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UNIQUENESS RESULTS FOR ZAKHAROV-KUZNETSOV EQUATION

LUCREZIA COSSETTI, LUCA FANELLI, AND FELIPE LINARES

ABSTRACT. In this paper we study uniqueness properties of solutions to the Zakharov-Kuznetsov equation of
plasma physic.
Given two sufficiently regular solutions ui,u2, we prove that, if u; — ug decays fast enough at two distinct

times, then u; = ua.

1. INTRODUCTION

This paper is concerned with uniqueness properties results for solutions of the so called Zakharov-Kuznetsov
equation
Oru + 03u + &gaiu + udzu = 0, (z,y) e R?, tel0,1]. (1)

Equation () is one of the variants of the (2 + 1)-dimensional generalization of the Korteweg-de Vries (KdV)
equation that reads
ou+ BPu+udu=0, weR, tel0,1]. (2)

The equation was introduced in the context of plasma physic by Zakharov and Kuznetsov in [38], where they
formally deduced that the propagation of nonlinear ion-acoustic waves in magnetized plasma is governed by

this mathematical model. A rigorous derivation of equation (Il) was given by Lannes, Linares and Saut in [29].

The problem of local and global well-posedness for the Cauchy problem associated to (I]) has extensively been
studied. Up to date the best local well-posedness result available in the literature was obtained independently
by Molinet and Pilod [33] and Griinrock and Herr [16] for initial data in H*®(R?), s > % Then the global theory
follows by standard arguments based on L? and H' conservation laws. We refer to [14,[30-32] and references
therein for other results of this type and several additional remarks concerning with properties of this equation.

Our main goal is to prove uniqueness properties from two distinct times for equation ([{l). More precisely we
want to deduce sufficient conditions on the behavior of the difference u; — ug of two solutions uq, us of (1) at
two different times, tp = 0 and ¢; = 1, which guarantee that w; = us. This kind of results is inspired to the
program performed in [7HI2] for Schrédinger and KdV (see also [37] and Remark [T below for further details).

The main motivation for our study is a recent work by Bustamante, Isaza and Mejia [4] where an upper
bound for the possible decay at two different times of a non-trivial difference of two solutions of (1) was given.

More precisely they prove the following:
Theorem 1.1 ( [4] ). Suppose that for some small e > 0
ur,ug € C([0,1]; HA(R?) n L2((1 + 22 + y?)57< dady)) ~ C'([0,1]; L*(R?)),
are solutions of ([{l). Then there exists a universal constant ag > 0, such that if for some a > ag
ur (0) — ua(0), w1 (1) — uz(1) € L@+ dudy),
then u1 = us.
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Remark 1.1. As the authors in [4] pointed out, this result does not appear to be optimal, indeed the symmetric
character in x and y of the decay assumption does not reflect the non symmetric form, with respect to = and
y, of equation ().

To explain this fact, let us sketch the analog picture for KdV and Schrédinger equations. As regards with

the KdV equation, Escauriaza, Kenig, Ponce and Vega in [9], considering u; and us two solutions of

Opu + 03u + udu = 0, (z,t) € R x [0,1], (3)
deduced that there exists a universal constant ag > 0 such that if for some a > ag

ui(0) — uz(0), ui(1) —us(1) € L2(e®Y dx), (4)

then u; = uy. (Here x4 := max{z;0}).
Instead in [I2] the same authors considered solutions of the Schrédinger equation
ou = i(Au + V(x,t)u), (x,t) e R™ x [0,1], (5)
and proved that if u is a solution of this equation and if there are two positive constants o and 3 with af < 4
such that
2 2 2 2
||e\m\ /B U(O)HLQ(]R"')a H6|Z| e u(l)HLZ(Rn) <o, (6)
then v = 0.
The value 3/2 in the exponent in () arises in the asymptotic behavior of the Airy function, while the Gaussian

decay is known to be the sharpest possible simultaneous decay for both a function f and its Fourier transform

J?, which explains (@) together with the aid of the explicit formula for the Schrodinger kernel.

For the ZK equation one might expect to have a sharp decay of the form e=2"*=by® " This is because of
the decay of the fundamental solution of KdV and the Gaussian parabolic heritage arising from the Fourier

uncertainty.

Recently, Faminskii and Antonova in [I5] showed that the previous “natural” ansatz for the decay assumption
is wrong, they proved that the fundamental solution to the operator d; + 03 + azag still displays an exponential
decay but just in the x variable. More precisely, considering the IVP

dru + P3u + 8I(?§u =0
U(ZL', Y, 0) = ’LLO(ZL', y)

whose solution given as a convolution by

o(t
ute,.t) = W5(2 LY wug(a, ),
t3 t3 t3
where
S(e,y) = F () — €+ = LJ gioiny i(€H6®) gegn (M)
’ 2 ’ 472 Jgo ’

6 is the Heaviside function and F~! represents the inverse Fourier transform, they prove for the function S the

following result.

Lemma 1.1. Let S(z,y) be as in (), for any x € R and integer k > 0 the derivative 0*S(x,y) belongs to the
Schwartz space S(R) with respect to y and there exists a constant cog > 0 such that for any xo € R, integer m = 0

and multi-index v
(14 [y)™[2%, S(x,9)| < c(m, |v],zo)e =20 vz > a0, Vy e R. (8)

This lemma suggests what should be the sharp decay for solutions to the nonlinear problem. Our main result

in this work shows that is in fact the case. More precisely we prove the following:
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Theorem 1.2. Suppose that for some small € > 0,
ur,us € C([0,1]; HY(R?) o L2((1 + [2])25%9) dady)) n C*([0,1]; L*(R?)), (9)

are solutions of the equation ().

Then there exists a universal constant ag, such that if for some a > ag
u1(0) = us(0), ur (1) — us (1) € L2 (1" dady) (10)
then u1 = us.

In order to obtain this result, following [16] we introduce the linear change of variables

x _ I/Q_;_Ly/
ey (11)
y =5

with A = /3 and p = 4715,

It turns out that if u = u(x,y,t) solves () then u(z’,y’,t) := u(x;zy,, ””,2;/\7’/, t) solves

dru + (02 + 6§)u + 473 (0, + 0,))u =0, (z,y) e R?, tel0,1], (12)

that is a symmetric version of Z-K equation (Il). Here with abuse of notation we have called /', 3/, % as z,y,u

respectively.

Therefore Theorem is a consequence of the following result.

Theorem 1.3. Suppose that for some ¢ > 0,
ur,uz € C([0,1]; HY(R?) A LA((1 + |z + y[)?G+9 dady)) n C1([0,1]; L*(R?)), (13)
are solutions of the equation (I2).
Then there exists a universal constant ag, such that if for some a > ag
1 (0) — u2(0), uy (1) — up(1) € L2 (e dady), (14)

then u1 = us.

Notice that, if uy, ug solve (I2), then v := u; — ugy is a solution to
o+ (03 + v + 47éu1(6z + O0y)u + 4*%(633 + 0y)uz v = 0. (15)
Since it comes into play in the proof of Theorem [[.3] and we think it is of independent interest, we state the

following linear result for (1)) (actually it is considered a slightly more general equation than (IH]).

Theorem 1.4. Suppose that for some small € > 0,
ve C([0,1]; HA(R?) A L2((1 + |a + y|)*5 9 dady)) o CH([0, 1]; LA(R?)),
is a solution of
O + (03 + 05)v + ax(z,y,t)(0x + Oy)v + ao(z,y, t)v = 0, (16)
where ag € L n LELY, and ay € L® n L3LJ n Ly LY.
Then there exists a universal constant ag > 0 such that if for some a > ag

v(0),v(1) € L2(e“‘”y|3/2 dxdy),
then v = 0.

We shall see that, under the hypotheses of Theorem [[3] (1) turns out to be a particular case of (6] with
ag = 43 (Op + Oy)uz and aq = 4_%u1, therefore our result in Theorem [[.3] will follow as a consequence of the
validity of Theorem [L.4]
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The optimality of Theorem [[3 (and thus of Theorem (2)) is proved in the following theorem.

Theorem 1.5. Suppose that for some & > 0
we O([0,1]; H(R?) n L2((1 + |z + y[)*5 79 dady)) n C*([0,1]; L*(R?)),
is a solution of the equation (I2). Let ag be a positive constant such that
u(0) € LQ(ea“(Ier)i/2 dxdy),
then u satisfies
tSEﬁ] JRZ ea(t)(ﬁy)iﬂu(za Y t)|2 dzdy < C' = C(ao, HUHC([OJ];HZ(RZ))v Heao(zw)i/z/%”c([o,1];H2(R2)))a

with

)

at) = ————5—.
®) (1 + 27at/2)1/2

Remark 1.2. Notice that following the argument in [9] it can be proved that given ag > 0 and § > 0 there exists

a non trivial initial datum wug € S(R?), ¢1,c2 > 0 and an interval of time AT > 0 such that the corresponding

solution u(z,y,t) of (I2) with initial datum wug := u(0) satisfies

cq e~ (@00 +y)¥? w(z, y,t) < c2 e—<a0—a><z+y>3/2, r+y>>1, tel0,AT].

The paper is organized as follows. Section 2 represents the core of our work as regards to the symmetric Z-K,
here we are concerned with the proofs of Theorem [[.4] and of its nonlinear counterpart Theorem In order
to do that, following the scheme in [9], we introduce two types of estimates, a lower bound which follows after
performing a suitable Carleman estimate and an upper bound for the H? norm of the solutions which exploits
the exponential decay assumed for the initial and final data.

In Section 3, our main result Theorem for the original Z-K equation is proved.

Finally in Section 4 the proof of Theorem is given.

Acknowledgment. The authors would like to thank Pedro Caro for helpful comments and suggestions.
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by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation
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2. Proor or THEOREMS [.3} T4

This section is concerned with the proof of Theorems [[3l L4l As sketched above, we will prove a lower
and an upper bound in suitable weighted norms for the solution v to (If) and then perform a contradiction

argument.
2.1. Lower bound. This subsection is mainly interested in the proof of the following result.

Theorem 2.1. Let v e C([0,1]; H3(R?)) be a solution of ([6) with ag,a; € L*(R3). Assume that
1
f f ([0 + [Vol? + |Avf?) d dy dt < A2,
r2 Jo

Let 6> 0,7€(0,%) and Q := {(z,y,t): /22 +y2 < 1, t € [r,1 —7]} and suppose that [vllp2(qg) = 0. Then there

exist constants EO, co,c1 depending on A, ||lao|,, and ||a1]|,, such that for R > RO
1 1 5
Ag(v) = (J- f (|U|2 + |Vol® + |AU|2) dx dydt) > coe B2
0 JQr

where Qr == {(z,y): R—1<|z+y|<R A R—1<|z—y| <R}
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FIGURE 1. The region Qg

The previous idea of establishing lower bounds for the asymptotic behavior of a suitable norm of the solution
in an annulus domain stems from a work by Bourgain and Kenig [2] on a class of stationary Schrodinger
operators —A + V() in which the property of spectral localization, that is the phenomenon for which the point
spectrum of the analyzed operator presents exponentially decaying eigenfunctions, is studied.

