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INFINITELY MANY NON-RADIAL SOLUTIONS TO A CRITICAL

EQUATION ON ANNULUS

YUXIA GUO, BENNIAO LI, ANGELA PISTOIA AND SHUSEN YAN

Abstract. In this paper, we build infinitely many non-radial sign-changing solutions to the
critical problem:

{

−∆u = |u|
4

N−2 u, in Ω,

u = 0, on ∂Ω.
(P )

on the annulus Ω := {x ∈ RN : a < |x| < b}, N ≥ 3. In particular, for any integer k large enough,

we build a non-radial solution which look like the unique positive solution u0 to (P ) crowned

by k negative bubbles arranged on a regular polygon with radius r0 such that r
N−2

2
0

u0(r0) =:

max
a≤r≤b

r
N−2

2 u0(r).

1. Introduction

This paper deals with the existence of solutions to the critical elliptic problem:
{

−∆u = |u| 4
N−2′ u, in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is a bounded domain in R
N and N ≥ 3.

It is well known that the geometry of the domain Ω plays a crucial role in the solvability of the
problem (1.1). Indeed, if Ω is a star-shaped domain, the classical Pohozaev identity [30] implies that
(1.1) does not have any solutions. While if Ω = {x ∈ R

N : a < |x| < b} is an annulus, Kazdan and
Warner [21] found a positive solution and infinitely many radial sign-changing solutions. Without
any symmetry assumptions, the existence of solutions is a delicate issue. The first existence result
is due to Coron in [10] who proved that problem (1.1) has a positive solution in domain Ω with a
small hole. Later, Bahri and Coron in [2] proved that actually a positive solution alwasys exists as
lonf as the domain has non-trivial homology with Z2-coefficients. However, this last condition is
not necessary since solutions to problem (1.1) in contractible domains have been found by Dancer
[11], Ding [17], Passaseo [28, 29] and Clapp and Weth [6]. The existence of sign-changing solutions
is an even more delicate issue and it is known only for domains which have some symmetries or
a small hole. The first existence result is due to Marchi and Pacella [24] for symmetric domains
with thin channels. Successively, Clapp and Weth [6] found sign-changing solutions in a symmetric
domain with a small hole. A first attempt to remove the symmetry assumption is due to Clapp and
Weth [7], who found a second solution to (1.1) in a domain with a small hole but they were not
able to say if it changes sign or not. Sign-changing solutions in a domain with a small hole have
been found by Clapp, Musso and Pistoia in [8]. Recently, Musso and Pistoia [25] and Ge, Musso
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and Pistoia [18] (see also [19]) proved that in a domain (not necessarily symmetric) with a small
hole the number of sign-changing solutions to problem (1.1) becomes arbitrary large as the size of
the hole decreases. The existence of a large number of sign-changing solutions in a domain with a
hole of arbitrary size is due to Clapp and Pacella in [5], provided the domain has enough symmetry.

It is largely open for the problem of the existence of infinitely many sign-changing solutions in a
general domain with non-trivial homology in the spirit of the famous Bahri and Coron’s result.

Here, we will focus on the existence of infinitely many sign-changing solutions to problem (1.1)
when Ω := {x ∈ R

N : a < |x| < b} is an annulus. The existence of infinitely many radial solutions
was established by Kazdan and Warner in [21]. On the other hand, an annulus is invariant under
many group actions and then it is natural to expect non-radial solutions which are invariant under
these group actions. Indeed, Y.Y. Li in [22] improved a previous result by Coffman [9] and he found
for any integer k ≥ 1 in a sufficiently thin annulus some non-radial solutions which are invariant
under the action of the group Gk × O(N − 2), when N ≥ 4. Here O(N − 2) denotes the group
of orthogonal (N − 2) × (N − 2) matrices and Gk is the subgroup of matrices which rotates R

2

with angles equal to integer multiple of 2π
k . Recently, Clapp in [4] found infinitely many non-radial

solutions which are invariant under the action of a suitable group whose orbits are infinite, provided
N = 4 or N ≥ 6.

In this paper we prove the existence of infinitely many new non-radial solutions which are invari-
ant under the action of a group whose orbits are finite and they are not invariant under the action
of the group Gk ×O(N − 2). Moreover, as far as we know, this is the first example of non-radial
solutions in the 3−dimensional annulus.

Let us state our main result. Let Ω := {x ∈ R
N : a < |x| < b} be an annulus. Assume that

the unique positive radial solution u0 to (1.1) is non-degenerate. (1.2)

The uniqueness has been proved by Ni and Nussbaum [26]. The non-degeneracy will be studied in
Appendix A and it is true for most radii a and b. Let us introduce the functions:

Uξ,λ(y) = CNλ
N−2

2

(

1

1 + λ2|y − ξ|2
)

N−2
2

, ξ, y ∈ R
N , λ > 0

which are all the positive solutions of the following critical problem on the whole space:

−∆U = U
N+2
N−2 in R

N , (1.3)

where CN is a constant dependent on N (see [1, 27, 31]). We call Uξ,λ(y) the bubble centered at
the point ξ with scaling parameter λ. Let us introduce its projection PUξ,λ onto H1

0 (Ω), namely
the solution of the Dirichlet problem:

{

−∆PUξ,λ = U
N+2
N−2

ξ,λ , in Ω,

PUξ,λ = 0, on ∂Ω.
(1.4)

Let k ≥ 1 be an integer. Let us choose the centers of the bubbles as the k vertices of a regular
k−polygon with radius r inside Ω as:

ξj = rξ∗j , ξ
∗
j := (eι

2π
k j ,0),0 ∈ R

N−2, j = 1, 2, ..., k, r ∈ (a, b) (1.5)
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and the concentration parameter as:

λ = ℓk2, ℓ ∈ [η, η−1] for some η > 0 small enough. (1.6)

Finally, we introduce the space

Hs :=
{

u ∈ H1
0 (Ω) :

u(x1, x2, . . . , xi, . . . , xN ) = u(x1, x2, . . . ,−xi, . . . , xN ), i = 2, . . . , N,

u(reιθ, x3, . . . , xN ) = u
(

reι(θ+
2π
k j), x3, . . . , xN

)

, j = 1, . . . , k
}

Now, we can state our main result.

