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GLOBAL EXISTENCE FOR THE DERIVATIVE NONLINEAR

SCHRÖDINGER EQUATION WITH ARBITRARY SPECTRAL

SINGULARITIES

ROBERT JENKINS, JIAQI LIU, PETER PERRY, AND CATHERINE SULEM

Abstract. We show that the derivative nonlinear Schrödinger (DNLS) equa-
tion is globally well-posed in the weighted Sobolev space H2,2pRq. Our result
exploits the complete integrability of DNLS and removes certain spectral con-
ditions on the initial data required by our previous work [7], thanks to Zhou’s
analysis on spectral singularities in the context of inverse scattering [21].
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1. Introduction

In this paper, we prove global well-posedness of the Cauchy problem for the
Derivative Nonlinear Schrödinger equation (DNLS)

(1.1)

#
iut ` uxx ´ iεp|u|2uqx “ 0, ε “ ˘1

upx, t “ 0q “ u0pxq
with initial condition u0 in the weighted Sobolev space

H2,2pRq “
 
u P L2pRq : u2pxq, x2upxq P L2pRq

(
.

In contrast to previous work using PDE methods [5, 6, 19], we impose no upper
bound on the L2-norm of the initial data (although we require more smoothness
and decay than these authors), and in contrast to previous work using completely
integrable methods [7, 8, 12, 13, 16], we make no spectral restrictions to “generic
initial data” that rule out singularities of the spectral data associated to the initial
condition. We use the complete integrability of DNLS discovered by Kaup and
Newell [10]. As we will explain, an essential ingredient of our work is Zhou’s ap-
proach to inverse scattering with arbitrary spectral singularities [21, 23], building
on the work of Beals and Coifman [1]; to our knowledge, the present paper consti-
tutes the first application of these techniques to global wellposedness questions for
integrable PDE’s that involves no spectral assumptions on the initial data. This
is significant in that Zhou’s methods are quite general and are likely applicable to
wellposedness questions for other integrable PDE’s in one space dimension.

To describe our results more precisely, we recall that the invertible gauge trans-
formation

Gpuqpxq “ upxq exp

ˆ
iε

ż 8

x

|upyq|2 dy
˙

maps solutions of (1.1) to solutions of

(1.2)

$
&
%

iqt ` qxx ` iεq2q̄x ` 1

2
|q|4q “ 0, ε “ ˘1

qpx, t “ 0q “ q0pxq.
Equation (1.2) is more directly amenable to inverse scattering. It is shown in [3]
that G is a continuous map from Hs to Hs, s ą 1{2. It is straightforward to
check that it is a locally Lipschitz continuous map from H2,2pRq to itself. Indeed,

denoting ϕpuq “
ş8

x
|upyq|2 dy and writing Gpuq “ u `

`
eiεϕ ´ 1

˘
u, it is sufficient

to prove the map u ÞÑ eiεϕ is Lipschitz continuous from H2,2pRq into W 2,8pRq and
apply the Leibnitz rule. In particular, one easily prove that

}1 ´ eiε
ş8
x

p|upyq|2´|vpyq|2qdy}W 2,8 À }u ´ v}H2,2

where the implied constants may depend on }u}H2,2 and }v}H2,2 . Global wellposed-
ness in H2,2pRq for equations (1.1) and (1.2) are thus equivalent. In the following,
we fix ε “ ´1, since solutions of (1.2) with ε “ 1 are mapped to solutions of (1.2)
with ε “ ´1 by qpx, tq ÞÑ qp´x, tq. The main result of the paper is the following
theorem:

Theorem 1.1. Suppose that q0 P H2,2pRq. There exists a unique solution qpx, tq
of (1.2) with qpx, t “ 0q “ q0 and t ÞÑ qp ¨ , tq P Cpr´T, T s, H2,2pRqq for ev-
ery T ą 0. Moreover, the map q0 ÞÑ q is Lipschitz continuous from H2,2pRq to
Cpr´T, T s, H2,2pRqq for every T ą 0.
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The Cauchy problem for equation (1.1) is locally well-posed in H1pRq as well as
in weighted spaces Hm,0 X H0,m (m ě 1) and it is globally well-posed for small
initial data [18, 6]. More precisely, it was proved in [6] that for any initial condition
u0 P H1pRq such that }u0}L2 ă

?
2π, global wellposedness holds in H1pRq. The

smallness condition was recently improved to }u0}L2 ă
?
4π (or }u0}L2 “

?
4π with

additional conditions on initial data) [19, 5].
The present paper also builds on previous work of the co-authors which proved

global wellposedness of DNLS for initial conditions u0 in weighted Sobolev spaces
under some additional conditions that exclude the so-called spectral singularities
[7, 14, 16]. In this context, we proved global well-posedness for data in an open and
dense set of H2,2pRq which allows finitely many resonances, which refer to eigen-
values away from the continuous spectrum but no spectral singularities, and also
established the long-time behavior of solutions in the form of the soliton resolution
[8]. We will discuss precisely in Section 2 the meaning of spectral singularities.
In the present paper, we remove all spectral assumptions on the initial data and
obtain global well-posedness of the DNLS equation for general initial condition in
H2,2pRq.

Our approach is inspired by the work of Zhou, who, in a series of papers [21,
22, 23], developed new tools to construct direct and inverse scattering maps that
are insensitive to singularities of the spectral data. We emphasize that spectral
singularities may affect the long-time behavior of solutions, in the same way that
eigenvalues affect the long-time behavior of solutions through soliton resolution (see
[8] where the soliton resolution conjecture is proved for generic initial data). In the
case of the focusing cubic nonlinear Schrödinger equation, Kamvissis [9] studied
the effect of a single spectral singularity on the large-time behavior of solutions.
He showed that the latter is limited to the region of the px, tq-plane in which the
spectral singularity is close to the point of stationary phase, and there, slightly
modifies the rate of decay. In a future paper, we will investigate how spectral
singularities affect the long-time behavior of DNLS solutions. A new version of
the inverse scattering transform has been recently introduced by Bilman and Miller
[2] to deal with arbitrary-order poles and spectral singularities in the context of
focusing NLS with non-zero boundary conditions. This method relies on the initial
value problem for the Lax pair and avoids the use of a cut-off potential.

Occurrence of spectral singularities in the spectral problem is not an exceptional
phenomenon. In the context of the focussing NLS equation, Zhou [21] constructed
one example in which Schwartz class potential leads to infinitely many eigenvalues
accumulating on the real line to form a spectral singularity and another example
where infinitely many spectral singularities accumulate. In Appendix B of [7], we

analyzed a family of potentials of the form qpxq “ A sechpxqeiφpxq for which one can
explicitly compute the scattering data, thus illustrating various characterizations
of the spectral map. In particular, we exhibit potentials for which the associated
spectral problem has either no discrete spectrum, or exactly n eigenvalues and no
spectral singularities, or n eigenvalues and one spectral singularity.

To explain our methods, we will sketch the completely integrable method for
(1.2) as discovered by Kaup and Newell [10] in two steps. First, we describe how
the method works when the initial data do not support solitons or spectral sin-
gularities. Next, we describe how Zhou’s method [21, 23] can be extended to the
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DNLS equation to construct global solutions in the presence of solitons and spectral
singularities.

1.1. The Inverse Scattering Method: No Singularities. Kaup and Newell
[10] showed that the flow determined by (1.2) may be linearized by spectral data
associated to the linear problem

(1.3)
d

dx
Ψpx, ζq “ ´iζ2σΨ ` ζQpxqΨ ` P pxqΨ, ζ P R Y iR

where Ψpx, ζq is a 2 ˆ 2 matrix-valued function of x and

(1.4)

σ “
ˆ
1 0

0 ´1

˙
,

Qpxq “
ˆ

0 qpxq
´qpxq 0

˙
, P pxq “

ˆ
p1 0

0 p2

˙
“ i

2

ˆ
|qpxq|2 0

0 ´|qpxq|2
˙
.

Later, it will be convenient to set Ψpx, ζq “ mpx, ζqe´ixζ2σ, so that m solves the
equation

(1.5)
d

dx
mpx, ζq “ ´iζ2 adpσqm ` ζQpxqm ` P pxqm

where

adpσqA “ σA ´ Aσ.

Equation (1.3) admits bounded solutions provided q P L1pRqXL2pRq and ζ P RYiR.
There exist unique solutions Ψ˘px, ζq of (1.3) satisfying the respective boundary
conditions

lim
xÑ˘8

Ψ˘px, ζqeiζ2xσ “ I, I “
ˆ
1 0

0 1

˙
.

These Jost solutions have determinant 1 and define action-angle variables a and b

for the flow (1.2) through the relation

Ψ`px, ζq “ Ψ´px, ζq
ˆ
apζq bpζq
b̆pζq ăpζq

˙
.

That is, if qpx, tq solves (1.2), and apζ, tq and bpζ, tq are the corresponding scattering
data for qp¨, tq, then

(1.6) 9apζ, tq “ 0, 9bpζ, tq “ ´4iζ4bpζ, tq.
Thus, if the map q ÞÑ pa, bq can be inverted, one can hope to solve (1.2) via a
composition of the direct scattering map q Ñ pa, bq, the flow map defined by (1.6),
and the inverse map pa, bq ÞÑ q.

The functions a and ă have analytic extensions to the respective regions Ω´ “
tIm z2 ă 0u and Ω` “ tIm z2 ą 0u (see Figure 1.1). Zeros of a (resp. ă) in Ω´

(resp. Ω`) are associated to soliton solutions of (1.2), while zeros of a or ă on
R Y iR are called spectral singularities. For the moment, we assume that a and ă

are zero-free in their respective regions of definition. This allows us to define the
reflection coefficients

(1.7) rpζq “ b̆pζq{apζq, r̆pζq “ bpζq{ăpζq, ζ P R Y iR.

The map q ÞÑ r is the direct scattering map. One can recover a and b from r

by solving a scalar Riemann-Hilbert problem. By symmetry one has that that

r̆pζq “ ´rpζq.
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In his thesis, J.-H. Lee [11] formulated the inverse scattering map as a Riemann-
Hilbert problem (RHP) in which r and r̆ enter as jump data for a piecewise analytic
function. To describe it, denote by R Y iR the oriented contour, shown in Figure
1.1a, that bounds Ω˘ with Ω` to the left and Ω´ to the right. An oriented contour
that divides C into two such regions Ω` and Ω´, is called a complete contour.

Denote by m˘ the renormalized Jost solutions m˘ “ Ψ˘eixζ
2σ. Let m`

1
and

m`
2

denote the first and second columns of m`, with a similar notation m´
1
,m´

2
for

the columns of m´. From the integral equations (2.2)–(2.5), it is easy to see that,
for each x, m´

1
px, ζq and m`

2
px, ζq extend to analytic functions of z P Ω`, while

m`
1

px, ζq and m´
2

px, ζq extend to analytic functions of z P Ω´. From these columns,
one can construct left and right Beals-Coifman solutions Mpx, zq of (1.5) which are
piecewise analytic for z P CzpR Y iRq and normalized so that limxÑ8 Mpx, zq “ I

(right-normalized, (2.8)) or limxÑ´8 Mpx, zq “ I (left-normalized, (2.9)). In what
follows, we discuss the right-normalized solution. Enforcing these normalizations
involves division by a and ă so any zeros of a and ă would create new singularities.

The Beals-Coifman solution solves a Riemann-Hilbert problem (RHP) in the z

variable. Thus x plays the role of a parameter and, for each x, the function Mpx, zq
is piecewise analytic in z with prescribed asymptotics as z Ñ 8 and prescribed
multiplicative jumps along the contour R Y iR.

(a) The Regions Ω
˘ and the Contour

R Y iR

Ω´

Ω´

Ω`

Ω`

R

iR

(b) Zeros of a and ă

ˆˆ

ăpζq

ăpζq apζq

apζq

R

iR

Figure 1.1

More precisely, for each x, the piecewise analytic function Mpx, ¨ q solves the
following Riemann-Hilbert problem.

Riemann-Hilbert Problem 1.2. For each x P R, find an analytic1 function
Mpx, ¨q : CzpR Y iRq Ñ SLp2,Cq with:

(i) limzÑ8 Mpx, zq “ I,

(ii) M has continuous boundary values M˘ as z Ñ ζ P R Y iR from Ω˘, and

1If a has zeros, M is meromorphic and discrete data for each pole must be added to close the
problem. For the present, we assume that a and ă are zero-free.
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(iii) M˘ obey the jump relation

M`px, ζq “ M´px, ζqe´ixζ2
adσvpζq

where

e´ixζ2
adσvpζq “

˜
1 ` |rpζq|2 e´2ixζ2

rpζq
´e2ixζ

2

r̆pζq 1

¸
.

The matrix e´ixζ2
adσv is called the jump matrix for the RHP 1.2. We recover

qpxq through the asymptotic formula

(1.8) qpxq “ 2i lim
zÑ8

zM12px, zq

which may easily be deduced from the large-z-expansion for Mpx, zq and the fact
that Mpx, zq satisfies (1.5).

RHP 1.2 and the reconstruction formula 1.8 define the inverse scattering map.

