone microfluidic channel [32]. By
varying the Péclet number (an inverse dimensionless dif-
fusivity), an appropriate global measure of “mixedness”
can be rescaled and shown to fit the notion of a cut-off,
just like in card shuffling. To this end, in this work, we in-
corporate diffusion into the one-dimensional cutting and
shuffling process, and we explore the existence of cut-offs
in this model system. Understanding such admittedly
“simple” systems that yet exhibit “complex” dynamical
behavior can often be impactful for statistical [33] and
material physics [34].
Though there have been a number of theoretical and

computational studies of IETs, there is still much to be
understood about the basic cutting and shuffling model
discussed above. Just as Ashwin et al. [35] pointed out
that “the mixing properties of interval exchange maps are
very subtle and relatively poorly understood and depend
on parameters in a sensitive way,” our aim is to explore
how different parameters influence the system’s mixing
behaviors and whether there is any “universality” in the
phenomenon.
Going beyond the simple IETs of Ashwin et al. [35],

Sturman [36] provides a comprehensive review of mathe-
matical theories relevant to discontinuous mixing. Exam-
ples of IETs with diffusion were discussed in the context
of simulating the mixing of a black-and-white line seg-
ment. Mixing with diffusion alone or by cutting and shuf-
fling alone was found to be much less effective than when
the two are combined. Going further, Froyland et al. [37]
proposed local perturbations to speed up mixing in vari-
ous dynamical systems. Specifically, they sought to opti-
mize how diffusion is added across the system, including
one-dimensional line segments undergoing cutting and
shuffling. Dynamical systems with different fixed diffu-
sion protocols (termed “none,” “uniform,” “Gaussian,”
and “optimal”) were compared [37], showing that opti-
mizing the diffusion protocol leads to enhanced mixing
at any Péclet number. Here, we consider only Gaussian
diffusion.
Most recently, Kreczak et al. [38] studied a one-

dimensional model of mixing of a line segment with a
combination of stretching, permutations and diffusion.
Their results show that the global mixing rate depends
on both the choice of permutation and the diffusion coef-
ficient. Contrary to expectation (and the results of Ash-
win et al. [35]), increasing the diffusion coefficient leads
to a deceleration of the mixing rate when both stretching
and folding and cutting and shuffling are present. Given
just four detailed studies [35–38] on this topic exist, the
dynamics of cutting and shuffling a line segment in the
presence of diffusion remain largely unexplored.
Our work aims to fill a knowledge gap in this field. Af-

ter introducing the IET construction in Sect. II, which is
the basis of our cutting and shuffling model, we proceed
to discuss in detail the effects of diffusion on cutting and
shuffling in Sect. III. Although many measures of mix-
ing exist (see, e.g., the detailed review [39]), including
multiscale mixing norms [40], we use the definition of
mixing norm introduced in [35] (Sect. II C), which deter-
mines how far the line segment’s color distribution is from
the uniform average color of the initial condition. Then,
having quantified mixing, we verify that diffusion gener-
ically leads to decay of the mixing norm (Sect. III A).
To explore the parameter space of this system and see
how mixing proceeds under different protocols, we intro-
duce a fit function for the decay of the mixing norm with
the number of iterations (Sect. III B). Specifically, from
the fit function, we extract a decay time constant for
each protocol in the parameter space. Next, we define
a time scale, which quantifies the number of iterations
for the mixing norm to decay by a factor of e−1 (usually
termed the e-folding time). With this time scale in hand,
in Sect. III C we rescale the concentration/color mixing
norm decay curves for different cutting and shuffling sys-
tems with diffusion to show that a universal mixing be-
havior exists. Then, in Sect. III D, we predict this critical
number of iterations using the average length of unmixed
subsegments of continuous color during cutting and shuf-
fling and a Batchelor-scale-type diffusion argument. We
argue that, on the basis of these numerical results, there
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is preliminary evidence for the existence of a cut-off phe-
nomenon for IETs with diffusion. Finally, conclusions
and avenues for future work are stated in Sect. IV.

II. SIMULATION METHODOLOGY

In this section, we describe the simulation methodol-
ogy that we employ to study mixing of a line segment by
cutting and shuffling, including incorporating the effect
of diffusion. First, we define a class of interval exchange
transformations (IETs) that represent our cutting and
shuffling protocols.

A. Parameters of the model

The IET construction can be realized as shown in
Fig. 1. The behavior of this dynamical system sensitively
depends on three parameters: the number of initial sub-
segments N , the length ratio between adjacent subseg-
ments r and the shuffling permutation Π. The top row
of Fig. 1 shows how a line, of total length L, is divided
into N = 4 subsegments at each iteration of this dynam-
ical system, which represents the cutting process. Given
this value of N = 4, the line is cut into N pieces and
each piece is, additionally, given a distinct color in the
initial configuration. The color may, for example, rep-
resent different kinds of materials, or the same material
but with different “concentration” of some tracer being
mixed by cutting and shuffling. The ratio r is defined as
the ratio of the lengths of adjacent subsegments, while ξ
is the length of the first subsegment. Both r and ξ are
assumed to be constant in this construction. The per-
mutation Π determines the rearrangement order, which
represents the shuffling process. Figure 1 shows a specific
example with N = 4, r = 1.5 and Π = [3142] [41]. The
cutting location remains the same at every iteration and
subsegments are rearranged according to the same pat-
tern. The iteration counter is denoted by T , while Tmax

is the total number of iterations of cutting and shuffling
performed.
As can be observed from the bottom row in Fig. 1,

as the number of iterations T increases, the number of
subsegments of continuous color varies, often increasing.
Figure 1 also highlights the two measures of mixing dis-
cussed in [19, 20]: the percent unmixed U(T ) (i.e., the
percent out of L corresponding to the longest continuous
color subsegment, here U = 23% at T = 2) and the num-
ber of distinct cuts C(T ) (i.e., interfaces between colors,
here C = 6 at T = 2).

