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BOUNDARY REGULARITY FOR NONLOCAL OPERATORS WITH
KERNELS OF VARIABLE ORDERS

MINHYUN KIM, PANKI KIM, JAEHUN LEE, AND KI-AHM LEE

ABSTRACT. We study the boundary regularity of solutions of the Dirichlet problem for the
nonlocal operator with a kernel of variable orders. Since the order of differentiability of the
kernel is not represented by a single number, we consider the generalized Holder space. We
prove that there exists a unique viscosity solution of Lu = f in D, uw =0 in R" \ D, where D is
a bounded C'1'! open set, and that the solution u satisfies u € CV (D) and u/V(dp) € C*(D)
with the uniform estimates, where V is the renewal function and dp (z) = dist(z, D).
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1. INTRODUCTION

In this paper, we will consider the viscosity solutions for the following Dirichlet (exterior)
problem

—p(-Aju=f inD,
(L) {u =0 in R"\D,

where ¢ is in the class of functions called Bernstein function, which contains ¢(A) = A% with
0 <a<1,and D is a bounded C*! open set in R™. For example, if ¢(\) = A%, then —¢(—A) =
—(—A)* is a fractional Laplacian.

We will focus on the boundary behavior of the viscosity solutions of the Dirichlet problem (ITI)
under assumptions (6] and (L7) below.
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1.1. Probabilistic point of view. The operator —¢(—A) can be understood as the infinitesimal
generator of subordinate Brownian motions, thus we can use probabilistic tools to study the
behavior of solutions of ().

Let S = (S)i>0 be a subordinator, that is, an increasing Lévy process in R. It is known that
its Laplace exponent is given by

Ele %] = exp(—tp(N), A >0,
where the function ¢ : (0,00) — (0, 00) satisfies 1)}?01 »(\) =0 and

(1.2) d(\) = bA + / (1 —e ) u(dr)
(0,00)
with a drift & > 0 and a measure p on (0,00) satistying f(o OO)(l A z)p(dr) < oo. It is known
that the function ¢ of the form ([C2)) is a Bernstein function, it means, ¢ : (0,00) — (0,00) is a
C*-function satisfying
(=1)" 1M (A\) >0 forall neN.

Here ¢(™ is the n-th derivative of ¢. Also, it is known that every Bernstein function can be
uniquely represented by (2.

Subordinate Brownian motion Y = (Y;);>0 = (Bsg,)t>0 in R™ is a Lévy process obtained
by replacing the time of Brownian motion in R™ by an independent subordinator. Then, the
characteristic exponent of Y is given by z + ¢(|z|?). Also, the Lévy measure of the process has a
density y — j(|y|) where j : (0,00) = (0,00) is the function given by

(1) 50) = nlr) = [ amt) e ),
0
and we have
(1) 0P = [ (1= cos(z - y)illuDd.
R\ {0}
Let A be the infinitesimal generator of Y. Then, by [34, Section 4.1] we have
(1.5) Au(r) = —¢(=A)u(z) = /]R o (u(z +y) — ul@) = Lyy<yy - Vul@)) j(lyl)dy.
n 0

for any u € C?(R"™). See Section [[4] for the definition of function spaces and Section B for the
definition of infinitesimal generator.

Note that when ¢(A) = A* with 0 < a < 1, the corresponding subordinate Brownian motion
in R™ is a rotationally symmetric 2a-stable process. We also have j(|y|) = c¢(n, a)|y|~"2%. Thus
the corresponding infinitesimal generator is the fractional Laplacian —(—A)®.

Now we introduce some conditions which we will impose in this paper. The first condition is
weak scaling condition at the infinity for ¢, that is, there exist constants 0 < a3 < ag < 1 and
b1 > 1 such that

(o5} Q2

(1.6) bt R < O(F) <b R forall 1<r<R< 0.
r o(r) r

The constant 1 in above condition can be changed into other positive constant without loss of

generality. Note that ([C2) and (CO) imply that b = 0 and that g is an infinite measure. The
second one is that the Lévy density of process satisfies

(1.7) Jir+1) <bgj(r) forall r>1

for some constant by > 0. (1) is valid for any complete Bernstein function satisfying (6.
See [35, Definition 6.1] and [27, Theorem 13.3.5] for details. Moreover, we also have (7)) when
(T8) holds for any 0 < r < R < oo (See [3 Corollary 22]).

We will see that the renewal function V' with respect to one dimensional Lévy process is related
to the boundary behavior of solutions. This function plays an important role throughout this
paper. For the definition of the renewal function, see Section 2.2
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1.2. Analytic point of view. In analytic point of view, nonlocal operators can be defined via
the Fourier transformation. For example, the fractional Laplacian is defined by

~(=8)72f () = ~(° )" (@)
1)~ 1@

g |y — x|t
fly) = fx) =V f(z) (y = 2)1{y—o|<k} dy
R ly — x|t

for f € C°(R™) and it is well-known that
liny (2 — 0)e(m, ) (~A)72 (@) = —Af(@).
o—

=PV

Moreover, Caffarelli and Silvestre [14] provided Harnack inequality and interior C1 regularity
for fully nonlinear integro-differential equations associated with kernels comparable to that of
fractional Laplacian, which remain uniform as ¢ — 2. These results were generalized in [23]
and [19] to more general integro-differential equations. These results make the theory of integro-
differential operators and elliptic differential operators become unified.

The fractional Laplacian (—A)?/2f can be also thought as the normal derivative of some ex-
tension of f (the Dirichlet to Neumann operator of f). Consider the extension problem

—V(y'=°Vu) =0 in R" x (0, 0),
u(z,0) = f(x) for z € R™.

It is known in [I3] that the following holds:
(=A)72 f(z) = d,u(x,0) = — lim y' ~Tu,(z,y),

y—0
where dyu is the outward normal derivative of v on the boundary {y = 0}.
We are interested in the operator of the form

(1.8) Lu(z) = P.V. (u(z +y) —u(@)) j(lyl) dy
R\{0}

where j : (0,00) — (0,00) is an non-increasing function satisfying (L4l), (L6) and (L7), or
satisfying (Z3)) and 24) in Section Bl Let us call the function j(|y|) be the kernel of operator
L. Note that Lu(z) is well-defined if u € C%(z) N B(R™), where C?(z) denotes the family of all
functions which are C? in some neighborhood of z and B(R™) denotes the family of all bounded
functions defined on R™, and this is why we needed the assumption 0 < a; < as < 1. Due to the
symmetry of the kernel j(|y|)dy, the operator can be rewritten without the principal value as

Lu) = [ {ule+9) ~ule) = Lgyieny - Vala)) i(sl)dy
Rm\{0}
(1.9) |

=5 [y, () e =) = 20000 )

when u € C?(z) N B(R™). The important point to note here is that Lu = Au for u € C*(R")
when j(|y|) in (L5 and (L8] are the same. In Section B2 we discuss the connection between two

operators in (CH]) and (L8).

We will consider the wiscosity solution of Lu = f in D. A function u : R" — R which is
upper (resp. lower) semicontinuous on D is said to be a wviscosity subsolution (resp. wviscosity
supersolution) to Lu = f, and we write Lu > f (resp. Lu < f) in viscosity sense, if for any « € D
and a test function v € C?(z) satisfying v(z) = u(x) and

v(y) >uly) (resp. <), yeR"\{z},
it holds that
Lo(@) > f(x) (resp. <).

A function w is said to be a wviscosity solution if u is both sub and supersolution.
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We are going to prove the Holder regularity of viscosity solutions of nonlocal Dirichlet problem

Lu = in D
(1.10) u=Jf D
u=0 inR"™\ D,

up to the boundary using the gradient heat kernel estimates and prove higher boundary regularity
using PDE tools: barriers, comparison principle, and Harnack inequality. It is important that the
boundary condition in ([IT]) is given not only on dD but on the whole complement of D because
of the nonlocal character of the operator L. See Section for details.

The PDE approach can be applied to nonlinear integro-differential equations. There are many
literatures dealing with regularity results with PDE approach. See [IL[7[T42T,23/[29] and [19]. We
expect that similar results such as Harnack inequality and Holder regularity hold for nonlinear
equations with our L.