1.2. The Inverse Scattering Method: Singularities. So far, we have assumed
that a and ă are zero-free; however, zeros of a and ă do occur for data of physical
interest. By the symmetries

(1.9) ăpζq “ apζq, ap´ζq “ apζq,
zeros of a and ă in CzpR Y iRq occur in “quartets” as shown in Figure 1.1b. These
quartets correspond to soliton solutions of (1.2). The further symmetry

(1.10) bp´ζq “ ´bpζq, b̆pζq “ ´bpζq
and the determinant condition

apζqăpζq ´ bpζqb̆pζq “ 1

imply that

|apitq|2 ´ |bpitq|2 “ 1

for all real t, so a has no zeros on the imaginary axis. However, zeros of a on the
real axis may occur and correspond to spectral singularities. RHP 1.2 is no longer
solvable since the jump matrix v now has singularities on the contour R Y iR;
moreover, any zeros of a and ă in their domains of analyticity will make the Beals-
Coifman solutions meromorphic rather than analytic.

On the other hand, any zeros of a and ă lie in the disc

Bp0, Rq “ tz : |z| ă Ru,
where R is determined by }q}H2,2 (see, for example, [14, Proposition 3.2.5]). More-
over, for }q}H2,2 sufficiently small, a and ă are zero-free on their respective domains.
We will say that such a potential has zero-free scattering data.

Zhou’s insight in [21, 23] is that RHP 1.2 can be modified in the following way.
First, choose R so large that a and ă have no zeros in CzBp0, Rq, and denote by
ΣR the circle of radius R centered at 0.

Choose x0 ą 0 sufficiently large so that the potential

(1.11) qx0
pxq “

#
0, x ď x0

qpxq x ą x0
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has zero-free scattering data; a sufficient condition to achieve this is that

sup
|z|ďR

}zQ ` P }L1pxąx0q ă 1{2

(see Section 2, (2.12) and the discussion that follows).
Note that both x0 and R may be chosen uniformly for q in a bounded subset of

H2,2pRq. Next, let M p0qpx, zq denote the solution to RHP 1.2 for qx0
. The function

M p0q is analytic in CzpR Y iRq with continuous boundary values M
p0q
˘ on R Y iR.

Indeed, resonances and spectral singularities for qx0
are ruled out by the small norm

assumption.

Remark 1.3. Although the sharp cutoff potential qx0
is not in the H2,2 space, it is

in H0,2 and we will only need this decay property to construct H2,0 scattering data
on a bounded set.

Denote by M p1q the unique solution of the Volterra integral equation

(1.12) M p1qpx, ζq “ I `
ż x

x0

eipy´xqζ2
adσ

´
ζQpyqM p1qpy, ζq ` P pyqM p1qpy, ζq

¯
dy

and define

(1.13) M p2qpx, ζq “ M p1qpx, ζqe´ipx´x0qζ2
adσM p0qpx0, ζq.

Since M p2q and M p0q agree at x “ x0, it follows by uniqueness that M p2qpx, ζq “
M p0qpx, ζq for all x ě x0. We notice that M p1qpx0, zq is entire in z, thus M p2qpx0, zq
and M p0qpx0, zq share the same domain of analyticity. Define the contour

Σ “ R Y iR Y Σ8, Σ8 “ t|z| “ Ru

oriented as in Figure 1.2a, and define

(1.14) Mpx, zq “
#
Mpx, zq, z P CzpBp0, Rq Y Σq
M p2qpx, zq, z P Bp0, RqzΣ,

The function Mpx, zq is piecewise analytic on Cz pBp0, Rq Y pR Y iRqq because a

and ă are zero-free for |z| ą R. By construction, the function M p2q is piecewise
analytic in Bp0, RqzpR Y iRq. The new unknown Mpx, zq obeys RHP 3.7.

The jump matrix of the Riemann-Hilbert problem for Mpx, zq is unchanged
outside the circle Σ8 but is replaced inside by new jump data that may be explicitly
computed from q0 and qx0

; see Section 2 for a full discussion. Since Mpx, ζq “
Mpx, ζq in a neighborhood of infinity, we can still recover q from the reconstruction
formula (1.8). To carry out the analysis, we change variables from ζ to λ “ ζ2 and
actually analyze RHP 3.1.
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(a) The augmented contour

Σ “ R Y iR Y Σ8

in the ζ-plane

`
´`

´

´
`

`
´

´`

`

´

´

`

´ `

´ `

`

´

` ´

´

`

rΩ1
rΩ2

rΩ3
rΩ4

rΩ5
rΩ6

rΩ7
rΩ8

(b) The augmented contour

Γ “ R Y Γ8

in the λ-plane

`

´

´

`

´

`

Ω4

Ω3

Ω2

Ω1

Γ`
8

Γ´
8

S8´S8

Figure 1.2. The Augmented Contour Γ for the Modified Riemann-
Hilbert Problem RHP 3.1 and its preimage Σ in the ζ-plane. The regions
Ω` “ Ω1 Y Ω4 (shaded) and Ω´ “ Ω2 Y Ω3 lie, respectively, to the left
and right of Γ.

To analyze the direct map (from the given potential q0 to the jump matrix for the
augmented contour Σ) and the inverse map (from the jump matrix to the recovered
potential) it is helpful to exploit the symmetry reduction of the spectral problem
(1.3) to the spectral variable λ “ ζ2. Under the map ζ ÞÑ ζ2, the augmented
contour Σ is mapped to the contour

(1.15) Γ “ R Y Γ8, Γ8 “ t|z| “ S8u
with induced orientation as shown in Figure 1.2b; the shaded and unshaded regions
shown in Figure 1.2a are mapped to the shaded and unshaded regions shown in
Figure 1.2b. The circle Σ8 is mapped to Γ8, the circle of radius S8 “ R2; we let
Γ˘

8 “ Γ8 X C˘. The augmented contour Γ in Figure 1.2b decomposes CzΓ into
two sets2 Finally, in what follows, we will set

(1.18) R8 “ Rzr´S8, S8s,
the part of the contour R outside the circle Γ8.

In the rest of the paper, the letter z is used as a general notation for a complex
variable off contours, while ζ refers the variable on the contour Σ and λ “ ζ2 to
the variable on the contour Γ.

2The notation for the sets Ω˘, consistent with our use of subscripts for boundary values, should
not be confused with the superscripted sets Ω˘ “ t˘ℑz2 ą 0u previously introduced.

(1.16) Ω` “ Ω1 Y Ω4 and Ω´ “ Ω2 Y Ω3

such that Ω` (resp. Ω´) lies everywhere to the left (resp. right) of Γ. The contour Γ can be
viewed simultaneously as the boundary of Ω` or Ω´, and we will write

(1.17) Γ` “ BΩ` or Γ´ “ BΩ´

when we want to emphasize either interpretation.
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One can compute the jump data for the Riemann-Hilbert problem on the contour
Γ explicitly in terms of scattering data for q, scattering data for qx0

, and normalized
Jost solutions for q (see Figure 2.1 and Proposition 2.2; it is then easy to show that
the direct spectral map from q P H2,2pRq to these scattering data is continuous in
a natural topology on the jump data (see Theorem 2.7 for a precise statement).

It remains to show that the scattering data can be time-evolved continuously and
that RHP with scattering data as described in Theorem 2.7 can be uniquely solved
and used to recover the potential q. To do so, much as in [7] and [13], we show
that the Riemann-Hilbert problem in the λ variables is equivalent to a Riemann-
Hilbert problem in the ζ-variable which is uniquely solvable. We then apply Zhou’s
uniqueness theorem (see Proposition 2.1 and [20]) to obtain unique solvability. We
also need to show that the recovered potential is continuous in the scattering data;
this will follow from Zhou’s results [23] and our previous results on the scattering
transform in [13].

Finally, we sketch the content of the paper.
Section 2 is devoted to the direct scattering map. In Section 2.1, we recall the

basic properties of the scattering problem and Beals-Coifman solutions in the ζ

variables. In Sections 2.2 and 2.3, we construct the scattering data in the ζ and
λ variables. The goal is to choose the scattering data so the inverse scattering
problem will allow a reconstruction formula for the potential. For this purpose, we
implement Zhou’s method to deal with spectral singularities. In this setting, the
usual Beals-Coifman solutions are changed to piecewise analytic functions according
to (1.14). We give explicit formulas for the corresponding jump matrices along the
augmented contours.3 We use Zhou’s approach [23] (see also Trogdon-Olver [17])
to address the matching conditions at the intersection points of the contours and
give a full description of the jump matrices and their factorization. In Section 2.4,
we establish the time evolution of the scattering data. Finally, as shown in [4,
Lemma 3.4] in the absence of spectral singularities, right and left RHPs are needed
to obtain decay rate of the potential as x Ñ ˘8, there are separate left and right
augmented RHPs for the same purpose in this paper. In section 2.5, we compute
the auxiliary matrix that relates their corresponding jump matrices (see (2.34)).
This result allows us to focus on the right RHP thereafter.

In Section 3, we show that the RHP with the augmented contour and the jump
matrices, as derived in Sections 2.2 and 2.3 has a unique solution. The proof follows
the lines of the proof given in [14]. Suppose the RHP in λ has a null vector N,
i.e., a solution which satisfies the jump conditions but vanishes as z Ñ 8. This
null vector corresponds to a homogeneous solution ν of the Beals-Coifman integral
equation for the RHP, and induces a homogeneous solution µ to the Beals-Coifman
integral equation for the RHP in the ζ variable which is the zero solution due to
Zhou’s vanishing lemma [20, Theorem 9.3]. It follows from Fredholm theory that
the Beals-Coifman equation for µ is uniquely solvable, and hence that the RHP in
the λ variable is also uniquely solvable.

As in [7], we establish the existence and uniqueness of solutions to the RHP for
scattering data in a larger space Y (see Definition 3.3) in order to obtain uniform
resolvent estimates for scattering data in bounded sets of a smaller space.

3In [23], the non-zero off-diagonal entries are not calculated explicitly.
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In Section 4, we establish the mapping properties of the inverse scattering map
and estimate the potential obtained from the reconstruction formula in the λ vari-
able. This analysis requires another technical step taken from Zhou’s method [23].
As seen in Fig. 1.2b, the orientation of the piece of the contour pS´

8, S`
8q goes from

right to left. A second augmentation shown in Figure 4.1 allows the new contour
to have the usual orientation thus allowing standard estimates of the Cauchy pro-
jectors on R to be used to obtain decay estimates on the potential. The Lipschitz
continuity follows from the second resolvent identity.

To analyze Riemann-Hilbert problems with self-intersecting contours, we make
use of certain Sobolev spaces of functions that obey continuity conditions at self-
intersection points. For the reader’s convenience, we briefly describe these Sobolev
spaces in Appendix A. In Appendix B, we present the necessary abstract functional
analysis tools used to prove uniform resolvent estimates needed for the Lipschitz
continuity of the inverse scattering map presented in Section 4.

We end the introduction by discussing the role that factorization of the jump
matrix plays in our application of the Beals-Coifman approach to inverse scattering.
In Figure 1.2b, the oriented contour divides the complex plane into positive and
negative regions. We factorize the jump matrix

Jpλq “ J´pλq´1J`pλq

where W` “ J` ´ I and W´ “ I ´ J´ belong to H1pΓ˘q and are continuous
across the intersections between straight line contours and circular arcs, respecting
the orientations. This continuity means that the matrix pair pW`,W´q belongs
to a pair of decomposing algebras pH1pΓ`q, H1pΓ´qq in the sense of Zhou; see [20,
Sec. 9]) where a general theory of Riemann-Hilbert problems on self-intersecting
contours is presented. As shown by Zhou, this decomposition implies that the
Beals-Coifman integral operator (3.2) is Fredholm. Unique solvability of (3.2) then
follows from the Fredholm alternative and an appropriate vanishing lemma (the
statement that the homogeneous version of (3.2) has no nonzero solutions).

In our case, we need to show that the Beals-Coifman operator

CJf “ C`
Γ

pfW´q ` C´
Γ

pfW`q

is Fredholm. For this purpose, following Zhou, we approximate W˘ by rational
functions; in this approximation, the operator C˘

W¯
˝ C¯

W˘
is compact. We thus

obtain a Fredholm regulator of the Beals-Coifman operator (see [20, Prop. 4.1]).
Another way to think about the compactness is that continuity across intersection
points prevents singularities near these points which might otherwise occur, spoiling
the compactness.