Theorem 1.1. Let Ω := {x ∈ R
N : a < |x| < b} be an annulus. Assume (1.2). Then there exists

an integer k0 > 0, such that for any integer k ≥ k0, problem (1.1) has a solution

uk(x) = u0(x)−
k
∑

j=1

PUrkξ∗j ,λk
(x) + ϕk(x).

Where as k → ∞
(i) rk → r0 ∈ (a, b) and r

N−2
2

0 u0(r0) := max
a≤r≤b

r
N−2

2 u0(r)

(ii) λk/k
2 → ℓ0 > 0

(iii) ϕk ∈ Hs and ‖ϕk‖H1
0 (Ω) → 0

The paper is inspired by recent results obtained by Del Pino, Musso, Pacard and Pistoia [15, 16],
where the authors constructed for any N ≥ 3 infinitely many sign-changing solutions to (1.3) which
look like the solution U0,1 crowned with k negative bubbles arranged on a regular polygon with
radius near 1.

For the proof of our theorem, it relies on a Ljapunov-Schmidt procedure which allows us to

reduce the problem of finding a solution to (1.1) whose profile at main order is u0 −
k
∑

j=1

PUrξ∗j ,λ

to a 2−dimensional problem, namely finding the concentration parameter λ > 0 in (1.6) and the
radius r ∈ (a, b) of the k−regular polygon whose vertices are the concentration points as in (1.5).
The basic outline is similar to that in [15], but we carry out the reduction argument in a different
way. Indeed, the invariance by Kelvin’s transform which is one of the main ingredient in the proof
of [15], does not hold for problem (1.1). In particular, all our estimates are more straightforward
than those used in [15].

This paper is organized as follows. In Section 2 we study the linearized equation around the
approximate solution and we reduce the problem to a finite dimensional one. In Section 3 we study
the reduced problem and we complete the proof of Theorem 1.1. Appendix A is devoted to the
study of the non-degeneracy of the positive radial solution u0.

2. Finite-dimensional reduction

Let us introduce the norms:

‖u‖∗ = sup
y∈RN

(

k
∑

j=1

1

(1 + λ|y − ξj |)
N−2

2 +τ

)−1

λ−
N−2

2 |u(y)| (2.1)
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and

‖f‖∗∗ = sup
y∈RN

(

k
∑

j=1

1

(1 + λ|y − ξj |)
N+2

2 +τ

)−1

λ−
N+2

2 |f(y)|, (2.2)

where τ = 1
2 . Since we assume that λ ∼ k2, it holds

k
∑

j=2

1

|λξj − λξ1|τ
≤ Ck

λτ
≤ C.

Set Uj =: Uξj ,λ(y), Pj =: PUξj,λ(y) and U∗ = u0 −
∑k

j Pj .
Denote

Zj,1 =
∂Pj

∂λ
, Zj,2 =

∂Pj

∂r
, j = 1, 2, ..., k.

We consider the following linearized problem:


























Lkϕ :=−∆ϕ− (2∗ − 1)|U∗|2
∗−2ϕ = h+

2
∑

l=1

cl

k
∑

j=1

U2∗−2
j Zj,l, in Ω,

ϕ ∈ Hs,

k
∑

j=1

∫

Ω

U2∗−2
j Zj,lϕ = 0, l = 1, 2,

(2.3)

for some real numbers cl.

Lemma 2.1. Suppose that ϕk solves (2.3) for h = hk. If ‖hk‖∗∗ goes to zero as k → +∞, so does

‖ϕk‖∗.

Proof. We argue by contradiction. Suppose that there exist k → +∞, rk → r0, λk ∈ [L0k
2, L1k

2]
and ϕk solving (2.3) for h = hk, λ = λk, r = rk with ‖hk‖∗∗ → 0 and ‖ϕk‖∗ ≥ c > 0. Without loss
of generality, we may assume that ‖ϕk‖∗ = 1. In the following, for simplicity reason, we drop the
subscript k.

Since we assume u0 is non-degenerate, the following linear operator:

L̃0ϕ := −∆ϕ− (2∗ − 1)u2
∗−2

0 ϕ, ϕ ∈ H1
0 (Ω),

is invertible. Let G(y, x) be the corresponding Green’s function. It is easy to prove that there exists
a constant C > 0, such that

|G(y, x)| ≤ C

|y − x|N−2
. (2.4)

We rewrite (2.3) as:























L0ϕ = (2∗ − 1)
(

|U∗|2
∗−2 − u2

∗−2
0

)

ϕ+ h+

2
∑

l=1

cl

k
∑

j=1

U2∗−2
j Zj,l, in Ω,

ϕ ∈ Hs,
k
∑

j=1

∫

Ω

U2∗−2
j Zj,lϕ = 0, l = 1, 2.

(2.5)

Then
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ϕ(y) =

∫

Ω

G(z, y)
[

(2∗ − 1)
(

|U∗|2
∗−2 − u2

∗−2
0

)

ϕ+ h+

2
∑

l=1

cl

k
∑

j=1

U2∗−2
j Zj,l

]

.

Using (2.4), we obtain

|ϕ(y)| ≤ C

∫

Ω

1

|z − y|N−2

∣

∣

∣

[

(2∗ − 1)
(

|U∗|2
∗−2 − u2

∗−2
0

)

ϕ+ h+

2
∑

l=1

cl

k
∑

j=1

U2∗−2
j Zj,l

]
∣

∣

∣
.