1.3. History. Over the last few decades there have been a lot of studies for the nonlocal operators,
and regularity theory for nonlocal operators is one of the main areas as the one for local operators.
In [§] Bass and Levin proved Hoélder regularity of harmonic functions with respect to a class of
pure jump Markov processes in R"™, whose kernels are comparable to those of symmetric stable
processes. Bass and Kassmann generalized this result to kernels with variable order in [5l[6]. Bass
also established in [2] the Schauder estimates for stable-like operators in R™. All these works were
done by probabilistic methods.

On the other hand, in [33] Silvestre provided a purely analytic proof of Holder estimates for
solutions to integro-differential equation. His assumptions include the case of an operator with
variable orders. In [I4] Caffarelli and Silvestre generalized this result to fully nonlinear integro-
differential equations associated with symmetric kernels comparable to fractional Laplacian by
PDE methods. Kim and Lee, in [21I] and [23], extended this result to fully nonlinear integro-
differential equations associated with nonsymmetric kernels. A singular regularity theory for
parabolic nonlocal nonlinear equations was also established at [22]. In [I], Bae proved Holder
regularity for solutions of fully nonlinear integro-differential equations with kernels of variable
orders in [I]. Bae and Kassmann in [7] established Schauder estimates for integro-differential
equation with kernels of variable orders. In [19], they extended the regularity results for the
integro-differential operators of the fractional Laplacian type by Caffarelli and Silvestre [14] to
those for the integro-differential operators associated with symmetric, regularly varying kernels at
Zero.

There are relatively fewer results concerning boundary regularity of solutions of Dirichlet prob-
lem. For the boundary regularity for local operators, see [I5]. Kim and Lee proved regularity up
to the boundary for the fractional heat flow in [20]. The boundary regularity up to the boundary
is well-known for the fractional Laplacian, and for fully nonlinear integro-differential equations,
when D is a bounded C'*! domain. See [28,29]. Ros-Oton and Serra also proved the similar result
when D is a bounded C1'® or C! domain in [30]. However, there is no boundary regularity result
for the operators with kernels having variable orders.

1.4. Notation. In this paper, we denote a A b = min{a,b} and a V b = max{a,b}. For any
nonnegative functions f and g, f(r) < g(r) for r > 0 (resp. 0 < r < rp) means that there is
a constant ¢ > 1 such that c=1f(r) < g(r) < cf(r) for r > 0 (resp. 0 < r < 79). We call
¢ the comparison constant of f and g. We also denote B(z,r) := {y € R" : |x — y| < r} for
the open ball and dp(z) := dist(z, D¢) for the distance between x € D and D°. For n > 1, let
Wn = [gn 1{jy|<13dy be the volume of n-dimensional ball.

We denote by C'(D) the Banach space of bounded and continuous functions on D, equipped
with the supremum norm || f||c(py := sup,ep |f(#)], and denote by C*(D),k > 1, the Banach
space of k-times continuously differentiable functions on D, equipped with the norm || f|lcr(py =
>y <k SUWPgep [ DV f(x)]. Also, denote Co(D) := {u € C(D) : u vanishes at the boundary of D}.
For z € R", define C!(x) as the collection of functions which are C'! in some neighborhood of .
Similarly, we define C?(x), C*!(z), etc. For 0 < o < 1, the Holder space C*(R") is defined as

(L.11) C*R") = {f € CR™) | [|fllga@ny < o0},
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equipped with the C“-norm

:Z:‘ —
[fllca®ny = Ifllc@m) +  sup M
syeRmaty [T Y|

Also, for given open set D C R™ we define C*(D) by
C*(D):=={f € C(D) | [fllea(py < o}

with the norm

flz) = fy
I fllcep) :== Ifllcpy +  sup M
syeDaty |T =Yl
For given function h : (0,00) — (0,0), we define Generalized Hélder space C"(D) for bounded
open set D by

(1.12) C"(D) = {f € C(D) | | flenp) < o0},
equipped with the norm

~ /)~ ()]
Ifllery = Iflow) +  sup St

We define seminorm [ -]on(py by

._ [f(x) = Fy)]
Sy = o hle=u)
We denote the diameter of D by diam(D). Note that if hy < hg in 0 <7 < diam(D), || - [|cn (py
and || - [|ons (p) are equivalent and C™ (D) = C"*(D).

We say that D C R (when n > 2) is a C1! open set if there exist a localization radius Ry > 0
and a constant A > 0 such that for every z € D there exist a Ct!-function p = ¢, : R""1 - R
satisfying ¢(0) = 0, Vp(0) = (0,...,0), Vol < A, [Ve(z) — Vo(w)| < Alz — w| and an
orthonormal coordinate system C'S, of z = (21, , 2n—1, 2n) := (Z, 2,) with origin at z such that
DN B(z,Ro) ={y = (§,yn) € B(0,Rp) in CS, : y, > ©(¥)}. The pair (Ry, A) will be called the
C11 characteristics of the open set D. Note that a C1! open set D with characteristics (R, A)
can be unbounded and disconnected, and the distance between two distinct components of D is at
least Ry. By a C™! open set in R with a characteristic Ry > 0, we mean an open set that can be
written as the union of disjoint intervals so that the infimum of the lengths of all these intervals
is at least Ry and the infimum of the distances between these intervals is at least Ry.

1.5. Main theorems. The main results of this paper are the existence and the uniqueness of the
viscosity solution u of (I]), the generalized Holder regularity estimates of such solution u and the
regularity of the quotient u¢(d,?) up to the boundary.

The boundary estimate for nonlinear PDE has been studied for a long time, where the solution
behaves as a linear function. See [II] and references therein. For the degenerate or singular
PDE, [22], it has been proved that the solution behaves in various ways just as that of the
fractional Laplace equation. In [28], Ros-Oton and Serra applied the known techniques for local
operators to fractional Laplacian, which has a nice scaling invariance and a simple barrier of the
form x&. On the other hand, our ¢ has only a weak scaling condition at infinity and it has a general
form which allows nontrivial boundary behavior different from . In this paper, we track down u
in every scale to find scaling invariant uniform estimates only with the weak scaling condition at
infinity. We also construct the renewal function, V(+), of the ladder height process defined at ([2.7])
to overcome the lack of a simple barrier. In addition, we provide the existence and uniqueness
theory for given Dirichlet problem by utilizing the concept of viscosity solution.

The first result is the Holder estimates up to the boundary of solutions of the Dirichlet problem
(TI). Unlike the case of the fractional Laplacian, it is inappropriate to represent Holder regularity
as a single number since kernel in (L&) has variable orders. Therefore it is natural to consider a
generalized Holder space.
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Theorem 1.1 (Hélder estimates up to the boundary). Assume that D is a bounded C*'' open set
in R™, and ¢ is a Bernstein function satisfymgim and [LT). If f € C(D), then there exists a

unique viscosity solution v of (LI0) and u € C?(D). Moreover, we have
HUH(,@(D) < C”f”C(D)a
where ¢(r) := ¢(r—2)"Y/2, for some constant C > 0 depending only on n,D, and ¢.

We will prove Theorem [I1] using the potential operator, which is the inverse of the operator
L, and the estimates on the transition density and its spatial derivatives, see Section Bl for details.
In whole space R", estimates on any order of spatial derivatives of the transition density are
known. Based on these estimates, Bae and Kassmann established Schauder estimates for the
integro-differential operators with kernels of variable orders in [7]. However, in a bounded C!:!
open set, estimates on the first order derivative of the transition density are only known. Higher
order regularities up to the boundary require further research in future.

It is well known that ¢ is comparable to renewal function V' (see Section22) Thus any solution
u of Dirichlet problem () is in C'" up to the boundary by Theorem [Tl Hence it is of importance
to study the regularity of u/V(dp) up to the boundary. The following is our second main result.

Theorem 1.2 (Boundary estimates). Assume that D is a bounded C*' open set in R™, and ¢
is a Bernstein function satisfying (L6) and (LZ). If f € C(D) and w is the viscosity solution of
(TIQ), then u/V(dp) € C*(D) and

<Clfllew
e (D)

|7
V(dp)
for some constants a > 0 and C > 0 depending only on n, D, and ¢.