2. The Direct Scattering Map

2.1. The scattering problem in the ζ variable. The system (1.5) can be writ-
ten in the form of an integral equation for the 2 ˆ 2 matrix mpx, ζq

(2.1) mpx, ζq “ I `
ż x

δ

eipy´xqζ2
adσ pζQpyqmpy, ζq ` P pyqmpy, ζqq dy,

where the lower limit δ can be different for various choices of normalization. We
will use several solutions of (2.1). The standard AKNS method starts with the
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following two Volterra integral equations as special cases of (2.1) for Im ζ2 “ 0:

m˘px, ζq “ I `
ż x

˘8

eipy´xqζ2
ad σ

`
ζQpyqm˘py, ζq ` P pyqm˘py, ζq

˘
dy,

which are expressed in componentwise form as
ˆ

m`
11

px, ζq
m`

21
px, ζq

˙
“

ˆ
1

0

˙
´
ż 8

x

ˆ
ζqm`

21
` p1m

`
11

e2iζ
2px´yq

“
´ζqm`

11
` p2m

`
21

‰
˙

dy(2.2)

ˆ
m`

12
px, ζq

m`
22

px, ζq

˙
“

ˆ
0

1

˙
´
ż 8

x

ˆ
e´2iζ2px´yq

“
ζqm`

22
` p1m

`
12

‰

´ζqm`
12

` p2m
`
22

˙
dy(2.3)

ˆ
m´

11
px, ζq

m´
21

px, ζq

˙
“

ˆ
1

0

˙
`
ż x

´8

ˆ
ζqm´

21
` p1m

´
11

e2iζ
2px´yq

“
´ζqm´

11
` p2m

´
21

‰
˙

dy(2.4)

ˆ
m´

12
px, ζq

m´
22

px, ζq

˙
“

ˆ
0

1

˙
`
ż x

´8

ˆ
e´2iζ2px´yq

“
ζqm´

22
` p1m

´
12

‰

´ζqm´
12

` p2m
´
22

˙
dy.(2.5)

By uniqueness theory for ODEs and the normalizations of m˘ as x Ñ ˘8, m˘px, ζq
defined by (2.2)–(2.5) are related by a matrix Apζq with detApζq “ 1 in the form

m`px, ζq “ m´px, ζqe´ixζ2
adσApζq, Apζq “

ˆ
a b̆

b ă

˙
.

The matrix-valued function Apζq is expressed in terms of mp˘q as

apζq “ 1 ´
ż 8

´8

`
ζqm`

21
` p1m

`
11

˘
dy “ 1 `

ż 8

´8

`
´ζqm´

12
` p2m

´
22

˘
dy,(2.6)

ăpζq “ 1 ´
ż 8

´8

`
´ζqm`

12
` p2m

`
22

˘
dy “ 1 `

ż 8

´8

`
ζqm´

21
` p1m

´
11

˘
dy,(2.7)

and

bpζq “
ż 8

´8

e´2iζ2y
`
ζqm`

11
´ p2m

`
21

˘
dy “

ż 8

´8

e´2iζ2y
`
ζqm´

11
´ p2m

´
21

˘
dy,

b̆pζq “ ´
ż 8

´8

e2iζ
2y
`
ζqm`

22
` p1m

`
12

˘
dy “ ´

ż 8

´8

e2iζ
2y
`
ζqm´

22
` p1m

´
12

˘
dy.

We now construct the Beals-Coifman solutions needed for the RHP in the form of
piecewise analytic matrix functions. The left and right Beals-Coifman solutions are
constructed from the normalized Jost solutions as follows:

MRpx, zq “

$
’’’’&
’’’’%

„
m´

1
px, zq

ăpzq , m`
2

px, zq

, Im z2 ą 0

„
m`

1
px, zq, m

´
2

px, zq
apzq


, Im z2 ă 0

(2.8)

MLpx, zq “

$
’’’’&
’’’’%

„
m´

1
px, zq, m

`
2

px, zq
ăpzq


, Im z2 ą 0

„
m`

1
px, zq

apzq ,m´
2

px, zq

, Im z2 ă 0.

(2.9)
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The Beals-Coifman solutions are piecewise meromorphic with continuous bound-
ary values denoted ML,˘ and MR,˘ as ˘ Im z2 Ó 0, in the absence of spectral
singularities. The Beals-Coifman solutions corresponding to the potential qx0

are
constructed similarly.

From here onward, we will analyze the right Beals-Coifman solution (2.8) and
drop the subscripts R and L. The left RHP is connected to the right RHP through
multiplication by an auxiliary scattering matrix which is constructed in Section 2.5.

2.2. Construction of the scattering data in the ζ variable. In this subsection,
we construct the piecewise analytic function M p2qpx, zq introduced in (1.14) and
defined inside the circle Σ8 from which one extracts scattering data in the form
of jump matrices along the contour Σ8. In this subsection, M denotes the right-
normalized Beals-Coifman solution MR.

Combining (2.4) and (2.3), we obtain

(2.10)
“
m´

1
,m`

2

‰
“ I `

ż x

δ

eipy´xqζ2
ad σ

`
pζQpyq ` P pyqq

“
m´

1
pyq,m`

2
pyq

‰˘
dy

where δ is chosen differently for the different entries of the matrix, namely δ “ ´8
for the (1-1) and (2-1) entries and δ “ `8 for the (1-2) and (2-2) entries. Using
(2.7), we rewrite (2.10) as

“
m´

1
,m`

2

‰
“

ˆ
ă 0

0 1

˙
`
ż x

δ

eipy´xqζ2
adσ

`
pζQpyq ` P pyqq

“
m´

1
pyq,m`

2
pyq

‰˘
dy

where δ “ ´8 for the (2-1) entry and δ “ `8 for the (1-1), (1-2) and (2-2) entries.

If the inverse of

ˆ
ă 0

0 1

˙
exists, we obtain a Fredholm equation for M defined in

(2.8):

(2.11)

„
m´

1

ă
, m`

2


“ I `

ż x

δ

eipy´xqζ2
adσ

ˆ
pζQpyq ` P pyqq

„
m´

1

ă
, m`

2

˙
dy

and
“
m´

1
{ă, m`

2

‰
solves (2.11) iff ăpζq ‰ 0.

The right-normalized Beals-Coifman solution M is analytic in the intersection
of ˘ Im z2 ą 0 and |z| ą R, where R is chosen so large that any zeros of a and
ă are contained inside the disc Bp0, Rq “ tz : |z| ď Ru. We now show how to
construct solutions M p2qpx, ζq, analytic inside this disc, and modify the Riemann-
Hilbert problem accordingly.

Recall from (1.11), for x0 " 1, denote by qx0

qx0
pxq “

#
0, x ď x0

qpxq x ą x0

and denote by Qx0
and Px0

the matrices (1.4) with q replaced by qx0
. We choose

x0 so that

(2.12) sup
ζPBp0,Rq

}ζQx0
` Px0

}L1 ă 1{2.

This condition guarantees that there is a bounded Beals-Coifman solution M p0q

normalized as x Ñ 8 associated to the potential qx0
in the form of (2.8). To see
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this, first note that the equation

(2.13) mpx, ζq “ I `
ż x

δ

eipy´xqζ2
ad σ pζQx0

pyqmpy, ζq ` Px0
pyqmpy, ζqq dy,

(where δ “ ´8 for the (2-1) entry and δ “ `8 for the (1-1), (1-2) and (2-2) entry)
is uniquely solvable for ζ P Bp0, Rq owing to the smallness condition (2.12).

Next, we claim that that ă0pzq associated to qx0
is nonzero for z P Ω` XBp0, Rq;

we prove this statement by contradiction. Suppose that there exists z0 such that
(2.12) holds and mpx, z0q solves (2.13), but ăpz0q “ 0. By uniqueness, there exists
a non-singular matrix Bpz0q such that

mpx, z0q “
“
m´

1
,m`

2

‰
e´ixz2

0
adσBpz0q.

Here, m´
1
,m`

2
are the Jost solutions (2.3) and (2.4) associated to the potential qx0

.
Letting x Ñ `8 and using (2.7), we obtain

ˆ
1 0

˚ 1

˙
“

ˆ
0 0

˚ 1

˙
e´ixz2

0
adσBpz0q,

which leads to a contradiction. Thus the cutoff potential qx0
supports neither eigen-

values nor spectral singularities in Bp0, Rq, so that we can construct a bounded
Beals-Coifman solution of the form (2.8) associated to the potential qx0

and nor-

malized as x Ñ 8. We denote by M p0q this unique bounded solution.
Using the solutions Mpzq and M p0q corresponding to to the initial data potential

q and the related potential qx0
, respectively, one defines a new functon M using

Zhou’s constructions as described in (1.12)-(1.14) above. The matrix M is analytic
in CzΣ, and we can compute the jump matrix

vpζq “ eixζ
2
adσ

M´px, ζq´1
M`px, ζq

explicitly across the various parts of the augmented contour Σ. Along the contour
R Y iR, outside of the circle,

(2.14) vpζq “

¨
˝

1 ´ rpζqr̆pζq rpζq

´r̆pζq 1

˛
‚ .

Along the contour R Y iR inside of the circle,

vpζq “

¨
˝

1 ´r0pζq

r̆0pζq 1 ´ r0pζqr̆0pζq

˛
‚ .

Here, the subscript “0” denotes the scattering data generated by qx0
.

Since both M and M p2q are solutions of (1.5) with non-vanishing determinant,we
have

(2.15) vpζq “ eixζ
2
adσ

´
M p2qpx, ζq´1Mpx, ζq

¯

along the circle Σ8. In particular, setting x “ x0, we obtain vpζq in terms of Jost
functions. Across the arc in the first and third quadrant, we have:

e´ix0ζ
2
adσvpζq “ M p2qpx0, ζq´1Mpx0, ζq “

¨
˚̊
˝

1 0

m´
21

px0, ζq
ăpζqă0pζq 1

˛
‹‹‚.(2.16)
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Across the arc in the second and fourth quadrant, we have:

e´ix0ζ
2
adσvpζq “ M p2qpx0, ζq´1Mpx0, ζq “

¨
˚̊
˝

1 ´m´
12

px0, ζq
apζqa0pζq

0 1

˛
‹‹‚.(2.17)

Denote by A: the hermitian conjugate of the matrix A. The following property of
v will be used later to prove the unique solvability of the RHP (Proposition 3.9).

Proposition 2.1. The jump matrix v along the contour Σ, defined in (2.14)-
(2.17), satisfies:

(i) vpζq ` vpζq: is positive definite for ζ P R.

(ii) vpζq “ vpζq: for ζ P ΣzR.

Proof. This is an immediate consequence of the definitions (2.14)–(2.17) and (1.7)
as well as the symmetries (1.9)–(1.10). �

2.3. Construction of the scattering data in the λ variable. In the absence
of eigenvalues and spectral singularities, we reduced the scattering problem (1.5) of
ζ P R Y iR to scattering problem for λ “ ζ2 P R, and identified a single scattering
datum ρpλq defining the direct scattering map [13]; we can carry out a similar
reduction here. Let mpx, ζq be a solution to (1.5). We set

m7px, ζq “

¨
˝

m11px, ζq ζ´1m12px, ζq

ζm21px, ζq m22px, ζq

˛
‚.

m7 is an even function of ζ. Defining λ “ ζ2, npx, λq “ m7px, ζq, the map
ˆ
a b

c d

˙
ÞÑ

ˆ
a ζ´1b

ζc d

˙

is an automorphism of 2 ˆ 2 matrices and commutes with differentiation in x. It
follows that the functions n˘ obtained from m˘ by this map obey

dn˘

dx
“ ´iλ adσpn˘q `

ˆ
0 q

´λq 0

˙
n˘ ` Pn˘(2.18a)

lim
xÑ˘8

n˘px, λq “ I(2.18b)

and satisfy

n`px, λq “ n´px, λqe´iλx adσ

¨
˝

αpλq βpλq

λβ̆pλq ᾰpλq

˛
‚(2.19)

“ n´px, λqe´iλx adσ

¨
˝

αpλq βpλq

´λβpλq αpλq

˛
‚

where αpλq “ apζq, βpλq “ ζ´1b̆pζq and the relation |αpλq|2 `λ|βpλq|2 “ 1 holds.
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In the presence of spectral singularities, we perform the change of variable ζ Ñ λ

in the same way as in [13] and obtain the corresponding row vector-valued Beals-
Coifman solutions N p0q, N p2q and N :

N p0q “ first row of

ˆ
ζ´1{2 0

0 ζ1{2

˙
M p0q

ˆ
ζ1{2 0

0 ζ´1{2

˙
,

N p2q “ first row of

ˆ
ζ´1{2 0

0 ζ1{2

˙
M p2q

ˆ
ζ1{2 0

0 ζ´1{2

˙
,

N “ first row of

ˆ
ζ´1{2 0

0 ζ1{2

˙
M

ˆ
ζ1{2 0

0 ζ´1{2

˙
.

The contour Γ for the new RHP, defined by (1.15) is the image in Figure 1.2b of
the contour Σ in Figure 1.2a under the change of variable λ “ ζ2.

Notice that the direction of the contour that consists of the part of the real axis
inside the circle is from right to left. Define the piecewise analytic function N as

(2.20) Npx, zq “
#
Npx, zq, z P Ω1 Y Ω2,

N p2qpx, zq, z P Ω3 Y Ω4.

By setting

αpλq “ apζq, ᾰpλq “ ăpζq,
ρpλq “ ζ´1rpζq, ρ0pλq “ ζ´1r0pζq,

n´
21

px, λq “ ζm´
21

px, ζq, n´
12

px, λq “ ζ´1m´
12

px, ζq,
we obtain from (2.14) – (2.17) the jump matrices Jpλq for the piecewise row vector
N.

