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Abstract

We consider the initial boundary value problem in exterior domain for semilinear wave equations with power-type

nonlinearity |u|p. We will establish blow-up results when p is less than or equal to Strauss’ exponent which is the

same one for the whole space case R
n.
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1. Introduction

This paper concerns the initial boundary value problem of the strongly damped wave equation in an exterior

domain. Let Ω ⊂ R
n be an exterior domain whose obstacle O ⊂ R

n is bounded with smooth compact boundary ∂Ω.

We consider the initial boundary value problem







































utt − ∆u − ∆ut = |u|p t > 0, x ∈ Ω,

u(0, x) = εu0(x), ut(0, x) = εu1(x) x ∈ Ω,

u = 0, t ≥ 0, x ∈ ∂Ω,

(1.1)

where the unknown function u is real-valued, n ≥ 1, ε > 0, and p > 1. Throughout this paper, we assume that

(u0, u1) ∈ H1
0(Ω) × L2(Ω), and u0, u1 ≥ 0. (1.2)

Without loss of generality, we assume that 0 ∈ O ⊂⊂ B(R), where B(R) := {x ∈ R
n : |x| < R} is a ball of radius R

centred at the origin, and that

suppui ⊂ B(R), i = 0, 1. (1.3)

For the simplicity of notations, ‖· ‖q and ‖· ‖H1 (1 ≤ q ≤ ∞) stand for the usual Lq(Ω)-norm and H1
0
(Ω)-norm, respec-

tively.

First, the following local well-posedness result is needed.

Proposition 1. [3, see Proposition 2.1]

Let 1 < p < ∞. Under the assumptions (1.2)-(1.3), there exists a maximal existence time Tmax > 0 such that the

problem (1.1) possesses a unique weak solution

u ∈ C([0, Tmax),H1
0(Ω)) ∩ C1([0, Tmax), L2(Ω)),

where 0 < Tmax ≤ ∞. Moreover, u(t, · ) is supported in the ball B(t + R). In addition:

either Tmax = ∞ or else Tmax < ∞ and ‖u(t, · )‖H1
0
+ ‖ut(t, · )‖2 → ∞ as t→ Tmax. (1.4)
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Remark 1. We say that u is a global solution of (1.1) if Tmax = ∞, while in the case of Tmax < ∞, we say that u

blows up in finite time.

Let pc(n) = +∞, for n = 1, and let pc(n), for n ≥ 2, be the positive root of the quadratic equation

(n − 1)p2 − (n + 1)p − 2 = 0.

The number pc(n) is known as the critical exponent (Strauss exponent) of the semilinear wave equation







































utt − ∆u = |u|p t > 0, x ∈ Ω,

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ Ω,

u = 0, t > 0, x ∈ ∂Ω,

(1.5)

since it divides (1,∞) into two subintervals such that the following description holds: If p ∈ (1, pc(n)), then solutions

with nonnegative initial values blow-up in finite time; if p ∈ (pc(n),∞), then solutions with small (and sufficiently

regular) initial values exist for all time (see e.g. [7]). The proof has an interesting and exciting history that spans three

decades. We only give a brief summary here and refer the reader to [7, 4] and the references therein for details. The

problem as regards the existence or nonexistence of global solutions is sometimes referred to as the Conjecture of

Strauss [8]. The same problem was also posed by Glassey [5].

Our main result is the following

Theorem 1. Assume that the initial data satisfy (1.2)-(1.3). If



















1 < p < pc(1) = ∞,
1 < p ≤ pc(2),

1 < p < pc(n), n ≥ 3,

then the solution of the problem (1.1) blows up in finite time.

Remark 2. It still an open problem to prove that the solution of the problem (1.1) blows up in finite time for

p = pc(n), n ≥ 3.

This paper is organized as follows: in Section 2, we present several preliminaries. Section 3 contains the proofs

of the blow-up theorem (Theorem 1).

2. Preliminaries

In this section, we give some preliminary properties that will be used in the proof of Theorem 1.