As in [32], we have
∫

Ω

1

|z − y|N−2
||U∗|2

∗−2 − u2
∗−2

0 ||ϕ|

≤C
∫

Ω

1

|z − y|N−2
(

k
∑

j=1

Pj)
2∗−2|ϕ|

≤C
∫

RN

1

|z − y|N−2
(

k
∑

j=1

Uj)
2∗−2|ϕ|

≤C‖ϕ‖∗
∫

RN

1

|z − y|N−2
(

k
∑

j=1

Uj)
2∗−2

k
∑

j=1

λ
N−2

2

(1 + λ|z − ξj |)
N−2

2 +τ

≤C‖ϕ‖∗λ
N−2

2

m
∑

j=1

1

(1 + λ|y − ξj |)
N−2

2 +τ+θ
.

(2.6)

∫

Ω

1

|z − y|N−2
|h(z)|dz

≤C‖h‖∗∗
∫

RN

1

|z − y|N−2

k
∑

j=1

λ
N+2

2

(1 + λ|z − ξj |)
N+2

2 +τ
dz

≤C‖h‖α,∗∗λ
N−2

2

k
∑

j=1

1

(1 + λ|y − ξj |)
N−2

2 +τ
,

(2.7)

and
∫

Ω

1

|z − y|N−2

∣

∣

∣

k
∑

j=1

U2∗−2
j Zj,l

∣

∣

∣
dz

≤CλN+2
2 +nl

∫

RN

1

|z − y|N−2

k
∑

j=1

1

(1 + λ|z − ξj |)N+2

≤CλN−2
2 +nl

k
∑

j=1

1

(1 + λ|y − ξj |)N−2

≤CλN−2
2 +nl

k
∑

j=1

1

(1 + λ|y − ξj |)
N−2

2 +τ
,

(2.8)
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where n2 = 1, n1 = −1.
To estimate cl, l = 1, 2, multiplying the both sides of (2.3) by the function Z1,l, (l = 1, 2) and

integrating on Ω, we see that cl satisfies:

2
∑

h=1

ch

k
∑

j=1

∫

Ω

U2∗−2
j Zj,hZ1,l

=

∫

Ω

(

−∆ϕ− (2∗ − 1)|U∗|2
∗−2ϕ

)

Z1,l −
∫

Ω

hZ1,l.

(2.9)

We have

∣

∣

∫

Ω

hZ1,l

∣

∣

≤C‖h‖∗∗
∫

RN

λ
N−2

2 +nl

(1 + λ|z − ξ1|)N−2

k
∑

j=1

λ
N+2

2

(1 + λ|z − ξj |)
N−2

2 +τ

≤Cλnl‖h‖∗∗
(

C + C
k
∑

j=2

1

(λ|ξj − ξ1|)τ
)

≤ Cλnl‖h‖∗∗.

(2.10)

On the other hand, direct calculation gives
∣

∣

∣

∫

Ω

(

−∆ϕ− (2∗ − 1)|U∗|2
∗−2ϕ

)

Z1,l

∣

∣

∣

=
∣

∣

∣

∫

Ω

(

−∆Z1,l − (2∗ − 1)|U∗|2
∗−2Z1,l

)

ϕ
∣

∣

∣

=(2∗ − 1)
∣

∣

∣

∫

Ω

(

U2∗−2
1 − |U∗|2∗−2

)

Z1,l

∣

∣

∣
ϕ

≤Cλnl‖ϕ‖∗
∫

Ω

(

u2
∗−1

0 +
(

k
∑

j=2

Uj

)2∗−2
)

U1

k
∑

j=1

λ
N−2

2

(1 + λ|z − ξj |)
N−2

2 +τ

≤O
(

λnl‖ϕ‖∗
( 1

λ2
+

1

λ
N−2

2

))

.

(2.11)

And it is easy to check that

k
∑

j=1

∫

Ω

U2∗−2
j Zj,hZ1,l = (c̄+ o(1))δhlλ

2nl , (2.12)

for some constant c̄ > 0.
Now inserting (2.12) into (2.9), we find

cl =
1

λnl

(

o(‖ϕ‖α,∗) +O(‖h‖α,∗∗)
)

. (2.13)

So,

‖ϕ‖∗ ≤
(

o(1) + ‖h‖∗∗ +

∑k
j=1

1

(1+λ|y−ξj |)
N−2

2
+τ+θ

∑k
j=1

1

(1+λ|y−ξj |)
N−2

2
+τ

)

. (2.14)
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Since ‖ϕ‖∗ = 1, we obtain from (2.14) that there is R > 0 such that

‖λN−2
2 ϕ‖L∞(BR/λ(ξj)) ≥ a > 0, (2.15)

for some j. But ϕ̃(y) = λ−
N−2

2 ϕ(λ(y − xj)) converges uniformly in any compact set to a solution
u of

−∆u− (2∗ − 1)U2∗−2
0,Λ u = 0, in R

N , (2.16)

for some Λ ∈ [Λ1,Λ2], where Λ1,Λ2 are two constants, and u is perpendicular to the kernel of
(2.16). So u = 0. This is a contradiction to (2.15).

�

From Lemma 2.1, applying the same argument as in the proof of Proposition 4.1 in [13], we can
prove the following result:

Lemma 2.2. There exist k0 > 0 and a constant C > 0 independent of k, such that for k ≥ k0 and

all h ∈ L∞(RN ), problem (2.3) has a unique solution ϕk ≡ Lk(h). Moreover,

‖ϕk‖∗ ≤ C‖h‖∗∗, |cl| ≤
C

λnl
‖h‖∗∗. (2.17)

Now we consider the following non-linear problem:


























−∆(U∗ + ϕ) = |U∗ + ϕ|2∗−2(U∗ + ϕ) +

2
∑

l=1

cl

k
∑

j=1

U2∗−2
j Zj,l, in Ω,

ϕ ∈ Hs,

∫

Ω

k
∑

j=1

U2∗−2
j Zj,lϕ = 0, l = 1, 2.

(2.18)

The main result of this section is:

Proposition 2.3. There exists a positive integer k0 such that for each k ≥ k0, λ ∈ [ηk2, η−1k2], r ∈
[a + τ, b − τ ], where τ and η are positive and small, (2.18) has a unique solution ϕ = ϕr,,λ ∈ Hs

satisfying

‖ϕ‖∗ ≤ Cλ−
N−2

4 −σ, |cl| ≤ Cλ−
N−2

4 −σ−nl , (2.19)

where σ > 0 is a small constant.