B. Choosing the parameters: Design rules

A major conclusion of Krotter et al. [19] was that mix-
ing under this type of IET reaches a “point of diminishing

1 2 3 4

13 4 2

initial

configuration

T = 0

iteration 1

T = 1 

iteration 2

T = 2

cuts introduced

at each iteration

0.23L

all cuts present

at T = 2

continuous color 

subsegment

4th initial subsegment

x rx r
2x r

3x

FIG. 1. (Color online.) Schematic of how a line segment
is cut into N = 4 (in this case) line segments with adjacent
length ratio r and initial subsegment length ξ. Two iterations
of the cutting and shuffling process (without diffusion) are
performed with the permutation Π = [3142]. Key terminology
is labeled. The color map is arbitrary, and the color values
are normalized between 0 and 1.

returns” as N increases with four to five subsegments be-
ing sufficient to produce significant shuffling of the mate-
rial. Thus, in the present work, we restrict our attention
to the cases N = 4 and N = 5.
As discussed in [19] and further elucidated in [20], in

choosing the shuffling permutation Π, we should exclude
ones that lead to pathological behaviors. Specifically, we
only consider permutations Π that are (i) irreducible, (ii)
non-rotational, (iii) without the first or last element fixed,
and additionally for the cases with N > 3, (iv) without a
number of elements > 1 and ≤ N − 2 being consecutive.
For example, if N = 4, there are nine “allowed” permu-
tations: Π = [2413], [2431], [3142], [3241], [3421], [4132],
[4213], [4312], [4321]. In particular, Π = [2143] is ex-
cluded by rule (i) for being reducible, i.e., elements 1 and
2 are interchanged and 4 and 3 interchanged, splitting
(“reducing”) the permutation into two sub-permutations.
Meanwhile, Π = [2341] is excluded by rule (ii) for being a
rotation, i.e., elements are shifted one to the right with-
out significant re-arrangement. Then, Π = [4231] is ex-
cluded by rule (iv) because elements and 2 and 3 remain
consecutive in the permutation.
Additionally, consonant with the available theory of

IETs [42], Krotter et al. [19] showed that the initial cuts
should break apart the interval in such a way that the
adjacent segment length ratio r is “closer” to an irra-
tional number. Moreover, it was concluded in [19] that
the initial distribution of subsegment lengths should be
“balanced,” that is, r should be chosen close (but not
equal) to unity. Thus, in the present work, without loss
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of generality, the ratio is taken to be r > 1, then as shown
in Fig. 1, the total length L of the line segment is

L =

N
∑

j=1

rj−1ξ. (1)

In order to realize the shuffling process within a
MATLAB code, while ensuring length-preservation of
the line segment without being subject to round-off
errors, the initial lengths of all subsegments, i.e.,
{ξ, rξ, r2ξ, . . . , rN−1ξ}, should all be integers. If the lat-
ter condition is met, then cuts always fall at unique in-
dexes in the discrete array that represents the line seg-
ment computationally, which ensures that no length can
be “lost” by rounding potentially fractional indexes up or
down. To restate this important point: by guaranteeing
that cuts fall at unique array elements, then we auto-
matically ensure that the line segment’s length cannot
change, i.e., we enforce conservation of mass.
To ensure that the subsegment lengths

{ξ, rξ, r2ξ, . . . , rN−1ξ} are all integers, we convert r
to a fraction as rn/rd, where rn is the nominator (an
integer), and rd is the denominator (also an integer).
This conversion is always possible as long as r is a ratio-
nal number. Since, in MATLAB, we use finite-precision
floating point arithmetic, then any r we could pick
must be representable as a fraction, though it might
be quite a “complicated” fraction. Now, once we have
written r = rn/rd, it is clear that multiplying the list

{1, r, r2, . . . , rN−1} by rN−1
d yields a set of integers with

greatest common divisor 1. Thus, we conclude that

ξ = rN−1
d (2)

will guarantee that every subsegment’s length is an in-
teger. Finally, substituting the expression for ξ from
Eq. (2) into the total length of the line given in Eq. (1),
we find that

L =

N
∑

j=1

rj−1rN−1
d =

(

1− rN

1− r

)

rN−1
d . (3)

In particular, we conclude that L is an integer, and it
depends only on N and r for a given cutting and shuffling
protocol of our integer-arithmetic IET construction. In
plots, we will generally normalize the horizontal axis by
L so that the line segment [0, L] becomes the interval
[0, 1], and subsegments’ positions along this unit interval
are displayed.

C. Quantifying mixing: Cutting interfaces and the

mixing norm

After T iterations of the cutting and shuffling map,
the initially coherent sets of colors assigned to the pieces
of the line segment can form a complex and intricate
pattern [19, 20]. There are many measures of mixing that

can be used to quantify the degree of mixing produced
by cutting and shuffling. On the one hand, there are
discrete measures such as counting the number of distinct
cuts between different colors, as discussed earlier. On
the other hand, there are a variety of so-called “mixing
norms” that can be used to quantify the degree of mixing
in a more “global” way, as discussed in the review by
Thiffeault [40]. In this work, we will utilize the number
of cuts C(T ) and the Lp function-space norm, denoted
||c||p(T ), to quantify mixing.
As discussed in Sect. II A, the number of cutting in-

terfaces C(T ) refers to the number of distinct interfaces
between two different continuous color subsegments after
T iterations. This is a clear and intuitive metric of how
much rearrangement our cutting and shuffling protocol
has achieved. Taking Fig. 1 as an example, after the
first iteration, there are 3 interfaces since 4 subsegments
are generated, therefore C(1) = 3. After the second it-
eration, there are 6 interfaces between distinct compo-
nents, therefore C(2) = 6. Given a color distribution
{ci}

L
i=1 across the line segment (represented by the lat-

tice i = 1, 2, . . . , L) after T iterations, we can explicitly
define the number of cutting interfaces as

C(T ) =

L−1
∑

i=1

⌈ci+1 − ci⌉, (4)

since 0 ≤ ci ≤ 1 by construction. Thus, the number of
cuts is not a true proxy of mixing as it does not take into
account whether or how the color changes on average.
Nevertheless, the number of cuts is meaningful because,
if reactions and diffusion are added into the cutting and
shuffling protocol, then it is expected that having a wide
distribution of cuts will lead to fast homogenization of the
material [43, 44]. The number of cuts (discontinuities) is
also a quantity of interest in the abstract mathematical
discussion of IETs [45].
To mitigate some of the weakness of C(T ) as a measure

of mixing, we also use a mixing norm to quantify mixing.
Specifically, we define an “Lp norm” of a function c(X,T )
as

||c||p(T ) =

(

∫ L

0 |c(X,T )− c̄|p dX
∫ L

0
dX

)1/p

, (5)

where 1 ≤ p < ∞ and

c̄ =

∫ L

0
c(X,T ) dX
∫ L

0
dX

(6)