In [6, p. 386], Sideris obtained the following well-known ODE blow-up result:

Lemma 1. Let p > 1, a ≥ 1, and (p − 1)a > q − 2. If F ∈ C2([0, T )) satisfies

1. F(t) ≥ δ(t + R)a, and

2.
d2F(t)

dt2 ≥ k(t + R)−q[F(t)]p,

with some positive constants δ, k, and R, then T < ∞.

To prove the main results in this paper when n = 2, we will concentrate on the improvement of the above well-

known Sideris ODE blow-up result, for when the differential inequality involves a logarithmic term.

Lemma 2. [1, Lemma 2.3] Let p > 1, a ≥ 1, and (p − 1)a > q − 2. If F ∈ C2([0, T )) satisfies

1. F(t) ≥ δ(t + R)a, and

2.
d2F(t)

dt2 ≥ k[ln(t + R)]−q/2(t + R)−q[F(t)]p,
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with some positive constants δ, k, and R, then T < ∞.

Lemma 3. [1, Lemma 2.4] Let p > 1, a ≥ 1, and (p − 1)a = q − 2. If F ∈ C2([0, T )) satisfies, when t ≥ T0 > 0,

1. F(t) ≥ K0(t + R)a, and

2.
d2F(t)

dt2 ≥ K1[ln(t + R)]−q/2(t + R)−q[F(t)]p,

with some positive constants K0,K1, T0 and R. Fixing K1, there exists a positive constant c0, independent of R and T0,

such that if K0 ≥ c0, then T < ∞.

We also need of the following special functions.

Lemma 4. [9, Lemma 2.2] There exists a function φ0(x) ∈ C2(Ω) satisfying the following boundary value problem



















∆φ0(x) = 0, in Ω, n ≥ 3,

φ0|∂Ω = 0,

|x| → ∞, φ0(x)→ 1.

(2.1)

Moreover, φ0(x) satisfies: for all x ∈ Ω, 0 < φ0(x) < 1.

Lemma 5. [1, Lemma 2.5] There exists a function φ0(x) ∈ C2(Ω) satisfying the following boundary value problem



















∆φ0(x) = 0, in Ω, n = 2,

φ0|∂Ω = 0,

|x| → ∞, φ0(x)→ +∞, and φ0(x) increase at the rate of ln(|x|).
(2.2)

Moreover, φ0(x) satisfies: for all x ∈ Ω, 0 < φ0(x) ≤ C ln r, where r = |x| and C > 0 is a positive contant.

Lemma 6. [2, Lemma 2.2] There exists a function φ0(x) ∈ C2([0,∞)) satisfying the following boundary value problem



















∆φ0(x) = 0, x > 0,

φ0|x=0 = 0,

x→ ∞, φ0(x)→ +∞, and φ0(x) increase at the rate of linear function x.

(2.3)

Moreover, φ0(x) satisfies: there exist two positive constants C1 and C2 such that, for all x > 0, we have C1 x ≤ φ0(x) ≤
C2x.

Similarly, we have the following

Lemma 7. There exists a function ϕ1(x) ∈ C2(Ω) satisfying the following boundary value problem

{

∆ϕ1(x) = 1
2
ϕ1(x), in Ω, n ≥ 1,

ϕ1|∂Ω = 0.
(2.4)

Moreover, ϕ1(x) satisfies: there exists positive constant C1, for all x ∈ Ω, 0 < ϕ1(x) ≤ C1(1 + |x|)−(n−1)/2e|x|.

Proof. It is sufficient to take ϕ1(x) = φ1( x√
2
) where φ1 is the function defined by [9, Lemma 2.3] on 1√

2
Ω instead of

Ω. �

In order to continue the description of the following lemmas, we define the following test function

ψ1(x, t) = ϕ1(x)e−t, ∀ x ∈ Ω, t ≥ 0.

It is easy to check that

(ψ1)t(x, t) = −ψ1(x, t), (ψ1)tt(x, t) = ψ1(x, t), and ∆ψ1(x, t) =
1

2
ψ1(x, t).
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Lemma 8. [9, Lemma 2.4]

Let p > 1, n ≥ 1. Then, for all t ≥ 0, we have

∫

Ω∩{|x|≤t+R}
[ψ1(x, t)]p′ dx ≤ C(t + R)n−1−(n−1)p′/2,

where p′ = p/(p − 1) and C is a positive constant.