Rewrite (2.18) as:


























−∆ϕ− (2∗ − 1)|U∗|2
∗−2ϕ = N(ϕ) + lk +

2
∑

l=1

cl

k
∑

j=1

U2∗−2
j Zj,l, in Ω,

ϕ ∈ Hs,

∫

Ω

k
∑

j=1

U2∗−2
j Zj,lϕ = 0, l = 1, 2,

(2.20)

where
N(ϕ) = |U∗ + ϕ|2∗−2(U∗ + ϕ)− |U∗|2

∗−2U∗ − (2∗ − 1)|U∗|2
∗−2ϕ,

and

lk = |U∗|2
∗−2U∗ − u2∗−1

0 +

k
∑

j=1

U2∗−1
j .

In order to apply the contraction mapping principle to prove that (2.20) is uniquely solvable, we
have to estimate N(ϕ) and lk respectively.
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Lemma 2.4. We have

||N(ϕ)||∗∗ ≤ C‖ϕ‖min(2∗−1,2)
∗ .

Proof. If N ≥ 6, then 2∗ − 2 ≤ 1. So we have

|N(ϕ)| ≤ C|ϕ|2∗−1,

which gives

|N(ϕ)| ≤C‖ϕ‖2∗−1
∗

(

k
∑

j=1

λ
N−2

2

(1 + λ|y − ξj |)
N−2

2 +τ

)2∗−1

≤C‖ϕ‖2∗−1
∗ λ

N+2
2

k
∑

j=1

1

(1 + λ|y − ξj |)
N+2

2 +τ

(

k
∑

j=1

1

(1 + λ|y − ξj |)τ
)

4
N−2

≤C‖ϕ‖2∗−1
∗ λ

N+2
2

k
∑

j=1

1

(1 + λ|y − ξj |)
N+2

2 +τ
.

Therefore,

‖N(ϕ)‖∗∗ ≤ C‖ϕ‖2∗−1
∗ .

Similarly, if 3 ≤ N ≤ 5, then 2∗ − 3 > 0. In view of Uj ≥ c0 > 0 in Ω, we find

|N(ϕ)| ≤ C
(

|u0|2
∗−3 + (

k
∑

j=1

Uj)
2∗−3

)

ϕ2 + C|ϕ|2∗−1

≤ C(‖ϕ‖2∗ + ‖ϕ‖2∗−1
∗ )λ

N+2
2

(

k
∑

j=1

1

(1 + λ|y − ξj |)
N−2

2 +τ

)2∗−1

≤ C‖ϕ‖2∗
k
∑

j=1

λ
N+2

2

(1 + λ|y − ξj |)
N+2

2 +τ
.

�

Next, we estimate lk.

Lemma 2.5. There is a constant σ > 0, such that

‖lk‖∗∗ ≤ Cλ−
N−2

4 −σ.

Proof. Write

lk =
[

|U∗|2
∗−2U∗ − u2

∗−1
0 +

∑k
j=1 P

2∗−1
j

]

+
∑k

j=1

(

U2∗−1
j − P 2∗−1

j

)

=: J1 + J2.

First, we estimate ‖J2‖∗∗. We have

0 ≤ U2∗−1
j − P 2∗−1

j ≤
CU2∗−2

j

λ
N−2

2

.

Let us determine the number α > 0, such that



INFINITELY MANY NON-RADIAL SOLUTIONS TO A CRITICAL EQUATION ON ANNULUS 9

CU2∗−2
j

λ
N−2

2

≤ Cλ−αλ
N+2

2

(1 + λ|y − ξj |)
N+2

2 +τ
.

The above inequality is equivalent to

(1 + λ|y − ξj |)
N+2

2 +τ−4 ≤ Cλ−αλN−2.

Note that τ = 1
2 . We find that N+2

2 + τ − 4 ≥ 0 if N ≥ 5. In view of 1 + λ|y − xj | ≤ Cλ in Ω. We
have

(1 + λ|y − ξj |)
N+2

2 +τ−4 ≤ Cλ
N+2

2 +τ−4 = Cλ−
N−1

2 λN−2.

As an result, α = N−1
2 . Thus, we get

‖J2‖∗∗ ≤ Cλ−
N−1

2 , if N ≥ 5. (2.21)

If N ≤ 5, it holds N+2
2 + τ − 4 < 0. Thus

(1 + λ|y − ξj |)
N+2

2 +τ−4 ≤ C = Cλ2−NλN−2.

So α = N − 2. Hence, we obtain

‖J2‖∗∗ ≤ Cλ2−N , if N ≤ 5. (2.22)

In order to estimate ‖J1‖∗∗. We define

Ωj =
{

y : y = (y′, y′′) ∈ R
2 × R

N−2,
〈 y′

|y′| ,
ξ′j
|ξj |
〉

≥ cos
π

k

}

.

Using the assumed symmetry, we just need to estimate J1 in Ω1. Let S = Ω1 ∩B1/
√
λ(ξ1).

Note that, it holds P1 ≥ c0 > 0 in S, and

|U∗|2
∗−2U∗ = |u0 −

k
∑

j=2

Pj − P1|2
∗−2(u0 −

k
∑

j=2

Pj − P1),

we have

|J1| ≤ P 2∗−2
1

(

u0 +
k
∑

j=2

Pj) + J3,

where |J3| ≤ C in S.
Since

λ
N+2

2

(1 + λ|y − ξ1|)
N+2

2 +τ
≥ λ

N+2
2

(1 +
√
λ)

N+2
2 +τ

≥ a0λ
N+2

4 − τ
2 , y ∈ S,

it holds

|J3| ≤ Cλ−
N+2

4 + τ
2

λ
N+2

2

(1 + λ|y − ξ1|)
N+2

2 +τ
, y ∈ S.