In that work they needed precise quantitative information on the rate of local vanishing for eigenfunctions,
more precisely, local bounds on the eigenfunctions both from above and from below were required. Unlike the
upper bound, which just needs classical tools to be achieved, the lower bound is a more subtle issue. The

statement (Lemma 3.10 in [2]) is as follows.

Lemma 2.1. Let u be a bounded solution of Au + Vu = 0 in R with suitable additional assumptions about V.
Let g € R™,|zg| = R > 1. Then

4
log R)R3

—ei(
L max_ |u(z)| > coe

This was derived from the following Carleman type estimate.

Lemma 2.2. There are constants C1,Ca,Cs, depending only on n and an increasing function w = w(r) for
0 <7 < 10 such that
1

- w(r)

Cl T
and for all f € CF(B1o\{0}), o > Cs, we have

<Cl

a3J w2 g C3J w2 (Af)?.
Rd R4

In order to obtain the lower bound in Theorem [2.]], in the same spirit as Bourgain and Kenig we will start

performing a Carleman estimate for our operator
P=20+ (ai + ag) + al(z,yat)(az + ay) + aO(xay,t)v (17)

where ag,a; € L%(R3).
As a starting point we will prove the following Carleman estimate for the leading part of the operator P,
namely 0; + 05 + 05
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Lemma 2.3. Assume that ¢: [0,1] — R is a smooth function. Then, there exist two constants ¢ > 0 and
My = Mi([|[¢' ||, |©"]l ) > 0 such that the inequality
o}

3
a2 (e} €T
+ ?He i ’y’t)|Vg|||L2(R2x[o,1])

e (x,y, t) g’

L2(R? x[0,1])
< C||€a¢(x7y’t)(at + ai + ag)gHLZ(RZX[O,l]) (18)

holds, for R =1, a such that o®> > M1R3, g€ CF(R? x [0,1]) supported in
»

Z + (e =1}
= + (]

and ¢(z,y,t) = ‘% + ga(t)&‘2 = (% + ga(t))2 + (% + <,0(t))2, with 3 = (x,y) and £ = (1,1).

{(z,y,t)eRQ « [0,1]:

Remark 2.1. In order to obtain from the previous result an estimate involving the whole operator P as defined
in (7)), a very essential role is played by the multiplicative parameter « on the left-hand side of (IJ]). Indeed
by taking « sufficiently large, we can make the term on the left-hand side as large as we need in order to absorb
potential lower order terms.

This fact can be seen at work explicitly in the proof of Lemma 2.4 below, where a Carleman estimate for the

whole operator P = 0; + 05 + 83 + a1(0x + dy) + ao is given. Indeed by virtue of the assumption o > M;R? in
5 3

Lemma 23] the terms ”}%—i and oé—i grow as a positive fractional power of R, therefore, being R a large parameter,

it will allow us to include in the estimate lower order derivatives.

Proof. From now on with an abuse of notation we will write L? instead of L?(R? x [0, 1]).
Because of the difficulty to prove an exponentially weighted estimate, as usual in this context, we reduce

ourselves into proving an estimate for the conjugated operator
@D (3, + 03 + §3)edlmvt),

The main point in the proof is, roughly speaking, a “positive commutator argument” that will give a lower
bound for the conjugated operator e*?(d; + 02 + 83)670@ once it is decomposed as a sum of its symmetric and
skew-symmetric part.

In order to do that we define f = e®?(@¥:t) g observe that

2 0|Vgl* = 2 ?[(e7*0uf — adupe™?f)? + (7?0, f — adyge=?[)?]
= (Ouf — a0s0f)* + (Oyf — adyof)*.
Using this identity it is sufficient to prove

clle®®(@r + % + 33)e ™ fll 2 > T l6F 12 + T 1100f — aubfll e + Tz 100f —adyofll e (19)
A straightforward computation gives
(0 + 0} + O))e” 0 f = — adpf + Of — adiof +30%(0:0)(70)f — o (0:0)* f
= 300700, f + 30°(0:0)° 0, f — 300,003 f + 0 f
— adyf +3a°(0y9)(050) f — a®(0,¢)° f — 30, ¢, f
+ 3a2(6y¢)25yf — 304(3y¢(3§f + (3Sf.
We can write this as
e (0y + 02 + 00)e Y f = Aaf + Saf,
where A, and S, are respectively skew-symmetric and symmetric operators given by
Ag = 0 + 03 + 05 + 30%(0:0)° 0z + 307 (040)0y + 30 (020)(029) + 30°(0y9)(0;0)
Sa 1= =3a04(0:00:°) — 300, (0y¢0y) + (= a*(0:0)° — adz¢) + (— a*(9,¢)° — ady¢) — adis.
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Thus one gets
2?0y + 3 + 03)e =D f[72 = |[(Aa + Sa) fII72
= <(Aa + Sa)fa (Aa + Sa)f>

= | Aafl72 + 1Safll3e + (Aak, Saf) + (Saf, Aaf)

= ([Sa Aalf, 1)

Remark 2.2. From now on, to save space, we abbreviate S = SSSRQX[O 1 and omit the arguments of integrated

functions.

Now we choose ) ) )
x x
o,y t) = |2 +ee] = (F+e0) +(L+e0)
where s = (x,y) and £ = (1,1).

(20)

First choosing (20) and adding and subtracting the terms j‘é—i 10 f — et f| 32 + %—i 10y f — adydf|32, we get

IS: Aalf, £ = 121125 + o 122
-2 [ - =5 [0,

I [(5 4 0) @t 4 S [ (% +00) (@7

24a

420 [(#00)? + 20 f (% +90) 01

[ on+2a [ (% +o0)e0r
18 2, 28805 4

+ R—f: f (5 +¢0) vOr+ T [ (5 +90) £
4807 2, 2880 4

+ T [ (L) s+ T [(L4ew) '
O[B 2 O[B 2

+ 21100 f — adubf I3 + 310, F — 08,61 13
a3 2 a3 2

— gillozf = adedf e = T l10uf — a0y 72

Let us consider , for

24a

o = @[], R?,
it follows that

12c 12a
Lens- 12 jn &l (0 f)? ﬁwwaf

> - 12‘1 [ -2 f(a P2,

We compute (I + I5)) using the explicit expression for d,¢ and dy¢ :
3

it =— 0 [0n - [ (5 o) a2 [ (5 + o) so.s

3

_%J( o, )% — da f(%+@(t))2f2+%f(%+<P(t))fayf-

Il +I{k

IQ+I2*

Now let us just consider the last terms in the first and the second rows of the previous identity, using the

classical Young inequality

ab< —+ —, a,b>0, +-=1

)

1
q

S
S}
SRR

(22)
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we obtain

o [ () + 2 (Bt} 2 (|2 o= [| 2ot

20 (o) -2 ey

SR (L) -2 @

Since |% + ¢(t)¢| = 1, then one obtains

R R A (O R [
> S |2+ vwe] 2 -3 [y - 3 [
Gathering altogether we get

18«

18
([Sas Aalf, £y = 102 F 172 + = 102F17

=B [y - B2 [y
3 3 2
2 | (54 e®) @up+ 25 [ (B + o) @
2 (2 [ ®p+ 20| (F+o)e s
+ QCYJ.(QD ) f)* + QQJ (% + 90(15)) " (t)
+ 4203[ J(E + w(t))2¢'(t)f2 + 4;2[3 J (}% + @(t))le(t)fz
B [(&vo) 72+ B [ (L4 e0) '
4 ;—inazf —adu0f|2a + ;—ill%f — adyof|is
o [l

We consider (Iz + I3)), using again that |% + ¢(t)¢| > 1, we obtain

24a

Bt == B0 [(£ 4 o0) @0 -2 [ (L4 o) our?

=:1

B (54 o) @y 2 (4 + o) @7

=:11

First let us observe that, making use of integration by parts, I can be re-written as

I= +%‘1‘3J(% + gp(t))2faif.

]1+If<

IQ+12*

IngI;
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Using (Z3), observing that 18 = 27 + 22 and that 288 = 9 + 279 we have

11+I+I§"=J.(§£6§f)2+2f1—25;—i(1% 0) f62f+“ Ri(]y;,fso(t))zf]2

47 4
+ o | @) +279§ (£+e) £

_ Qa2 o Y 202 ﬂ& 2 2
_“2Raf+3 (R“D(t)) ]+ T )@
a® 4
> (Y 2
+279RGJ(R+§0(1§)) 72,
Proceeding in the same way for I + I1 + I3 we get

3 2 12 47 4
I{F+II+13ZJ[§Ea§f+3%<%+ga(t)) f] +Z% (22f)? +279@J(%+¢(t)) f2.

Summing up, neglecting the two squares of binomial, that clearly are non negative, one has

47
[Sas Aalf. ) = 751020172 + - 755 165172
a’ x 2 12903 2
2 | (o) @p+ T [ (B + o) @2

24a + 204[(90 ) ) + 20<f (% + w(t)) o (t) f? L+1+13

47 «

24a

220 [ 00+ 20 [ (L4 00) 0 IR

B[ 0 [ (5 )

; 4]8%—65 f (L +00) 02+ 27]3(?‘5 f (L +o) 7 T

043 2
|ayf - aay(beLZ

3
102 — @22 f |72 + 2]

(6%
* 7l
6a’ » 1,
= | E 1ot .
76 ﬂRﬂa( )5‘ f

Now we compute I + I3 + Iy + I + I + I¥, using that (a®+b%) > 1(a+b)? for all a,b > 0 and that 222 = 144—

we have

N

)2 4 48a

2o w4 S |5+ v 7
=f(2a%w’<>+12—\R+so ) - 35 [ 1%+ vte] 72

Since we are assuming o > [|¢'|| ,R? and since |% + ¢(t)¢| = 1, therefore

12+I;‘+I4+I;“+I5+I§,“>4af(go’

1 203 203 | 3 2
iy
202¢'(t) = — IE Z—? R‘*"P(t)f’
This gives
100a® (s 4, 2
12+I;‘+I4+L1"+I5+Ig">Fﬂ}—%+sﬁ(t)§‘f *iﬁﬂ + p(t §’f

With regards to I3 + I3, assuming

1
*> |l¢"lI2 R®
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and recalling that |5 + ¢(t)§] = 1, we have

B 1y > 2 [[| 5+ 0] + |4+ o0l 5 22 |2+ ot0e] 2
> 2 (1% 4 o'
Moreover
Lo+ IF — 48a 48a ﬂ (t)£‘4f2'

Putting everything together and neglecting positive terms, we obtain the following estimate for the quantity

{[Sas Aalf, [

47 «

(Sa Ault 1) = G [@02+ T [ @7

B (£ 1 00) 00+ 2 [ (L0 0,7

. (100_2_2f—48—6)ﬂ§+so(t)€‘4f2

043 2 O[B 2

+ 2 10u] — a0ubf 3 + 100F — ady0I

83 a® (| 4
> (= -2v2)—= ||= 2

(G5 -2v2) 55 [ |5 + ot 1
o a’

+ 27102 f — a2eflz2 + 57100 f — ady6 7z

Gathering the above information we conclude that
=202y + 65 + o)e ¢ fI L,
a® » 4 a? 9 a? 9
> %5 [+ o] 72 + 3101 — adudf 13 + Tl0nf — adyof 3

holds. Then a straightforward computation shows that this easily gives ([I8) in terms of g with ¢ = V3. ([

Next, we shall extend the result in Lemma 23] to operators of the form (7).