Lemma 9. Let p > 1, n ≥ 1. Then, for all t ≥ 0, we have

∫

Ω∩{|x|≤t+R}
[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx ≤ C(t + R)n−1−(n−1)p′/2,

where p′ = p/(p − 1) and C is a positive constant.

For the case n = 2, we can improve the last inequality, more precisely, there exists R1 ≫ 1 such that, for all t ≥ R1,

we have
∫

Ω∩{|x|≤t+R}
[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx ≤ C(t + R)1−p′/2(ln(t + R))−1/(p−1).

Proof. For the case n ≥ 3, see [9, Lemma 2.5]. For the case of n = 2 see [1, Lemma 2.8]. Finally, for the one

dimensional case see [2, Lemma 2.5]. �

3. Proof of Theorem 1

Theorem 1 is a consequence of the lower bound and the blowup result about nonlinear differential inequalities in

Lemmas 1 and ??.

To outline the method, we will introduce the following functions:



































F0(t) =

∫

Ω

u(x, t)φ0(x) dx,

F1(t) =

∫

Ω

u(x, t)ψ1(x, t) dx.

By density we can assume that the solution u is sufficiently smooth, which implies that F0(t) and F1(t) are well-defined

C2-functions for all t ≥ 0. The following lemma is dedicated to obtain a lower bound on F1(t).

Lemma 10. Let n ≥ 1. Under the assumptions (1.2)-(1.3), let (u, ut) be the solution of the problem (1.1) such that

(u, ut) ∈ C([0, T ),H1
0(Ω)) ×C([0, T ), L2(Ω)),

and

supp(u, ut) ⊂ B(t + R) := {x ∈ Ω : |x| < t + R}.

Then, for all t ≥ 0, we have

F1(t) ≥
(

ε

3

(

1 − e−
3
2

t
)

+ εe−
3
2

t
)

∫

Ω

ϕ1(x)u0(x) dx +
2ε

3

(

1 − e−
3
2

t
)

∫

Ω

ϕ1(x)u1(x) dx ≥ εc0 > 0.

Proof. We multiply (1.1) by the test function ψ1 ∈ C2(Ω × R) and integrate overΩ × [0, t], we get

∫ t

0

∫

Ω

ussψ1 dx ds −
∫ t

0

∫

Ω

∆uψ1 dx ds −
∫ t

0

∫

Ω

∆usψ1 dx ds =

∫ t

0

∫

Ω

|u|pψ1 dx ds. (3.1)
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Use integration by parts, we have

∫ t

0

∫

Ω

ussψ1 dx ds = −
∫ t

0

∫

Ω

us(ψ1)s dx ds +

∫

Ω

ut(x, t)ψ1(x, t) dx − ε
∫

Ω

u1(x)ϕ1(x) dx

=

∫ t

0

∫

Ω

u(x, s)ψ1(x, s) dx ds +

∫

Ω

[u(x, t) + ut(x, t)]ψ1(x, t) dx − ε
∫

Ω

[u0(x) + u1(x)]ϕ1(x) dx,

where we have used the fact that (ψ1)s(x, s) = −ψ1(x, s) and (ψ1)ss(x, s) = ψ1(x, s), for all x ∈ Ω, s ≥ 0. Moreover

∫ t

0

∫

Ω

∆uψ1 dx ds = −
∫ t

0

∫

Ω

∇u∇ψ1 dx ds +

∫ t

0

∫

∂Ω

ψ1∇u· n dσ ds

=

∫ t

0

∫

Ω

u∆ψ1 dx ds −
∫ t

0

∫

∂Ω

u∇ψ1· n dσ ds +

∫ t

0

∫

∂Ω

ψ1∇u· n dσ ds,

=
1

2

∫ t

0

∫

Ω

uψ1 dx ds,

where we have used the boundary conditions and the fact that ∆ψ1(x, s) = 1
2
ψ1(x, s), for all x ∈ Ω, s ≥ 0. Similarly