is the average color of the line segment. Here, X is con-
tinuous variable running along the length of the line seg-
ment: 0 ≤ X ≤ L. For concreteness, when initially
constructing the line segment, we assign each subinterval
i a color value (i − 1)/(N − 1) (i = 1, . . . , N), which is
always between 0 and 1. In the plots presented below, we
can use various color maps in MATLAB to make the col-
ors stand out visually. Thus, the mixing norm ||c||p(T )
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measures how far the segment’s color distribution is from
the uniform average concentration/color c̄, in an appro-
priately global way. The case of p = 2 is of interest as
it measures the variance, or root-mean-square deviation,
of the color distribution. As discussed by Thiffeault [46,
p. 5], “[v]ariance is thus a useful measure of mixing: the
smaller the variance, the better the mixing.” And, while
the average c̄ remains constant in time and unchanged
by diffusion for periodic boundary conditions, the vari-
ance is depleted as long as there is diffusion and non-zero
color gradients along the line segment [46], with the cut-
ting and shuffling process controlling how gradients are
created and, thus, the decay rate.
To compute the mixing norm from the discrete data of

our cutting and shuffling simulations, consider a distribu-
tion of colors c(X,T ) across the line segment 0 ≤ X ≤ L.
After T iterations of cutting and shuffling, cj represents
the color value of the jth continuous-color piece, where
j = 1, . . . , k(T ), and k(T ) is the number of continuous-
color subsegments after T iterations. Then, we can com-
pute the integrals in the definition of the mixing norm
exactly over each continuous-color piece and reduce the
definition from Eq. (6) to

||c||p(T ) =

(

∑k(T )
j=1 |cj − c|plj
∑k(T )

j=1 lj

)1/p

, (7)

where

c̄ = c̄(r,N) =

∑N
j=1 cj lj
∑N

j=1 lj
(T = 0) (8)

is, as before, the uniform average concentration/color of

the initial condition. Note that
∑k(T )

j=1 lj = L by defini-

tion, where L is given by Eq. (3), and lj is the length
of jth subsegment of continuous color. At iteration T ,
there are 1 ≤ k(T ) ≤ L pieces of continuous color with
k(0) = N . For p = 2, Eq. (7) describes the standard
deviation (square root of the variance) of the mixture’s
“concentration.” If normalized appropriately, the p = 2
mix norm can be made to agree with Dankwerts’ classi-
cal definition of the intensity of segregation [47], which
he used to quantify mixing. Henceforth, we restrict to
the p = 2 case for the remainder of this work.

D. Visualizing mixing: Space-time plots

Mixing of a line segment by cutting and shuffling can
be visually represented by space-time plots as initially
discussed in [19]. To create a space-time plot, we combine
all line segments after each iteration and arrange them
from bottom to top in a two-dimensional (2D) space-time
plot. The horizontal axis is the dimensionless lattice po-
sition X/L, while the vertical axis represents the number
of iterations T . From space-time plots, we can visually

identify the evolution of mixing, including periodic be-
havior and poor mixing. Figure 2(a) shows an example
of a space-time plot of a cutting and shuffling protocol.
In Fig. 2(b), we plot the number of cuts C(T ), which

grows in time but levels out after a while and starts de-
creasing. This protocol is ultimately periodic, so even
over many iterations it does not produce good mixing. In
Fig. 2(c), we plot the mixing norm ‖c‖p(T ) for this case.
The mixing norm remains constant, meaning that the
color distribution never approaches the average color. Of
course, since cutting and shuffling merely redistributes
the color pieces, without changing their individual col-
ors, the distribution cannot approach the average (see
also [37, Sect. 4]). The latter is, of course, the classical
distinction of stirring versus mixing [4, 48, 49]. That is
to say, while cutting and shuffling (the “mechanical” stir-
ring process in our approach) can significantly disperse
the initially continuous color segments, diffusion (such as
molecular diffusion in a fluid or collisional diffusion in a
granular flow) is needed to ultimately homogenize and
mix the material. This distinction and the interplay be-
tween stirring and mixing bring us to a key contribution
of the present work: incorporating diffusion into IETs
and examining the resulting universal mixing behaviors.

E. Incorporating diffusion

To ensure complete and thorough mixing of a line seg-
ment, i.e., c(X,T ) → c̄ for all X ∈ [0, L] as T → ∞,
we must incorporate diffusion into the system. As is well
known, diffusion by itself would mix an initial line seg-
ment (such as the one shown in the top row of Fig. 1)
very slowly. Thus, here we are interested in the nontriv-

ial interaction of cutting and shuffling (redistribution of
color) and diffusion (relaxation of the color distribution
to the mean).
Following Pierrehumbert [50], we would like to incor-

porate a time-discrete diffusion step between cutting and
shuffling steps. To this end, consider a generic diffusion
equation for the concentration/color c(X,T ) with char-
acteristic diffusivity D:

∂c

∂T
= D

∂2c

∂X2
, (9)

where X ∈ [0, L] and T ∈ [0, Tmax]. We can dis-
cretize Eq. (9) using the usual forward-time, central-
space (FTCS) scheme:

cn+1
i − cni
∆T

= D
cni+1 − 2cni + cni−1

(∆X)2
, (10)

where cni ≈ c(Xi, T
n) with Xi = i∆X and T n = n∆T .

This discretization is stable if D∆T ≤ 1
2 (∆X)2 [51, §6.3].

However, in our cutting and shuffling protocols, the
color is only defined on integer lattice points, and we
iterate by integer increments in time, i.e., ∆X = ∆T =
1. Then, given the standard stability criterion for the
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FIG. 2. (Color online.) Mixing by cutting and shuffling with N = 5, r = 1.5, Π = [52413], Tmax = 50. (a) Space-time plot of
the color evolution. (b) Growth of the number of cutting interface C(T ). (c) Evolution of the mixing norm ‖c‖p(T ).

r rn ξ L Tmax

1.25 5 64 369 50
1.2 6 125 671 166
1.4 7 125 888 290
1.6 8 125 1,157 492
1.8 9 125 1,484 809
1.1 11 1,000 4,641 7,910
1.3 13 1,000 6,187 14,057

TABLE I. Dependence of L on r, here specifically for N = 4,
and the corresponding maximum number of iterations, via
Eq. (13), with the first row (r = 1.25 and Tmax = 50) being
the reference system for the remaining.