Proposition 2.2. The jump matrices for N along the various parts of the contour
Γ are given as follows:

N`px, λq “ N´px, λqe´iλ adσJpλq
(i) on R8 the part of the real line outside the circle:

(2.21) Jpλq “
˜
1 ` λ|ρpλq|2 ρpλq

λρpλq 1

¸

(ii) on p´S8, S8q the part of the real line inside the circle:

(2.22) Jpλq “
˜

1 ´ρ0pλq
´λρ0pλq 1 ` λ|ρ0pλq|2

¸

(iii) on the semicircular arc Γ`
8 in C

`:

(2.23) Jpλq “

¨
˝

1 0

e´2ix0λ
n´
21

px0, λq
ᾰpλqᾰ0pλq 1

˛
‚

(iv) on the semicircular arc Γ´
8 in C´:

(2.24) Jpλq “

¨
˝1 ´e2ix0λ

n´
12

px0, λq
αpλqα0pλq

0 1

˛
‚ .
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Figure 2.1. Scattering data for q

Ω`

Ω´

Ω´

Ω`

S8´S8

ˆ
1 ` λ|ρ|2 ρ

λρ 1

˙ ˆ
1 ` λ|ρ|2 ρ

λρ 1

˙ˆ
1 ´ρ0

´λρ0 1 ` λ|ρ0|2

˙

˜
1 0

e´2ix0λ
n

´
21

px0,λq

ᾰᾰ0
1

¸

˜
1 ´e2ix0λ

n
´
12

px0,λq

αα0

0 1

¸

Remark 2.3. The scattering data associated to the potential q are defined as the
entries of the different jump matrices along Γ, as listed in Proposition 2.2 and
shown in Figure 2.1. We show the factorizations of jump matrices exist and obtain
estimates in appropriate Sobolev spaces. The choice of scattering data is motivated
by the inverse problem. From these spectral data, we will, in the next section, define
an inverse map and a reconstruction of the potential. Note that the scattering data
depend on the choice of x0 as well as the choice of the large circle Γ8. Indeed in
[21], scattering data are seen as an equivalence class. In the study of the inverse
map, we will need the fact that the reconstruction formula does not depend on x0

and Γ8. This is because the reconstruction formula involves a limit as λ tends to
infinity of the entry p1, 2q of the solution of a RHP, and will not be affected by the
exact position of the cut-off point or the circle Γ8, although the RHP itself depends
on it. For more details, we refer to [21, Theorem 3.3.15].

To give a full characterization of the scattering data, we use the Sobolev spaces
Hk

z pΓq and Hk
˘pΓq defined on self-intersecting contours (see Appendix A) and

the notion of k-regularity [17, Definition 2.54] of a given jump matrix along an
admissible contour. All contours under consideration here are admissible in the
sense of [17, Definition 2.40].

Definition 2.4. A jump matrix J defined on an admissible contour Γ is k-regular
if Γ is complete and J has a factorization

Jpsq “ J´1

´ psqJ`psq
where J˘psq ´ I and J´1

˘ psq ´ I P Hk
˘pΓq.

Definition 2.5. Assume a P γ0, the set of self-intersections of Γ. Let Γ1, . . . ,
Γm be a counter-clockwise ordering of sub-components of Γ which contain z “ a as
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an endpoint. For J P HkpΓq, we define pJi as the restriction JæΓi
if Γi is oriented

outwards and by pJæΓi
q´1 otherwise. We say that J satisfies the pk ´ 1qth-order

product condition if, using the pk´ 1qth-order Taylor expansion of each Ji, we have

(2.25)
mź

i“1

pJi “ I ` O
`
|λ ´ a|k

˘
@a P γ0 .

The following theorem is due to Zhou [24]; see also Trogdon-Olver [17, Theorem
2.56].

Theorem 2.6. The two following statements are equivalent:
(i) J´I and J´1´I P HkpΓq away from points of self intersection and J satisfies

the pk ´ 1qth-order product condition;
(ii) J is k-regular.

In the next theorem, we check that the jump matrix Jpλq satisfies the condition
(i) of Theorem 2.6 and characterize the large-λ decay of scattering data in weighted
Sobolev spaces. Let

H2,2pBΩ2q “
 
f P H2pBΩ2q : f |

R8
P H2,2pR8q

(
,

H1,1pBΩ1q “
 
f P H1pBΩ1q : f |

R8
P H1,1pR8q

(
.

Theorem 2.7 should be compared to (C2.28) of [22], where the scattering matrix is
characterized as belonging to Hk for any k ě 1 given initial data q0 is in Schwartz
class. Theorem 2.7 shows that the direct scattering transform maps a potential q
in the weighted Sobolev space H2,2pRq into scattering data in appropriate weighted
Sobolev spaces.

Theorem 2.7. The matrix Jpλq admits a triangular factorization

Jpλq “ J´1

´ pλqJ`pλq

where:

(i) J´pλq ´ I P H2,2pBΩ2q, J´pλq ´ I P H2pBΩ3q, J`pλq ´ I P H2pBΩ4q and
J`pλq ´ I P H1,1pBΩ1q4, and

(ii) J`æBΩ1
´ I and J´æBΩ3

´ I are strictly lower triangular while J´æBΩ2
´ I

and J`æBΩ4
´ I are strictly upper triangular.

(iii) The matrix Jpλq satisfies the first-order product condition at the intersec-
tion points ˘S8 of the real λ-axis.

Proof. Let Ji be the restriction of J to Γi, 1 ď i ď 5, where the contours Γi are
shown in the figure below

4 The asymmetry of the regularity properties of the terms in Jpλq factorization on the various
parts of the contour comes from the fact that the (1,2) and (2,1) entries in the expression for J

(see eq. (2.21)) differ by a weight λ.
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Figure 2.2. Zero-Sum Conditions

(a) ´S8

´S8

Γ1

Γ2

Γ4

Γ3

(b) S8

S8

Γ1

Γ2

Γ4

Γ3

and denote R8 “ Rzr´S8, S8s. On R8, the scattering matrix J1 admits the
factorization:

(2.26) J1pλq “ J1,´pλq´1J1,`pλq “
ˆ
1 ρpλq
0 1

˙ˆ
1 0

λρpλq 1

˙
,

with the same decomposition for J5pλq, while on p´S8, S8q, the scattering matrix
J3 admits the factorization:

(2.27) J3pλq “ J3,´pλq´1J3,`pλq “
ˆ

1 0

´λρ0pλq 1

˙ˆ
1 ´ρ0pλq
0 1

˙
.

(i) The methods of section 3 of [13] can be used to show that ρ P H2,2pR8q. It
follows from this fact and the explicit factorization (2.26) that

rJ1,´pλq ´ Is|
R8

P H2,2pR8q and rJ1,`pλq ´ Is|
R8

P H1,1pR8q.
Similarly, the restrictions of J˘pλq ´ I to p´S8, S8q belong to H2p´S8, S8q.

The remaining Sobolev estimates all involve the bounded semicircular contours
Γ˘

8. Γ˘
8 are open, finite length contours, so H2pΓ˘

8q is equivalent to H2p0,˘πq
after parametrization by an angle θ. The H2-norm of a function f controls the
L8-norm of f and f 1 and thus H2 is an algebra by the Leibnitz rule. Using (2.23)
and (2.24), it suffices to show that the functions n´

12
px0, λq, 1{ᾰpλq, and 1{ᾰ0pλq

belong to H2pΓ`
8q and that the functions n´

21
px, λq, 1{αpλq, and 1{α0pλq belong to

H2pΓ´
8q. This is easily deduced from the Volterra integral equations corresponding

to (2.18) and the integral representations for α and ᾰ that can be deduced from
(2.19).

(ii) The assertions about triangularity follow from the factorizations (2.26) and
(2.27) together with the formulas (2.23) and (2.24).

(iii) Using the relation (2.19), the scattering matrices J2 and J4 are given at the
self-intersection point S8 respectively by

J2pS8q “

¨
˝

1 0

e´2ix0S8
n´
21

px0, S8q
ᾰpS8qᾰ0pS8q 1

˛
‚
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“

¨
˝

1 0

e´2ix0S8
n`
21

pS8q
ᾰ0pS8q 1

˛
‚
¨
˝

1 0

S8βpS8qn`
22

pS8q
ᾰpS8qᾰ0pS8q 1

˛
‚

“
ˆ

1 0

´S8ρ0pS8q 1

˙ˆ
1 0

S8ρpS8q 1

˙

and

J4pS8q “

¨
˝1 ´e2ix0S8

n´
12

px0, S8q
αpS8qα0pS8q

0 1

˛
‚

“

¨
˝1 ´e2ix0S8

n`
12

pS8q
α0pS8q

0 1

˛
‚
¨
˝1

βpS8qn`
11

pS8q
αpS8qα0pS8q

0 1

˛
‚

“
ˆ
1 ρpS8q
0 1

˙ˆ
1 ´ρ0pS8q
0 1

˙
.

The factorizations of J2 and J4 along the arcs are obtained by polynomial interpo-
lation between S˘8 (see for example eq.(5.19) of [15]).

We want to establish (2.25) for k “ 2, that is,

(2.28)
4ź

i“1

pJi “ I ` O
`
|λ ´ S8|2

˘
.

Denoting by Ji the first order Taylor polynomial of Ji at S8 , i “ 1, ..., 4, proving
(2.28) is equivalent to proving that

J1J
´1

2
“ J4J

´1

3
` O

`
|λ ´ S8|2

˘
.

It is clear that J1pS8qJ2pS8q´1 “ J4pS8qJ3pS8q´1. We also have to check that
`
J1J

´1

2

˘
λ

pS8q “
`
J4J

´1

3

˘
λ

pS8q.
To achieve this, we need to show that

(2.29)
d

dλ

e´2ix0λn´
21

px0, λq
ᾰpλqᾰ0pλq

∣

∣

∣

∣

λ“S8

“ ρ1pS8q´ρ1
0pS8q

This is done by first letting λ Ñ R, which leads to the factorization of J4:
¨
˝1 ´e2ix0λ

n´
12

px0, λq
αpλqα0pλq

0 1

˛
‚“

ˆ
1 ρpλq
0 1

˙ˆ
1 ´ρ0pλq
0 1

˙
.

and take derivative along R. In the same way, we can show

d

dλ

e2ix0λn´
12

px0, λq
αpλqα0pλq

∣

∣

∣

∣

λ“S8

“ ´S8ρ1
0
pS8q ´ ρ0pS8q ` S8ρ1pS8q ` ρpS8q.

We thus verify the pk ´ 1qth order product condition for k “ 2 and Part piq of
Theorem 2.6holds for the matrix J . We conclude that J is k-regular, which in turn
implies that J`pλq satisfies the matching condition (A.1) and J´pλq satisfies the
matching condition (A.2) at the non-smooth point pS8, 0q. A similar proof shows
that the same conclusion holds for p´S8, 0q. �
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The following propositions stating Lipschitz continuity results can be obtained
by the methods of [13, 14], in particular Propositions 3.2 and 3.3 of [13]. The
exclusion of the disk |λ| ă R implies that |αpλq| is strictly positive so division by
α does not affect the estimates. Proposition 2.8, formulas (2.21) – (2.24), and the
factorizations (2.26) and (2.27) imply also the Lipschitz continuity of the scattering
data (Proposition 2.9).

Proposition 2.8. The maps

q ÞÑ ρ|
R8

P H2,2pR8q, q ÞÑ n´
21

px0, ¨ q P H2pΓ`
8q

q ÞÑ n´
12

px0, ¨ q P H2pΓ´
8q, q ÞÑ 1

ᾰ
P H2pΓ`

8q,

q ÞÑ 1

ᾰ0

P H2pΓ`
8q, q ÞÑ 1{α P H2pΓ´

8q,

q ÞÑ 1{α0 P H2pΓ´
8q

are locally Lipschitz continuous from H2,2pRq into the respective ranges. Moreover,
the map

qx0
ÞÑ ρ0 P H2pRq

is locally Lipschitz continuous from H0,2pRq to H2,0pRq.
Proposition 2.9. The maps

q ÞÑ J˘
1

pλq ´ I P H2,2pBΩ2q
q ÞÑ J2pλq ´ I P H2pBΩ3q
q ÞÑ J˘

3
pλq ´ I P H1,1pBΩ4q

q ÞÑ J4pλq ´ I P H2pBΩ4q
are locally Lipschitz mappings from H2,2pRq into their respective ranges.

2.4. Time evolution of the scattering data. A key property of the inverse
scattering method is the simple time evolution of its scattering data. In [14], we
calculated the time evolution of the scattering data where they reduce to a reflection
coefficient and discrete data. We need to complement the analysis by examining
the time evolution of the jump matrix on the additional section of the contour
Γ8 (see Figure 1.2b). As before, we work in the ζ variable and carry out the
change of variable ζ Ñ λ. Given M

`px, t; ζq “ M
´px, t; ζqvxpt; ζq where vxpt; ζq “

e´iζ2x adσvpt; ζq, we compute the time derivative

(2.30) M
`px, t; ζqt “ M

´px, t; ζqtvxpt; ζq ` M
´px, t; ζqvxpt; ζqt.