∫ t

0

∫

Ω

∆usψ1 dx ds = −
∫ t

0

∫

Ω

∆u(ψ1)s dx ds +

∫

Ω

ψ1(x, t)∆u(x, t) dx −
∫

Ω

ϕ1(x)∆u(x, 0) dx

=

∫ t

0

∫

Ω

∆uψ1 dx ds +

∫

Ω

ψ1(x, t)∆u(x, t) dx −
∫

Ω

ϕ1(x)∆u(x, 0) dx

=
1

2

∫ t

0

∫

Ω

uψ1 dx ds +
1

2

∫

Ω

ψ1(x, t)u(x, t) dx − 1

2
ε

∫

Ω

ϕ1(x)u0(x) dx,

where a similar calculation as above was applied. Combining the above equalities, we conclude from (3.1) that

∫ t

0

∫

Ω

|u|pψ1 dx ds =

∫ t

0

∫

Ω

uψ1 dx ds +

∫

Ω

[u(x, t) + ut(x, t)]ψ1(x, t) dx − ε
∫

Ω

[u0(x) + u1(x)]ϕ1(x) dx

−1

2

∫ t

0

∫

Ω

uψ1 dx ds

−1

2

∫ t

0

∫

Ω

uψ1 dx ds − 1

2

∫

Ω

ψ1(x, t)u(x, t) dx +
1

2
ε

∫

Ω

ϕ1(x)u0(x) dx

=
d

dt

∫

Ω

u(x, t)ψ1(x, t) dx +
3

2

∫

Ω

u(x, t)ψ1(x, t) dx − 1

2
ε

∫

Ω

ϕ1(x)u0(x) dx − ε
∫

Ω

ϕ1(x)u1(x) dx

=
d

dt
F1(t) +

3

2
F1(t) − 1

2
ε

∫

Ω

ϕ1(x)u0(x) dx − ε
∫

Ω

ϕ1(x)u1(x) dx.

So by ψ1 > 0, we have

d

dt
F1(t) +

3

2
F1(t) =

∫ t

0

∫

Ω

|u|pψ1 dx ds +
1

2
ε

∫

Ω

ϕ1(x)u0(x) dx + ε

∫

Ω

ϕ1(x)u1(x) dx

≥ 1

2
ε

∫

Ω

ϕ1(x)u0(x) dx + ε

∫

Ω

ϕ1(x)u1(x) dx.

Multiply the above expression by e
3
2

t, we obtain

d

dt
(e

3
2

tF1(t)) ≥ ε

2
e

3
2

t

∫

Ω

ϕ1(x)u0(x) dx + εe
3
2

t

∫

Ω

ϕ1(x)u1(x) dx,

and integrating the last differential inequality over [0, t], we get

e
3
2

tF1(t) − F1(0) ≥ ε

3

(

e
3
2

t − 1
)

∫

Ω

ϕ1(x)u0(x) dx +
2ε

3

(

e
3
2

t − 1
)

∫

Ω

ϕ1(x)u1(x) dx.
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As F1(0) = ε
∫

Ω
ϕ1(x)u0(x) dx, we arrive at

F1(t) ≥
(

ε

3

(

1 − e−
3
2

t
)

+ εe−
3
2

t
)

∫

Ω

ϕ1(x)u0(x) dx +
2ε

3

(

1 − e−
3
2

t
)

∫

Ω

ϕ1(x)u1(x) dx ≥ εc0 > 0.

�

Next, in order to apply Lemma 1 on F0(t), we multiply (1.1) by φ0 and integrate over Ω

∫

Ω

uttφ0 dx −
∫

Ω

∆uφ0 dx −
∫

Ω

∆utφ0 dx =

∫

Ω

|u|pφ0 dx.

By using integration by parts, boundary conditions and Lemma 4, we can easily check that

∫

Ω

∆uφ0 dx =

∫

Ω

u∆φ0 dx = 0,

and
∫

Ω

∆utφ0 dx =

∫

Ω

ut∆φ0 dx = 0.