On the other hand

|P 2∗−2
1

(

u0 +

k
∑

j=2

Pj)| ≤ CU2∗−2
1 ,
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and if N ≥ 5,

(1 + λ|y − ξ1|)
N+2

2 +τ−4 ≤ Cλ
1
2 (

N+2
2 +τ−4),

which gives

|P 2∗−2
1

(

u0 +

k
∑

j=2

Pj)| ≤ CU2∗−2
1 ≤ λ−

N+2
4 + τ

2
λ

N+2
2

(1 + λ|y − ξ1|)
N+2

2 +τ
, y ∈ S.

If N = 3, 4,

(1 + λ|y − ξ1|)
N+2

2 +τ−4 ≤ C,

which gives

|P 2∗−2
1

(

u0 +

k
∑

j=2

Pj)| ≤ CU2∗−2
1 ≤ λ−

N−2
2

λ
N+2

2

(1 + λ|y − ξ1|)
N+2

2 +τ
, y ∈ S.

Therefore, we have proved

|J1| ≤ Cλ−
N−2

4 −σ λ
N+2

2

(1 + λ|y − ξ1|)
N+2

2 +τ
, y ∈ S. (2.23)

On the other hand, we note that, in Ω1 \ S, it holds P1 ≤ C. Thus

|J1| ≤C
k
∑

j=1

Uj

≤ C

λ
N−2

2 |y − ξ1|N−2
+

C

λ
N−2

2 |y − ξ1|N−2−τ

k
∑

j=2

1

|ξj − ξ1|τ

≤ C

λ
N−2

2 −τ |y − ξ1|N−2−τ
.

Now we determine β > 0, such that

1

λ
N−2

2 −τ |y − ξ1|N−2−τ
≤ Cλ−β λ

N+2
2

(1 + λ|y − ξ1|)
N+2

2 +τ
, y ∈ Ω1 \ S. (2.24)

It holds

λ
N+2

2

(1 + λ|y − ξ1|)
N+2

2 +τ
≥ c′

λτ |y − ξ1|
N+2

2 +τ
, y ∈ Ω1 \ S.

So (2.24) holds if

1

λ
N−2

2 −τ |y − ξ1|N−2−τ
≤ Cλ−β

λτ |y − ξ1|
N+2

2 +τ
, y ∈ Ω1 \ S.

which is equivalent to

C|y − ξ1|N−2−2τ−N+2
2 ≥ λβ+2τ−N−2

2 , y ∈ Ω1 \ S. (2.25)
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Since |y − ξ1| ≥ 1√
λ
, we can take

β =
N − 2

2
− 2τ − 1

2
(N − 2− 2τ − N + 2

2
) =

N + 2

4
− τ,

if N − 2− 2τ − N+2
2 ≥ 0. That is N ≥ 8. If N ≤ 8, we can take β = N−2

2 − 2τ .
So, we have proved

|J1| ≤ Cλ−
N−2

4 −σ λ
N+2

2

(1 + λ|y − ξ1|)
N+2

2 +τ
, y ∈ Ω1 \ S. (2.26)

Combining (2.23) and (2.26), we find that there exists σ > 0, such that

|J1| ≤ Cλ−
N−2

4 −σ λ
N+2

2

(1 + λ|y − ξ1|)
N+2

2 +τ
, y ∈ Ω1. (2.27)

This gives

‖J1‖∗∗ ≤ Cλ−
N−2

4 −σ.

�

Now we are ready to the proof of Proposition 2.3.

Proof of Proposition 2.3. First we recall that λ ∈ [ηk2, η−1k2] for some η > 0. Set

N =
{

w : w ∈ C(RN ) ∩Hs, ‖w‖∗ ≤ 1

λ
N−2

4

,

∫

Ω

k
∑

j=1

U2∗−2
j Zj,lw = 0

}

,

where l = 1, 2. Then (2.20) is equivalent to

ϕ = A(ϕ) =: Lk(N(ϕ)) + Lk(lk), (2.28)

here Lk is defined in Lemma 2.2. We will prove that A is a contraction map from N to N .
First, we have

‖A(ϕ)‖∗ ≤ C‖N(ϕ)‖∗∗ + C‖lk‖∗∗
≤ C‖ϕ‖min{2∗−1,2}

∗ + C 1

λ
N−2

4
+σ

≤ 1

λ
N−2

4

.

Hence, A maps N to N .
On the other hand, we see

‖A(ϕ1)−A(ϕ2)‖∗ = ‖Lk(N(ϕ1))− Lk(N(ϕ2))‖∗
≤ C‖N(ϕ1)−N(ϕ2)‖∗∗.

It is easy to check that if N ≥ 6, then

|N(ϕ1)−N(ϕ2)|
≤ |N ′(ϕ1 + θϕ2)||ϕ1 − ϕ2|
≤ C(|ϕ1|2

∗−2 + |ϕ2|2
∗−2)|ϕ1 − ϕ2|

≤ C(||ϕ1||2
∗−2

∗ + ||ϕ2||2
∗−2

∗ )||ϕ1 − ϕ2||∗
(

k
∑

j=1

λ
N−2

2

(1 + λ|y − ξj |)
N−2

2 +τ

)2∗−1

.
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As before, we have

(

k
∑

j=1

1

(1 + λ|y − ξj |)
N−2

2 +τ

)2∗−1

≤ C

k
∑

j=1

1

(1 + λ|y − ξj |)
N+2

2 +τ
.

Hence,

‖A(ϕ1)−A(ϕ2)‖∗ ≤ C(‖ϕ1‖2
∗−2

∗ + ‖ϕ2‖2
∗−2

∗ )‖ϕ1 − ϕ2‖∗
≤ 1

2‖ϕ1 − ϕ2‖∗.
Therefore, A is a contraction map.

The case N ≤ 5 can be proved in a similar way.

Now by using the contraction mapping theorem, there exists a unique ϕ = ϕr,λ ∈ N such that
(2.28) holds. Moreover, by Lemmas 2.2, 2.4 and 2.5, we deduce

‖ϕ‖∗ ≤ ‖Lk(N(ϕ))‖∗ + ‖Lk(lk)‖∗
≤ C‖N(ϕ)‖∗∗ + C‖lk‖∗∗
≤ C

(

1
λ

)

N−2
4 +σ

.