We recall that M
˘ are fundamental solutions for the Lax equations

BM
Bx px, t; ζq “ ´iζ2 adσpMq ` ζQpx, tqM ` P px, tqM,(2.31a)

BM
Bt px, t; ζq “ ´2iζ4 adσpMq ` Apx, t; ζqM.(2.31b)

where σ, P , Q are given in terms of q “ qpx, tq by (1.4) and

Apx, t; ζq “ 2ζ3
ˆ

0 q

´q 0

˙
` iζ2

ˆ
|q|2 0

0 ´|q|2
˙

` iζ

ˆ
0 qx
qx 0

˙
(2.32)

` i

4

ˆ
|q|4 0

0 ´|q|4
˙

` 1

2

ˆ
´qxq ` qqx 0

0 ´qqx ` qxq

˙
.
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Taking the limit x Ñ `8 in (2.30), using the normalization of M˘ at `8, and
using the fact that adσ is a derivation, we obtain

vxpt; ζqt “ ´2iζ4 adσvxpt; ζq.
Integrating we obtain

(2.33) vxpt; ζq “ e´2iζ4t adσvxp0; ζq
or equivalently for Jxpλq “ e´iλx ad σJp0;λq

Jxpλ, tq “ e´2iλ2t adσJxpλq.
The map pf, tq ÞÑ e´2iλ2tf is a bounded continuous map from X ˆ r´T, T s to

X for X “ H2,2pΩ2q, H1,1pΩ1q, H2pΩ3q and H2pΩ4q. This map is also Lipschitz
continuous in X uniformly for f in a bounded subset of X and t P r´T, T s, for a
fixed T ą 0.

From Proposition 2.9 and these facts, we deduce the following continuity result.

Proposition 2.10. Suppose that q0 P H2,2pRq and that Jpλq is the scattering data

associated to q0. Denote by J˘pλ, tq the matrices eiλ
2t adσJ˘pλq where J˘pλq are

the factors given in Theorem 2.7. For any T ą 0, the maps

H2,2pRq ˆ r´T, T s Q pq0, tq ÞÑ J´pλ, tq ´ I P H2,2pBΩ2q
H2,2pRq ˆ r´T, T s Q pq0, tq ÞÑ J´pλ, tq ´ I P H2pBΩ3q
H2,2pRq ˆ r´T, T s Q pq0, tq ÞÑ J`pλ, tq ´ I P H2pBΩ4q
H2,2pRq ˆ r´T, T s Q pq0, tq ÞÑ J`pλ, tq ´ I P H1,1pBΩ1q

are all continuous, and uniformly Lipschitz in q0 for t P r´T, T s and q0 in a bounded
subset of H2,2pRq.
2.5. Auxiliary scattering matrix. In section 2.2, we have chosen x0 P R such
that the cut-off potential qx0

“ qχpx0,8q satisfies the smallness condition (2.12). By

increasing x0 if necessary, we assume rqx0
“ qχp´8,´x0q also satisfies (2.12). Let rN

be constructed in the same way as N (see (2.20)) but with potential q0 changed to
rq0 with normalization at x Ñ ´8. We define the auxiliary matrix s:

(2.34) spλq “ eixλ adσ rN´1px, λqNpx, λq.
For λ P Ω1 Y Ω2

(2.35) spλq “
ˆ
δpλq´1 0

0 δpλq

˙
, δpλq “

#
ᾰpλq Imλ ą 0

αpλq Imλ ă 0
.

The jump matrix rJ for rN is obtained from J by conjugation, as rJ “ s´1

´ Js`. In
analogy with Theorem 2.7, we have:

Theorem 2.11. The matrix rJ “ s´1

´ Js` admits a triangular factorization rJpλq “
rJ´1

´ pλq rJ`pλq where:

(i) rJ`pλq ´ I P H2,2pBΩ1q, rJ´pλq ´ I P H1,1pBΩ2q, rJ´pλq ´ I P H2pBΩ3q and
rJ`pλq ´ I P H2pBΩ4q.

(ii) rJ`æBΩ1
´ I and rJ´æBΩ3

´ I are strictly upper triangular while rJ´æBΩ2
´ I

and rJ`æBΩ4
´ I are strictly lower triangular.
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Remark 2.12. The reason for working with the Beals-Coifamn solutions normalized
at ´8 is to obtain the desired decay in x at ´8. The basic idea is to guarantee
that the Fourier variable |ξ| ě |x|. See [23, Lemma 2.3] for details.

3. Unique Solvability of the RHP

The goal of this section is to prove the unique solvability of the Riemann-Hilbert
problem 3.1 on the contour Γ “ R Y Γ8 shown in Figure 1.2b.

Riemann-Hilbert Problem 3.1. Fix x P R. Find a row vector-valued function
Npx, ¨ q on CzΓ with the following properties:

(i) (Analyticity) Npx, zq is an analytic function of z for z P CzΓ,
(ii) (Normalization) Npx, zq “ p1, 0q ` O

`
z´1

˘
as z Ñ 8, and

(iii) (Jump condition) For each λ P Γ, N has continuous boundary values N˘pλq
as z Ñ λ from Ω˘. Moreover, the jump relation

N`px, λq “ N´px, λqJxpλq
holds, where

Jxpλq “ e´iλx adσ

$
’’’’’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’’’’’%

˜
1 ` λ|ρpλq|2 ρpλq

λρpλq 1

¸
, λ P R8

˜
1 ´ρ0pλq

´λρ0pλq 1 ` λ|ρ0pλq|2

¸
, λ P p´S8, S8q

¨
˚̋

1 0

e´2ix0λ
n´
21

px0, λq
ᾰpλqᾰ0pλq 1

˛
‹‚ λ P Γ`

8,

¨
˝1 ´e2ix0λ

n´
12

px0, λq
αpλqα0pλq

0 1

˛
‚ λ P Γ´

8.

Definition 3.2. We say that the row vector-valued function Npx, zq is a null vector
for RHP 3.1 if Npx, zq satisfies (i) and (iii) above but Npx, zq “ O

`
z´1

˘
as |z| Ñ 8.

The scattering data that determine the jump matrix J are the functions

SD “
`
ρ, ρ0, α, α0, ᾰ0, n

´
12

px0, ¨ q, n´
21

px0, ¨ q
˘
.

Although these functions are not independent, for the purpose of proving existence
and uniqueness of solutions to RHP 3.1 we may consider them so. Recalling (1.18),
we seek a Banach space Y0, consisting of functions ρ : R8 Ñ C, with the following
properties:

(a) There is an injection i : H2,2pR8q Ñ Y0 that maps bounded subsets of
H2,2pRq to precompact subsets of Y0

(b) For each ρ P Y0, p1 ` | ¨ |qρp ¨ q P L2pR8q X L8pR8q.
(c) Each ρ P Y0 is a continuous function with limλÑ8 λρpλq “ 0. This will

allow uniform rational approximation of p ¨ qρp ¨ q in L8.
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Consider the weighted Sobolev spaces

Hα,βpRq “
!
f P L2pRq : xξyα pfpξq, xxyβf P L2pRq

)
.

and recall that for any ε ą 0, H1{2`ε,0pRq Ă C0pRq, where C0pRq denotes the
continuous functions vanishing at infinity. Also, recall that the embedding i :

Hα,βpRq ãÑ Hα1,β1 pRq is compact for α ą α1 and β ą β1. From the estimates

}x ¨ yρp ¨ q}L2 ď }ρ}H0,1pRq , }x ¨ yρp ¨ q}H1,0pRq ď }ρ}H2,2pRq

it follows by interpolation that for any ε ą 0,

}x ¨ yρp ¨ q}H1{2`ε,0pRq ď }ρ}H1`2ε,3{2`ε .

Y0 “ H1`2ε,3{2`εpR8q, is the image of the fractional Sobolev space H1`2ε,3{2`εpRq
under the restriction map f ÞÑ f |

R8
. This space satisfies the required properties

(a), (b), (c) above.

Definition 3.3. We denote by Y the Banach space of scattering data SD with
ρ P Y0 and all other data in H1.

Remark 3.4. Note that, for SD P Y , the entries of J all belong to L2 X L8.

Let Z0 “ H2,2pR8q. By Proposition 2.8, the range of the direct scattering map
actually lies in the following stronger space:

Definition 3.5. We denote by Z the set of scattering data SD with ρ P Z0 and
all other data in H2.

We choose to consider SD in the larger space in order to obtain uniform resol-
vent estimates for scattering data in bounded subsets of Z later by a continuity-
compactness argument (see Appendix B). We will exploit the fact that, under the
natural continuous embedding of Z in Y , bounded subsets of Z are identified with
precompact subsets of Y . We will prove:

Theorem 3.6. Suppose that the scattering data Jpλq are given by (2.21)–(2.24)
with SD P Y . Then RHP 3.1 has a unique solution for each x0 P R.

Following the pattern of the uniqueness result in [7, 14], we will prove the exis-
tence and uniqueness of solutions in the following way. First, we show that RHP
3.1 is equivalent to a Fredholm integral equation (the Beals-Coifman integral equa-
tion, (3.2), for an unknown function νpx, ¨ q on Γ. By the Fredholm alternative,
it suffices to show that the corresponding homogeneous equation, (3.3), has only
the trivial solution. In order to do so, in Subsection 3.2, we derive similar integral
equations associated to an equivalent Riemann-Hilbert Problem, RHP 3.7, on the
contour Σ. These integral equations involve an unknown function µ; the inhomoge-
neous equation is (3.6) and the homogeneous equation is (3.7). We can use Zhou’s
uniqueness theorem to show that RHP 3.7 is uniquely solvable, or, equivalently,
(3.7) has only the trivial solution. Finally, we show that any solution ν of the ho-
mogeneous equation (3.2) induces a solution of (3.7), It then follows from explicit
formulae connecting ν and µ that ν “ 0, establishing the Fredholm alternative for
the original Beals-Coifman equation (3.2).
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3.1. RHPs and singular integral equations. We now derive the Beals-Coifman
integral equation for RHP 3.1. The unique solvability of RHP 3.1 is equivalent to
the unique solvability of its associated integral equation. We define the nilpotent
matrices W`

x and W´
x in the various parts of the contour as

Jxpλq “ pJx´q´1Jx` “ pI ´ W´
x q´1pI ` W`

x q

and the Beals-Coifman solution

(3.1) ν “ N
`pI ` W`

x q´1 “ N
´pI ´ W´

x q´1

where

pW`
x ,W´

x q “

$
’’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’’%

˜˜
0 0

λρpλqe2iλx 0

¸
,

˜
0 ρpλqe´2iλx

0 0

¸¸
, λ P R8,

˜˜
0 ´ρ0pλqe´2iλx

0 0

¸
,

˜
0 0

´λρ0pλqe2iλx 0

¸¸
, λ P p´S8, S8q,

˜˜
0 0

e2iλxS1pλq 0

¸
,

˜
0 0

e2iλxS2pλq 0

¸¸
, λ P Γ`

8,

˜˜
0 e´2iλxS3pλq
0 0

¸
,

˜
0 e´2iλxS4pλq
0 0

¸¸
, λ P Γ´

8.

The coefficients Sipλq, i “ 1, ¨ ¨ ¨ , 4, are not explicitly determined. Only the sums
S1pλq `S2pλq and S3pλq `S4pλq identify to the entries p2, 1q and p1, 2q of the jump
matrix Jxpλq respectively, in the corresponding part of the contour. If SD P Y ,
then W˘

x in L8 X L2, while if SD P Z, W˘
x P H1.

We can write the Beals-Coifman solution νpx, λq explicitly in terms of the Jost
functions. From (3.1), we have two equivalent formulas.

νpx, λq “

$
’’’’’’’&
’’’’’’’%

ˆ
n´
11

px, λq
ăpλq n`

12
px, λq

˙˜
1 0

´e2iλxλρpλq 1

¸

ˆ
n`
11

px, λq n´
12

px, λq
αpλq

˙˜
1 ρpλqe´2iλx

0 1

¸ λ P R8

νpx, λq “

$
’’’’’’’&
’’’’’’’%

ˆ
n´
11

px, λq
ăpλq n`

12
px, λq

˙˜
1 0

´e2iλxS1pλq 1

¸

´
N

p2q
11`px, λq N

p2q
12`px, λq

¯˜ 1 0

e2iλxS2pλq 1

¸ λ P Γ`
8
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νpx, λq “

$
’’’’’’’&
’’’’’’’%

´
N

p2q
11`px, λq N

p2q
12`px, λq

¯˜1 ρ0pλqe´2iλx

0 1

¸

´
N

p2q
11´px, λq N

p2q
12´px, λq

¯˜ 1 0

´λρ0pλqe2iλx 1

¸ λ P p´S8, S8q

νpx, λq “

$
’’’’’’’&
’’’’’’’%

´
N

p2q
11´px, λq N

p2q
12´px, λq

¯˜1 ´e´2iλxS3pλq
0 1

¸

ˆ
n`
11

px, λq n´
12

px, λq
αpλq

˙˜
1 e´2iλxS4pλq
0 1

¸ λ P Γ´
8

From (3.1), we have

N
` ´ N

´ “ ν
`
W`

x ` W´
x

˘
.

The Plemelj formula and the normalization condition (ii) in RHP 3.1 provide the
Beals-Coifman integral equation:

νpx, λq “ p1, 0q ` pCWx
νq pλq(3.2)

where

CWx
ν “ C`

Γ
pνW´

x q ` C´
Γ

pνW`
x q.