Therefore
d2

dt2
F0(t) =

∫

Ω

uttφ0 dx =

∫

Ω

|u|pφ0 dx. (3.2)

To estimate the right-hand side of the last equality, we use Hölder’s inequality

∣

∣

∣

∣

∣

∫

Ω

u(x, t)φ0(x) dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

Ω∩{|x|≤t+R}
u(x, t)[φ0(x)]1/p[φ0(x)](p−1)/p dx

∣

∣

∣

∣

∣

∣

≤
(∫

Ω∩{|x|≤t+R}

∣

∣

∣u(x, t)[φ0(x)]1/p
∣

∣

∣

p
dx

)1/p (∫

Ω∩{|x|≤t+R}

∣

∣

∣[φ0(x)](p−1)/p
∣

∣

∣

p′
dx

)1/p′

,

where p′ = p/(p − 1), and then

|F0(t)|p =
∣

∣

∣

∣

∣

∫

Ω

u(x, t)φ0(x) dx

∣

∣

∣

∣

∣

p

≤
(∫

Ω∩{|x|≤t+R}
|u(x, t)|p φ0(x) dx

) (∫

Ω∩{|x|≤t+R}
φ0(x) dx

)p−1

≤
(∫

Ω

|u(x, t)|p φ0(x) dx

) (∫

Ω∩{|x|≤t+R}
φ0(x) dx

)p−1

.

So
∫

Ω

|u(x, t)|p φ0(x) dx ≥ |F0(t)|p
(∫

Ω∩{|x|≤t+R}
φ0(x) dx

)p−1
. (3.3)

At this stage, we distinguish the following four cases.

Case n ≥ 3: By lemma 4, we have 0 < φ0(x) < 1, then (3.3) implies

∫

Ω

|u(x, t)|p φ0(x) dx ≥ |F0(t)|p
(∫

{|x|≤t+R}
1 dx

)p−1
= |F0(t)|p [

Vol(Bn)
]−(p−1)

(t + R)−n(p−1),

where Bn stands for the unit closed ball in R
n. Combining that above inequalities, we infer that

d2

dt2
F0(t) ≥ k(t + R)−n(p−1)|F0(t)|p, (3.4)
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where k = [Vol(Bn)]−(p−1) > 0. So F0 satisfies the second inequality in Lemma 1. To provide that F0 is also verifies

the first inequality in Lemma 1, we relate d2

dt2 F0(t) to F1 using again Hölder’s inequality

∣

∣

∣

∣

∣

∫

Ω

u(x, t)ψ1(x, t) dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

Ω∩{|x|≤t+R}
u(x, t)[φ0(x)]1/p[φ0(x)]−1/pψ1(x, t) dx

∣

∣

∣

∣

∣

∣

≤
(∫

Ω∩{|x|≤t+R}

∣

∣

∣u(x, t)[φ0(x)]1/p
∣

∣

∣

p
dx

)1/p (∫

Ω∩{|x|≤t+R}

∣

∣

∣[φ0(x)]−1/pψ1(x, t)
∣

∣

∣

p′
dx

)1/p′

≤
(∫

Ω

|u(x, t)|p φ0(x) dx

)1/p (∫

Ω∩{|x|≤t+R}
[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx

)1/p′

,

then

|F1(t)|p =
∣

∣

∣

∣

∣

∫

Ω

u(x, t)ψ1(x, t) dx

∣

∣

∣

∣

∣

p

≤
(∫

Ω

|u(x, t)|p φ0(x) dx

) (∫

Ω∩{|x|≤t+R}
[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx

)p−1

.

So, by using Lemmas 9 and 10, we get

∫

Ω

|u(x, t)|p φ0(x) dx ≥ |F1(t)|p
(∫

Ω∩{|x|≤t+R}
[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx

)p−1
≥ (εc0)p

(

C(t + R)n−1−(n−1)p′/2
)p−1
= L(t+R)−(n−1)(p/2−1),

where L > 0 is a positive contant independent of t. Therefore, (3.2) implies

d2

dt2
F0(t) ≥ L(t + R)−(n−1)(p/2−1).