finite-difference scheme in Eq. (10), we must restrict our
equivalent diffusion coefficient such that D ≤ 1/2.
Therefore, diffusion can be incorporated into cutting

and shuffling by an additional sweep through the lattice
at each iteration of the IET. That is to say, after the
line segment is cut and shuffled as described above, an
additional sweep through the lattice points is performed
using the replacement rule:

ci 7→ (1− 2D)ci +Dci+1 +Dci−1, (11)

where ci is the color value at the ith lattice point (i =
1, 2, . . . , L). A common choice is D = 1/2, in which
case our replacement rule from Eq. (11) becomes a sim-
ple averaging: ci 7→

1
2 (ci+1 + ci−1). Given a particular

diffusion coefficient D, we would like to show that the
line segment can be completely mixed in many fewer it-
erations than by the IET alone. To completely specify
the diffusion rule, periodic boundary conditions are used
to set cL+1 = c1 and c0 = cL.
We would like all of our simulations to have the same

“effective” diffusion coefficient, D, as it might arise from
inter-particle collisions in a granular medium (see, e.g.,
[52]). However, the length L of the lattice depends on N
and r as discussed in Sect. II B, see Table I. Hence, a fixed
diffusion coefficient does not yield the same behavior on
different lattices, over the same number of iterations, sim-
ply because of the change in the line segment’s length. To

ensure an “equivalent” diffusion behavior across lattices
of different L, we apply dimensional analysis to connect
the number of iterations Tmax that a given IET is required
to run for, given a fixed diffusivityD but different domain
lengths. The problem reduces to matching dimensionless
diffusion coefficients once the domain is mapped from
[0, L] to [0, 1] and the number of iterations (from 0 to
T ) is normalized to a discrete time-like variable running
from 0 to 1.
To this end, consider two cases of cutting and shuffling

protocols with diffusion, the first with D1, Tmax,1 and L1

and the second with D2, Tmax,2 and L2. From dimen-
sional analysis, we should ensure that the dimensionless
diffusion coefficients (i.e., the inverse Péclet numbers as-
suming the intrinsic “velocity” scale L/T ) match:

D2Tmax,2

L2
2

=
D1Tmax,1

L2
1

. (12)

Assuming equal diffusivity (D1 = D2), the diffusion co-
efficient cancels out, and we can relate the number of it-
erations Tmax,2 needed on a lattice of length L2 to those
(Tmax,1 and L1) of the reference lattice:

Tmax,2 =

(

L2

L1

)2

Tmax,1. (13)

III. RESULTS AND DISCUSSION

In this section, we examine the mixing outcomes of
cutting and shuffling in the presence of diffusion. Specif-
ically, we address the hypothesis that cut-offs and uni-
versal behavior exist in the family of IETs with diffusion
that we have described/constructed above.
Previous work has sufficiently addressed the non-

diffusive (i.e., deterministic) mixing by IETs both math-
ematically and through simulation studies. Therefore, in
this subsection, we summarize just the key results. From
[19, 20], it is clear that the number of subsegmentsN , the
permutation Π and the ratio r greatly affect the mixing
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FIG. 3. (Color online.) Incorporating diffusion with D = 0.5 into the IET from Fig. 2 with N = 5, r = 1.5, Π = [52413], and
Tmax = 50.
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FIG. 4. (Color online.) Incorporating diffusion with D = 0.01 into the IET from Fig. 2 with N = 5, r = 1.5, Π = [52413], and
Tmax = 50.

outcomes. Specifically, three “design rules” have been
suggested to improve the mixing behavior (recall the dis-
cussion in Sect. II B):

(i) Reducible and rotational permutations, as well as
those that exhibit unsatisfactory shuffling, should
be excluded.

(ii) The line segment should be cut into no more than
six subsegments (i.e., N ≤ 6), larger N do not
significantly improve mixing.

(iii) The ratio r should not be “large.” Specifically,
it should ideally be an irrational number close to
1. (Continued fraction expansions can be used to
quantify “how irrational” r is.)

A. Mixing behavior of IETs with diffusion

In the present work, motivated by the hypothesis
that IETs with diffusion exhibit cut-offs in the sense
of card shuffling, we are first interested in establish-
ing how the mixing behaviors previously studied are af-
fected by the presence of diffusion. Specifically, we study
the effect of the diffusion coefficient’s magnitude (e.g.,

D = 0, 0.01, 0.5, . . .), having matched the total iterations
T using the dimensional analysis rules from Section II E
to ensure comparable “amounts” of diffusion across lat-
tices of different lengths.
As an introductory example, let us consider how a typ-

ical space-time plot, such as the one shown in Fig. 2(a)
changes when diffusivity with D = 0.5 is incorporated
into the cutting and shuffling process. Under the same
parameters as Fig. 2(a), Fig. 3(a) shows the space-time
plot of mixing by cutting and shuffling including diffu-
sion. The most obvious effect is that the space-time plot
becomes “fuzzy” as diffusion now blurs the different col-
ors of the subsegments being cut and shuffled about.
We can also examine how the number of cutting inter-

faces C(T ) and the mixing norm ‖c‖p(T ) evolve in the
presence of diffusion. Compared with Fig. 2(b), the num-
ber of cutting interfaces in Fig. 3(b) grows quickly and
reaches an absolute maximum. This difference in how
C(T ) evolves is due to the fact that material is now not
just cut and shuffled but also mixed by diffusion. Dif-
fusion changes the color of nearby lattice points through
the diffusion rule [given by Eq. (11)], thereby quickly
causing nearby lattice points to have slightly different
color values, and all of these slight changes are counted
as cutting interfaces by Eq. (4). In a small number of it-
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erations, the number of cutting interfaces C(T ) increases
without exhibiting periodic patterns, and reaches its ab-
solute maximum value maxT C(T ) = L − 1. This upper
bound is due to the fact that eventually the color of ev-
ery lattice point is distinct from every other (even if just
slightly so) due to cutting, shuffling and diffusion.
The mixing norm ||c||p(T ), on the other hand, now de-

creases (asymptotically to 0) with T , as seen in Fig. 3(c),
instead of remaining constant as in Fig. 2(c). In the pres-
ence of diffusion, the cutting and shuffling process even-
tually drives the color of the line segment to the average
one, c̄, which is set by the initial conditions.
Next, we would like to establish the effect of varying