Lemma 2.4. Assume that p: [0,1] — R is a smooth function. Then there exist ¢ > 0, Ry = Ro(||¢|| 5, |¢" [ 0
laollos llatll) > 1 and My = Mi(|l¢'[l0s 9" [l) > O such that the inequality

5
az

@ g(x,y, t) g‘

3
a2 ap(x,y,t
L2(R2x[0,1]) Tzl POV gl 2 g2 0,11

< eI (@, + 02+ 35+ ar (.9, (s + 0,) + a0(w, v, D)9l pa o) (24)

holds for R > Ry, a such that o® > M1 R3, g € CF(R? x [0,1]) supported in
0 >
{@y.0) e R x[0,1]: | = + p(t)e| > 1}

and ¢(z,y,t) = ‘% + ga(t)&‘2 = (% + ga(t))2 + (% + <,0(t))2, with 3 = (x,y) and £ = (1,1).
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Proof. From the estimate (I8)) of Lemma 2.3 adding and subtracting the lower order terms, it follows that
3

a% o2

O ke gl + e Vgl < ellen?(@ + 22 + )l
< cHead’(at + 3+ 83 +a1(0z + 0y) + ao)gll ;2 + c||e°“z’(al(5z +0y) + a0)gll ;-
< cl[e*® (@ + 03 + 05 + a1 (0w + 0y) + a0)gll 2 + V2| |Vgll| L2 llar || e

+clle*®gll pallao]| oo
(25)

where the last inequality follows from the assumption ’% + @(t)f’ > 1.
3 5

Under our hypothesis o > M;R3, the ratios %—z and then %—E on the left-hand side grow as a positive
fractional power of R, therefore, being the last two terms on the right-hand side finite because of the strong
assumption about g, these can be absorbed on the left-hand side assuming R to be sufficiently large.

This yields the desired result. (I

Remark 2.3. Notice that our hypothesis o? > M; R?3 turns out to be fundamental to make the term %—% growing
as a positive fractional power of R in order to absorb [e®?|Vgl|||,. in the left-hand side of (Z5) and obtain (24).
We recall that the term [|e®?|Vg||| ;> comes from the fact that we want to obtain a Carleman estimate for the
operator P = 0; + 03 + 82 + a1(0y + 0y) + ao which involves first order derivatives. If instead we consider an
operator of this form 0; + 03 + (?S + a(z,y,t), namely an operator in which the first derivatives do not appear,
it would be sufficient to assume a* > M;R® in order to guarantee that Oé—% grows as a fractional power of R
and hence to get from estimate (I8) a Carleman estimate for this operator. In particular, this means that the
form of the operator plays the fundamental role in the choice of the decay necessary in order to obtain a unique

continuation result. To be more precise, considering the differential equation
3 3
Oru + Oyu + dyu + a(z,y,t)u = 0,
in this case it would be sufficient to require weaker hypothesis about the decay of the solution than the ones in

Theorem [L3], namely u1(0) — u2(0); ui (1) —ua(1) € L2(e“|m+y|% dz dy).

Several evidences of the strict link between the decay assumption necessary to get unique continuation results
and the form of the operator one is dealing with can be found in literature. In [6], Liana Dawson proved the

following result concerning with unique continuation for equations in the KdV hierarchy.

Theorem 2.2. Let uy,us two sufficiently smooth solutions of
Opu + 05u + 10udu + 200,ud2u + 30u*du = 0, (z,t) e R x [0,1].

If there exists an € > 0 such that

4/3+¢

Ul(O) —U2(0),u1(1) —u2(1) e I_IQ(eaz+ dl‘)
for a > 0 sufficiently large, then uq = us.

The previous result comes out as a consequence of the analogous linear result for the equation with variable

coefficients

0rv + 05 + ag(x, 1) 054w + az(x, )00 + as(z,t)0%v + a1 (z, )00 + ag(x, t)v = 0,
or better, since it is always possible to eliminate the fourth order term by considering w(z, t) := u(z, y)e3s %o @4(s:t)ds_
for the equation

0w + 02 + ag(w,t)03v + az(x,1)02v + a1 (z,t)0,v + ag(z, t)v = 0. (26)
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In order to get the result, a Carleman estimate for the leading order terms of the operator, namely o; + 02, was

shown:

1 - 2 3 = 2
i)+t (o],

a3 (L+¢ Prx 2 a? z Pz 3

az |, ) (* 2 a2 |l a(L+e) (T

-i—R3 e*\R (R+90(t)) 09 L2+R4 e“\R (R+<p(t)) 029 L
CY% a(£+ (t))Z x 4 04(14— (t))2 5
e B (FHew) o | <elentmTeO) @+ Byglle

As in our case, in order to obtain from this a Carleman estimate for the operator involving the lower order

derivatives, that is d; + 02 + a3d2 + a20% + a10; + ag, an “adding and subtracting argument” is performed. To
let this argument work we need to choose « in such a way the ratios 3‘%—%, 3‘%—%, 3‘%—%, ?2_% grow as fractional powers
of R because, therefore, for R sufficiently large, the additional terms on the right-hand side can be absorbed in
the left-hand side. This entails the restriction a® > M; R**¢ about o which leads to the exponential decay rate
in Theorem [2.2]

Let us observe that also in this fifth order setting, if one considered a differential equation in which third and

fourth derivatives do not appear, namely

Orv + 20 + ag(w,1)0%v + ay (2, )0, + ag(z,t)v = 0, (27)

5 z 9
a2 a2 a2
RO R RS
assuming a* > M; R°. This means that in this situation a stronger unique continuation result could be achieved

in this case we just need to guarantee that grow as a fractional positive power of R, that holds true
requiring a weaker decay rate for the solutions at two distinct times.
In [21], it was proved that this fact holds for a quite general class of high order equations of KAV type, which

includes the KAV hierarchy. Precisely that work is concerned with unique continuation results for the equation
o + (=110 + P(v, 0,v, ..., 0Pv) = 0, (x,t) € R x [0,1], (28)

where n =2k + 1, k=1,2,... and P is a polynomial in v, v, ..., d%v, with p < n — 1. Of particular interest
in that work were the cases p = n — 2 and p < k with n > 5. For these situations it was proved that if the

4/3+¢

Ty at two

difference of two sufficiently smooth solutions of the equation 28)) with p = n — 2 decays as e~

distinct times, then u; = us. Moreover when p < k a similar result was obtained assuming the weaker decay

n/n—1
—axr /

e T+ for a > 0 sufficiently large.

Now we are in position to prove the lower bound.

Proof of Theorem (ZI)). The starting point in the proof of the lower bound is to apply estimate (24]) in
Lemma 24 to a particular function g that we shall define to be suitably related with the solution v of (I6]), in
order to do that for R > 2 we introduce the function 6z € C*(R?) so defined

1 if l[z+y<R-1 A Jz—yl<R-1
0 it |Jz+yl>R A lz—y|>R

GR(‘T’y) = {

w € C*(R?) such that
0 if Jz2+y?<1
1 if /a2 +y?>2

,u(:v,y) =

and ¢: R — [0,2v/2], ¢ € CF(R) with

o it te[0,5]u1—151]
ﬂﬂ_{m@ it te[rl—r]

increasing in [5,r] and decreasing in [1 —r, 1 — £].
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We define the auxiliary function

9(@.y.1) = Or(a.y) (5 + 00, %+ o(0)) (e y.t),  (w.y) e R te[0,1]

It is easy to see that g satisfies

(0 + 02 + 05 + a1(0 + 0y) + ao)g
= u(% +(t), % + go(t)) [36Z9R&§v + 30,0102 + 3020R0,v + 3020500 + 0205V + 30xv
+a10.0R0 + alaye}w]
+ 3R 050,120 + 3R 050, 020 + 3R (R™10r020 + 20,010,1)020 + (R 0r0%1 + 20,010, 1)0y0]
+ [eRaIu(w’ + %) + GRay,u(gD’ + %) + R334+ R™363 1+ 3R 02000, + 3R 0200,
+ 3R™20,0R0% + 3R_28y938§u]v.

Remark 2.4. Observe that since in the first term in the right-hand side of the previous equation the derivatives
of Or appear, this term is supported in {(z,y): R—1 < |z+y|] < R, R—1< |z —y| < R} x[0,1], so in
particular (x,y) is such that \/W < R and this entails |I—’§ + <p(t)§| < 5. Moreover, one can notice that all
the remaining terms, sorted with respect to their dependence on the derivatives of our solution v, contain the

derivatives of u, this means that they are supported in {(z,y,t): ’R + (t E‘ 2,te[0,1]}.

Next we verify that function g defined above satisfies the hypotheses of Lemma 24l Indeed
e if |z +y| > R A |x —y| > R then we fall outside the support of O, this means that g(z,y,t) = 0.
eif [z +yl <R Afz—yl < Randt e [0,5]u[l— L, 1] then g(x,y,t) = 0, indeed being |z + y| <
R A |z —y| < R in particular \/22 + 2 < R and since o(t) = 0 if ¢ € [0, 5] U [1 — §,1], this gives
|Z + ¢(t)¢] < 1, therefore we are out of the support of (% + ¢(t), 4 + ¢(t)) and so g(m y,t) =0.
This guarantees that g is compactly supported.
Now we observe that g is supported in {(z,y,t) € R? x [0,1]: |% + @(t)¢| = 1}, indeed if |2 + (t)¢] < 1
then p(% + ¢(t), % + ¢(t)) = 0 and so g(z,y,t) = 0.