Integrate twice, we have

F0(t) ≥ δ(t + R)n+1−(n−1)p/2
+

dF0(0)

dt
t + F0(0),

for a positive constant δ > 0. As 1 < p < pc(n), it is easy to check that n + 1 − (n − 1)p/2 > 1. Hence the following

estimate is valid when t is sufficiently large:

F0(t) ≥ 1

2
δ(t + R)n+1−(n−1)p/2. (3.5)

Estimates (3.4)-(3.9) and Lemma 1 with parameters

a ≡ n + 1 − (n − 1)p/2, and q ≡ n(p − 1)

imply Theorem 1 for all exponents p such that

(p − 1)(n + 1 − (n − 1)p/2) > n(p − 1) − 2, and p > 1.

Note that the last condition on p is equivalent to p ∈ (1, pc(n)).

Case n = 1: In one dimensional case, the exterior domain is reduced on the semi-infinite interval [0,∞). By lemma 6,

we have 0 < φ0(x) < C2x, then (3.3) implies

∫ ∞

0

|u(x, t)|p φ0(x) dx ≥ |F0(t)|p
(
∫ t+R

0

C2 x dx

)p−1
= C(t + R)−2(p−1)|F0(t)|p,

and then by (3.2) we get

d2

dt2
F0(t) ≥ k(t + R)−2(p−1)|F0(t)|p, (3.6)
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where k = C−1 > 0. So F0 satisfies the second inequality in Lemma 1. To provide that F0 is also verifies the first

inequality in Lemma 1, we relate d2

dt2 F0(t) to F1 using again Hölder’s inequality

∣

∣

∣

∣

∣

∫ ∞

0

u(x, t)ψ1(x, t) dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫ t+R

0

u(x, t)[φ0(x)]1/p[φ0(x)]−1/pψ1(x, t) dx

∣

∣

∣

∣

∣

∣

≤
(
∫ t+R

0

∣

∣

∣u(x, t)[φ0(x)]1/p
∣

∣

∣

p
dx

)1/p (
∫ t+R

0

∣

∣

∣[φ0(x)]−1/pψ1(x, t)
∣

∣

∣

p′
dx

)1/p′

≤
(
∫ ∞

0

|u(x, t)|p φ0(x) dx

)1/p (
∫ t+R

0

[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx

)1/p′

,

then

|F1(t)|p =
∣

∣

∣

∣

∣

∫ ∞

0

u(x, t)ψ1(x, t) dx

∣

∣

∣

∣

∣

p

≤
(∫ ∞

0

|u(x, t)|p φ0(x) dx

) (∫ t+R

0

[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx

)p−1

.

So, by using Lemmas 9 and 10, we get

∫ ∞

0

|u(x, t)|p φ0(x) dx ≥ |F1(t)|p
(
∫ t+R

0

[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx

)p−1
≥ (εc0)p

Cp−1
= L,

where L > 0 is a positive contant independent of t. Therefore, (3.2) implies

d2

dt2
F0(t) ≥ L.

Integrate twice on [0, t + R], we have

F0(t) ≥ 1

2
L(t + R)2

+
dF0(0)

dt
t + F0(0).

Hence the following estimate is valid when t is sufficiently large:

F0(t) ≥ 1

4
L(t + R)2. (3.7)

Estimates (3.7) together with (3.6) and Lemma 1 with parameters

a ≡ 2, and q ≡ 2(p − 1)

imply Theorem 1 for all exponents p such that

1 < p < pc(1) = ∞.

Case n = 2 and p < pc(2): As 0 < Ω, then without loss of generality we can assume that B2(0)∩Ω = ∅, (B2(0) stands

for the closed ball of center 0 and radius 2). By lemma 5, we have

∫

Ω∩{|x|≤t+R}
φ0(x) dx ≤

∫

{|x|≤t+R}\B2(0)

C ln |x| dx

=

∫ 2π

0

∫ t+R

2

C ln r· r dr dθ

= πC

[

(t + R)2 ln(t + R) − 4 ln(2) − 1

2
((t + R)2 − 4))

]