the diffusion coefficient D (i.e., “small” diffusivity versus
“large” diffusivity). For a smaller diffusion coefficient of
D = 0.01, the mixing behavior is shown in Fig. 4. The
growth of cutting interfaces C(T ) in Fig. 3(b) is almost
the same as in Fig. 4(b), showing a weak sensitivity to the
diffusivity. This observation suggests that C(T ) might
not be an effective way to measure the degree of mix-
ing among systems with different diffusion coefficients.
While in the deterministic (no diffusion) case, insightful
mathematical results can be obtained about the growth
of the number of cuts [45], any amount of diffusion per-
turbs the color values so that differences in color that are
counted as “cuts” appear immediately. Although one can
invent threshold criteria for how much change |ci+1 − ci|
should signal a “cut” in Eq. (4), this is ultimately a
fruitless task. Meanwhile the mixing norm ‖c‖p(T ) in
Fig. 4(c) decays much more slowly that in Fig. 3(c), show-
ing (as is to be expected on the basis of previous studies,
e.g., [35–38]) that the mixing norm effectively quantifies
the differences in mixing processes with “small” diffusiv-
ity (D = 0.01) versus “large” diffusivity (D = 0.5).

B. Quantifying the effect of diffusion on the decay

of the mixing norm

Based on the numerical evidence in Figs. 3(c) and
4(c), we suggest that the evolution of ||c||p(T ) can be
approximated by a stretched-exponential function [53]
parametrization:

||c||p(T ) ≃ M · e−(T/τ)α , (14)

where M = ||c||p(0) is the initial norm before mixing
but τ and α are a priori unknown fitting parameters.
The time constant τ quantifies how fast the mixing norm
decays with T , while α determines how skewed the de-
cay curve is. If α = 1, the fit function in Eq. (14) is a
“perfect” exponential, while for α < 1, it is skewed and
decays more slowly (asymptotically as T → ∞).
For a fixed ratio r, number of subsegments N and dif-

fusivity D, we average the mixing norm evolution curves
||c||p(T ) across different permutations, then we fit the
averaged profile to Eq. (14). MATLAB’s nonlinear least-
squares subroutine lsqcurvefit is used to obtain the
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FIG. 5. (Color online.) Mixing norm decay curves ||c||p(T )
with N = 4, r = 1.25, M = 0.3650, D = 0.5 and Tmax =
1000 iterations for various Π (as chosen according to the rules
in Sect. II B), shown as gray curves. The average mixing
norm decay curve is the bold curve (red online), and its fit
is the dashed curve (blue online). The best-fit parameters,
according to Eq. (14) for the average curve, are τ = 68.17
and α = 0.7866.
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FIG. 6. (Color online.) The average (across permutations)
mixing norm ||c||p(T ) decay curve from Fig. 5 as D (dashed
for D = 0.01 and solid for D = 0.5) and r (different colors) are
varied. All curves are rescaled with respect to Tmax = 1000.

best-fit values of the parameters. Thus, we obtain nu-
merical values for τ and α. Figure 5 illustrates this pro-
cedure for N = 4, r = 1.25 and D = 0.5: the light gray
curves represent ||c||p(T ) for the different permutations Π
considered, while the dark gray (red online) curve is the
average value of ||c||p(T ) across permutations, and the
dashed curve (blue online) is the fit according to Eq. (14).
We observe that the proposed fit function captures the
overall trend of the decay of the average mixing norm
quite well.
Next, we vary the diffusion coefficient D and subseg-

ment length ratio r, plotting the fit curves of the average
in Fig. 6. The more “complex” r is (see, e.g., the dis-
cussion in [19] about defining r as a continued-fraction
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D = 0.5 D = 0.01

r τ α τ α
1.25 = [1; 4] 68.17 0.7866 333.4 0.6471
1.2 = [1; 5] 39.73 0.8118 14.11 0.6385
1.4 = [1; 2, 2] 20.26 0.7772 12.26 0.6660
1.6 = [1; 1, 1, 2] 12.77 0.8526 73.15 0.6794
1.8 = [1; 1, 4] 13.73 0.7708 60.43 0.6017

TABLE II. Fit parameters of ||c||p(T ) according to the model
in Eq. (14) for the average mixing norm decay curves shown
in Fig. 6. Continued fraction expansions of r are given using
the notation in Eq. (15).

expansion of increasing length), the fewer iterations it
takes to reach complete mixing. Generally, though there
are exceptions, as a careful examination of Fig. 6 reveals.
Nevertheless, it takes fewer iterations to homogenize the
line segment with a larger diffusion coefficient (D = 0.5)
than with a smaller diffusion coefficient (D = 0.01), as
expected. As discussed above, the connection between
the value of r and the resulting cutting and shuffling be-
havior is highly nontrivial. Thus, our approach of com-
puting the average mixing curve (over all permutations
considered) and fitting it via two parameters provides
a clear and quantitative way to compare protocols with
different r and D.
Table II summarizes the values of τ and α for the differ-

ent cutting and shuffling systems shown in Figs. 5 and 6.
Each stretched-exponential fit quite accurately describes
an individual averaged mixing curve. Specifically, the
values for τ and α reported to four significant digits in
Table II are within the fits’ 95% confidence intervals to
two significant digits. Now, from the values of the fitting
parameters in Table II, we can infer that the time con-
stant τ is smaller for systems that reach complete mixing
in fewer iterations, as expected. Thus, amongst the five
choices of r considered,

r = 1.6 = 1 +
1

1 + 1
1+ 1

2

≡ [1; 1, 1, 2] (15)

results in the swiftest mixing (smallest time constant τ);
the continued fraction expansions for the remaining r val-
ues are provided in Table II.
Figure 7 shows the scatter plot of τ and α values. This

figure and approach to analyzing our data is inspired by
the so-called “τ -bias” scatter plots of McIlhany and Wig-
gins [54]. In [54], the normalized variance of concentra-
tion was used to quantify the degree of fluid mixing in a
microfluidic device. The parameters τ and bias were in-
troduced to quantify the evolution of the concentration
variance curve and, thus, mixing. The parameter τ is,
just as in the present work, interpreted as a time con-
stant describing the temporal decay of the variance of
concentration, while bias quantifies the “unmixedness”
of the final asymptotic state. In our work, bias = 0 in
all cases because the cutting and shuffling process with
diffusion leads to ci → c̄ for every lattice site i as T → ∞.
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FIG. 7. (Color online.) Scatter plot in the (α, τ ) plane of the
fit parameters for the average mixing norm decay curves from
Fig. 6 (see also Table II). “Good” mixing is observed near the
bottom-right corner of the scatter plot, while “poor” mixing
is observed near the top-left corner.