Since g satisfies the hypotheses of Lemma [2.4] there exist ¢ > 0, Ry and M; such that
He g||L2(R2><[01 < €299 + 03 + 75 + a1 (0: + 0,) +a0)9l 2 w2 x0,1)- (29)

Recalling that gb(x, y,t) = ‘% + <p(t)§’ and making use of Remark 241 it is easy to see that

1€9(0¢ + 03 + 0 + a1 (0 + 0y) + a0)gll L2 (g2 x[0.1]) < €1 €7 AR(V) + c2 €™ A. (30)

We observe that in the region Q = {(z,y,t): \/22 + 32 < 1,t € [r,1 — r]} we have g(z,y,t) = v(z,y,1).
Indeed if 4/22 + y2 < 1, in particular 1/22 + y2 < R — 1, therefore Op(z,y) = 1.
Moreover in @ it also holds that u(% + ¢(t), 4 + ¢(t)) = 1. Indeed, using that ¢(t) = 2/2 in [r,1 —r], the
trivial inequality a + b < v/2v/a2 + b2 which holds for all a,b > 0 and the assumption R > 2, we have
’ +2\f§‘ Cps B +4*—@(z+y)>16—4*—5(|z|+|y|)> 16— S
R R2 R R R
Then |% + ¢(t)¢] > V12 > 2 and so u(% + ¢(t), 4 + (1)) = 1.

Using that g = v in @ we obtain the following chain of inequalities:

5 5 5 5

o2 2 a2
CﬁHewgﬂm(R?x[og]) = Cﬁ”@ngL?(Q) = c—||e UHL?( C§€4a||v||p (31)
From (29), @0), (I) and the assumption [[v]|;2g) > we get

5

o2
4 25 4
Ch5e *§ <1 eP*Ar(v) + c2 e A,
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therefore

a2
Cﬁé < 6210‘AR(U) + coA.

1
Taking a = M R? with M, as in Lemma 4] we obtain
:p3 21mE RS
cMPR2 < 1”172 Ap(v) + c2A.

Now if we take R large enough, the second term on the right-hand side of the previous inequality can be
absorbed by the term on the left-hand side, so we can conclude that there exists }NBO > 0 such that for R > }NBO
the following holds

c _o1m? RE
Ag(v) = e rE

[\

This yields the desired result. (I

2.2. Upper bound. Now we will turn on the proof of the upper bound for solutions of (). Precisely the
result we will prove is the following.

Theorem 2.3. Assume that the coefficients in ([I8) ag, a1 satisfy ag € L® n L2L%,

or and ay € L L% A LLL%. If
ve O([0,1]; H4(R?)) is a solution of ([IB) satisfying that

x -yt x -yt

3
v(0),v(1) € L2(e®* V12 dz dy)

for some a > 0, then there exist ¢ and Ry > 0 sufficiently large such that for R = Ry

[V

k Al —a( &
leeunton + 23 105050l caqugon < e ()7,
O<k+I<2

where Qr = {(z,y): R—1<|z+y|<R A R—-1<|z—y| <R}
As in [4] we shall prove first the following lemma whose proof can be found in the Appendix.

Lemma 2.5. Let w e C([0,1]; H*(R?)) n C*([0, 1]; L>(R?)) such that for all t € [0,1] suppw(t) S K, where K
is a compact subset of R2.

Assume that ag € L™ N LiL;Ot and ay € LiL;Ot ) L}EL;ot, with small norms in these spaces.

Then there exists ¢ > 0, independent of the set K, such that for B > 1 the following estimate holds

”eﬁ‘Ier‘w”L?(]R?x[O,l])+ Z ||€ﬁ‘x+y‘5§5@l,w|h;oLgt(sz[o,u)
0<k+1<2

< e B2 (131w (0)]l 2 gay + 172 (7w (1) 2 py)

+ || TN(@r + 03 + 05 + ar (0, + 0y) + a0)wl| L1z ~L1r2,®2x[0.1])

with J such that j\g(f,n) = (14 & +n2)2§(€,n). (Here, ~ denotes the spatial Fourier transform in R? and

(&,m) are the variables in the frequency space corresponding to the space variables (z,y).)

Remark 2.5. Although we have assumed w(t) to be compactly supported for all ¢ € [0, 1], we shall see that the
argument in Lemma, can be extended to a larger class of functions. Indeed we only have to ensure that the
following quantity
kAl
leP= e+ Y Pk wll e o
0<k+I<2

is finite.
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To justify this affirmation we need to anticipate few facts regarding the proof of Lemma that can be
found in the Appendix below. Just to convey the idea we introduce the following notation similar to that one
already used by Escauriaza, Kenig, Ponce and Vega in [9]

o kAl
lAdly == Heszry'h”LZ(RZx[O,l]) + ; ] ||€ﬂ|z+y|awayh”L;°L§t(R2X[O,ll)’
O<k+I1<2

Il = |‘hHLngymL;L§t(R2 x[0,1])

As customary we will start proving the estimate involving just the leading part of the operator we are
working with, namely H := d; + 92 + 82, then we extended our a priori estimate to the whole operator, that is
Hy := 0 + 03 + 05 + a1(0z + 0y) + ap, using an “adding and subtracting” argument. More precisely, using our
new notation, the starting estimate for the leading operator H can be written as

flwll, < CﬁQ(|‘J3(€ﬁ‘x+y‘w(0))||L2(]R2) + HJB(eﬁ\ery\w(l))HLZ(RZ)) + ‘Heﬁ\ery\HwHL.

Now the second step we follow is to extend this inequality to the operator H,. Using the Holder inequality
and the smallness assumptions about ag and a; we get

llwll, < e 82 (172 w(0))]| L2 ey + 172 (21l (1)] L2 ge)) +
< eI w(0))] ey + 172 (7 (1)) ] 2 g2 )
+ [Pl t¥l B w , + [[ePlz+y] (a1(0p + 0y) + ao)ww2

< e (17% (P w(0) ] paggey + 12 (€7 w(1)) ] L2 ge))

oA |
2

+ eﬂ‘l+y‘Haw ) + ||a0HL°CmLiLZ°t||eﬂ‘l+y‘w||L2 + ||a1||L§L;°tmL;L;0t||€B|m+y|(ar + ay)w”LgOth

< e (172 (P w(0) ] paggey + 127w (1)) L2 ge))

1
+ ||l ¥l , + §|||w|||1

Hence, if we are working on a class of solutions w = w(z,y,t) for which ||w||, is finite for all 5 > 0, we can
obtain the desired result, that is the extended a priori estimate

llwlly < e 82 (1= ()| aaey + 172 (D)) e ge) + e Haw|

Now it should appear clear that in order to obtain the result in Lemma [2:5] the hypothesis w(t) to be compactly
supported is overabundant, it is sufficient to produce solutions for which ||w||, is finite.

In order to ensure the finiteness of [|w]||; it is sufficient to prove that a so-called persistence property for the
solution flow to (I2) holds true. More precisely it is sufficient to prove that if a solution to (I2]) has a suitable
exponential decay at two different instant of time, namely ¢; = 0 and ¢35 = 1, then this decay rate is preserved
for all ¢ € [0, 1]. The proof of this property and thus of the finiteness of the [|w]|, can be found in Appendix [B]

(Theorem [B1]).

Now we are in position to prove the upper estimate in Theorem

Proof of Theorem[Z:3. We construct a C* truncation function pr with pr(z,y) = 0 if |z + y| < R and
o 18R—1
pr(@,y) = 1if |z +y| > 25—
Let us define
w(xvyat) = MR(Z',y)U(SC,y,t)-

Now we want to see what kind of equation is satisfied by w. It is easy to see that, since v is a solution of (16,
the following holds

(00 + 03 + 0y + ar (2, y,)(00 + 0y) + a0 (@, y, ) w = er(z,y, 1),
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where
er(z,y,t) = 82MRU+38§;L38I1)+38mu38§v+8SuRv+38§uRayv+38yu385v+a1(:c, Y, t) 0z prv+a1(x, Y, t) Oy RY.

This means that our function w solves an equation like (I6]) but with a correction term eg. Next step would be
apply Lemma to function w. To do so, we first need ag, a; to have small norms. Therefore we introduce g
such that frur(z,y) = pr(z,y), and @; := aj(z,y,t)ir with j = 0,1 have small norms in the corresponding
spaces for R > Ry.
Let us consider the operator
L= 0y + 03+ 03 +a1(0, + 0,) + do, (32)

Now we are in position to apply (2.) with the operator L. This gives

||€ﬁ\x+y\w||L2+ Z ||eﬂ|z+y|a§agl;w”L;CL2t
O<kti<2 !

< 8 (I73 (7w (O) ] 2 + 175w (D)) + el gl pa - (33)

Remark 2.6. With an abuse of notation we have called € (the corresponding remainder coming from the action

of L on w) as ep.

We consider the term ¢ 52(|.J3(e?1#+¥lw(0))| ;.
Since w is supported in the set {(x,y,t): |t +y| = R, t € [0, 1]} and using that the pur and its derivatives are
bounded by a constant independent of R, it follows
BT T w(0)]| o < eB” DT (e HIaEaw(0)]] .
0<k+I<3
<eB ) [Pkl w(0)]|

0<k+I<3

<eB N a0

0<k+I<3

L2(|z+y|>R)

|x+y\2R) ’

Now we want to choose 3 in such a way to obtain in the right-hand side of the previous estimate the weighted
norm of v(0) with the right exponential weight. Let
5 2aR3
IBR-1
Using the explicit expression of 8 it can be seen that for R sufficiently large depending on a one has

3 3
2aR2 \5 2ar2 3
=1 lz+yl glz+yl2
) emralttl < et for |z+y|>R.
18R — 1) ’

Using the previous estimate one has

3
BT () <ca S NedHE B 0(0) ] a(pas sy
0<k+1<3

ﬂ5eﬂ\l+y‘ < (

3
Let us recall that under our hypothesis v(0) € L?(e®**+¥/? dz dy), this can be rephrase saying that
3
le2 =¥ 0 (0)]] 1 (34)

is finite.
3
Using an interpolation argument and the finiteness of (4], it can be seen that ||e¥1#+¥1% 9%l (0)]|, . is finite.

To show this we will employ the following interpolation result.
3
Lemma 2.6. For s >0 and a > 0, let f € H*(R?) n L2 (e***¥|* dzdy). Then, for 6 € [0,1],
3 o\piold
7m0 (72142 1) o < YT f2" e F s
for C = C(a,s).
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3
Observe that by our hypotheses v(0) € L?(e®**¥/* dzdy) and v(t) € C([0, 1]; H*(R?)) hence Lemma 26 with
3
s =4 and 6 = § ensures that [|e&17T¥* 050l v(0)|| .. is finite.
Using this fact we obtain
e BT ()]l 2 < ca. (35)
A similar argument shows that
e B2 (D))l 2 < ca (36)
It remains to bound the third term in the right-hand side of (33).
Since eg is supported in Qp := {(z,y,t): R< |z +y| < %, t € [0,1]}, we find that

18R—1

€R||L§LgynL;L§t<€ﬂ ! ||€RXQR||L§LgynL;L§t

[|efle+yl

ﬁ 18R—1

0ol +1250] + 12yl + 1330l +183DXnllaas, npgze, BT)

18R—1
P

< ce

1
< cRze

)

where in the last inequality we have used Hélder inequality and the fact that the area of the region Qg is of
order R.