One of the methods proving the above result follows the standard argument of Krylov in [26]. In
the other words, we are going to control the oscillation of the function u¢(d52)1/ 2 near the bound-
ary using barriers, comparison principle, and the Harnack inequality. However, the construction
of barriers are highly nontrivial. The difficulty mainly comes from the fact that the operator (L8])
is not scale-invariant.

In fact, we will prove Theorems[[T]and [ for a little more general operators including —¢(—A).
In section Pl we will state the generalization of these theorems, and we collect some known results
about the renewal function V. We will prove Theorem [[Tlin Section B, and Theorem [T 2in section
!}

2. PRELIMINARIES

The operators we consider in this paper coincides with infinitesimal generators of isotropic
unimodal Lévy processes for C2(R™) functions. Thus, in Section 2] we first explain the definitions
and properties of Lévy processes, and some related concepts. Then we introduce some additional
conditions that will be needed in this paper. With these concepts, we state Theorems 2.1l and
22 which are generalized version of Theorems [Tl and Throughout this paper, we prove
Theorems 21 and

Next, in Section we will define the renewal function V', which will be act as a barrier, and
record some properties of renewal function.

2.1. Lévy processes. Let X = (X;,P?t > 0,2 € R™) be a Lévy process in R™ defined on the
probability space (Q, F,P?) with P*(Xy = 2) = 1. For the precise definition of Lévy process,
see [32, Definition 1.5]. Note that P*(X, € A) = P°(X; + € A). By Lévy-Khintchine formula,
the characteristic exponent of Lévy process is given by

EO[eith] _ et<I>(z)7 = Rn,
where
1 ,
D(z) = 5% Uz+ivy-z+ / (e”® =1 —iz-alyy<1y)J (dz)

n
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with an n x n symmetric nonnegative-definite matrix U = (U;;), v € R™ and a measure J(dz) on
R™\{0} satisfying

/ (1A |2?)J(dz) < oc.
R™\{0}
Let (P,)i>0 be a transition semigroup for X, it means that
Pif(x) == E*[f(X,)] = E°[f(z + X0)).
Now, define the infinitesimal generator A of X by
P _
Au(z) ;= lim 7tu(x) we)
10 t

if the limit exists. By [34, Section 4.1], Au is well-defined for u € C?(R") and represented by

1 n n
Aulw) = 5 D7 Uydyule) + Y vdula) + / oy )~ (@) = Lgyiayy - V@) (),
i=1
Throughout this paper, we will assume that X is an isotropic unimodal pure jump Lévy process
with an infinite Lévy measure, that is, U = 0, v = 0 and J(dy) is an infinite measure with
an isotropic density J(|y|)dy, where r +— J(r) is non-increasing. Under these assumptions, X
possesses transition density p : (0,00) x Ry — R satisfying

P f(z) =E"[f(Xy)] = . fW)p(t, |z —yl)dy

and characteristic exponent ® : R” — R, is an isotropic function. From now on, we regard
isotropic functions J and ¢ as functions on R .

For every open subset D C R", let 7p := inf{t > 0: X; ¢ D} be the first exit time of D by X.
We define subprocess X? = (X):>0, which is called the killed process of X upon D, by XP = X;
when ¢ < 7p and X = 0 when t < 7p where 0 is a cemetery point. Since X has the transition
density, X also possesses the transition density pp(t,x,y) with

i,7=1

pD(t7$,y) :p(t7 |I - y|) - ]Em[p(t — TD; |X7'D - y|)3TD < t]v

and its transition semigroup (PP):> is represented by

PP f(z) == E*[f(XP)] = /D Fpo(t, ) dy.

Now we are ready to introduce main assumptions in this paper. Note that, under settings
above, the infinitesimal generator can be rewritten as

(21) Aue) =5 [ty e )~ 20) J(obdy

for u € C*(R™). Moreover, it is known in [J, Lemma 2.6] that (ZI]) still holds for u € C?(x) N
Co(R™). Recall that the operator L in (L8]) with kernel J(|y|) is represented as

(2. tu) =5 [ () e =)~ 2000) Sy

for u € C?*(x) N B(R™) since J is symmetric. We record that Au(z) = Lu(z) for any u €
C?(x) N Cp(R™) for the next use.

We first assume that the characteristic exponent ® satisfies weak scaling condition with con-
stants a1 > 1 and 0 < a1 < as < 1 so that

R\*** _ ®(R R\

(2.3) al_l — Sﬁgal — foralll <r < R < .
T D(r) r

We also assume that The Lévy measure of the isotropic unimodal pure jump Lévy process X has

the density y — J(|y|) and it satisfies that there exists a constant az > 0 such that

J'(r)

(2.4) J(r+1) <agJ(r) forall r >0, and r+— — is non-increasing.
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Let
J(1)
J(r)yrn’
By [3], for any ¢ > 0 we have ®(r~!)~! =< (r) in 0 < r < ¢ with comparison constant depending
only on ¢ and n. Thus, there exists a constant ag = az(n,a;) > 1 such that

201 2002

(2.5) a;l (E> < () < as (E) forall0<r <R<1,
r o(r) r

where a1 and ay are constants in ([23]). Note that ([Z3) implies that ¢(r) < c¢r?® for r < 1, so by

definition of ¢ we see that J(|y|)dy is an infinite measure.

We say that D C R? (when d > 2) is a C1'! open set with C! characteristics (Rp, A) if there
exist a localization radius Ry > 0 and a constant A > 0 such that for every z € 0D there exist a
ChH!function ¢ = ¢, : R4~ — R satisfying ¢(0) = 0, Vo (0) = (0,...,0), [Velle < A, [Ve(z) —
V(w)| < Alz —w| and an orthonormal coordinate system C'S, of z = (21, , 2da—1, 2a) = (%, 24)
with origin at z such that D N B(z, Ry) = {y = (¢,y4) € B(0,Roy) in CS, : ya > ¢(¥)}. The pair
(Ro, A) will be called the C1'! characteristics of the open set D. Note that a bounded C*! open
set D with characteristics (Rp, A) can be disconnected, and the distance between two distinct
components of D is at least Ry. By a C'*! open set in R with a characteristic Ry > 0, we mean an
open set that can be written as the union of disjoint intervals so that the infimum of the lengths
of all these intervals is at least Ry and the infimum of the distances between these intervals is at
least Ry.

Now, consider the following Dirichlet (exterior) problem on a bounded C'*! open set D C R™:

Lu=f in D,
u=0 inR™\D,

p(r) =

(2.6)

where L is the operator in ([22]), which coincides with (I.I0) when the process X is a subordinate
Brownian motion. We will prove the following theorems, which contain Theorem [[T] and (See
Remark below), in Sections [l and [ respectively.

Theorem 2.1 (Hélder estimates up to the boundary). Assume that D is a bounded C*' open

set in R™, and X is an isotropic pure jump Lévy process satisfying 2.3) and @.4). If f € C(D),

then there exists a unique viscosity solution u of Z8) and u € C*(D). Moreover, we have
||u||c$(p) < C”f”C(D)a

where ¢(r) 1= cp(r)l/z, for some constant C > 0 depending only on n, D, and ®.

Theorem 2.2 (Boundary estimates). Assume that D is a bounded C*1 open set in R™, and X is
an isotropic pure jump Lévy process satisfying Z3) and (Z4). If f € C(D) and u is the viscosity
solution of (Z8)), then u/V(dp) € C*(D) and

< Clfllew)
ce(D)

|7
V(dp)
for some constants a > 0 and C' > 0 depending only on n, D, and .

In the next remark, we explain that assumptions in Theorem [[.T] and Theorem [[.2 imply assump-
tions in Theorem 21l and Theorem

Remark 2.3. When X is a subordinate Brownian motion satisfying (L8) and (1), we have
@3) by using ®(r) = ¢(r?) and [G). We also have that by ([L3)
(oo} 7<2
J(r) = Ju(r) = / (4mt) ™2™ p(dt).
0

Thus J(r) is decreasing. Also, differentiating above equation we obtain

J/
—# =21 Jp42(r), r>0,
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50 —@ is decreasing. Therefore, (Z4]) holds.