Moreover, we get the estimate of cl from (2.17). �

3. The Proof of the Main theorem

We look for a solution to (1.1) as u = U∗ + ϕ, where ϕ = ϕk is the function obtained in
Proposition 2.3. Let us introduce the energy functional whose critical points are solutions to (1.1)

I(u) =
1

2

∫

Ω

|∇u|2 − 1

2∗

∫

Ω

|u|2∗ . (3.1)

and the reduced energy

Ik(ℓ, r) := I(U∗ + ϕ). (3.2)

Where

λ = ℓk2, ℓ ∈ [η, η−1] for some η > 0 small enough.

We have the following result

Proposition 3.1. (i) U∗ + ϕ is a critical point of I if and only if (ℓ, r) is a critical point of

the reduced energy Ik
(ii) We have

Ik(ℓ, r) = I(u0) + kA+
1

kN−2
F (ℓ, r) + o

(

1

kN−2

)

uniformly in compact sets of (0,+∞)× (a, b), where

F (ℓ, r) := B
u0(r)

ℓ
N−2

2

− C
1

rN−2ℓN−2

for some positive constants A, B and C.

Proof. The proof of (i) is quite standard. We only prove (ii). First of all we prove that

I(U∗ + ϕ) = I(U∗) + kO
(

λ−
N−2

2 −2σ
)

, for some σ < 0. (3.3)

First of all, we have
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I(U∗ + ϕ) =I(U∗) +
1

2

∫

Ω

|∇ϕ|2 +
∫

Ω

(

u2∗−1
0 −

k
∑

j=1

U2∗−1
j

)

ϕ

− 1

2∗

∫

Ω

(

|U∗ + ϕ|2∗ − |U∗|2
∗
)

.

(3.4)

It follows from (2.18) that

∫

Ω

|∇ϕ|2 =

∫

Ω

|U∗ + ϕ|2∗−2(U∗ + ϕ)ϕ−
∫

Ω

(

u2
−1

0 −
k
∑

j=1

U2∗−1
j

)

ϕ. (3.5)

Thus, we obtain

I(U∗ + ϕ)

=I(U∗) +
1

2

∫

Ω

|U∗ + ϕ|2∗−2(U∗ + ϕ)ϕ+
1

2

∫

Ω

(

u2∗−1
0 −

k
∑

j=1

U2∗−1
j

)

ϕ

− 1

2∗

∫

Ω

(

|U∗ + φ|2∗ − |U∗|2
∗
)

=I(U∗) +
1

2

∫

Ω

(

u2∗−1
0 −

k
∑

j=1

U2∗−1
j − |U∗|2

∗−2U∗
)

ϕ

+
1

2

∫

Ω

(

|U∗ + ϕ|2∗−2(U∗ + ϕ)− |U∗|2
∗−2U∗

)

ϕ

− 1

2∗

∫

Ω

(

|U∗ + ϕ|2∗ − |U∗|2
∗ − 2∗|U∗|2−2U∗ϕ

)

.

(3.6)

Write

lk =
[

|U∗|2
∗−2U∗ − u2

∗−1
0 +

k
∑

j=1

P 2∗−1
j

]

+

k
∑

j=1

(

U2∗−1
j − P 2∗−1

j

)

.

It follows from Lemma 2.5, there is a constant σ > 0, such that

‖lk‖∗∗ ≤ Cλ−
N−2

4 −σ.

By Proposition 2.3, we can obtain from (3.6) that if N ≥ 6,

I(U∗ + ϕ)

=I(U∗) +O
(

‖lk‖∗∗‖ϕ‖∗
)

k
∑

j=1

∫

Ω

(

k
∑

j=1

λ
N+2

2

(1 + λ|y − xj |)
N+2

2 +τ

)(

k
∑

j=1

λ
N−2

2

(1 + λ|y − xj |)
N−2

2 +τ

)

+O
(

‖ϕ‖2∗∗
)

∫

Ω

(

k
∑

j=1

λ
N−2

2

(1 + λ|y − xj |)
N−2

2 +τ

)2∗

=I(U∗) + kO
(

λ−
N−2

2 −2σ
)

.

(3.7)
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While if N ≤ 5, then

I(U∗ + ϕ)

=I(U∗) +O
(

‖lk‖∗∗‖ϕ‖∗
)

k
∑

j=1

∫

Ω

(

k
∑

j=1

λ
N+2

2

(1 + λ|y − xj |)
N+2

2 +τ

)(

k
∑

j=1

λ
N−2

2

(1 + λ|y − xj |)
N−2

2 +τ

)

+O
(

‖ϕ‖2∗∗
)

∫

Ω

(

k
∑

j=1

λ
N−2

2

(1 + λ|y − xj |)
N−2

2 +τ

)2∗

+O
(

‖ϕ‖2∗
)

∫

Ω

|U∗|2
∗−3
(

k
∑

j=1

λ
N−2

2

(1 + λ|y − xj |)
N−2

2 +τ

)2

=I(U∗) + kO
(

λ−
N−2

2 −2σ
)

.

(3.8)

That concludes the proof of (3.3).
Next, we prove that

I(U∗) = I(u0) + k

[

A− B1k
N−2

rN−2λN−2
+
B2u0(r)

λ
N−2

2

+O(
1

λ
N−2

2 (1+δ)
)

]

(3.9)

where A, B1, B2 and are positive constants, δ > 0 is small.

Recall that Pj satisfies (1.4) and set V =
∑k

j=1 Pj . We have

∫

Ω

|∇U∗|2

=

∫

Ω

|∇u0|2 +
∫

Ω

|∇V |2 − 2

∫

Ω

∇V∇u0

=

∫

Ω

|∇u0|2 +
∫

Ω

|∇V |2 − 2

∫

Ω

u2
∗−1

0 V.

(3.10)

Let Ωj =: {(r cos θ, r sin θ, x′)| 2π(j−1)
k − π

k ≤ θ ≤ 2π(j)
k + π

k , x
′ ∈ R

N−2} ∩Ω, j = 1, ..., k. Then by
the symmetry, we have

∫

Ω

u2
∗−1

0 V = k

∫

Ω1

u2
∗−1

0 V,

and

∫

Ω

|U∗|2
∗

= k

∫

Ω1

|U∗|2
∗

.