RHP 3.1 is equivalent to the integral equation (3.2) [20, Proposition 3.3]. Similarly,
if N is a null vector for RHP 3.1 in the sense of Definition 3.2 and ν is defined in
(3.1), we have

(3.3) νpx, λq “ CWx
νpλq.

If SD P Y , eq. (3.2) (resp. (3.3)) is seen as an integral equation for ν ´ 1 P L2pΓq
(resp. ν P L2pΓq), while if SD P Z, it is an integral equation for ν ´ 1 P H1pΓq
(resp. ν P H1pΓq).

For λ P R8, (3.2) reads:

ν11px, λq “ 1 `
ż

R8

ν12px, sqsρpsqe2isx
s ´ λ ` i0

ds

2πi
´
ż S8

´S8

ν12px, sqsρ0psqe2isx
s ´ λ

ds

2πi

`
ż

Γ
`
8

ν12px, sqpS1psq ` S2psqqe2isx
s ´ λ

ds

2πi

ν12px, λq “
ż

R8

ν11px, sqρpsqe´2isx

s ´ λ ´ i0

ds

2πi
´
ż S8

´S8

ν11px, sqρ0psqe´2isx

s ´ λ

ds

2πi

`
ż

Γ
´
8

ν11px, sqpS3pλq ` S4pλqqe´2isx

s ´ λ

ds

2πi
.

The integral equations for λ P p´S8, S8q and λ P Γ˘
8 are obtained analogously.

The solution to Problem 3.1 is given, in terms of ν “ pν11, ν12q by

Npx, zq “ p1, 0q ` 1

2πi

ż

Γ

νpx, sqpW`
x psq ` W´

x psqq
s ´ z

ds.(3.4)
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The goal is an existence and uniqueness result for solution to Problem 3.1. To
make use of the symmetry relations of the jump conditions and Zhou’s vanishing
lemma, we need to consider the equivalent RHP in the ζ variable with jump contour
R Y iR Y Σ8 given by Figure 1.2a.

Riemann-Hilbert Problem 3.7. Fix x P R. Find a matrix-valued function
Mpx, ¨ q with the following properties:

(i) (Analyticity) Mpx, zq is a 2 ˆ 2 matrix-valued analytic function of z for
z P CzΣ where the contour Σ is given by Figure 1.2a.

(ii) (Normalization)

Mpx, zq “
ˆ
1 0

0 1

˙
` Opz´1q as z Ñ 8.

(iii) (Jump condition) For each ζ P Σ, M has continuous boundary values
M˘pλq as z Ñ ζ from Ω˘. Moreover, the jump relation

M`px, ζq “ M´px, ζqe´ixζ2
adσvpζq

holds, where vpζq is given by (2.14)-(2.17).

Definition 3.8. We say that a matrix-valued function Mpx, zq is a null vector for
RHP 3.7 if Mpx, zq satisfies (i) and (iii) above and Mpx, zq “ O

`
z´1

˘
as |z| Ñ 8.

Observe that, given scattering data SD for RHP 3.1 in the space Y from Defi-
nition 3.3, the induced scattering data for RHP 3.7 consist of bounded continuous
functions, square-integrable on the unbounded contours. Thus RHP 3.7 is well-
defined with the O

`
z´1

˘
condition replaced by an L2-condition on M˘ ´ I (and

the condition M˘ P L2 for an L2-null vector).

Proposition 3.9. The only L2 null vector for RHP 3.7 with scattering data induced
from SD P Y is the zero vector.

Proof. The proof is a direct consequence of Proposition 2.1 and [20, Theorem 9.3].
�

It is useful to formulate Proposition 3.9 in terms of the homogeneous Beals-
Coifman equation associated to RHP 3.7, which we now derive.

The jump matrix vxpζq admits the following factorization

vxpζq “ p1 ´ w´
x q´1p1 ` w`

x q.
We set

(3.5) µ “ M
`p1 ` w`

x q´1 “ M
´p1 ´ w´

x q´1.

In analogy with RHP 3.1, the Beals-Coifman integral equation for RHP 3.7 is

(3.6) µ “ I ` Cwx
µ “ I ` C`

Σ
pµw´

x q ` C´
Σ

pµw`
x q

where I is the 2ˆ 2 identity matrix. If M is a null vector in the sense of Definition
3.8 and µ is defined by (3.5), then

(3.7) µ “ Cwx
µ.

We can now reformulate Proposition 3.9 as follows:

Proposition 3.10. Assume that w˘ are obtained from scattering data SD in Y .
Then, the only solution to (3.7) in L2pΣq is the zero vector.
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3.2. A Mapping Between Null Spaces. To complete the proof of Theorem 3.6,
we show that any solution ν of (3.3) induces a solution µ of (3.7) and that if µ “ 0,
then ν “ 0. For notational brevity, we suppress the dependence of µ and ν on x,
which remains fixed throughout the discussion.

Lemma 3.11. Suppose that W˘
x are generated from scattering data SD P Y . For

ν “ pν1, ν2q a solution of the homogeneous Beals-Coifman equation (3.3) in L2pΓq,
define

(3.8) µpx, ζq “
˜
µ11px, ζq µ12px, ζq
µ21px, ζq µ22px, ζq

¸
“
˜

ν11px, ζ2q ζν12px, ζ2q

´ζν12px, ζ2q ν11px, ζ2q

¸
.

Then µ P L2pΣq solves (3.7).

Remark 3.12. We can invert (3.8) to recover ν via the formulas

(3.9) ν11px, ζ2q “ µ11px, ζq, ν12px, ζ2q “ µ12px, ζq{ζ.
In particular, if µ “ 0, then ν “ 0.

Proof. Define a matrix-valued function µ by (3.9) for a given solution ν of eq. (3.3).
It is easy to see that

µ11px,´ζq “ µ11px, ζq, µ12px,´ζq “ ´µ12px, ζq.
In [14, Lemma 5.2.2] we have shown that for ν P L2pΓq and ρ P Y0,

µ11px, ζqrpζq “ ν11px, ζ2qζρpζ2q, µ12px, ζqr̆pζq “ ζν12px, ζ2qζρpζ2q
are both square-integrable on the part of the Σ contour outside the circle Σ8. Thus
µw˘

x is an L2 function on Σ. Once (3.7) is obtained from (3.3) , µ P L2pΣq follows
from the boundedness of Cauchy projection on L2-functions.

In [14, Chapter 5], the second author established the transition from (3.3) to
(3.7) when Γ “ R and Σ “ R Y iR. Thus, we only consider the contour integrals:

(3.10) I` :“
ż

Γ
`
8

ν12px, sqpS1psq ` S2psqqe2isx
s ´ λ

ds

2πi

and

(3.11) I´ :“
ż

Γ
´
8

ν11px, sqpS3pλq ` S4pλqqe´2isx

s ´ λ

ds

2πi

Let λ “ ζ2 and fix the branch r0, 2πq.

I` “
ż

Γ
`
8

ν12px, λqn´
21

px0, λqe2iλpx´x0q

pλ ´ λ0qᾰpλqᾰ0pλq
dλ

2πi

“
ż

C

ζ´1µ12px, ζqζm´
21

px0, ζqe2iζ2px´x0q

pζ2 ´ ζ2
0

qăpζqă0pζq
dζ2

2πi

“
ż

C

˜
µ12px, ζqm´

21
px0, ζqe2iζ2px´x0q

pζ ´ ζ0qăpζqă0pζq ´ µ12px, ζqm´
21

px0, ζqe2iζ2px´x0q

p´ζ ´ ζ0qăpζqă0pζq

¸
1

2ζ

dζ2

2πi

“
ż

C

µ12px, ζqm´
21

px0, ζqe2iζ2px´x0q

pζ ´ ζ0qăpζqă0pζq
dζ

2πi
´
ż

C

µ12px, ζqm´
21

px0, ζqe2iζ2px´x0q

p´ζ ´ ζ0qăpζqă0pζq
dζ

2πi

“ I`
1

` I`
2
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Setting λ “ R2eiθ with θ P pπ, 0q, we integrate I`
1

over the arc ζ “ Reiη where η

goes from π{2 to 0. For I`
2

, we make the change of variable ζ Ñ ´ζ, then using of
the oddness of µ12 and m21. We obtain

´
ż

µ12px, ζqm´
21

px0, ζqe2iζ2px´x0q

p´ζ ´ ζ0qăpζqă0pζq
dζ

2πi
“

ż
µ12px, ζqm´

21
px0, ζqe2iζ2px´x0q

pζ ´ ζ0qăpζqă0pζq
dζ

2πi
.

For I`
2

, we integrate over the arc Reiη with η going from 3π{2 to π. This completes
the change of variable for (3.10). Similarly, we have

I´ “ ´
ż

Γ
´
8

ν11px, λqn´
12

px0, λqe2iλpx0´xq

pλ ´ λ0qαpλqα0pλq
dλ

2πi

“ ´
ż

C

µ11px, ζqm´
12

px0, ζqe2iζ2px0´xq

ζpζ2 ´ ζ2
0

qapζqa0pζq
dζ2

2πi

“ ´
ż

C

1

2ζ2

ˆ
1

ζ ´ ζ0
` 1

ζ ` ζ0

˙
µ11px, ζqm´

12
px0, ζqe2iζ2px0´xq

apζqa0pζq
dζ2

2πi

“ ´
ż

C

µ11px, ζqm´
12

px0, ζqe2iζ2px0´xq

ζ0pζ ´ ζ0qapζqa0pζq
dζ

2πi

`
ż

C

µ11px, ζqm´
12

px0, ζqe2iζ2px0´xq

ζ0pζ ` ζ0qapζqa0pζq
dζ

2πi

“ I´
1

` I´
2
.

We write λ “ R2eiθ with θ P pπ, 2πq. For I´
1

, we integrate over the arc ζ “ Reiη

where η goes from π{2 to π. For I´
2

, we make the change of variable ζ Ñ ´ζ, then
making use of the evenness and oddness of µ11 and m12 respectively to obtain

ż
µ11px, ζqm´

12
px0, ζqe2iζ2px0´xq

ζ0pζ ` ζ0qăpζqă0pζq
dζ

2πi
“ ´

ż
µ11px, ζqm´

12
px0, ζqe2iζ2px0´xq

ζ0p´ζ ´ ζ0qăpζqă0pζq
dζ

2πi

“ ´
ż

µ11px, ζqm´
12

px0, ζqe2iζ2px0´xq

ζ0pζ ´ ζ0qăpζqă0pζq
dζ

2πi
.

For I´
2

, we integrate over the arc Reiη where η goes from 3π{2 to 2π. Integrals
involving µ21 and µ22 are derived using complex conjugations. �

Proof of Theorem 3.6. First, for scattering data SD P Y , the operator pI ´ CWx
q

is a Fredholm operator on L2pΓq. This follows from [17, Lemma 2.60] since we
allow uniform rational approximation of the function p ¨ qρp ¨ q for ρ P Y0. Next, we
claim that kerL2pΓqpI ´ CWx

q is trivial. If ν P kerL2pΓqpI ´ CWx
q, then by Lemma

3.11, ν induces a vector µ P kerL2pΣqpI ´ Cwx
q, which must be the zero vector by

Proposition 3.10. It follows from Remark 3.12 that ν “ 0. Finally, from Fredholm
theory, pI ´ CWx

q is invertible in L2pΓq, which is equivalent to unique solvabilty of
RHP 3.1. �

Corollary 3.13. The resolvent pI ´ CWx
q´1 exists for all x P R and all SD P Y .

4. Mapping Properties of the Inverse Scattering Map

Recall that the potential q is reconstructed by solving the "right" Riemann-
Hilbert problem 3.1 (for a solution normalized as x Ñ `8). As shown in Sec-
tion 2.5, the "left" Riemann-Hilbert problem (with jump matrix characterized by



GLOBAL EXISTENCE FOR DNLS 29

Theorem 2.11) can be conjugated to the "right" Riemann Hilbert problem, so we
concentrate on the mapping properties of the reconstruction from the right. We
omit the (standard) proof that the left and right reconstructions agree, as well as
the proof that the inverse map composed with the direct map is the identity map
on H2,2pRq. Thus, in the statements of Theorems 4.2 and 4.5, an assertion is made
about the reconstructed potential on R, but details of the proof are only given for
the restriction of q to a half-line of the form pc,8q.

We start with the reconstruction formula for the potential q from given scattering
data J˘ as characterized in Theorem 2.7:

qpxq “
ˆ

´ 1

π

ż

Γ

νpx, λq
`
W`

x pλq ` W´
x pλq

˘
dλ

˙

12

(4.1)

“
ˆ

´ 1

π

ż

Γ

νpx, λqe´iλx adσ pJ`pλq ´ J´pλqq dλ
˙

12

where the 12 subscript denotes the second entry of the row vector, and Γ is the
contour shown in Figure 1.2b.

Let ApΩ˘q denote the space of analytic functions in the region Ω˘ of the complex
plane and RpBΩ˘q the space of functions whose restrictions on BΩ˘ are rational.
Following a reduction technique of [23], we construct functions ω˘ P ApΩ˘q such
that, for k “ 2:

1. ω˘ P RpBΩ˘q and ω˘ ´ I “ Opz´2q as z Ñ 8.
2. ω˘ has the same triangularity as J˘, and
3. ω˘pzq “ J˘pzq ` oppz ´ aqk´1q for a “ ˘S8.