Note that by [3, Corollary 23] and [23)) we have o(r) < ®(r~1)~t. Using this and ®(r) = ¢(1?),
both ¢’s in Theorem [T and Theorem [l are comparable. Therefore, two C?(D) norms are
equivalent.

2.2. Renewal function. Let Z = (Z;);>¢ be an one-dimensional Lévy process with characteristic
exponent ®(|z]) and M; := sup{Z; : 0 < s <t} be the supremum of Z. Let L = (L;);>0 be a local
time of My — Z; at 0, which satisfies

t
Lt :/ 1{M¢:Zt}(8)d8'
0
Note that since ¢t — L, is non-decreasing and continuous with probability 1, we can define the
right-continuous inverse of L by
L7Y(t) ;= inf{s > 0: L(s) > t}.
The mapping ¢ — L~!(t) is non-decreasing and right-continuous a.s. The process L™ = (L; *);>0

with Lt_1 = L71(t) is called the ascending ladder time process of Z. The ascending ladder height
process H = (Hy)y>o is defined as

H, = MLgl(: ZLgl) if L' < oo,
HR P otherwise.
(See [I7T] for details.) Define the renewal function of the ladder height process H with respect to
® by
(2.7) V(z) = / P(Hs < x)ds, zeR.
0

It is known that V(z) = 0 if < 0, V(c0) = oo and V is strictly increasing, differentiable on
[0,00). So, there exists the inverse function V=1 : [0, 00) — [0, c0).
In the following lemma we collect some basic scaling properties of renewal function in [3] and [4].

Lemma 2.4. For any ¢ > 0, There exist constants C;(c) = Ci(¢,n,a1,a1,a2) >0 fori=1,2,3
such that

(2.8) Crle(r) SV(r)? < Cip(r), 0<r<e
L (R\™ _V(R) R\

: =) < < = <R<

(2.9) Cs <7‘ _V(T)_O2 " , 0<r<R<c and
[ 1 1/
L (T\" V=HT) T

: - <——7l< - < _

(2.10) Cy <t _V_l(t)_03 ; , 0<t<T < V(e

Proof. By [3| Corollary 3] and [4, Proposition 2.4], we have
V()2 =d@ Y, r>0.

with comparison constant depending only on n. Combining this with ®(r=1)~! < p(r) in 0 < r <
¢, we conclude (2.8]).

By [238) and (23) we have (29). Using [3, Remark 4], we also obtain the weak scaling property
of the inverse function in (ZI0). O

The most important property of renewal function in this paper is the following: w(x) := V (z,,)
is a solution of the following Dirichlet problem :
Lw=0 in R},
w=0 in R™RY,
where L is of the form [2.2) and R"} := {z = (21, ...,x,) € R" | 2, > 0} is upper half plane (see [18]

Theorem 3.3)).
The following estimates for derivatives of V' are in [I8], Proposition 3.1] and [24, Theorem 1.2].

(2.11)
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Lemma 2.5. Assume X is an isotropic pure jump Lévy process satisfying 23) and (24). Then
r — V(r) is twice-differentiable for any r > 0. Moreover, for any ¢ > 0 there exists a constant
C(c) = C(e,n, a1, a1,a2) > 0 such that

V'(r)

" / V(T)
(2.12) V'l <O, Vi <C—=

We are going to utilize the space CV (D) in Section Bl and adopt V(dp) as a barrier in Section Hl

3. HOLDER REGULARITY UP TO THE BOUNDARY

In this section, we give the proof of Theorem 21 First we introduce the following Dirichlet
heat kernel estimates from [I2 Corollary 1.6] and [25] Thoerem 1.1 and 1.2]. We reformulate here
for the usage of our proofs.

Theorem 3.1. Let X be an isotropic unimodal Lévy process satisfying 23) and @2A4). Let

D C R"™ be a bounded C** open set satisfying diam(D) < 1 and pp(t,x,y) be the Dirichlet heat

kernel for X on D. Then x — pp(t,x,y) is differentiable for any y € D,t > 0, and there exist

constants C; = Ci(n, D, a1, a2, a1,a9,®(1)) >0, i = 1,...,4 satisfying the following estimates:
(a) For any (t,x,y) € (0,1] x D x D,

pD(tvxvy) < C'1 (1 A Vv(f%ﬂ) (1 A W) p(tv |£L' - y|/4)

and
1 1
Ve t,x, < (! V t,x,y).
Vet )| < O | ooV g o)
(b) For any (t,z,y) € [1,00) x D x D,
po(t,z,y) < Cze™ 'V (dp(x))V (dp(y))
and
Vapn(t,z,y)] < C LIV (t,2,y)
2PD\L, T, Y)| = Uy dD(I)/\l Vﬁl(l) PD\l;,X,Y),
where —A\1 = —A1(n, a1, az, o1, az, ®(1)) < 0 is the largest eigenvalue of the generator of X B(O:1),

In the estimates of Theorem B} we used dp(z) V dp(y) < diam(D) < 1, V(r) =< ¢(r)*/? in
0<r<1and w%(\/i) = ¢~ 1(t) to reformulate theorems in our references. In addition, estimates

in [I2 Corollary 1.6] are of the form

po(t,z.y) < ce NPV (dp()V (dp(y))
where —\(D) < 0 is the largest eigenvalue of the generator of X . Using [16] (6.4.14) and Lemma
6.4.5], we have A(D) = inf{ [, —Lu(z)u(z)dz|||uls = 1,supp(u) C D}, thus we can obtain
A1 < A(D). This implies heat kernel estimates in Theorem BIKDb).
Without loss of generality, we will always assume diam(D) < 1 in this paper.

3.1. Potential operator for the killed process of subordinate Brownian motion. In this
subsection, we assume that D C R™ is a bounded C'! open set with diam(D) < 1 and X is a
Lévy process satisfying [23) and ([24]), which are conditions in Theorem Bl We define the Green
function of XP by

GP(2,y) = / pp(t,x,y)dt
0

for 2,y € D with = # y. Note that by Theorem BI(b), G (z,y) is finite for any z # y.
We define a potential operator RP for X as

(3.1) RW@%=A%LMNJWH@@M
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Using definitions of PP and G, we also have
(32 Rrw = [ Py = [ i@
D\{z 0

In the next subsection, we will see that R acts as the inverse of —A.
First we will prove interior Holder estimate of R” f. For the next usage, we prove the following
proposition for the functions in L>°(D).

Proposition 3.2. For any f € L°°(D) and any ball B(xzg,r) C D satisfying dp(zg) < 2r, we
have RP f € CV(B/2) and there is a constant C = C(n,ay,az2,a1,az, D, ®(1)) > 0 satisfying

(3.3) IR fllevmyz) < C (IIfllL=py + IR flle(s))
Here we have denoted B = B(xg,r) and B/2 = B(xq,7/2).

Proof. We have |z — y| < r for any z,y € B/2. Thus, we have
[RPf(z+h) — RPf()]

[R flov(p2) < sup sup

\h|<rz€B/2 V(|h[)
o~ D _ pD
< sup / sup |27 f(@+ ) — P2 ()] ds
|h|<rJo xz€B/2 V(|h|)
VARV @) Ve % PD (ot h)_ PP
< sup / +/ +/ sup |Py f(x+h) sf(fl?)|d$
inj<r \Jo VRV JV(r)? ) zeB)2 V(|h[)
=: sup (I4+II+1II).
[h|<r

To estimate I, we use |PP f(z)| < ||f||L=(p) so that

V(Ih)V (r) D —pb
- o [PPIE0) =PRI
o )
' VARV 2 £l e ()
< ds < c1V(r (D)
</ A2 ds < Vil fl=o
To estimate II, we will use Theorem BI(a). Since s < V(r)? and x € B/2, we obtain
1 1 (6]
V < .
@A VIR S V()
Therefore, for s < V(r)? we have
1 1 Ca2C3
V.PP < \% PP fllpoe(py < ——— -
VP21 < o (g Y g ) 1P Al < s o

for every € D. Here we used Theorem B.Il(a) for the first inequality. Using above inequality we
conclude

sup ds
V(Ih)V (r) z€B/2 V(|h])

n:/”” PP f(w+ h) ~ PPf(x)]

(35) |h'/w VPP (")
. < — sup |V, P f(z¥)|ds
V(IR Jv (v ) zeB)2

|h V(r) 1
<l flioygs [ e @
- V(A Jvqryvey VW)

where z* is a point on the segment between z and x + h. Using change of variables with s = V2(t)
in the first equality and Lemma 2.5 for the second inequality, we get

V(r)2 r ’ r
A A VOV0 <., [ VOV,
vivany V) VoLV eV ()t e t
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where ¢ := V=YV (|h)'/2V (r)"/?). Also, by [E3) we have

m<c £a2<cf t>€
V(s)_5 =T

and

/OT @dt _ /O’“ @%dt < gV (r) /OT % (;)m dt < eV (r).