Let S =: Ω1 ∩B
λ− 1

2
(ξ1), by suing the following inequality:

|1− t|p = 1− pt+O(t2) = 1− pt+O(tα), 1 < α ≤ 2, ∀0 ≤ t ≤ c,

where c is some constant, we obtain
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∫

S

|U∗|2
∗

=

∫

S

V 2∗ − 2∗
∫

S

V 2∗−1u0 +O(

∫

S

v2
∗−1−δuδ0)

=

∫

S

V 2∗ − 2∗
∫

S

V 2∗−1u0 +O(λ−
(1+δ)(N−2)

2 ),

(3.11)

where δ > 0 is small.
On the other hand, we have

∫

Ω1\S
|U∗|2

∗

=

∫

Ω1\S
u2

∗

0 − 2∗
∫

Ω1\S
u2

∗−1
0 V +O(

∫

Ω1\S
u2

∗−2
0 V 2)

=

∫

Ω

u2
∗

0 − 2∗
∫

Ω1\S
u2

∗−1
0 V +O(

∫

Ω1\S
u2

∗−2
0 V 2) +O(λ−

N
2 ),

(3.12)

since
∫

Ω1\S
u2

∗

0 =

∫

Ω1

u2
∗

0 +O(λ−
N
2 ). (3.13)

Note that, for any y ∈ Ω0, we have

k
∑

j=2

1

|y − ξj |N−2
≤ C

|y − ξ1|N−2−τ

k
∑

j=2

1

|ξj − ξ1|τ
≤ Ck

|y − ξ1|N−2−τ

for τ ∈ (0, 1). So we obtain

∫

Ω1\S
u2

∗−2
0 V 2 ≤C

∫

Ω1\S
V 2

≤
∫

Ω1\S
(

k
∑

j=1

1

λ
N−2

2 |y − ξj |N−2
)2

≤ C

λN−2

∫

Ω1\S

( 1

|y − ξ1|N−2
+

k

|y − ξ1|N−2−τ

)2

≤ C

λN−2

∫

Ω1\S

( 1

|y − ξ1|2(N−2)
+

k

|y − ξ1|2(N−2−τ)

)

≤ C

λN−2

(

λ
1
2 (N−4) + k2λ

1
2 (N−4−2τ)

)

≤ C

λ
N
2 −1+2τ

,

(3.14)

since k2 ∼ λ. As a consequence,
∫

Ω1\S
|U∗|2

∗

=

∫

Ω1

u2
∗

0 − 2∗
∫

Ω1\S
u2

∗−1
0 V +O(

1

µ
N−2

2 (1+δ)
).

(3.15)
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Combining the above obtained results, we get

I(U∗) = I(u0) +
1

2

∫

Ω

|DV |2 − k

2∗

∫

S

V 2∗ + k

∫

S

V 2∗−1u0

−
∫

Ω

u2
∗−1

0 V + k

∫

Ω1\S
u2

∗−1
0 V +O(

k

λ
N−2

2 (1+δ)
).

(3.16)

Now we compute those integrals in (3.16) one by one:

−
∫

Ω

u2
∗−1

0 V + k

∫

Ω1\S
u2

∗−1
0 V

= −k
∫

Ω1

u2
∗−1

0 V + k

∫

Ω1\S
u2

∗−1
0 V

= −k
∫

S

u2
∗−1

0 V

= O(k

∫

S

1

λ
N−2

2

k
∑

j=1

1

|y − ξj |N−2
)

= O(k

∫

S

1

λ
N−2

2

( 1

|y − ξ1|N−2
+

k

|y − ξ1|N−2−τ
)

= O
( k

λ
N−2

2

( 1

λ
+

k

λ1+
τ
2

)

)

= O
( k

λ
(1+δ)(N−2)

2

)

.

(3.17)

We have that for any y ∈ S

k
∑

j=2

Pj(ξ1 + λ−1y)

λ
N−2

2

≤C
k
∑

j=2

1

(1 + |y − λ(ξj − ξ1)|)N−2

≤C
k
∑

j=2

1

|λ(ξj − ξ1)|N−2

≤C| ln k|
σN kN−2

λN−2
≤ C| ln k|σN

λ
N−2

2

,

where σN = 0 if N ≥ 4 and σ3 = 1, if N = 3. So

∣

∣

∣

(V (ξ1 + λ−1y)

λ
N−2

2

)2∗−1

−
(P1(ξ1 + λ−1y)

λ
N−2

2

)2∗−1∣
∣

∣

≤C
( 1

(1 + |y|)4
| ln k|σN

λ
N−2

2

+
| ln k|(2∗−1)σN

λ
N+2

2

)

.

Thus, we have
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∫

S

V 2∗−1u0

=
1

λ
N−2

2

∫

B√
λ(0)

(V (ξ1 + λ−1y)

λ
N−2

2

)2∗−1

u0(ξ1 + λ−1y)

=
1

λ
N−2

2

∫

B√
λ(0)

(P1(ξ1 + λ−1y)

λ
N−2

2

)2∗−1

u0(ξ1 + λ−1y)

+
1

λ
N−2

2

∫

B√
λ(0)

[(V (ξ1 + λ−1y)

λ
N−2

2

)2∗−1

−
(P1(ξ1 + λ−1y)

λ
N−2

2

)2∗−1]

u0(ξ1 + λ−1y)

=
1

λ
N−2

2

∫

B√
λ(0)

(P1(ξ1 + λ−1y)

λ
N−2

2

)2∗−1

u0(ξ1 + λ−1y)

+
1

λ
N−2

2

O
(

λ
N−4

2
| ln k|σN

λ
N−2

2

+ λ
N
2
| ln k|(2∗−1)σN

λ
N+2

2

)

=
1

λ
N−2

2

∫

B√
λ(0)

(

U(y) +O
( 1

λN−2

)

)2∗−1(

u0(ξ1) +O
( 1

λ

)

)

+
1

λ
N−2

2

O
(

λ
N−4

2
| ln k|σN

λ
N−2

2

+ λ
N
2
| ln k|(2∗−1)σN

λ
N+2

2

)

=
u0(ξ1)

λ
N−2

2

(

∫

RN

U2∗−1 +O
( 1

λδ
)

)

.