The construction of ω˘ is given in [21, Appendix I]. For example, consider the
approximation of J´æBΩ2

. Since pJ´ ´ IqæBΩ2
is in H2, we construct a rational

function ω´ such that pω´ ´ J´qæBΩ2 vanishes at ˘S8 to order 1. Explicitly

ω´p˘S8q ´ I “ ρp˘S8q, ω1
´p˘S8q “ ρ1p˘S8q.

This is performed by the following steps:

(i). Choose z0 R Ω2 and denote p˘ the Taylor polynomial of degree 1 of pz ´
z0qnρpzq at z “ ˘S8.We choose n ě 6.

(ii). By [21, Lemma A1.2], there is a polynomial ppzq of degree at most 3 such
that

ppzq ´ p˘pzq “ Opz ¯ S8q2.
(iii). Set ω´pzq “ pz´z0q´nppzq. Clearly, ω´pzq´ρpzq vanishes at ˘S8 to order

1. Since n ě 6, ω´ P H2,2pBΩ2q and ω is analytic in Ω2.

By construction,

(4.2) J “ ω´1

´ pJ´ω´1

´ q´1pJ`ω´1

` qω` ” ω´1

´ J ´1

´ J`ω` ” ω´1

´ Jω`.

The advantage of working with J is that J˘ ´ I vanishes at ˘S8 to order 1 :

(4.3) J˘pλq “ I ` oppλ ´ aq1q, a “ ˘S8.

The continuity of J˘ and its derivative at λ “ ˘S8 is a key point to perform the
decay estimates for the reconstructed potential. Notice that J˘ are defined like J˘

in Theorem 2.7 and they will be used when establishing estimates such as (4.9) and
(4.10). For x ě 0, Jx is the jump matrix for the RHP

N`px, λq “ N´px, λqJxpλq λ P Γ
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if and only if Jx is the jump matrix for the RHP 3.1. Here N “ N e´iλx adσω

where e´iλx adσω P AL8pCzΓq X AL2pCzΓq is guaranteed by construction. Note
that N and N give rise to the same ν, solution of the associated Beals-Coifman
equation. The potential is given by

qpxq “
ˆ

´ 1

π

ż

Γ

νpx, λqe´iλx adσ pJ`pλq ´ J´pλqq dλ
˙

12

.

Due to the large z-behavior of ω˘pzq, we have
´
lim
zÑ8

2izNpx, zq
¯
12

“
´
lim
zÑ8

2izN px, zq
¯
12

,

which shows that ω gives no contribution to the reconstruction of q for x ě 0. We
may thus as well work with J .

The next step consists in augmenting the contour as in Figure 4.1 below. The
newly modified contour is denoted Γm. The advantage of Γm is that it reverses
the orientation of the segment pS´

8, S`
8q and thus allows to prove usual estimates

of the Cauchy projections when the contour is restricted to R. The added (dashed)
contours have no effect on the RHP since the jump matrices there are chosen to be
the identity.

Figure 4.1. The newly modified contour Γm

p´S8, 0q pS8, 0q
`
´

`
´

We redefine J˘ as follows:

1. J˘ “ I on the added (dashed) contours,
2. J˘pλq is the lower/upper triangular factor in the lower/upper triangular

factorization of J (J ´1) on R for |λ| ą |S8|, (|λ| ă |S8|) and
3. for λ P Γ8, J˘pλq “ I for Imλ ž 0 and J˘pλq “ J pλq for Imλ ż 0.

The newly defined J˘ satisfy all properties listed in Theorem 2.7. To analyze the
scattering map, we will use the revised reconstruction formula

(4.4) qpxq “
ˆ

´ 1

π

ż

Γm

νpx, λqe´iλx adσ pJ`pλq ´ J´pλqq dλ
˙

12

.

We will at first suppress dependence of the scattering data on t (subsections 4.1
and 4.2), but recall it again in subsection 4.3.

Associated to the Riemann-Hilbert problem with jump matrix Jx is a Beals-
Coifman integral equation where the Beals-Coifman operator is given by

(4.5) CJx
φ “ C` rφpJx` ´ Iqs ` C´ rφpI ´ Jx´qs .



GLOBAL EXISTENCE FOR DNLS 31

Throughout the analysis we will use the following uniform resolvent bound.

Proposition 4.1. Suppose that J “ ω´Jω
´1

` where J has the form of (2.21)-
(2.24), is constructed from scattering data in a bounded subset B of Z (see Definition
3.5), and J admits an algebraic factorization J “ J ´1

´ J` where J˘ have the same
triangularities as in Theorem 2.7. Then, for fixed a P R and all x ě a the estimate

(4.6) sup
J PB

››pI ´ CJx
q´1

››
L2ÑL2

ă 8

holds. Finally, the map

J ÞÑ
`
x ÞÑ pI ´ CJx

q´1
˘

is Lipschitz continuous into the space C
`
ra,8q;BpL2q

˘
.

Proof. We check hypotheses (i)–(iii) of Proposition B.1 with X “ L2pRq, Y as given
in Definition 3.3, and Z as given in Definition 3.5.

(i) The continuity of the map pJ , xq ÞÑ CJx
and the uniform continuity estimate

follow immediately from (4.5).

(ii) The proof of Corollary 3.13 applies with no essential change to show that
pI ´ CJx

q´1 exists for all x P R and J P Y .

(iii) To prove this estimate we need to show that pI ´ CJx
q´1 is bounded as

x Ñ `8 for each fixed J . To do this we use a standard parametrix construction
and approximation argument due to Zhou [20].

Let J̆˘ “ pJ˘q´1. A standard computation shows that

I ´ TJx
“ pI ´ CJx

qpI ´ C
J̆x

q

where

TJx
φ “ C`

`
C´φpJx` ´ Jx´q

˘ ´
I ´ J̆x´

¯
` C´

`
C`φpJx` ´ Jx´q

˘ ´
J̆x` ´ I

¯
.

The operator TJx
is compact so that pI´C

J̆x
q is a Fredholm regulator for pI´CJx

q.
It suffices to show that

lim
xÑ`8

}TJx
}L2ÑL2 “ 0

since

pI ´ CJx
q´1 “ pI ´ C

J̆x
qpI ´ TJx

q´1

and
›››pI ´ C

J̆x
q
›››
L2ÑL2

is bounded uniformly in x. By mimicking the proof of

[20, Theorem 6.1] (with some sign changes since we consider the limit x Ñ `8
rather than x Ñ ´8) we can show by rational approximation that, for fixed J ,
}TJx

}L2ÑL2 Ñ 0 as x Ñ ´8. Taking b so that }TJx
}L2ÑL2 ă 1{2 for x ě b, we

obtain a uniform bound on
››pI ´ CJx

q´1
››
L2ÑL2

for x ě b. Since x ÞÑ pI´CJx
q´1 is

continuous, this implies that supxěa

››pI ´ CJx
q´1

››
L2ÑL2

is bounded for any a P R.
We can now apply Proposition B.1 to obtain the uniform bound and the asserted

Lipschitz continuity.
�
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4.1. Decay property of the reconstructed potential. Denote

H0,2pRq “
 
q P L2pRq : x2qpxq P L2pRq

(
.

Theorem 4.2. If J is given as in Theorem 2.7 and q is defined by (4.4), then
q P H0,2pRq. Moreover, the map from data J “ J ´1

´ J` defined in (4.2) and
obeying the hypothesis of Theorem 3.6, to q P H0,2pRq is Lipschitz continuous.

Definition 4.3. Define the subsets of the contour Γm:

Γ˘ :“ R Y ptImλ ż 0u X Γmq ,

Γ1 :“ Γ˘
8 “ either Γ8 X tImλ ż 0u or R.

Lemma 4.4. (See [23, Lemma 2.9]) For x ě 0,
›››C`

Γ1ÑΓ`
pI ´ Jx´q

›››
L2

ď c

1 ` x2
}J´ ´ I}H2(4.7)

›››C´
Γ1ÑΓ´

pI ´ Jx`q
›››
L2

ď c

p1 ` x2q1{2
}J` ´ I}H1(4.8)

}Jx` ´ I}L2pΓ`
8q ď c

p1 ` x2q1{2
}J` ´ I}H1(4.9)

}Jx´ ´ I}L2pΓ´
8q ď c

1 ` x2
}J´ ´ I}H2(4.10)

´››pCJx
q2I

››
L2pΓq

¯
11

ď c

1 ` x2
}J` ´ I}H1 }J´ ´ I}H2(4.11)

´››pCJx
q2I

››
L2pΓq

¯
22

ď c

p1 ` x2q1{2
}J` ´ I}H1 }J´ ´ I}H2 .(4.12)

Proof of Theorem 4.2. Proposition 4.1 and Lemma 4.4 provide the tools for esti-
mating the decay of the potential q, recalling that ν appearing in (4.1) is equal
to pI ´ C

J
˘
x

q´1p1, 0q. We decompose the following integral into the sums of 4
integrals:

(4.13)

ż ´
pI ´ CJx

q´1
I
¯
e´iλx adσpJ` ´ J´qdλ “

ż

1

`
ż

2

`
ż

3

`
ż

4

where the integrals on the right-hand-side are defined in (4.14)–(4.17). We extract
information on qpxq from the (1-2) entry. Here and thereafter, the integral sign
without subscripts refers to an integral taken on the entire contour displayed in
Figure 4.1. We write

(4.14)

ż

1

:“
ż

R

pJx` ´ Jx´q `
ż

Γ
`
8

pJx` ´ Iq `
ż

Γ
´
8

pI ´ Jx´q .

Notice that J ´
x ´ I is strictly upper triangular on Γ and J ´ ´ I is in H2 so we

conclude that the (1-2) entry of the integral above is in H0,2 by mapping properties
of the Fourier transform and (4.10). The second integral

(4.15)

ż

2

:“
ż

pCJx
Iq pJx` ´ Jx´q

is zero on the (1-2) entry, it thus makes no contribution to the reconstruction of q.
For the third integral,

ż

3

:“
ż `

pCJx
q2I

˘
pJx` ´ Jx´q(4.16)
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“
ż `

C`
`
C´ pJx` ´ Iq

˘
pI ´ Jx´q

˘
pJx` ´ Iq

`
ż `

C´
`
C` pI ´ Jx´q

˘
pJx` ´ Iq

˘
pI ´ Jx´q .

The (1-2) entry is
ż

Γ
´
8

´
C´

Γ`ÑΓ

´
C`

ΓÑΓ`
pI ´ Jx´q

¯
pJx` ´ Iq

¯
pI ´ Jx´q

`
ż

R

´
C´

Γ`ÑΓ

´
C`

ΓÑΓ`
pI ´ Jx´q

¯
pJx` ´ Iq

¯
C`

R
pI ´ Jx´q ,

and from (4.7) and (4.10), we conclude that
ˇ̌
ˇ̌
ˆż

3

˙

12

ˇ̌
ˇ̌ ď c

p1 ` x2q2 .

Finally we set
g “ p1 ´ CJx

q´1
`
pCJx

q2I
˘

and write

(4.17)

ˇ̌
ˇ̌
ż

4

ˇ̌
ˇ̌ :“

ˇ̌
ˇ̌
ż “`

C`gpI ´ Jx´q
˘

pJx` ´ Iq `
`
C´g pJx` ´ Iq

˘
pI ´ Jx´q

‰ˇ̌ˇ̌ .

Again, the (1-2) entry is given by
ż

Γ
´
8

`
C´g pJx` ´ Iq

˘
pI ´ Jx´q `

ż

R

`
C´

Γ`ÑR
g pJx` ´ Iq

˘
C`

R
pI ´ Jx´q

and from (4.7), (4.10), (4.11), and Proposition 4.1 we conclude that
ˇ̌
ˇ̌
ˆż

4

˙

12

ˇ̌
ˇ̌ ď c

p1 ` x2q2 .

The estimate for x P p´8, aq is obtained by considering the RHP with jump con-
dition described in Theorem 2.11. Lipschitz continuity of the map follows from
Proposition 4.1 and equation (4.13). �

4.2. Smoothness property of the reconstructed potential.

Theorem 4.5. If the jump matrix J is given by Theorem 2.7 and q is defined by
(4.4), then q P H2,0pRq. Moreover, the map from data J defined as in (4.2) and
obeying the hypothesis of Theorem 3.6 to q P H2,0pRq is Lipschitz continuous.

In order to study smoothness properties of the reconstructed potential, we first
show that the functions M˘ solving RHP 3.7 solve a differential equation in the
x variable. It follows that the same is true of the solution µ of (3.6) since µ is
obtained from either M` or M´ through postmultiplication by a matrix of the

form e´ixζ2
adσApζq. We can then change variables to find a differential equation

in x obeyed by the (matrix-valued) solution ν of RHP 3.1.

Proposition 4.6. The functions M˘ obey the differential equation (1.5) where M ,
P and Q are constructed from the solution µ of (3.6) as follows:

Mpx, ζq “ I `
ż

Σ

µpx, sq pw`
x psq ` w´

x psqq
s ´ ζ

ds

2πi

Qpxq “ ´ 1

2π
adσ

ˆż

Σ

µpx, ζq
`
w`

x pζq ` w´
x pζq

˘
dζ

˙
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P pxq “ Qpxqipadσq´1Qpxq.
The proof of the above proposition is a slight modification of the proof of Propo-

sition 5.3.1 in [14]. Here we need take into account of the integration along the
additional circle Σ8.