Using above two inequalities, we deduce from (B6) that

V(r)? r r
/ 711 is < 04/ Vv, CSV(E)/ V),
vivaay V) .t e Jo ¢

Vie) V(A 2V (r)'/2
2 VL V(R)YRV () 2)

(3.7)
< oV (r)

= oV (r)

Combining (B3] and ([B.7), we conclude that

i V(B 2V (1)
v TR 7
= cul oV LD <m0 ()T S enV Ol

11 < c10]| £ ]| Lo (D) V()

where u := V(h)/2V (r)'/? < V(r). Here we used [I0) and as < 1 for the second line.
For III, first note that for any V(T)2 <s <1,

L V ! \% ! < ! ! . 1
dp(x) A1 V=I5 VI T VEIRs)  VEIR) T
So, by Theorem [B|(a) we have for V(r)? <

V()] < pp(sa) < 22 (14 HIPED) (1 LEBY yis o - g0

(3.8)

Here in the second line we used V(dp(x)) < ¢15V (1), which follows from (Z9) and dp(z) < 2r.
Thus, we obtain

[P fx+h) = PP f(2)] = |h||Vo PP f(z.)] < |h|HfHLoo<D)/DIVzpD(S,:v*,yﬂdy

Vi) |z* —y| V(r)
< ciolhll| fllz=(p) /s /Dp (Sa ) W= Cl7|h||‘f”L°"(D)r—\/§a

where z, is a point on the line segment between x and x + h. Here we used f]R" p(s,y/4)dy = 4™
for the last inequality.
For s > 1, using Theorem [B.II(b) we have

(3.9)

C20V(T)e—xls
b

c c
(310)  |Vapp(s,z.y)| < —Zpp(s,2,y) < = 2e MV (dp(@))V ([dp(y) < =

Here we used dp(z) < 2r, dp(y) <1 and (Z9) in the last inequality. Thus we arrive

[P f(z +h) = PP f(2)] = ][V PP fz)] < Rl fll o (p) /D [Vapp(s, 2™, )| dy
40) Vir)

r

(3.11)

< ca1lb[|| fllz=(p) e M

)

/ e M dy < co| ||| fll Lo (D)
D

where z, is a point on the line segment between x and x + h.
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Now combining ([B9) and (B.I1]), we obtain

[ BPR@ ) —PPI@) ([0 ) PP h) PP
IH‘/W V(D) == </W+/1 ) V(D) !

(3.12) V(r) |h| L o
< co93 ——— || fll e / —ds—i—/ e M5 ds
w vy le=or L m T,

< coa|| fllLoe(py(2 = 2V (r) + AT 1).

The last inequality follows from % < 025(#)012 < C25(|%) since |h| < r.
Combining (34), 1) and (B12), we conclude
[Rflevsy2) < c26(1+ V()| fllze(p) < c26(1+ V(D)) fllzo(D)-

Above inequality and that || Rf|cv(p)2) = [Rf]cv (/) + [|Rfllc(B/2) finish the proof. O

We next provide an upper bound of R” f near the boundary. In the proof we apply the estimates
on the Green function in [I8, Theorem 1.6].

Lemma 3.3. There exists a constant C = C(n, a1, as, a1, a2, D, ®(1)) > 0 such that
[RP f(2)] < C|[f||(pyV (diam(D))V (dp ()
for any f € L*°(D) and x € D.
Proof. The estimate on the Green function in [I8, Theorem 1.6] and (2.8]) give that for any

z,y € D,

< a2 pap 2 < e T Wy o)),
Substituting I3) to () we obtain
(3.14) IRP )] < callflmcopVdpe)) [ 1=y

Also, using [29) we have

— _ diam(D)
[V, V=i g, o, [0 V0,
p lz—y B(z.diam(D)) |7 —y[" 0 r

(3.15) V(diam(D)) (4D
iam S .
- C5W /0 r*1 7 dr < ¢gV (diam(D)).
Combining above two inequalities we have proved the lemma. 0

Remark 3.4. As a corollary of LemmalZ3, we have
IRP fll LoDy < CllflLo(D)-
Hence we can simplify B3) to
(3.16) IRP fllev (s /ay < CllfllLe<(p)
for some constant C = C(n, a1, as, o1, az, D, ®(1)) > 0.
Now we are ready to prove Theorem 1] for the function R f.

Proposition 3.5. Assume f € L>(D). Then, RP f € CV (D) and there exists a constant C > 0
such that

(3.17) IR” fllevpy < CllfllL=(p)-
The constant C' > 0 depends only on n, a1, as, a1, a2, D and ®(1).
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Proof. By ([3I6) we have
(3.18) [RP f(z) = RP f(y)| < 1l fll ooy V(& — yl)

for all 2, y satisfying |z —y| < dp(z)/2. We want to show that (3I8) holds, perhaps with a bigger
constant, for all z,y € D.

Let (Ro,A) be the C1! characteristics of D. Then D can be covered by finitely many balls
of the form B(z;,dp(zi)/2) with z; € D and finitely many sets of the form B(z}, Ro) N D with
27 € OD. Thus, it is enough to show that (3.I8)) holds for all 2,y € B(z], Ro) N D possibly with a
larger constant.

Fix B(z%, Ro) N D and assume that the outward normal vector at zg is (0,---,0,—1). This is
possible because the operator is invariant under the rotation. Now let x = (2/, z,) and y = (', yn)
be two points in B(z}, Ro) N D, and let r = |x — y|. Let us define for k£ > 0

£ = (a2 ) and g = (5 + AP,
for some 1 —271(1 + A?)~1/2 < X\ < 1. Since (1 + A?)~1/2(z%),, < dp(2F), we have

1
|zb — 2P = M (1 = N <

T 2V1+ A2

1
(xk)n < _dD(xk)'
Thus, we have from BI8) that
IR (%) = RP £(@1)] < x| fllimoy V(12" = 21)) = erll fll e o)V V(L = )
and similarly that |RP f(y*) — RP f(y*™)| < c1|| f]l Loe(p)V (A*(1 = A)r). Moreover, note that the
distance from the line segment joining 2° and 3° to the boundary 4D is more than (1 — A/2).
Thus, this line can be split into finitely many line segments of length less than (1 — A/2)/2. The

number of small line segments depends only on A. Therefore, we have |R” f(2°) — RP f(y°)| <
ca|| fll Lo (pyV (1) and hence

[RP f(x) = R f(y)|

<|RPf(%) = RPFO) + ) (IR f(a¥) — RP f(a*T)| + [RP f(y*) — RP f(y*1)])
k>0

< sl fll=(oy (V(r) + D VO = A)r))

k>0
< el V)14 3 (¢ -0)")
E>0
< el fllLoe(py)V(r).
Recall that r = |z — y|. This finishes the proof. O
In the next subsection, we will prove that the function v = —RPf is the unique viscosity

solution for ([ZX6) when f € C(D).

3.2. Nonlocal operator and infinitesimal generator. In this section we establish the relation
between viscosity solutions of ([2:6) and solutions of the following:

{Au:f in D,

3.19
(8.19) u=0 inR™\D.

In [9], the authors discussed the relation between operators A and L, for instance, domain or
values of the operators; see [9] for the application to heat equations.