In [54], it was suggested that small values of both τ and
bias correspond to “good” mixing cases. For our prob-
lem, the best mixing case is on the bottom right of Fig. 7,
which corresponds to small τ but α closer to 1 (i.e., not
small). The worst mixing cases are on the top left of the
figure, which corresponds to a large τ and α far away
from 1. Therefore, we find out the relationship between
fitting parameters and mixing behaviors. Evidently, τ
and α exhibit nontrivial dependences on both the length
ratio r and the diffusion coefficient D.

C. Universal mixing curves and cut-offs

So far, we have shown (a) how to incorporate diffusion
into the mixing of a line segment by cutting and shuf-
fling and (b) how to quantify mixing across families of
protocols via the number of cutting interfaces and the
mixing norm. In this section, we would like to substan-
tiate, through numerical results, the central hypothesis
of this work: namely that “cut-offs” (and the associated
concept of “stopping times”) exist in IETs with diffu-
sion and, furthermore, all mixing behaviors exhibited by
cutting and shuffling with diffusion are, in a sense, uni-
versal. Guided by the work in [25, 27, 31], we now turn
our attention collapsing the mixing norm decay curves
of different IETs with diffusion onto a universal profile.
As Liang and West [31] note, “[t]o prove the existence
of a cutoff is in general very hard, relying on special fea-
tures of the sequence of systems,” thus, for the present
purposes, we also settle for numerical evidence thereof.
Liang and West [31] used the number of iterations,

denoted by TPe, required to decrease the initial value of
the mixing norm by 50%, i.e., TPe such that ||c||p(TPe) ≈
0.5||c||p(0), to collapse the mixing norm curves across dif-
ferent model parameters. While we can certainly com-
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FIG. 8. (Color online.) Rescaled mixing norm of the con-
centration/color versus the rescaled iterations, for a diffusion
coefficient of D = 0.5. All curves collapse as the horizontal
axis is scaled by the stretched exponentials’ e-folding time
TPe = τΓ(1 + 1/α); p = 2. The average universal mixing
profile (bold curve) corresponds to the fit of the average of all
the average rescaled mixing norm decay curves in this rescaled
plot. The best-fit parameters, according to Eq. (14), for the
average curve are τuniversal = 0.8706 and αuniversal = 0.7920.

pute such a TPe value numerically from the decay curves
of ||c||p(T ), here it is natural to use the e-folding time

of the stretched exponential fit from Eq. (14). In other
words, we define TPe as the number of iterations required
for ||c||p to decay by a factor of e−1. Based on the fit in
Eq. (14), we can calculate TPe exactly as

TPe = τΓ(1 + 1/α), (16)

where Γ(z) :=
∫

∞

0 ζz−1e−ζ dζ is the Gamma function.

The Pe [= L2/(DT ), recall Sect. II E] subscript reminds
us that this number depends on the relative “strength”
of diffusion in the problem. In the literature on finite
Markov chains, the number of iterations TPe would be
called the stopping time.
To collapse all the mixing norm decay across different

parameters, we now rescale each averaged mixing norm
decay curve (recall Sect. III B) as ||c||p(T ) 7→ ||c||p(T )/M
so that the mixing norm will range from 0 to 1; and,
we rescale T 7→ T/TPe. Then, we plot ||c||p(T )/M ver-
sus T/TPe, for all simulations that we have performed,
onto the single plot shown in Fig. 8. A clear collapse
of all the data is observed, when the horizontal axis is
rescaled by TPe = τΓ(1+ 1/α), which suggest that stop-
ping time can be approximated by the e-folding time of
the stretched exponential fit. In this plot, error bars de-
note one standard deviation from the mean (errors bars
are bounded by 0 from below, obviously) of all the con-
centration curves over all permutations that we have con-
sidered. Error bars are used in order to be able to provide
a sense for the behavior of all the possible (i.e., across the
allowed permutations Π) mixing norm decay profiles in
a single plot. (Note that these are not error bars quanti-
fying the uncertainty in the nonlinear least-squares fits.)

In Fig. 8, each curve corresponds to a given IET with a
fixed diffusion coefficient D, segment ratio r and number
of pieces N . The most enticing aspect of Fig. 8 is that
a single universal profile of the form given in Eq. (14)
can be fit to the average of all the average curves. It
can be calculated that this “average of averages” pro-
file, of ||c||p(T )/M versus T/TPe, has τuniversal = 0.8706,
αuniversal = 0.7920 (for the chosen D = 0.5), which are
now independent of N and r (unlike Table I and Fig. 6)!
Though Fig. 8 shows the relaxation of the line seg-

ment’s color to the mean through many different mixing
protocols, it is clear that (after the appropriate rescaling)
all IETs with diffusion behave in a universal way. How-
ever, to provide further evidence of a cut-off phenomenon,
we need to observe the transition from unmixed to mixed
sharpening as D becomes small (equivalently, as Pe be-
comes large), as in [31]. To do so, however, we need to
estimate TPe a priori on physical grounds, not by defin-
ing it via Eq. (16). When using the operational definition
in Eq. (16) to compute TPe, we find that the sensitivity
to Pe is weak, which is in line with the weak dependence
observed for some maps in [31]. Therefore, we would like
to determine whether a physically-motivated prediction
of TPe allows us to more clearly see a sharpening of the
concentration norm decay curves as Pe → ∞ and, thus,
to better substantiate the possibility of a cut-off.