Proof of Theorem 4.5. We first notice that µ given by (3.5) solves the linear prob-
lem (1.5):

d

dx
µ “

`
´iζ2 adσ ` ζQpxq ` P pxq

˘
µ.

We now use the change of variable ζ Ñ λ to obtain

d

dx
ν “

ˆ
´iλ adσ `

ˆ
0 q

´λq 0

˙
` P

˙
ν.

We further write

(4.18)
d

dx

`
νe´iλx adσ pJ` ´ J´q

˘
“

ˆ
´iλ adσ `

ˆ
0 q

´λq 0

˙
` P

˙`
νe´iλx adσ pJ` ´ J´q

˘
.

Unlike RHP 3.1 in which ν appears as a row vector, here ν is a 2 ˆ 2 matrix:

ν “

¨
˝

ν11px, λq ν12px, λq

´λν12px, λq ν11px, λq

˛
‚

and its first row pν11, ν12q is the solution to RHP 3.1. We integrate both sides of
(4.18) along the contour shown in Figure 4.1

d

dx

ż `
νe´iλx adσ pJ` ´ J´q

˘
“

ż ˆ
´iλ adσ `

ˆ
0 q

´λq 0

˙
` P

˙`
νe´iλx adσ pJ` ´ J´q

˘
.

The potential q is given by the (1-2) entry of this matrix form integral. Using that
J´ P H2,2pΓq, the (1-2) entry of

ż
´iλ adσ

`
νe´iλx adσ pJ` ´ J´q

˘

is an L2-function of x, following the same argument as in the proof of Theorem 4.2.
To show that the (1-2) entry of

ż ˆˆ
0 q

´λq 0

˙
` P

˙`
νe´iλx adσ pJ` ´ J´q

˘

is an L2-function of x, we use that q P L2 X L8 which comes from the fact that
|q| ď c{p1 ` x2q2 shown in Theorem 4.2. This proves that qx P L2. To estimate
qxx, we differentiate (4.18) with respect to x. Explicitly, we have that

d2

dx2

ż `
νe´iλx adσ pJ` ´ J´q

˘
“
ż

1

`
ż

2

where
ż

1

:“
ż ˆ

´iλ adσ `
ˆ

0 q

´λq 0

˙
` P

˙2 `
νe´iλx adσ pJ` ´ J´q

˘
.
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and ż

2

:“
ż ˆˆ

0 q

´λq 0

˙

x

` Px

˙`
νe´iλx adσ pJ` ´ J´q

˘

Again following the previous argument and using that J´ P H2,2 and q P H1, we
conclude that qxx P L2p´a,`8q. A similar argument using scattering data given
by Theorem 2.11 and solving the corresponding RHP shows that qxx P L2p´8, aq.
Lipschitz continuity of the map follows from the uniform boundedness of the re-
solvent operator given by (4.6) and Proposition B.1. This completes the proof of
Theorem 4.5. �

4.3. Time Evolution of the Reconstructed Potential. We now recall the ex-
plicit time-dependence of qpx, tq on t through the law of evolution (2.33), and write
the reconstruction formula as

qpx, tq “
ˆ

´ 1

π

ż

Γm

νpx, λ, tqeitθpx,t,λq pJ`pλq ´ J´pλqq dλ
˙

12

where Γm is the contour shown in Figure 1.2b and

θpx, t, λq “ ´2λ2 ´ px{tqλ.
To study the time-evolution of qpx, tq, it will be convenient to work in the ζ variable
and write

(4.19) qpx, tq “
ˆ

´ 1

π

ż

Σm

µpx, ζ, tqeitθpx,ζ2,tq
´
ĂJ`pζq ´ ĂJ´pζq

¯
dζ

˙

12

where Σm, shown in Figure 4.2, is the inverse image of Γm under the map ζ ÞÑ λ “
ζ2, ĂJ˘ are the scattering data corresponding to J ˘ under the change of variables
and µ solves the Beals-Coifman integral equation corresponding to the scattering

data ĂJ˘.

Figure 4.2. The Modified Contour Σm

The continuity of the direct and inverse maps implies that, given Cauchy data
q0 P H2,2pRq, we may approximate q0 by a sequence tqnu from SpRq that converges
in H2,2pRq to q0 and obtain a sequence of approximants qnpx, tq for qpx, tq which
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converge in H2,2pRq as n Ñ 8 uniformly in t in any bounded interval. It follows
that, in order to prove that qpx, tq given by (4.19) is a weak solution of (1.2), it
suffices to assume that q0 P SpRq and argue by approximation.

The following proposition can be proved using the same technique used to prove
[14, Proposition 7.0.4]).

Proposition 4.7. Suppose that M˘ solve the RHP (3.7). Let

Qpx, tq “ ´ 1

2π
adσ

„ż

Σm

µpx, ζq
´
ĂJ`pζq ´ ĂJ´pζq

¯
dζ


“
ˆ

0 q

´q 0

˙

P px, tq “ iQpx, tqpadσq´1Qpx, tq “ i

2

ˆ
|q|2 0

0 ´|q|2
˙
,

and Apx, tq given as in (2.32). Then M˘ are fundamental solutions of the Lax
equations (2.31).

Given a fundamental solution of the Lax equations (2.31), it now follows by a
standard argument [13, Appendix B], that qpx, tq, defined as the p1, 2q entry of
Qpx, tq, solves the integrable equation (1.2). Thus:

Proposition 4.8. Suppose that q0 P H2,2pRq and let J˘ be the corresponding
scattering data. Then qpx, tq defined by (4.19) solves (1.2).

4.4. Proof of Theorem 1.1. Combining the results of subsections 4.1, 4.2, and
4.3 we can now prove the main theorem.

Proof of Theorem 1.1. Given initial data q0 P H2,2pRq, the direct scattering map
has the continuity properties asserted in Proposition 2.9, so that the time-evolved
scattering data has the continuity properties asserted in Proposition 2.10. By The-
orem 3.6, RHP 3.1 is uniquely solvable for each x, t, and by Theorems 4.2 and 4.5,
the map from scattering data Jp¨, tq to reconstructed potential qp¨, tq is Lipschitz
continuous into H2,2pRq. The map pq0, tq ÞÑ qpx, tq defined by the composition of
the direct scattering map, the flow map, and the inverse scattering map (i) maps
pq0, 0q to q0 (by standard arguments which we omit here), (ii) is jointly continu-
ous in pq0, tq (by the continuity of the direct and inverse maps), and (iii) is locally
Lipschitz continuous in q0 (by the Lipschitz continuity asserted in Theorems 4.2
and 4.5). Finally, it follows from Proposition 4.8 that qpx, tq is a weak solution of
(1.2). �
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Appendix A. Sobolev Spaces on Self-Intersecting Contours

In this Appendix, we define the Sobolev spaces Hk
˘pΓq and Hk

z pΓq needed for the
analysis of RHP 3.1. These spaces were introduced by Zhou [20]; see [17, §2.6–2.7]
for a discussion on their role in the analysis of Beals-Coifman integral equations
associated to RHP’s.

If Γ “ Γ1 Y . . . Y Γn and the Γi are either half-lines, line segments, or arcs, the
space HkpΓq consists of functions f on Γ with the property that f |Γi P HkpΓiq.
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The space HkpΓiq is well defined since each Γi can be parameterized by arc
length and functions on Γi viewed as functions on a subset of R. A function
f P HkpΓiq has a representative which is continuous, together with its derivatives

f pjq up to order k ´ 1. Limits of f pjq at the endpoints of Γi are well-defined for
0 ď j ď k ´ 1. The space Hk

`pΓq (resp. Hk
´pΓq) consists of the functions of HkpΓq

which are continuous together with their derivatives up to order k ´ 1 along the
solid and dashed components shown in Figure A.1a (resp. Figure A.1b).

(a) Boundary components of Ω`

Ω`

Ω´

Ω´

Ω`

S8´S8

(b) Boundary components of Ω´

Ω`

Ω´

Ω´

Ω`

S8´S8

Figure A.1. Boundary Components of Ω˘

To describe the continuity conditions, let

pf j
i q˘ “ lim

zÑS˘8,zPΓi

f pjqpzq

where the contours Γi are as shown in Figure 2.2 (a)–(b) . A function f P Hk
`pΓq

obeys the conditions

(A.1) pf j
1

q´ “ pf j
2

q´, pf j
3

q´ “ pf j
4

q´, pf j
2

q` “ pf j
1

q`, pf j
3

q` “ pf j
4

q`

for 0 ď j ď k ´ 1, where in each case the first condition comes from continuity
across the solid contour, and the second from continuity across the dashed contour.
Similarly, a function f P Hk

´pΓq obeys the conditions

(A.2) pf j
1

q´ “ pf j
3

q´, pf j
2

q´ “ pf j
4

q´, pf j
3

q` “ pf j
1

q`, pf j
2

q` “ pf j
4

q`

for 0 ď j ď k ´ 1.
The space Hk

z pΓq consists of those functions in HkpΓq which obey the following
zero-sum conditions at the two intersection points ˘S8.

(A.3)
pf j

1
q´ ` pf j

4
q´ ´ pf j

2
q´ ´ pf j

3
q´ “ 0

pf j
2

q` ` pf j
3

q` ´ pf j
4

q` ´ pf j
1

q` “ 0
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where the ˘ signs are determined by the orientation of the contour as indicated in
Figures A.1a and A.1b.

It is easy to see from (A.1), (A.2), and (A.3) that Hk
˘pΓq Ă Hk

z pΓq. In [17, Lemma

2.51], it is shown that if f P Hk
z pΓq, then the Cauchy projectors C˘

Γ
f P Hk

˘pΓq. This

mapping property is very natural since C`
Γ
f (resp. C´

Γ
f) is the boundary value of

a function analytic in Ω` (resp. Ω´). It follows that

Hk
z pΓq “ Hk

`pΓq ` Hk
´pΓq

with the decomposition given by f “ C`
Γ

pfq ` p´C´
Γ

pfqq.

Appendix B. The Continuity-Compactness Argument

In this appendix, we give the abstract functional-analytic argument needed to
prove uniform resolvent estimates required in section 4 for the Lipschitz continuity
of the inverse scattering map. Proposition B.1 can also be used to simplify proofs of
analogous uniform estimates in [7, 13]. In what follows BpXq denotes the Banach
space of bounded operators on the Banach space X .

Proposition B.1. Let X, Y , and Z be Banach spaces and suppose that there is a
continuous embedding i : Z Ñ Y with the property that bounded subsets of Z map
to precompact subsets of Y . Suppose that CJ,x is a family of bounded operators on
a Banach space X indexed by J P Y and x P R. Finally, suppose that:

(i) The map pJ, xq ÞÑ CJ,x is continuous as a map from Y ˆR into BpXq, and
the estimate

sup
xPR

}CJ,x ´ CJ 1,x}
BpXq À

››J ´ J 1
››
Y

holds,
(ii) The resolvent pI ´ CJ,xq´1 exists for each x P R and J P Y , and
(iii) For each J P Y , the estimate

sup
xPra,8q

››pI ´ CJ,xq´1
››
BpXq

ă 8

holds.

Then for any bounded subset B of Z,

sup
JPB

˜
sup

xPra,8q

››pI ´ CJ,xq´1
››
BpXq

¸
ă 8

and the map

J ÞÑ
 
x ÞÑ pI ´ CJ,xq´1

(

is locally Lipschitz continuous as a map from Z into Cpra,8q;BpXqq.
Remark B.2. 1. In applications, (i) is easy to prove from the explicit form of the
Beals-Coifman integral operators, (ii) follows from Fredholm theory and a vanishing
theorem for the RHP, and (iii) follows from the continuity of the map

x ÞÑ pI ´ CJ,xq´1

and the fact that, in the limit x Ñ 8, the integral kernel of the operator is highly
oscillatory. 2. In applications, the bound in hypothesis (iii) is typically only true
for half-lines. One can replace ra,8q by p´8, as and obtain the same result.
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Proof. Denote by Cpra,8q,BpXqq the Banach space of continuous BpXq-valued
functions of x P ra,8q equipped with the norm

}f}Cpra,8q,BpXqq “ sup
xPR

}fpxq}
BpXq .

Consider the map

(B.1) Y Q J ÞÑ
`
x ÞÑ pI ´ CJ,xq´1

˘
P Cpra,8q,BpXqq.

Assumptions (i), (ii), (iii) and the second resolvent formula show that this map is
well-defined and continuous. Using the injection i we can identify bounded subsets
of Z with precompact subsets of Y . We can then use the continuity of the map
(B.1) to conclude that the image of any bounded subset of Z has compact closure in
Cpra,8q,BpXqq and hence is bounded. The local Lipschitz continuity now follows
from the identity

pI ´ CJ,xq´1 ´ pI ´ CJ 1,xq´1 “ pI ´ CJ,xq´1 pCJ 1,x ´ CJ,xq pI ´ CJ 1,xq´1

(the “second resolvent formula”) owing to the uniform bounds.
�
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