Summing up, using B5),(38) and @B7) we have
18R—1 18R—1

le? b o+ S PR w] e <o+ eR2EPTTT < caR2ePT
0<k+I1<2 o

Defining Dp := {18R—1 < |z +y| < 18R A 18R—1 < |z —y| < 18R} see that Dg x [0,1] < {|z+y| = R} x[0,1],
the set in which w is supported. Observing that in Dy x [0, 1] we have w = v, one obtains

1
170l 2 oy + D0 NP HYIOE R ol 2oy < B2 (PP W o+ DT ([P VIAEL wl] 0 L2,)
O<k+I1<2 O<k+1<2

ﬂ 18R—1
< coReP 1

If |z +y| > 18R — 1, then
Blz +y| > B(I8R — 1) = 2aR3.

Moreover since for sufficiently large R, 5 > 1, one gets

RePEES < (B+DBER  PUHHIE 29282 _
This implies that
S (2 Y ke ) < cactt?
€ UllL2(DRx[0,1]) cOyVllL2(Drx[0,1])) S Ca® ’

0<k+I<2
which is equivalent to
3
kAl —aR2
||U||L2(DRx[o,1]) + Z ||azayv||L2(DRx[o,1]) < Caf )
0<k+I1<2

which written in terms of Qg gives

[N

_ R
oll 2 @uxpoany + D0 10800l L2(Qpxpony) S Ca (%)
O<k+I1<2

which yields the desired upper bound. O

2.3. Conclusion of the proofs. As it was commented in the introduction Theorem [[3] will follow as a

consequence of Theorem [[L4l Therefore we first provide the proof of Theorem [[.41
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2.3.1. Proof of Theorem[I4} If v # 0 we can assume after a possible translation, dilation and multiplication by
a constant that v satisfies the hypotheses of Theorem 2.1l This means that for R sufficiently large there exist

constants ¢y and ¢; as given in Theorem 2.I] such that
3
Ar(v) = coe™ 2 (38)

where 1
2

Ag(v) = < ﬂ (Io]? + |Vol]* + |Avf?) dmdydt)
Qrx[0,1]
and Qr = {(z,y): R—1<|z+y|<R A R—-1<|z—y| <R}
Applying Theorem 2.3 we can conclude that

[V

kAl —a(L&
1ol 2 omnory = Do 1050l a onxion < c€ a(£)
O0<k+I1<2

It is easy to see that the left-hand side of the previous expression can be bounded from below by the quantity
Ag(v), this gives
3
Ap(v) < ce w2 7 (39)
If one assumes a > ag := 18%2¢;, combining (B8) and ([B9) and taking the limit as R tends to infinity we get a

contradiction.
Therefore v = 0 and Theorem [I.4]is proved. O

2.3.2. Proof of Theorem[I.3. We just need to show that Theorem[[ 4 applies when we consider v as the difference
u1 — ug of two solutions to (I2)).
First of all we have already shown that if u; and us are solutions to (IZ) then the difference v satisfies

Orv + (03 + 05)v + a1(0x + y)v + agv = 0,

where
ag =475 (0z + Oy)us and a; = 475wy, (40)
Thus, one just needs to check that the coefficients ag, a1 as defined above satisfy the assumptions of Theorem [[.4]
that is
ap€ LY nLZLY,  a1€ L® nL2Ly; n LLLY,. (41)

To do that, proceeding as in [4], we will use the following interpolation result(see [34]).
Lemma 2.7. For s >0 and a > 0, let f € H*(R?) n L?>((1 + |z + y|)?* dzdy). Then for any 6 € (0,1),
1795 (1 + |2 + 9D D) g2 < CIUT 72l (L + e+ y ) f Iz, (42)
for C = C(a,s).
Applying [#2)) with s = 4,a = % +ecand f = i + %E with ¢ as in the statement of Theorem [[L3 we have

3e €1 0 s+e 59
1753 (U o+ ) =0 F) e < CLTFI 0+ |+ y) G 71327, (43)

where g1 := 5 — 1%52 > 0.

Applying [ @3)) with f = a; = 475wy (t), from our hypothesis about the solution w; and from the embedding
H't32(R2) — L*(R2) n C(R?) we obtain
c
(1 4+ +y) e’

|u1(z,y,t)| < (44)

for all (x,y,t) € R? x [0,1].
Since 1+ 3¢ > 1, the estimate (3] is also true for J! instead of JUHE¢ with f = 4~ 2us, using the product rule
for the derivatives we obtain that ||(1+ |x+y|)(1+€1)4*%8qu(t)||L2(R2) and ||(1+ |:c+y|)(1+51)4*§8yuQ(t)||L2(R2)
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are bounded function of ¢ € [0,1]. This allows us to apply @Z) with f = 47 50,us(t) and f = 4750 us(t),
s=3,a=1+¢e; and 6 = £ + &5 with £, > 0 small to obtain

77322 (1 + [ + y) F4730puz(t)) | 12 < TP (475 Qua(t)) |7 [1(1 + |2 + y) T+=4750,ua (t)]| 2

and the same for the derivative with respect to y.
Using this estimate and again the Sobolev embeddings one has
c

4750y + Oy)ug(t)) € ————
1740+ e <

(45)
for all (z,y,t) € R? x [0,1].
From the decay properties expressed in ([@4)) and (@5 it is clear that hypothesis (@Il holds.

Remark 2.7. As a final remark we observe that from (44) and (3] the functions a; := a;(z,y,t)ir, with j = 0,1
and a;(z,y,t) as in (@0), have small norms in the corresponding spaces for R sufficiently large as required in
Theorem

Indeed choosing jig in Theorem as

ﬁR(za y) = X{(z,y):|z+y|=>R} (SC, y)a

with yq the indicator function of the set €, it is easy to see from (@) and ([@0) that the following four terms

HaOX{(m,y):\eryIZR} HLoonLgL;vta HalX{(z,y):lery\?R} HL?ELﬁleLOO

zlyt

tend to zero as R tends to infinity. This guarantees the smallness required.

3. PROOF oF THEOREM

As a starting point we recall that if u; = u;(z,y,t), j = 0,1 is a solution to (), then @; = u;(2’,y’,t) :=
) (z/+y/ Ilfy,
i\T2p T2
uniqueness for solutions to (I2]), namely % = Uy, then uniqueness for solutions to (), namely u; = uo, is also

t), j = 0,1 satisfies the symmetric problem (I2)). In particular, this entails that if one provides

given. Thus in order to get our result, one just needs to show that if u;, j = 0,1 satisfies the hypotheses in
Theorem [[2 then Theorem [[3 applies to u;, j = 0, L.
Using (), by elementary change of integration variables, it can be seen that for j = 0,1

3
lota (85) = w2(8) 2 gt gy = H ealel® (uy (£) — ua(ty))? dz dy
R2

1 #|z/+y/|3/2 N N 9 1 N N )
= g [ = ) - a4 ' ' = () = )1 ey
RZ

where we have used the notation tg =0, t; = 1.

From the previous trivial identity it follows that if u; — uy satisfies the decay assumption (I0) then
~ 3
71(0) — W(0), 81 (1) — W (1) € L2 (e55+01* dzdy),

with @ := a/(2u)%2.
Therefore, by Theorem [[L3] we conclude that there exists a universal constant ag such that if @ > ag, that is

if @ > (211)%?ag, then 21 = @y. In particular this implies u; = ug, which is the desired result. O
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4. PROOF OF THEOREM

This section is devoted to the proof of the optimality of our unique continuation result Theorem

Following the argument provided in [22] we define the weight

ea(t)/4 2 <0
( t) a ea(t)@(z) 0<z<1
pnlz,t) = ea(t)z3/2 l<z<n
Py(z,t) zzn
where a(t) is the unique solution to the following IVP
d(t)+ Zad(t) =0,
a(0) = ao,
namely
ao
)= ————7> Vit=0,
o) =73 27a2t/2)1/2
1 15 12 3
9(2) = Z + §Z3 — §Z4 + 525
and

3/2 3

Py(z,t) = ea®n 4 §a(t)n1/26a(t)”3/2 (z—n)+ ((ga(t)nlp)2 + ga(t)nflp)ea(t)"

that is the second degree truncated Taylor expansion at n of e,

The following properties will be useful hereafter.

e For any n € N and z > 0 one has
©n (Z, t) < Caoea(t)ZS/Z,
for all t > 0.
e The function a(t) € (0, ag] for all t > 0.

e Being
Yy 3 12 5 3
0"(2) = =2( (V102 — 7o)t -) =0,

W~

and €'(0) = 0, then ¢'(z) >0 for 0 < z < 1.

2

0y Pa(z,t) = ga(t)nl/Qea(t)"S/2 + ((g(z(zf)nl/Q)2 + Za(t)rflp)ea(t)”s/2 (z—n) =0,

for z>=nand ¢t > 0.

From the previous facts, it follows that
020 (2,t) = 0, (2,t) € R x [0, 0).
Let us define
On(@,y,1) = (T +y,1).
Observe that
Oxfn (2, Y1) = Oydn(z,y,t) = Ozipn(x +y,1) = 0.