At the beginning of this section we apply the strategies in [9] to our settings and obtain some
related properties. After then, we obtain comparison principle for the viscosity solution. Com-
bining these results, we finally obtain the existence and uniqueness for Dirichlet problems (2.6l)
and [BI9). Moreover, these two solutions coincide under some conditions. Also, in Section
we obtain Harnack inequality, which is one of the key ingredients for the standard argument of
Krylov in [26]. In Section 3] we will make use of Harnack inequality and the comparison principle
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to prove Theorem

Let D C R" be a bounded C*! open set and let
D=DD):={ue Cy(D): Auec C(D)}
be the domain of operator A. Recall that by [9, Lemma 2.6] we have
(3.20) Au(z) = Lu(x)

for any u € C?(z) N Co(R"), x € D. We first show that u = —RP f satisfies (3.19) when f is
continuous.

Lemma 3.6. Let f € C(D) and define u = —RP f. Then, u is a solution for (3.19).
Proof. First we claim that for any u € Cy(D) and = € D,

 BPu(z) — u()
(3.21) Au(x) = ltlfg _

To show ([B2ZI]), we follow the proof in [9) Theorem 2.3]. Note that our domain of operator is
slightly different from it in [9, (2.8)].
We first observe that for any u € D and z € D,

PPu(x) — Pou(z) = E*u(X ) — E%u(Xy)
= E" (X)) 7o) — B (X)) 17, >0) — B [u(Xe)1(r, <]
= —E"u(X)1 {7, <y
Indeed, the first and the third term in the second line cancel. Hence

(3.22) PtDU(l’)t —u(x) Ptu(ﬂi)t— u(x) _ Ev [U(Xtil{‘rD<t}] _ E*[(w(Xrp) — :(Xt))l{md}]'

Meanwhile, by the strong Markov property we obtain

E7 [(u(Xrp) = u(Xe)Lrp<ny] | < E” [[EX™ [u(Xo) = w(Xs—rp)]| Lirp<ty] -

Since u € Cy(D) is uniformly continuous, with stochastic continuity of Lévy process we have that
for any € > 0 there is § = §(¢) > 0 such that

IE*[u(X,)] —u(z)] <e
for any z € D and 0 < s < §. Combining above two equations we conclude
|E"[(w(Xrp) — w(Xe))Lirp<iy]| < ePP(rp < 1)

for 0 < ¢t < §. Since D is open, for any € D we have a constant r; > 0 such that B(z,r,) C D.
Using [I0, Theroem 5.1 and Proposition 2.27(d)] there exists some M > 0 such that

PI(TD < t) - PI(TB(m)Tm) < t)
t

; < <M forall ¢>0.

Combining above inequalities we obtain that

D _ D _ _
lim PPu(x) — u(x) ~ Au(z)| = tim PPu(z) —u(z)  Pu(z) —u()
10 10 t t
P~ t
< elim o <] <eM.
tl0 t

Since € > 0 is arbitrarily, this concludes the claim.
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Now we prove the lemma. Note that v = 0 in D¢ immediately follows from the definition of
RP. Then, by B2I) and B2]) we have that for x € D,

_ 1 PD(RDf)(w)—RDf(w)
Au(z) = A(=RP f)(z) = —lim

= —lm P@ ([; PPf() /" PP f(x) }
(3.23) =%“(1/1£5U@+/ ﬁﬁ@w)

*'E—OODJ:S D f(z)ds
g (- [ PPrwas s [ pPas)
ds

Jo PO f (=)
=1 = .
i . f(x)
Indeed, the third line follows from the semigroup property PP PP = Pf}rt and that RP f € Cy(D)
which follows from Proposition B2l This finishes the proof. O

The next lemma shows that every solution of ([B19) is a viscosity solution of (2.0)).

Lemma 3.7. Assume that f € C(D) and u € D satisfies Au = [ in D. Then, u is a viscosity
solution of Lu = f.

Proof. For any o € D and test function v € C?(R") with v(zo) = u(zo) and v(y) > u(y) for
y € R"\ {0}, we have
Av(xo) = Lo(xg).

Since v(xo) = u(zo) and PPv(zo) > PPu(z) for every t > 0, we have

Av(zo) = ltlfél PtDv(xoi —v(xo) > ltifg PtDu(xoi —u(xg) — Au(zo).
Thus, we arrive
Lu(zg) > Au(xo),
which concludes that u is a viscosity solution of (26). U

Now we see comparison principle in [I4]. This implies the uniqueness of viscosity solution for
@.9).

Theorem 3.8 (Comparison principle). Let D be a bounded open set in R™. Let u and v be bounded
functions satisfying Lu > f and Lv < f in D in viscosity sense for some continuous function f,
and let w <wv in R"\ D. Then u <wv in D.

Proof. We first claim that L satisfies [I4] Assumption 5.1]. More precisely, there exists constant
ro > 1 such that for every r > rg, there exists a constant § = §(r) > 0 satisfying Lw > § in B,,
||
where w(z) = 1A .
Let ro =4, r > 4 and x € B,.. Note that by » > 4 we have

2

S’r‘_3<1 yGBQT.

lyl*
3

Thus, for y € B, we obtain
[z +yl + |z —yl* — 202> _ 2Jy?
3 =

w(z +y) +w(z —y) - 2w(z) =
On the other hand, for y € By we have
2yl
73

w(x +y) +w(r —y) —2w(x) > A (1 —2w(z)) > 0.
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Therefore, since w € C?(R?) we have

Lu(e)i= 5 [ (wle+y) + ule —y) — 20() J) dy
=5 [ g+ ot - ) - 206) J@)dy+ 5 [ (e p) + - y) - 20@) ) dy
1

B,
> —3/ ly[>J(y)dy =:6(r) >0
T B,

r

for every r > rg = 4 and = € B,.. Since L satisfies [14, Assumption 5.1], we can apply Theorem
5.2 therein, which proves the theorem. 0

The following uniqueness of viscosity solution is immediate.

Corollary 3.9. Let D be a bounded open set in R™ and let f € C(D). Then there is at most one
viscosity solution of (2.6]).

Here is the main result in this section.

Theorem 3.10. Assume that f € C(D). Then, u = —RP f € D is the unique solution of ([B.19).
Also, w is the unique viscosity solution of (2.0)).

Proof. By Lemma [36 we have that u = —RP f € D is solution of (ZI9). Now, Lemma B and
Corollary 3.9 conclude the proof. O

Proof of Theorem [2.7] By Theorem B0, the unique viscosity solution for (2.6l is given by
u = —RPf. Therefore, Proposition yields the Holder regularity of viscosity solution with
respect to C'V'-norm. By (238]), we have V =< ¢ and this concludes the proof. O

4. BOUNDARY REGULARITY

4.1. Barriers. Throughout this section, D C R" is a bounded C'! open set. Without loss of
generality, we assume that diam(D) < 1. Since dp is only C1'! near 9D, we need to consider the
following “regularized version” of dp.

Definition 4.1. We call ¢ : D — (0,00) the regqularized version of dp if » € CY1(D) and it
satisfies

(41)  C7ldp(z) <¥(2) < Cdp(z), V()| <C and |Vi(x) = V()| < Clz —yl
for any x,y € D, where the constant C > 0 depends only on D.

For D = B(0, 1), there exists a regularized version of dp(o,1) which is C? and isotropic. Denote
this function by ¥ and let C' = C'(n) be the constant in ([@I]) for the function ¥. For any open ball
B, := B(xo,r), we will take the regularized version of dp, which is defined by ¥, (z) := ¥(*=*2).
Then, W, satisfies

(4.2) Cldp (x) < V. (x) <Cdp, (z), ||V <C and [VV,(z)| <

=1 Q

for any x,y € B(zg,r). The last estimate follows from the fact that ¥ € C?(B,.).
We first introduce the following three lemmas which will be used to construct a barrier for L.