(3.18)

Finally, it is standard to prove

1

2

∫

Ω

|∇V |2 − k

2∗

∫

S

V 2∗ = k
(1

2

∫

Ω0

|∇V |2 − k

2∗

∫

S

V 2∗
)

= k[

∫

RN

|∇U0,1|2 −
1

2∗

∫

RN

U2∗

0,1 −
k
∑

j=2

B0

λN−2|xj − x1|
+O(

1

λ
N−2

2 (1+δ)
)]

= k[A− B1k
N−2

λN−2rN−2
0

+O( 1

λ
N−2

2
(1+δ)

)]

(3.19)

Combining the above obtained results, we get (3.9).

Finally, the claim follows by the choice of λ in (1.6). �

We are now ready to prove the main theorem.

Proof of Theorem 1.1: completed. We apply Proposition 3.1. It is easy to check that F has a

maximum point at the point (ℓ0, r0) where r0 maximizes the function r → r
N−2

2 u0(r) and ℓ0 :=
(

2B
Cu0(r0)r

N−2
0

)
2

N−2

, which is stable under C0−perturbation. Therefore, the reduced energy Ik has

a critical point (ℓk, rk), which produces the solution U∗ + φ to the problem (1.1).
�
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Appendix A. Non-degeneracy of the positive radial solution

Without loss of generality we can assume that the annulus is AR := {x ∈ R
n : R ≤ |x| ≤ 1}

(i.e. a = R and b = 1).

Let uR be the unique positive radial solution to the following problem:
{

−∆u = up in AR,
u = 0 on ∂AR.

(A.1)

Here we set p := N+2
N−2 , N ≥ 3.

Proposition A.1. There exists a sequence of radii (Rk)k∈N, such that uR is non-degenerate for

any R 6= Rk.

Proof. (i) Let us consider the following linear problem:

{

−∆v = pup−1
R v in AR,

v = 0 on ∂AR.
(A.2)

We denote by λk = k(k + n − 2) for k = 0, 1, 2, ... the eigenvalues of −∆ on the sphere
S
n−1. Let {Φk

i : 1 ≤ i ≤ mk} denote a basis for the kth eigenspace of −∆. Then for any
function v = v(r, θ) on the annulus AR we may write

v(r, θ) =
∑

k≥0

ak(r)Φ̃
k
i (θ), r ∈ (1, R), θ ∈ S

n−1, (A.3)

where each ak is a radial solution to
{

a′′k + n−1
r a′k +

(

pup−1
R (r) − λk

r2

)

ak(r) = 0 in (R, 1),

ak(R) = ak(1) = 0,
(A.4)

and

Φ̃k
i (θ) =

mk
∑

i=1

ciΦ
k
i (θ), for some ci ∈ R.

(ii) Argue as in Proposition 2.1 in [3], we have that

a0(r) = 0 for any r ∈ (R, 1). (A.5)

It means that u0 is non-degenerate in the space of radial functions.
(iii) For any integer k ≥ 1, let µki = µki(R), i ≥ 1 be the sequence of the eigenvalues of the

problem:
{

φ′′ + n−1
r φ′ +

(

pup−1
R (r) − λk

r2

)

φ = −µkiφ in (R, 1),

φ(R) = φ(1) = 0.
(A.6)

We point out that if

µki(R) 6= 0 for any k ≥ 1 and i ≥ 1, (A.7)

then any solutions to (A.4) ak ≡ 0.
So by (A.3) (together with (A.5)) we deduce that any solutions to (A.2) v ≡ 0, i.e. uR

is non-degenerate.



INFINITELY MANY NON-RADIAL SOLUTIONS TO A CRITICAL EQUATION ON ANNULUS 19

(iv) By Corollary 2.4 in [23] we get

µ11(R) < 0 and µki(R) > 0 for k ≥ 1 and i ≥ 2, for any R ∈ (0, 1). (A.8)

It only remains to check the behavior of the first eigenvalue µk1(R) for any k ≥ 2. We know
by Lemma 3.1 in [23] that

lim
R→1

µk1(R) = −∞, for any k ≥ 1.

(v) If φ solves (A.6) then ψ(t) = φ(t(1 −R) + 2R− 1) solves the following problem:
{

ψ′′ + (n−1)(1−R)
t(1−R)+2R−1ψ

′ + (1 −R)2
(

pwp−1
R (t)− λk

(t(1−R)+2R−1)2

)

ψ = λkψ, in (1, 2),

ψ(1) = ψ(2) = 0.
(A.9)

Where

λk = λk(R) := −(1−R)2µk1(R).

On the other hand, we see that wR(t) = uR(t(1−R)+2R−1) solves the following problem:
{

w′′
R + (n−1)(1−R)

t(1−R)+2R−1w
′
R + (1−R)2wp

R(t) = 0 in (1, 2),

wR(1) = wR(2) = 0.
(A.10)

(vi) We claim that
for any k ≥ 2 there exists a finite number of radii Rk1, . . . , Rkℓ(k) such that λk(Rki) = 0

for i = 1, . . . , ℓ(k).
The proof for the claim could follow the same arguments as in Lemma 2.2 (c) of [14].

Indeed, using a result due to Kato (see Example 2.12, page 380 in [20]), we could prove
that each function R → λk(R) is analytic so it can only vanish at a finite number of points.
We can prove that the function W : (0, 1) → C2(I), I = [1, 2], defined by W (R)(t) = wR(t)
is analytic using the same arguments developed by Dancer in[12].

�
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