3/2 (Z — n)

(48)

(49)

Next, we multiply equation ([I2)) by u¢,, integrating the resulting identity and using integration by parts we

get
ld 2 1 2 1J‘ 2 13 3J‘ 2
s Loz | o -5 | w@en+d | @i,

IR X 3 25 4 _
: fwu Bn + JRQ(ayu) By

4—1/3

4—1/3

3

f 0,6,
RZ

J u?0ypy, = 0.
R2
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Multiplying the last identity by 2 and using ([@9) we can drop the positive terms to obtain

2
D2, <f (B + B + Gum) + —4-1/3f 3 (an + 0yn)- (50)
dt ]R2 ]R2 Y 3 ]RZ

Remark 4.1. Notice that by virtue of our assumptions, u satisfies the hypotheses of Theorem [B.I] this means
that in particular for any ¢ € [0,1] u(t) € H?(e??@+¥) dady) for all § > 0. This fact allows us to justify the
integration by parts used to obtain ([B0). Indeed at infinity ¢,(z,t) as a function of z is a polynomial of order

two.
Let us consider the right-hand side of (B0) in four different domains, namely
a)x +y <0, hHo<z+y<l1, c)l<z+y<n, drz+y=n
a) In the region z + y < 0 we have

O (2,y,t) = %qﬁn(x,y,t) =0, 7=1,2,3

and
a'(t 27
Otpn(z,y,t) = %e“(t)/‘l = *1—6113(15)6“”)/4 <0.
Therefore
2
J- U2(693c¢n + az(bn + at(bn) + —4_1/3J- u3(az¢n + ay(bn) <0 (51)
frtuso) 3 {a-+y<0)

and hence the region x + y < 0 does not give any contribution to the right-hand side of (G0J).
b) In the domain 0 < z + y < 1 we have

Osbn(a,y,t) = d' (£)0(x + y)e®W0E+Y) < 0,

indeed a/(t) = —27/4a3(t) < 0 and O(z + y) = 6(0) = 1/4 > 0.
Moreover

Oz (,y,t) = Oyn(,y,1) = a(t)0' (x + y)dn(x,y,t) < caodn(z,y,t),

0zn(@,y,t) = Oyon(z,y,t) = (a(t)0" (x + y) + (@) (x + y))?) bn(z, y, 1)
C(ao + ag)¢n(xa Y, t),

03 (@, y,t) = Ayon(z,y,1) = (a(t)0P (@ +y) + 3a* ()0 (z + )0 (x + y) + ()0 (z + y))°) S (. y,t)
C(aO + aO + aO)(bn(xa y’t)'

Therefore
f u? (03¢ + O3 + O16n) < Cay f u?¢y, (52)
{0<z+y<1} {0<z+y<1}
and
2 _
§4 1/3[ u3(8z¢n + Oyn) < C’a0||u(t)||Loo(O<I+y<1)J w2
{0<z+y<1} {0<z+y<1}
< Cugllileqouarey | a6 (59
{0<z+y<1}

2
< Cao,uf (alom
{0<z+y<1}

where in the last but one inequality we have used the Sobolev embedding.

Notice that under our hypothesis about the solution u the norm |[ul| ¢ (10,13, 12 (r2)) i finite.
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¢) In the region 1 < x + y < n we have

at¢n($7 ya t) = a’,(t)('r + y)3/2¢n (1"5 yv t)
Moreover 5
Oaton(2,,1) = Oyn (2,9, 1) = Salt)(x + ) P,y 1),

P20n(e,.1) = Fonl9,0) = (Sa(O)w + )7 + 02O + ) )on (.0

3 27 27
aa3c¢n(x7y; t) = agd)n(x?yﬂ t) = ( - ga(t)(z + y)_3/2 + §a2(t) + ga?’(t)(z + y)3/2)¢n(x7y; t)
Therefore
3 3 3 —3p2 27 5 27 3 3/2 ’ 3/2
G + Blpn + i = (= Jo)(@ + 1) + Ta2(t) + T O + 1)+ d (D@ +1)7?) b
Let us observe that the first term of the right hand side of the previous identity is negative, therefore,

using also that a(t) solves the Cauchy problem (46]) we get

(t) +

27 27
Using the previous inequality we have
27
J u2(52¢n + agd)n + at¢n) < Iagf u2¢)n. (54)
{I<aty<n} {1<zty<n}
and moreover
2
54*1/3f u?(Qan + Oypn) < Cat) f (z + ) uon
{1<z+y<n} {1<z+y<n}
< Cao H(-T + y)1/2u(t)||Lx(1<z+y<n) J-1< 3 U2¢n
{1<z+y<n} (55)
< Cyolle”Vu 72 (12 f u by,
ol ulloqo ey |

2
< CaOv'“‘J‘ u Qbm
{1<a+y<n}

where in the last but one inequality we have used that ||(z +y)"/?u(t)
the Sobolev embedding.

Moreover notice that Theorem [B.1] guarantees that [[e”*¥ul| ¢ (g 1), g2 2y 18 finite.

L (1 <atyen) < 1€7TYu)]| fo ge) and

d) In the domain = + y > n we have
0o (x,y,t) = 03Pa(z +y,t) =0,  Oydulz,y,t) = 0y Pa(x +y,t) = 0.

Moreover
3/2

Ordn(@,y,t) = 6Pl +y,1) = ' (B)[Je* " <.
We also have that for x +y > n

3 3 3 1

0z (2, y,t) = 0. Pa(x + y,t) = —a(t)n1/2e“(t)"3/2 + —a(tf)nl/2[—a(ﬁ)nl/2 + —]e“(t)"3/2 (x+y—mn)
2 2 2 2n

3 3 1

a2 Pa(a + y,t) + [5a(t)n1/2 + %]Pg(x +y,t)

< (1+ 3a0n1/2)P2(:c +y,t)

N

< (14 3ag(z + ) (@, y, 1),

and in the same way

Oyd(x,y,t) = 0y Pa(x +y,t) < (1 + 3ao(z + 1)) dn(z, y,1).
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Therefore
f u? (0360 + Oyn + eén) < 0. (56)
{z+y=n}
proceeding as in the previous domain we also have
2
—4’1/3f U (O + Oyn) < CJ W3(1+ 3a(t)(@ + y)Y?)én
3 {z+y=>n} {z+y=n}
<Cul@+ 9 Oy | 00
{z+y=n} (57)
< CU«O||€z+yu||c([071];H2(]R2)) f u2¢n
{z+y=n}

2
< Cao,uf U ¢n
{z+y=n}

Using (EI)- (B7) in (B0) we get
d 2 2
1. n < Ca u -
dt R2 b (b o J‘]R2 b ¢
Applying the Gronwall inequality we obtain
f w () by < ec%,utf u?(0)p,(0)  Vtel0,1].
RZ

R2

The conclusion follows using [{8)) at ¢ = 0 and by Fatou’s lemma letting n go to infinity.

APPENDIX A. PROOF OF LEMMA

Now we are in position to prove Lemma Actually we will give a proof of a slightly different and more

general version of the previous lemma. Our result Lemma follows by using the same argument.

Lemma A.1. Let w e C([0,1]; H*(R?)) n C*([0, 1]; L%(R?)) such that for all t € [0,1] suppw(t) S K, where
K is a compact subset of R2.

Assume that ag € L* n L2LY, and ay € L2Ly; n LLLY,, with small norms in these spaces.

Then there exists ¢ > 0, independent of the set K, such that for 8 > 0 and A > 0 the following estimate holds

He)\‘m‘eﬁly‘wHLZ(]RZ><[0,1])+ Z He)\‘m‘eﬂ‘ylaiaéwHL;@Lit(RZ><[0,1])
0<k+I1<2

< e + B (172w (0)) ] 2 gey + 11N (1)) ] 2 g )

A 3 3
+ c||e ‘I‘eﬂ\y“at + 0, + 8y + al(az + 8y) + ao)w”L}LiymL}cth(Rz><[O,1])

Y

with J such that j;(f,n) = (1+&+ n2)%§(§,n). (Here, ™ denotes the spatial Fourier transform in R? and

(&,m) are the variables in the frequency space corresponding to the space variables (z,y).)

As in our proof of the Carleman estimate for the operator P = d; + 03 + 03 + a1(d, + 0y) + ao, we first prove
a counterpart of Lemma [AT] for the leading part of the operator P, namely d; + 05 + 05.

Lemma A.2. Let w e C([0,1]; H*(R?)) n C*([0, 1]; L%(R?)) such that for all t € [0,1] suppw(t) S K, where
K is a compact subset of R%. Then
(1) For A >0 and 8 > 0,
||€/\‘I|€mmw||LgO L2, (R2x[0,1]) <||e/\|z‘emy|w(0)”L2(]R2) + ||e/\|x|emy|w(1)”L2(]R2)

(58)
+ [Nl P, + 03 + 5§)w||Lngy(R2x[o,1]>-
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(2) There exists ¢ > 0, independent of the set K, such that for $ =1 and A > 1

Hek\r\eﬁ\yle”Lf L2,(R2x[0,1]) <c(W+ 52)(HJB(eMI'emy'w(o))||L2(R2) + ||J3(6A|Ilemy‘w(1))||L2(R2))

(59)

A 3, 73
+ [leMelePlvl (o, + 03 + ay)wHL;Lgt(R?x[o,u)’

where L denotes any operator in the set {0y, 0y, 02,03} and J is such that jg(«f, n) = (1+E2+12)2G(, 7).

Remark A.1. Tt is a fundamental fact that in order to obtain from (B8) and (59) the estimate in Lemma [A.T] for
the whole operator P, the coefficient in front of the term on the right-hand side of (5J)) involving the operator
Or + 02 + (?S does not depend on A and f3, indeed otherwise, since A and S grow as R, the correction terms

coming from the addition of the lower order derivatives cannot be hidden in the left-hand side as desired.

Before proving Lemma we introduce the following notations.
H,\”g- = e’\leﬂy(at + &i + &z)e_/\le_ﬂy- = [&g + (6z - )\)3 + (6y — 6)3] . (60)

It is easy to see from the previous definition that H) g is defined through the space-time Fourier transform by

the multiplier
it + (i€ — A)® + (in — B)°.
We can define the inverse operator Ty of H) g by the symbol

1
it + (i€ — N3 + (in — B)3’

mo(&,n,7) = (61)

this means that

~

7:O\h = mO(ga 7, T)hv

where, in order to simplify the notation, we use ~ to denote the Fourier transform in S’(R3).

The proof of Lemma[A.2]is based on two previous lemmas, these lemmas express respectively the boundedness
of the operator Ty and (0, — A\)* (0, — B8)!Ty where k, [ are non negative integers with 0 < k + 1 < 2 (actually we
need just the decoupled options, that is (k,1) = (0,0), (1,0), (0,1),(2,0) and (0, 2)).

Lemma A.3. Let h e L'(R®) with |[h] 1,5 (R®) < oo. Then for all (A, B) # (0,0), moh € S'(R®) and [moh]”

defines a bounded function from Ry with values in Liy. Besides,
ImoR] () a, oy < Il g o ey VEE R, (62)
where ~ denotes the inverse Fourier transform in S'(R3).

Remark A.2. Clearly the previous inequality gives the boundedness of the operator Ty indeed, by its definition,
from (62)) follows that

NThN0) |z, oy < Bl pyp, oy Vi € R

Proof. First of all we want to write the symbol mg(&,n,7) in a more useful way, precisely it is not difficult to
see that the following holds:
—1i

T+ a(,m) +ib(§,n)’

mO(ga 7, 7_) =

where
a(€,n) = =€ + 3N —n® + 3nB° and  b(&n) =N = 38N+ 5% —3°4.