Lemma 4.2. Assume that D is a bounded C1'' open set and let 1 be a reqularized version of dp.
Then, for every x € R™ and 9 € D we have

(4.3) (@) — ((20) + Vip(wo) - (& — 20))+| < Clz — o]

where C'is the constant in @). In addition, when D = B(0,7) and ¢ = ¥, we have E3I) with
C= % where C' is the constant in (2.
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Proof. Let ¢ be a C! extension of ¢|p satisfying ¢ < 0 in R™\D. Then, since ¢ € C11(R™) we

clearly have

(44)  [9(x) = ¢(x0) = Vi(0) - (& — wo)| = [P(x) — P(wo) = VO - (z — x0)| < Clz — wo|?

in all of z € R". Using |a; —by| < |a —b| and (¥
[9(x) = (o) + Vib(wo) - (z = m0))4| < () — (o) — Vi(o) - (& — 0)| < Clar — wol?

for all z € R*. If D = B(0,7) and ¢ = W, the constant C' in @) become g Thus, the
conclusion of lemma follows. O

)4+ = 1, we have

Next lemma is a collection of inequalities which will be used for this section. Note that we can
easily check these inequalities when ¢(r) = 72® and V(r) = 7® with 0 < o < 1. The inequalities
(#8) and (LX) are in [d, Lemma 3.5]. We provide the proof for the completeness.

Lemma 4.3. There exists a constant C1 = Ci(n,aq, a1, a2) > 0 such that for any 0 <r <1,

r s ClT2
(4:5) /o PO O
> 1 &
(4.6) /r 2@ P o)
(4.7) /OT Vts) ds < % /OT Vis)ds <YV (r)
and
> Y (s) C
(4.8) / 2@ = Vi

Proof. The inequalities (@3] and [7) can be proved using weak scaling conditions (Z3]) and
@3): by [Z3), we have

"o " s op(r) /T s /7202 c1 r?
—ds:/ —~2ds<e¢ — - ds = ,
/o w(s) o v els) o 90(7")(8> 2 — 205 ¢(r)
and by ([29) we have

T T V() A 2
/0 mds:/o Wmd‘sg/o CQ(E) ds = 1—2042m

and
[V [ YOV [V (57
o s V(r) 0 S r a;
Let P(r) := [ (1A le )J (2)dz be the Pruitt function of X. By [3| (6) and Lemma 1] and Z.3),
we have a constant 03 > 0 satisfying
(4.9) P(r) <ecp(r)™ <eV(r)™2, r>0.

Let Pi(r) = [~ 27 s Note that we have

2
(4.10) Pi(r) :w;l/ (1/\ i
B(0,r)c
Thus, (@I0) and 238) imply #4). Also, using integration by parts and ([AI0) we have
V
| = [ veaeroe

= V(’I”)Pl(’l”) — hm V( )731( ) /OO I( )Pl(S)dS

§C5<ﬁ s4oov /vl ):%

S ) hde < WP @) < eaV(r) 72, v >0,
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which concludes (L.3). O

Lemma 4.4. Let U C R" be a CY' open set, which can be unbounded. Then there exists a
constant Cy = Co(n, U, a1, a2, a1, a2) > 0 such that for any x € U and 0 <r <1,

[ V (dy () dy _ G
Un(B(a,r)\B(x,du(x)/2)) du(y) |z —yl"2e(lz —y|) = V(r)

Proof. Fix x € U and denote p := dy(z) < 2r, B, := B(z,r) forr > 0and B, = @ for r < 0. First
note that there is a constant x = x(U) > 0 such that the level set {dy >t} = {z € Uldy(x) > t}
is C11 for any t € (0, k] since U is C1'1. Without loss of generality we can assume x < 7 because
K can be arbitrarily small.

Since Br N{dy > k} = () for every R < k — p, we have

(4.11)

/ V(du(y)) dy

(BB, )n{du=r) QU (y) |z —y["2o(lz —y[)

_ / V(du(y)) dy
(B\Buax(p/2m_p)n{do>r) AU (y) |z =y 2o(jz — yl)

V(du(y)) dy

< )
/(BT\B%/g)m{dUzn} du(y) |z —y"2p(lz —yl)

i 2K .
where the last line follows from p/2V (k — p) > =, Using
2
k<dy(y) <r+rx<2r and ?ﬂ <l|lz—y|<r

for every y € (B,\Bax/3) N {dy > K}, we arrive that for any z € U,

V(dp(y)) dy
(BA\Bayjs)n{du>s}  AD(Y) |z =y 2o(lz —yl)
(4.12) </ V(2r) dy
T ) BB ) (duzRy BT =[P Pe(lz —y))

V(r)y [T s 2 r
<a . ‘/0 (p(S)dS < CQ(K)V(T) < Cz(K)V(T),
where we used (28) and {3 for the second last inequality. Thus, it suffices to estimate the
integrand (@11 in the set (B,\B,/2) N {0 < dy < k}.
We will utilize the following estimates on Hausdorff measure in [RV15], that is, there exists a
constant ¢3(U) > 0 such that that for every z € U and t € (0, %),

(413) Hn_l({dU = t} n (BQ—k+lT\BQ—kT)) < 63(2_k7‘)n_1

which follows from the fact that the level set {dy =t} is C1! for t € (0, k).

Let us denote C,, := B,y-n» for n > 0 and let M € N be the natural number satisfying
2~Myp < p/2 < 27MH1y Using |z — y| > 27%r for every y € Cr_1\Cy and ¢ is increasing for the
third line, we have

V(du(y)) dy
(BB, )n{o<du<rt du(y) |z —y["2o(lz —y|)
T \Pp/2 Uk
M

< / V(dy(y)) dy
o Jenconfo<du<r du(y) |z —y|"2o(lz —yl)
- 1 / V(dU(y))d
- (27Fr)n=20(27%r) Jicp \oconfo<du<ny AU (Y)

| Vidu(y)
< (27Fr)"20(27Fr) Jiop n\confo<du<sy  du(y)

NERINE

Vdy (y)|dy.

>
Il
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Here we used |Vdy(y)| =1 for y € {0 < dy < x} for the last line. (See [31].)
Forany 1 <k < M and y € Cj_1 we have dy(y) < 271y 4+ p < (27FH 4 27 M+2)p < 6. 27Fp
which implies Cj,_; C {dy < 6-27Fr}. Thus, combining this with above inequality we have

/ V(du(y)) dy
(Br\B,/2)N{0<dy<r} du(y) [z —y["2e(lz —y|)
() v ! V{d ()
U
< - = = Vdu (y)|dy.
2 R | e\ L)

Plugging u(y) = dy(y) and g(y) = %(g)) into the following coarea formula

/Dg(y)IVU(y)Idy = /700 </ul(t)g(y)dHn_1(y)> dt,

we obtain
S ! V(dy (y))
U
Vv (y)ldy
Z (2 k ) (2 k )/(Ck 1\Ck)ﬁ{0<du<6v2*"r} ( )
M 62~
V(t) n—1
B l; 2=kp)n=2p(2=kr / /ck N\Co)nfd=t} ¢ T
(4.15) =
1 / K, yn—1V (1)
< es(27 %) T —2dt
— (2=Fr)yn=20p(2-Fr) J, t
M M
9-kp 6270 (g 2 kp
= —Ldt < — V(627"
C3 ; 2 k / n S Cq ; s0(2,]€7ﬁ) ( ’f‘),
where we used (£I3) for the third line and (A7) for the last line. Also, by (2.9) and (2.])),
M —k M k o—k+1,
27 %y 2~
— V(627" < / ———ds
(416) ]; @(2ikr) Zl (2 T Z 2= kp )
< / "<
s<c
= Jo V(s) 5V<r>

where in the last two inequalities we have used that V' is increasing and ({@.7]).

Using (A.14), (@I5), and [@I6]), we conclude
/ V(du(y)) dy o CacsT
(BB, )n{d<rs}y  du(y) |z —y["2o(lz—yl) = V(r)
This and ([@I2]) finish the proof. O

Now we are ready to show that V(¢) acts as a barrier of L on D.