D. Predicting the stopping time TPe

Schlick et al. [55] proposed a simple one-dimensional
analysis of diffusion between two subsegments of unequal
color (on a normalized domain with a given Pe), using an
analytic solution to the diffusion equation [i.e., Eq. (9)].
(Muzzio and Ottino [56] previously considered the related
case of reaction-diffusion.) In [55], the line segment was
taken to have length 2ℓ (i.e., each subsegment was of
length ℓ), and the colors were taken to be c1 = 0 and c2 =
1 without loss of generality. A solution was developed
using eigenfunctions, from which it was determined that
a subsegment length of ℓ∗, where

ℓ∗ = ℓ∗(T̂ ) = π

√

T̂

2Pe
, (17)

will be “washed out” in a characteristic normal-
ized/dimensionless time T̂ to be made precise below
(given a specific Péclet number Pe) [57]. Thus, based
on this analysis from [55], we pose the following ques-
tion: when will the average continuous-color subsegment
length, denoted ℓm, in our cutting and shuffling process
without diffusion reach ℓ∗? This question is important
because, if ℓm ≃ ℓ∗ then T̂ iterations of the cutting and
shuffling with diffusion (D 6= 0, for a given Pe) later,
the concentration of the striation will be damped out
(decrease) by e−2 ≈ 13.5% [55, p. 15]. In other words,

T̂ is the double-e-folding time of the advection–diffusion
process.
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For cutting and shuffling without diffusion (D = 0),
we first rescale the problem as in Sect. II E, which yields
the Péclet number definition (using a “velocity” scale
L/Tmax):

Pe =
L2

DTmax
. (18)

Under this rescaling both X̂ := X/L and T̂ := T/Tmax

run from 0 to 1. Then, the average subsegment length
(i.e., the average of the lengths of subsegments of con-
tinuous color) can be trivially shown to be given exactly
by

ℓm(T̂ ) =
1

Ĉ(T̂ ) + 1
. (19)

Here, as before, Ĉ(T̂ ) := C(T ) is the number cutting in-

terfaces as defined after T̂ normalized iterations so the
number of distinct subsegment of continuous color is
clearly Ĉ(T̂ ) + 1. Next, we seek to estimate the num-

ber of iterations T̂ required for diffusion to “wash out”
the color gradients.
To this end, in Fig. 9, we show visually how to de-

termine when ℓ∗ ≃ ℓm. In the absence of diffusion, the
number of iterations required for the latter condition to
hold is given by the T̂ values at the intersections of the
ℓm and ℓ∗ curves in Fig. 9. At these T̂ , we can expect
that diffusion dominates the dynamics, leveling the con-
centration gradients. Thus, we would like to argue that
these values of T̂ are estimates of the stopping times. Let
us introduce the notation T̂ = T̃Pe/Tmax (with the tilde
introduced to clearly distinguish this value from the one
in Sect. III C) for this normalized stopping time, which is
now defined based on Eqs. (17) and (19) as the solution
of

π

√

T̂

2Pe
=

1

Ĉ(T̂ ) + 1
. (20)

Unfortunately, since the number of cutting interfaces
C(T ) is a complicated function, for which we do not have
a closed form solution, Eq. (20) must be solved numeri-
cally.
Notice that, it may turn out that for a given Pe, there

is no solution to Eq. (20) (equivalently, the ℓ∗ curve might
never intersect the ℓm curve in Fig. 9). This situation oc-
curs if the dynamics of the diffusionless IET are periodic,
and the subsegment reassembles itself. In principle, our
design rules given in Sect. II B (specifically the exclusion
of certain permutations), should preclude the possibil-
ity of periodic dynamics in ℓm. If this were the case,
nevertheless, then the average subsegment length never
reaches the diffusion scale, thus for the given Pe value, it
is not expected that diffusion can significantly affect the
mixing over the given T̂ iterations [recall the discussion
of Eq. (17)]. Indeed, we might expect that as Pe → ∞,

the solution to Eq. (20), T̃Pe/Tmax → ∞ also.
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FIG. 9. (Color online.) Graphical illustration of solving for

T̂ = T̃Pe/Tmax such that ℓ∗(T̂ ) = ℓm(T̂ ). The average subseg-
ment length ℓm (in the absence of diffusion) is shown as the
light gray curves for N = 4, r = 1.2, Tmax = 500 and D = 0
for various Π; the curve labeled “average ℓm” is the average of
the light gray curves (i.e., over Π). The intersections of this
averaged curve with the ℓ∗ curves (different colors correspond
to different Pe values, as in the legend) yield the values of

T̃Pe/Tmax = 0.0740, 0.102, 0.136, 0.196, 0.284, 0.408.
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FIG. 10. (Color online.) Pe dependence of the average mixing
norm ||c||p(T ) for N = 4 and r = 1.2, with T rescaled using

T̃Pe = 45.01, 58.00, 79.00, 124.0, 142.0, 189.09 for D = 0.451,
0.225, 0.113, 0.0563, 0.0375, 0.0282, respectively, as per Fig. 9.

After obtaining the value of T̃Pe/Tmax numerically
from Eq. (20), we can verify whether the foregoing ar-
gument about the influence of diffusion is valid by calcu-
lating the mixing norm decay with the specific Pe given
initially, from which we immediately get the correspond-
ing diffusion coefficient to be used in a cutting and shuf-
fling simulation:

D =
L2

Pe Tmax
. (21)

To summarize: supposing a Péclet number (inverse di-
mensionless diffusivity) is known for a line segment of
length L normalized to 1, then ℓ∗ is estimated by Eq. (17)
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FIG. 11. (Color online.) Pe dependence of the average mix-
ing norm ||c||p(T ) for N = 4 and r = 1.4, with T rescaled

using T̃Pe = 37.0, 51.0, 68.0, 98.0, 142, 204 for D = 0.45024,
0.22512, 0.11256, 0.045024, 0.022512, 0.011256, respectively.
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FIG. 12. (Color online.) Pe dependence of the average mixing
norm ||c||p(T ) for N = 4 and r = 1.6, with T rescaled using

T̃Pe = 49.0, 65.0, 91.0, 124, 151, 172 for D = 0.446, 0.223,
0.112, 0.0558, 0.0372, 0.0279, respectively.

based on [55]. Next, the number of normalized itera-

tions T̃Pe/Tmax of the diffusionless (D = 0) cutting and
shuffling process until diffusion would “take over” is es-
timated from Eq. (20), from which T̃Pe trivially follows.
Next, to verify the latter is an estimate of the stopping
time, a cutting and shuffling simulation with diffusion
is performed, using the properly matched diffusivity ac-
cording to Eq. (21).
A result from this numerical approach is illustrated in

Fig. 10 for a select choice of N and r. Clearly, the other-
wise disparate mixing norm curves are grouped together
when plotting against T/T̃Pe for the estimated values

of T̃Pe obtained from Eq. (20) and as shown visually in
Fig. 9. More importantly, however, the grouping shows a
“steepening” of the profiles as Pe → ∞. This steepening
(as in [31]) is suggestive of a cut-off developing (a sharp
transition from an unmixed state to a mixed state), the
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FIG. 13. (Color online.) Dependence of the stopping time

T̃Pe, as calculated through Eq. (20), as a function of Pe for
three combinations of N and r.