Before going any further we want to recall some useful properties of the Fourier transform.
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Remark A.3. Our definition for the 1-dimensional Fourier transform is

f(1) it 63
# \/ 2w J 1) (63)
Making a straightforward computation it is not difficult to see that, defining
—1i
= — b#0
9(r) = —7> # 0,

the inverse Fourier transform of ¢ has this form

\/EX(O,Jroo) (t)e b <0,
g(t) = (64)

—V27 X (—o,0)()E™ b >0,

where, as usual, for a set A, x4 denotes the characteristic function of A.
Considering the translation by the real number a of g, that is defining G(7) = g(7 + a), from (64) and the
property that the translation in the moment space is a multiplication by a phase factor in the position space

and vice-versa, in other words
g +a)(t) = e g(t),

one has
V2 X(OF,_OO)(t)etbe*im b <0,

—V2T X (—o0,0) (B)ePe™ b > 0.
With the previous remark in mind we can say that for a fixed pair (£,n) with b(¢,7) # 0 and t € R we have

V27 X (0,100) (£)ePEMemiHaEm (e ) <0,

—V27 X (0,0 (1) )etb&me=ital&n)  p(g ) >0

Clearly the magnitude of the right-hand side is bounded by +/27.
Now we need to compute the quantity [mo(&,7,-)h(&,n,+)] 77 (t).

G(t) =

[mo(&,m,--)] 77 (1) =

In order to do that we recall that under our definition of the Fourier transform (63) and its inverse, the

following property holds:

= _ 5@

, one easily obtains

[mo('fa 7, 'T)]VT(t) * h(za ‘Yo t)/\zy(g, 77)
\2r

1 . .
= EJ-]R [mo(fﬂ% T)] (t—S)h(-I,-y,S) y(‘fﬂ?) ds
$o. X(0,400) (t = s)ell I EMemili=nal&mp (., .\ 5)"7(E m)ds  b(E,n) <0

— §. X(—on,0) (t = s)elt = Ememilma)al@mp (., 5)" 70 (€ m)ds b(€, ) > 0.

~zy~T

moreover using that h=h

[mo(€,m,--)R(E,m, )] 77 (1) =

Let us observe that for (), ) # (0,0) since the set {(£,n): b(&,n) = 0} represents an ellipse, it has measure zero
in R2, this gives, by applying Plancherel’s formula and Minkowski’s integral inequality, that for all t € R

Imoh] Casys )2, ey = Nlmoh] ™ Cesons )l 12 gy < f 1™ ey 912 )
Ty n R, &n

= hCasys )iz, gy <

O

As previously anticipated, we are going to prove the boundedness of the operator (9, — A\)¥(0, — B)'Tp.

precisely, we will prove the following lemma
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Lemma A.4. Let he L'(R?) with ||hl| 1> (R®) < o0. For =1, A>1, k,1€{0,1,2}, and 0 <k +1< 2, let
z 'y

mk,l(ga n, T) = (ZE - )\)k(”? - B)ZmO(ga n, T)a
with mo as in (€1), the symbol associated with the operator (0, — \)*(0, — B)! To. Then mkyllAz € S'(R3?) and

Imuah] Ol Lo rz, @s) < 17lleszz, @s)-

Remark A.4. Asin Lemma[A3] from the previous inequality we can conclude the boundedness of the operator

(0 — A\)*(0y — B)'Ty, indeed the as a trivial consequence we have
||[(am - /\)k(ay - ﬂ)lTO]hHLg{vL?y(RS) S CHhHL;Lgt(Ri")'

Proof. We will only consider the case k = 2 and [ = 0. Since the proofs of other cases are similar, for brevity,
we will omit them. First of all let us note that

—i(&+iN)?
[(§+3N)3 + (n +1iB)* — 7]

Defining v := £ + ¢\ and w := n + i we can re-write the preceding as

ma 0(5 n,T )

2

—iv

m T) = /7.
2,0(57775 ) ’U3+’LU3—T

The polynomial P(v) := v + w® — 7 has got, as a multiple root, just v = 0, but since under our hypothesis v is

always different from zero, we can assume P(v) not to have multiple roots. This allows us to use the following

decomposition in partial fractions

3

3 —i 1 —i
Z v—vg 235 R(vj) +i[A — J(va)]):5];&%(77,7)Jribj(n,f)

j=1 j=1

where v;, j = 1,2,3 are the different roots of P,a;(n,7) = —R(v;) and b;(n,7) = A — J(v;). Moving on as
in Lemma [A3] that is using the Remark [A.3] for a fixed pair (1, 7) such that b(n,7) # 0, making use of the

linearity of the inverse Fourier transform we have
5 201 V2T X (0, 40y (2) ™5 (M7t as(0T) (i, 7) <0,
% Z?=1 \ 27 X(*O0,0) (m)embj (7],7’)6—1'111]' (n,7) b] (77’ 7-) > 0.

Clearly the magnitude of the right—hand side is bounded by /2.

Let us observe that the set {(n,7): $(v;) — A = 0} has two-dimensional measure zero. Therefore using similar

[ma0(e,m,7)]7* (2) =

computations to those performed in Lemma [A 3] we get that for all z € R

e [ e OO P I L CAs s

=||h(-z, ys 't)|\L;L§t(R3) =

O

Now we are in position to prove Lemma Even if the proof of this lemma is similar to the one for the

corresponding result in [4], we will provide it for sake of completeness.

Proof of Lemma[A2. The proof of estimate (B8) follows from Lemma [AZ3] and the proof of (B3] follows from
Lemma [AZ4l We only prove the estimate (59) for L = 02.

For £ € (0,4) let . be a function in C§°(R) of the time variable ¢ such that 7. (t) = 1 if t € [2¢,1 — 2¢],
supp e C [e,1 — €], 7. increasing in [e, 2¢] and decreasing in [1 — 2,1 — ¢]. Let us define for all t e R
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where with an abuse of notation w represents the extension of w which is identically zero outside [0,1]. We
define

he == e ePY(0; + 02 + 82)11)5,

then, more explicitly
he = nle ePYw + hy, (65)

where

ho := n.e*ePY(0, + 02 + 53)11).
It is not difficult to see that h. can be re-written as

he = [ ePY(0; + 03 + 63)6_’\%_[33’]6’\1651’108 = Hy s(eMePw,).

This means that

MYy, = Toh, = [moﬁ:]v.
Now we consider e**e¥ 92w, . It is easy to see that

eMePY2w,. = (eMePY 02 e e PPV, = (0, — N)2eMePVw. = (0, — N\)?Tohe = [mo Oﬁ; <
xT xr k]

From the previous identity and (6H), one gets

||€>\Z€Byaiw8”L;@L§t = ||[m270h8]v||L;°L§t (66)
< Ixjo,y ()lmao (e e™w) ™1 |2+ lma.0ho] Il 12,

First of all let us consider the second term on the right-hand side, using the hypotheses of Lemma [A.2] we can
apply Lemma [A 4l to hg, this gives

Ilma0hol "Ml Loz, < NhollLsrz,- (67)
Now we need to provide an estimate for the first term on the right-hand side of (GOl). Using our definition of
my (€1, T) we get
||X[o,1]('t)[mz,o(ﬁéeueﬁywy]V||L;OL§t = lIxp,()[= (€ + i)‘)QmO(n,se)\meﬂyw)A]v”L;CLflt
= HX[O,l]('t)[mo.a]v”LfLit’
where § = — (& +i\)?(nle*ePYw) ™.
For a fixed pair (y,t) € R? one has

AT v

IX10,11(0)[m0d] oy 4, )l 2 = (1 + (¢)%)

= (1 + (6))2 (¢ + iX)*xq0,0) (O)[mo (L™ w) 177 (¢, 1) -

N

X(011(O)mog] ™" (&, v, )l 2

Since
A+ e+ < A+ENFA+E+ M) < (1+€2)3(1+ %)
we obtain

X011 (O [m08) Cars s )l g1 < (1 4+ AT 0,17 (8) [mo (€™ €™ w) 1™ (o, y, ) 2

Remark A.5. We emphasize that here J2 denotes the operator defined through the Fourier transform just in
the = variable by

T2g(€) = (1+€2)35(¢).
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Now, using that H!(R) — L(R) we have
Ix[0,11(E)[m0g] ™ (2, y, )| < cllxjo,1 (t)[moﬁ]v('zvy,t)“m
c(1+ N2 x 0,7 (D) [mo (e P w) 17 (ay y, 1)l 2
Therefore, for x € R, by virtue of Lemma [A.3] one obtains
X011 () [mog) ™ (2, -y )l 2, < e(1+ A)||T3xq0,11 () [mo (nle* eV w) "] 7| o
< e+ X)) S mo e e™w) ™ e s
<L+ )1+ (e + () mol e e w) s (689)
= c(1+ X)|[[mo(nt > (X e™w) "] 1z 12,
< c(L+ X)L (@ e w)ll s -
Now plugging (67) and (68) in (66) and using the explicit definition of hg, it follows that
||e>\leﬁyaa2cw€||L;0Lit <c(l+ )‘2)||77;J3(€/\I€Byw)||Lt1L§y + [In-e** e (0 + 05 + 9§)W||L;Lgt- (69)

First of all we want to prove that the left-hand side of (69) goes to ||e)‘””eﬂyagw||LooL2t as ¢ tends to 07. Since
z My

by our hypotheses we are assuming w(t) to be compactly supported, without loss of generality we may suppose

suppw(t) < [-M, M] x [—=M, M] for all ¢ € [0,1]. Making use of the fact that 02w(t) € H*(R?) — L*(R?), we

get

N[

1 oM
e ePY 2w, — emeﬁy82w||L7Lz = esssup J J e e2BY (n_(t) — 1)3(0%w)? (x, y, ) dy dt]
ze[—M,M] M

2e

1
< Ce/\MeﬂMHangC([O,l];Hz(]Rz))(2M)2 [J-

1 % oF
dt+J- dt] 20 .
0 1—2¢

With respect to the first term of the right-hand side of (69) we can show that

1
[T (e )|y = f LT e () | dt
0
1—¢

2e
= [ O )y bt - [ @1 )], de

€ —2¢

— [ OB )], — 1w O),) d

€

I w(0))] 2

1—¢
- [ RO ), ~ 1 ) )
1-2¢
Az
)
since e’ efYw e C ([0, 1]; H3(R?)), it is easy to see that
o+
It I3 (e w)|| 1 e <= TP (P w(O))]| 2+ (177 (XM w(1))]| 1 -
Ty Ty Ty

Now only the estimate of the second term of the right-hand side of (69) is missing. Taking into account that
suppw < [-M, M] x [-M, M] x [0, 1] and using the dominated convergence theorem we can conclude that

10 = Ve (8, + 3 + Sl g, < M2 (. — 1)@ + 02 + Bl 1 2 0.
Putting all these estimates together and using 8 > 1 we obtain
e e 3wl e 12, <c(N? + B2) (2 (27w (0)) ] 12 + |7 (X e™w (1)) ] 2)

+ [|lerePY (0, + 02 + ) w||L1Lz :
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In order to conclude the proof we need the following remark.
An equivalent way to write the estimate (B9)) is the following

||€jM€kﬁy5§W||L;OL§t <c(\ + B%) (I3 (e e (0))]| 12 + |7 (€727 ¥ w(1))]| 2)
+ |l eRPY (0, + 03 + 6§)w||L1th,
z My

for je {—1,1} and k e {—1,1}.