≤ πC(t + R)2 ln(t + R).
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Therefore, (3.2) and (3.3) imply

d2

dt2
F0(t) =

∫

Ω

|u(x, t)|p φ0(x) dx ≥ |F0(t)|p
(

πC(t + R)2 ln(t + R)
)p−1
= k[ln(t + R)]−(p−1)(t + R)−2(p−1)|F0(t)|p (3.8)

where k > 0. So F0 satisfies the second inequality in Lemma 2. To provide that F0 is also verifies the first inequality

in Lemma 2, we relate d2

dt2 F0(t) to F1 using again Hölder’s inequality

∣

∣

∣

∣

∣

∫

Ω

u(x, t)ψ1(x, t) dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

Ω∩{|x|≤t+R}
u(x, t)[φ0(x)]1/p[φ0(x)]−1/pψ1(x, t) dx

∣

∣

∣

∣

∣

∣

≤
(
∫

Ω∩{|x|≤t+R}

∣

∣

∣u(x, t)[φ0(x)]1/p
∣

∣

∣

p
dx

)1/p (
∫

Ω∩{|x|≤t+R}

∣

∣

∣[φ0(x)]−1/pψ1(x, t)
∣

∣

∣

p′
dx

)1/p′

≤
(
∫

Ω

|u(x, t)|p φ0(x) dx

)1/p (
∫

Ω∩{|x|≤t+R}
[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx

)1/p′

,

then

|F1(t)|p =
∣

∣

∣

∣

∣

∫

Ω

u(x, t)ψ1(x, t) dx

∣

∣

∣

∣

∣

p

≤
(∫

Ω

|u(x, t)|p φ0(x) dx

) (∫

Ω∩{|x|≤t+R}
[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx

)p−1

.

So, by using Lemmas 9 and 10, we get
∫

Ω

|u(x, t)|p φ0(x) dx ≥ |F1(t)|p
(∫

Ω∩{|x|≤t+R}
[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx

)p−1
≥ (εc0)p

(

C(t + R)1−p′/2
)p−1
= L(t + R)−(p/2−1),

where L > 0 is a positive contant independent of t. Therefore, (3.2) implies

d2

dt2
F0(t) ≥ L(t + R)−(p/2−1).

Integrate twice, we have

F0(t) ≥ δ(t + R)3−p/2
+

dF0(0)

dt
t + F0(0),

for a positive constant δ > 0. As 1 < p < pc(2), it is easy to check that 3 − p/2 > 1. Hence the following estimate is

valid when t is sufficiently large:

F0(t) ≥ 1

2
δ(t + R)3−p/2. (3.9)

Estimates (3.8), (3.9) and Lemma 2 with parameters

a ≡ 3 − p/2, and q ≡ 2(p − 1)

imply Theorem 1 for all exponents p such that

(p − 1)(3 − p/2) > 2(p − 1) − 2, and p > 1.

Case n = 2 and p = pc(2): As the subcritical case (p < pc(2)), we have

d2

dt2
F0(t) ≥ K1[ln(t + R)]−(p−1)(t + R)−2(p−1)|F0(t)|p, (3.10)

where K1 > 0, and

d2

dt2
F0(t) =

∫

Ω

|u(x, t)|p φ0(x) dx ≥ |F1(t)|p
(∫

Ω∩{|x|≤t+R}
[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx

)p−1
.
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Next, we use Lemma 10 and the fact that (see Lemma 9)

∫

Ω∩{|x|≤t+R}
[φ0(x)]−1/(p−1)[ψ1(x, t)]p′ dx ≤ C(t + R)1−p′/2(ln(t + R))−1/(p−1).

we conclude that

d2

dt2
F0(t) ≥

εpc
p

0
(

C(t + R)1−p′/2(ln(t + R))−1/(p−1)
)p−1
≥ L(t + R)−(p/2−1)(ln(t + R)) (3.11)

where L > 0 is a positive contant independent of t. Integrate twice, we have when t is sufficiently large:

F0(t) ≥ C(t + R)3−p/2 ln t.

As lim
t→∞

ln t = ∞, we infer that

F0(t) ≥ K0(t + R)3−p/2, (3.12)

with K0 > 0 being arbitrarily large when t is sufficiently large. Estimates (3.12) together with (3.10) and Lemma 3

with parameters

a ≡ 3 − p/2, and q ≡ 2(p − 1)

imply Theorem 1, since exponent p = pc(2) satisfies

(p − 1)(3 − p/2) = 2(p − 1) − 2, and p > 1.
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