ideal form of which is represented by the dashed vertical
line connecting 1 to 0 at T/T̃Pe = 1 in Fig. 10.
Figures 11 and 12 show a similar result, again for

N = 4 subsegments, but with ratios r = 1.4 and r = 1.6,
respectively; although less pronounced, the cut-off phe-
nomenon appears to be present. The differences can be
attributed to the improved mixing that occurs as r be-
comes “more irrational” (increasing continued fraction
expansion from 1.2 to 1.4 to 1.6 as in Table II). Thus,
the case of r = 1.2 in Fig. 10 is, in a sense, “special” in
clearly showing the steepening. Nevertheless, a steepen-
ing with increasing Pe is observed in all three Figs. 10,
11 and 12, providing numerical evidence suggestive of the
cut-off phenomenon, across different choices of N and r
in our cutting and shuffling process with diffusion.
Finally, having considered the effect of different N and

r, we would like to compare the various predictions in the
above discussion to understand the relationship between
T̃Pe and Pe. This dependence is shown in Fig. 13. In
general, the estimated stopping time T̃Pe increases with
Pe, which should be expected given the hypothesis of a
cut-off phenomenon. However, the specific dependence
appears to be sensitive upon the choice of N and r, and
no clear pattern emerges. Thus, it remains the subject of
future inquiry whether a specific functional form could be
determined to specify the relationship between T̃Pe and
Pe a priori.

IV. CONCLUSION

In the present work, we discussed the effects of in-
corporating diffusion into one-dimensional cutting and
shuffling maps represented by interval exchange transfor-
mations. The most obvious conclusion is that diffusion
leads to significantly enhanced mixing compared to cut-
ting and shuffling alone. However, in the presence of dif-
fusion, we must additionally be careful how we quantify
mixing. Specifically, a “mixing norm” is a more effective
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way to quantify the degree of mixing compared to the
number of cutting interfaces, a quantity of interested in
the dynamical systems theory of interval exchange trans-
formations.
Next, we proposed a parametrization of the possible

mixing behaviors. Indeed, the class of cutting and shuf-
fling protocols considered has a large parameter space:
the number of initial subsegments N , the adjacent sub-
segment length ratio r, the shuffling permutation Π, and
the diffusivity D can all be varied independently. Our
parametrization consists of fitting the decay of the mix-
ing norm with the number of iterations to two param-
eters: a time constant τ and a skewness parameter α,
which were both found to depend on the ratio r and on
the diffusion coefficient D, for fixed N . Through this ap-
proach, we showed that, even though a large number of
dynamical behaviors are possible, an appropriate rescal-
ing of the mixing norm decay curves leads to a universal

mixing curve, describing (within some error margin) all
cutting and shuffling protocols. This universality rests
upon the fact that a number of iteration for the mixing
norm to decay by a factor of e−1, denoted TPe, can be
found analytically as the e-folding time of the stretched
exponential fit of the mixing norm decay curve for each
protocol.
Another question we sought to address is whether cut-

offs, and the concomitant concept of stopping times, from
finite Markov chain theory apply here. To this end, we
sought to determine a critical number of iterations T̃Pe

(the stopping time) at which diffusion would “kick in”
thus homogenizing the mixture. In doing so, we explored
the limit of vanishing diffusivity (i.e., Pe → ∞), pro-
viding evidence (at least numerically) that the transition
from an unmixed stated becomes sharper as Pe → ∞.
Our numerical exploration provides initial evidence that
the concepts of cut-offs and stopping times, which el-
egantly explain that a deck of fifty-two cards requires
about seven (and not any more) shuffles to become ran-
domized, are relevant to interval exchange transforma-
tions with diffusion. Of course, unlike card shuffling, in-
terval exchange transformations possess significant com-
plexity. Even though such maps are easy to describe
qualitatively, their mathematical theory remains an ad-
vanced and difficult topic in dynamical systems. Our
results on cut-offs are also distinct from those by Liang
and West [31] because they considered chaotic maps in
several dimensions, while our interval exchanges are at
best weakly mixing (though never truly so since we work
on finite grids and with integer arithmetic).
A possible avenue of future work involves extending our

cutting and shuffling approach with diffusion to consider
chemical reactions occurring between the subsegments of
different color. Such an extension could connect to the
classical work on evolution and coarsening of lamellar
structures in chaotic mixing [43, 44, 56, 58]. (Lamellar

models of mixing remain an active topic of research today
[59].) The interplay between the lamellar width distri-
bution, coupled to chemical reactions and diffusion pro-
cesses, plays a key role in the evolution toward a steady
state and, thus, the final yield of a chemical reaction.
Clifford et al. [44] discussed these issues at length, how-
ever, overall they initially considered only “simple” ini-
tial arrangement. Specifically, Clifford et al. noted that a
weakness of their approach was that “lamellae can have
only two different widths, while realistic fluid flows gen-
erate lamellae with a wide range of widths” [44, p. 305].
Meanwhile, earlier work by Sokolov and Bluman con-
cluded that “the course of reaction is governed mainly by
mixing and not by diffusion or kinetics.” [58, pp. 3698–
3699]. Thus, cutting and shuffling a line segment with
reaction and diffusion presents a natural model in which
to capture such complexity.
As we have shown in the present work, when permuta-

tions leading to poor mixing and pathological cases are
excluded, the behavior of the remaining protocols of cut-
ting and shuffling with diffusion is, in a sense, universal
although the “stopping time” TPe is highly sensitive to
the details of the protocol. Conceivably, such universal-
ity persists in the presence of reactions with the stopping
time becoming the quantity one may wish to optimize.
Indeed, the lamellar distributions under pure reaction
and diffusion have been shown to evolve in a self-similar

manner [43, 56], suggesting some level of universality al-
ready exists in the process. Nevertheless, these remain
questions that must be addressed in future work.
Finally, we note in passing that a recently introduced

thermodynamic approach by Brassart et al. [60, 61] to
molecular mixing makes use of the same basic concepts as
in the continuum theories of the mixing of fluids: shear,
dilation, diffusion and “swap.” Brassart et al. [60, 61] de-
fine “swap” as “preserv[ing] the shape and the volume,
but chang[ing] the ratio of the two species of molecules”
in a piece of material [60, p. 50]. Indeed, this definition
coincides with the notion of cutting and shuffling dis-
cussed herein if we consider how the color changes with
iterations on an arbitrary finite piece of the original line
segment.
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