We have already proved the former estimate for j = & = 1. Our aim is to show that the other cases follow in
a similar way and so omit them.

The first step we have to perform is to modify the definition of the multipliers mg and my; considering,
instead of (i€ — \) and (in — ), the other three possible pairs: (i€ + A) and (in + () if we want to estimate
||e_)‘””e_ByLw||L;cL§t, (i€ + A) and (in — B) if we want to estimate ||e_’\IeByLw||L;CL§t, (i€ — X) and (in + ) for
the estimate of ||e’\le_'6yLw||L;oLit.

Since in order to prove (TQ) we strongly used the estimates in Lemma [A.3] and [AZ4] we would like them to
hold also for the modified versions of mg and my; written above. But one can easily see that this is true just
revisiting the proof of the two lemmas with the new definitions of mg and my_ ;. This concludes the proof of our

lemma. (I
Now we shall extend the result in Lemma [A2] to operators as in ([I7), namely we prove Lemma [A]

Proof of Lemmal[Adl. From Lemma and using the fact that |[-| 22,017y < I'llLe 12 ®2x(o,1))- it follows
) Ty )
that
Il ¥l Lo < [l e?w(0)]| 2 + [P Ml (D)]] .
+ [|eMlePV (o, + 03 + 03 + a1 (0, + 0,) + ao)w||L%Liy + [leM=leB(ay (0, + 0,) + ao)w||L%Liy, (71)

and

e Law]| oy o< e (A2 4 82) (12N (0)) | 12 + 1172 (MMl (1))] )
+ [leM=leP (o, 4 03 + Oy +a1(0x + ) + aO)wHL;Lgt
+ ||€)“I|€my‘(a1(am +0y) + ao)wHL}:Lit' (72)

We are interested in considering the last terms in the former estimates.
We first see |eM®lefvl(ay (0, + 0,) + aO)wHLngy using that H'”L%Liy(sz[O,l]) < |l z2mexpo,1p): we easily
obtain

116 (a1 (0; + 0y) + ao)wllpy 2 < eV (a1 (0 + 0y) + ao)w]| s

< flarll 2 g, €M (0 + 3, )l g + ol €M .
Let us consider now ||e}*lefl¥l(a; (0, + 0,) + ao)w||L1L2t, making use of the Holder’s inequality, one gets
zty

A A A
lle \w\eﬂ\yl(al(ax + ay) + aO)wHL}ELZt < HalllL;L;ctHe \w\eﬁly\(ax + ay)wHLngt + ||‘10|‘L§L;°t e ‘Zleﬁly‘w”m'

Plugging the previous estimates into (1)) and (72)) and summing them together we have

Nt T AlARE R ]y < o (482 (T3 (IAw(0)) |+ (N (1)) )
0<k+I1<2

+ ||eMN=leBlvl (o, + 03 + 53 +a1(0x + dy) + aO)wHLgLZ ALLL2,

2,0LLL

+ ||a0HL°0mL§L§°tHe)\‘z‘eﬁly‘wHLZ + HalﬂLgLﬁmL;LﬁHeAlz‘emyl(am + ay)w”LfLit'
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Under our hypotheses about ayp and a; we have

M Wlel| ot T (MR w] e e < e (A 487) (|73 W w(0)) ] 2t [| T (7P (1)) )
O<k+I1<2

+ ||eMN=leBlvl(a, + 03 + 53 +a1(0x + dy) + aO)wHLgLZ ALLL?
zy

x Myt
Liia A kAl
+ 5(”6 Iacleﬁ\ylu,HL2 n Z lle \z\eﬁly\azayw”%%t)_ (73)
0<k+1<2

Hence, absorbing the last term in the left-hand side, we have

XMl 35 el Mool g,
x
0<k+I<2 '

< e+ B2 (172 (e w(0) ]| o + |73 (MWl (1))) 12)

+ el W@, + 03 + 05 + a1 (0: + 0y) + ao)wllype p1ra,

x Tyt

which yields the desired result. O

APPENDIX B. PERSISTENCE PROPERTIES

In this section we are interested in studying persistence properties for solutions to (I2])

In general a persistence property in a function space X means that the solution ¢ — u(t) describes a continuous
curve on X, that is u € C([0,1]; X).

The theorem we are going to prove can be seen as a two dimensional generalization of the very well known
result by Kato [23] for the KdV equation.

Theorem B.1. Let u e C([0,1]; H*(R?)) n C1([0, 1]; L%(R?)) be a solution of the equation ([I2).
(i) If for all B > 0, u(0) € L*(e2?@+Vdxdy), then u is a bounded function from [0,1] with values in
H3(e2P@+9) dy dy) for all B> 0.
(i) If for all B > 0, u(1) € L?>(e=2@+Y) dady), then u is a bounded function from [0,1] with values in
H3(e 2P+ dg dy) for all B> 0.

In particular, if the conditions for u(0) and u(1) given in (i) and (ii), respectively, are satisfied, then u is
bounded from [0,1] to H?(e2Pl=+¥ldz dy).

The proof of Theorem [B.1]is based on the following lemmas. The first lemma, is an interpolation result that

can be proved using the three-line theorem.
Lemma B.1. For s >0 and > 0 let f € H*(R?) n L?(e2?=*+Y) dxdy). Then, for 6 € [0,1]
s — T s p(10 T 1—-6
||J9 (6(1 95t +y)f)||L2(]R2) <d|lJ fHLQ(]RQ)”eﬂ( +y)fHL2(]R2)
where J*® is such that js?](f,n) =1+ +01)35(&n).

In order to prove the exponential decay in Theorem [B.1] we proceed in two steps, firstly we prove that u is a
bounded function from [0, 1] with values in L?(e2#(**+¥)dz dy) then, using the interpolation result Lemmal[B.1l we
obtain the boundedness of u(t) in the space H3(e??®+¥)dx dy). The conclusion then follows from the symmetry
properties of the equation.

The following lemma shows the boundedness of u(t) in the space L?(e2?(**¥)dz dy). The proof of this result
follows mainly a strategy used in [3] that came to light in the seminal paper by Kato [23] treating the well-
posedness of the Cauchy problem for the KdV equation.

Lemma B.2. Let u e C([0,1]; HX(R?)) n C*([0, 1]; L?(R?)) be a solution of the equation ([I2) such that for all
B >0, u(0) € L?(e*’@+Y)dx dy). Then u is a bounded function from [0,1] with values in L?(e*’@+Y)dx dy) for
all B> 0.
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Proof. Since €2/ +¥) i a highly unbounded weight function, it is difficult to prove the result directly. Therefore
we first approximate e>?(*+%) by a bounded weight function ¢, (z,%) which tends to €>?(*+¥) monotonically as
n goes to infinity. Let ¢ € CP(R) be a decreasing function with ¢(z) =1 if z <1 and ¢(z) = 0 if > 10 and
let 0y, (z) := § ¢(Z) da’. For n € N we define

Dl +y) = ),

It can be seen that for every n, ¢, (z +y) = e2?E+tY) if 2 + y < n and ¢, (z + y) = d, < 299" if 2 +y > 10n.

Moreover ¢, < ¢,+1 and
|a;¢n(x7y)| < Cj,ﬁd)n(xvy)a |agjj¢n($7y)| < Cj,ﬁd)n(xvy) v] € N, V(x,y) € RQ'
Multiplying the equation (I2)) by u¢, and integrating the resulting identity, we obtain
Oru uy, + J- 62u uQy + f 6§u uQy + 4_1/3J- u?0pu dy, + 4_1/3J u26yu ¢n = 0.
R2 R2 R2 R2 R2

Integrating by parts one has

1d
2dt Jgo

4—1/3

1
W — f B + f (05)*adpn — f I
2 ]Rz 2 ]R2 ]RZ

4—1/3
J-]Rz u36yq§n =0,

_l 2 13 § 2 .
5 J-]Rz u” 0y ¢n, + 5 fn@ (Oyu)“0ybn,

discarding positive terms this gives

1d
2dt Jgo

—1/3

3

4-1/3
f u20pn + 3 f u?’&yqﬁn.
R2 R2

Using the properties for the derivatives of ¢,, and Sobolev embeddings one gets

1 1 4
26, < = 2530, _J 2580
u” @ 2J-]R2u o} +2 R2u yPn +

1d —-1/3

2dt Jge

4
won < Oy [ 0o+ 2 uleCos [ o
R2 R?

< (Cgﬁ + C||U||c([0,1];H2(R2))) JRQ u” dn

= CBM J- u2 ¢n
R2

Applying the Gronwall lemma we obtain
f u? () < ecﬂ’utf u*(0)¢n, < ecﬂ’uf u?(0) by, Vte[0,1].
R2 R2 R2
Using the Monotone Convergence Theorem, letting n go to infinity, we can conclude that
J- u?(t)e2P @) dy dy < cJ- u?(0)e?P =Y dg dy, Vte0,1].
R2 R2

This proves that u(t) is a bounded function from [0, 1] with values in L?(e2%(=+¥)dz dy) for all 3 > 0. O

Proof of Theorem [B.1l

(1) We want to prove that, assuming u(0) € L?(e**(**+¥)dx dy) we have that ¢ — u(t) is bounded from [0, 1]
with values in H?(e??(+¥)dx dy). In Lemma [B.2l we have already proved that if u(0) € L?(e??@+¥)dx dy),
then u is a bounded function from [0, 1] with values in L?(e?#(**¥)dz dy). Moreover since we are assuming
u € C([0,1]; H*(R?)) we can use the interpolation result Lemma [BIl with s = 4 and § = 2 to obtain

By 0 z —0
AU | aqmny < el T | oy )55 e

Since we are assuming the previous to hold for all § > 0, we can re-define [ in such a way to be able to
conclude that ¢ — u(t) is bounded from [0, 1] with values in H?(e2#=+¥)dzx dy).
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(ii) This property follows immediately from () taking into account the symmetry properties of equation (I2]).
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120]
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[24]
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Indeed, it can be seen that the function defined as u(x,y,t) := u(—z, —y, 1 — t) is still a solution of (2.
Moreover, since we are assuming u(1) € L?(e=22(®+¥)dx dy) the function % satisfies the hypothesis of (i),
therefore # is bounded from [0, 1] with values in H?(e??(+¥)dz dy) for all 3 > 0, or, what is equivalent, u
is bounded from [0, 1] with values in H3(e=28(=+¥)dx dy), which is the proof of (i4).

O
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