Proposition 4.5. Let L be given by [Z2) and v be a reqularlized version of dp. Then there exists
a constant C3 = Cs5(n, a1, as, a1, a2, D) > 0 such that

(4.17) IL(V($)| < C3 in D.

where V is the renewal function with respect to ®. In addition, if D = B(0,7) is a ball with radius
r, there exists a constant C3 = C3(n, a1, as, a1, a2) > 0 such that

C
(4.18) IL(V(¥))] < Wi)

where 1) = V.. is a regularized version of dp(,) defined in [E2). Note that Cs is independent of
T,

in B(0,7),
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Proof. We prove (£18) only. The proof of [@I7) is similar.
Let zyp € B, := B(0,r) and p := dp, (zo). First we prove [@I]) for the case p > kr > 0 with
k = 1/(8C?). In this case, we have

LV () z0)] = /n <V(1/J(3:o +)) ;L V((zo —y)) V(¢(Io))> %dy'
> _JAO
(419 <, IVl gy
P[Pt VO )| IO,

Kkr/2
where z* is a point on the segment between xg — y and xo + y, so that dp,_(z.) > kr/2 when
Y € By /2. Using 29), (@2), and Lemma 2.5 we have

(r)V(r)

V2V @ (@)l < [V @@V @)]? + [V (@) IIV2e@)] < clT
which yields to estimate the first term of (ZI9) by

RN (4} L) |
/B Ve mm=ogmy® < o= /B/ o)

Kr/2
vir) / S < B
r 0 o(s) V(r)

In the last inequality above, we have used ([@3), ([2.3]), and 238). For the second term, using
Y(z) < Cdp, (x) < Cr for any x € B,., we have

‘ V(h(zo +y)) + V(@(zo —y))
2

- V(?/)({E()))‘ <2V(Cr) < eqV(r).

Therefore,
Vv Vv - J(1 <1
[ |Heer e viveo=uy IO < v | oo o)
s 2 lyl™e(lyl) wr/2 SP(5) V(r)
In the last inequality we have used ([@6l), (23]), and ([28)). Therefore, [@I8) for the case p > kr

holds with C5 = ¢3 + c.
Now it suffices to consider the case p < kr. Denote

() := (Y(z0) + Vip(0) - ( — 70)) 4,

— V(¥(zo0))

which satisfies
L(V({)=0 on {l>0}
by [2II). Note that t(x¢) = l(zo) and V(o) = Vi(xo). Moreover, by (@3]) we have

(1.20) 9(@) ~ 1) < Sl - 2ol

For any 0 < a < b < C, there exists a. € [a,b] satisfying |V (a) — V(b)| = |a — b|V’(a.). Using
Lemma in the first inequality we have

[V(a) =V ()| =]a—bV'(a) < c7la — b|@ < cgla — b

40}

Here we used ([2.9) with ¢ = C for the second inequality. Therefore, for any a,b € (0, C| we have

\%4 V(b
[V (a) = V(b)| < csla— D (% + %) .
Also, one can easily see the following inequality
Via V(b
(a.21) V@ - VO < esla =0l (Y D10y + 57 Lo

for any 0 < a,b < C by using Lemma 2.5
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By ([@20) and (@21)) we have that for any x € B, (o),

4z W) - Vo) < S -l (LoD + 8 )
c 5 (V(dg,(x V(l(x
< 79 x — x| (%1{d37‘(1)>0} + %1{2(1)%}) ;

where we used ¢(x) < Cdp, (x) < C and {(x) = (Y(z0)+ Vi (xo)- (x—20))+ < Cdp, (x0)+Cr < C
for the first inequality and (2X9) for the second.

On the other hand, for any x € B, /3(wo) with p < k7 we have
C C
[(z) = ¥(@)] < |z = zol* < —p* < Cip

and

C 'L <0 ldp, (v) < Y(x).

NI

Thus, using £ = 1/(8C?) we obtain

%1/}(3:) <{l(zx) <2¢(x) forany x € B,/s(wo).

Using £ < dp, () < 2p, we arrive at

P(x),L(x) € [(4C) " p,4Cp).

Therefore, there exists y € ((4C)~1p,4Cp) satisfying

V() = V=) .
et
so using (£20) and [2I2), we have
@) V) - VE@) = ) - V() < Do - o
11 ! C12
< Do g UL < 2y )

for x € B,/3(20). Here we used [2I2) and [Z3) for the second line. Also, for any z € By (xo) we
have

V(l(x)) =V (¢(x0) + (x — 20)VY(20)) < V(Cp+ Clz — xo|) < V(2C|z — 20|) < c13V (|2 — 20])

V((z)) <V(Cr) <V(Cla —wol) < c13V (| = wol),
where we have used (29) and p < r < |z — zp|. Thus we obtain
(4.24) V() = V(O)l(x) < craV (|2 — o)

for x € BS(xg). Therefore, by taking x =y + xo for (@22), (23), and (L24) we have

|y|2 for y € B,)s

V(dg, (xo+ V(l(x
dB}i (ﬂ(vogruy {ds, (zot+y)>0} T (<§aofy'7§)) 1{l(mo+y)>0}> for y € B,\B, />

for y € By,

1V
T
\

V(@) =V(Ol(y +20) <c
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where ¢ = ¢g V ¢12 V ¢14. Hence, recalling that L(V (£))(xo) = 0 and ¢ (z¢) = ¢(x0), we find that
ILV () (o)| = [L(V () = L(V(£)))(o)]

- e J(1)
- / V) = VOl + ) sy
Vo) , I ) J(1)
S /BP/Q W et | VD i
ly|? (V(dp,(v0 +y)) V(l(zo +y)) J(1)
“/BT\BP/QT< dp, (w0 +y) e orn>0 0 Ty ““”””“”) PREE)
=: 1+ 1T+ III.

For I, using (L) we have
14 J(1 Vip) [**
szﬂ/ | |2#dyzcl_5ﬂ/ 5 _us
rop s, lyl™e(yl) rop Joo e(s)
< CﬁV(P) (p/2)? < (B V@”)) < 8
Torop ow(p/2) T V() \rVi(p)) T V(r)
where we used (Z8) and (29) for the last two inequalities. Also, using (@8] we obtain

. TRl
= /Bﬁv('y')wwuyndy of gt Eve

For the estimate of III, we first observe that for any y € {¢ > 0} := H,

((y)
— | = ||[VY(zg)| < C.
Thus, by (Z9) we have
Vity) _ ., V(W) _  Vidn(y)
(y) dr (y) dr (y)
Therefore, using Lemma [£4] for B, and the half plane H := {¢ > 0} for each line, we conclude
7 J B, (Bi(20)\B,2(0)) dp,.(y) |y —zol"2¢(ly — xo|)
V¥ J(1
o W I
" JHA(Bi@o)\Bya(ao) L) |2 —y]"2@(|z0 — yl)

cos 7 +Cﬁ/ V(dr(y)) 1 <
T or V) JEn(Biwon\Bys(ae) (W)l —yl"Pe(lzo —yl) T T V()

Combining estimates of I,IT and III we arrive

|[L(V())(z0)] <T+TIT+TII < (15 + 20 + ¢25) Vi

and ([LI8) follows. O

4.2. Subsolution and Harnack inequality. In this section we construct a subsolution from the
barrier we have obtained in Proposition Recall that we defined the domain of infinitesimal
generator A by

D=D(D)={ueCyD): Auc C(D)}
in Section B2l Tt is uncertain whether V(¢) € D(D) since A(V(¢)) is not continuous in general.
To make our barrier included in the domain of operator, we construct a new domain of generator
which contains V(). For given C! bounded open set D and open subset U in D, define

F=F(D,U):={uec Cy(D):Auec L=U)}.

dy
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for the usage of proof. Denote F(D) = F(D, D). Clearly F(D,Us) C F(D,U;) for any Uy C Us.
We first prove that V(y) € F(D).

Lemma 4.6. Let ¢ be the regqularized version of dp. Then, A(V () = L(V (¢)) in D. Moreover,
V(y) e F(D).

Proof. Let u € Cy(D) be a twice-differentiable function in D. Assume that V?u is bounded in
some U CC D. We first claim that
(4.25) Lu(x) = Au(x) forany ze€U.

Indeed, fix # € U and let 7, > 0 be a constant satisfying B = B(x,r;) C U. Without loss of
generality we can assume 7, < 1. Note that there exists a constant ¢; > 0 such that 2Ju| +
r2||V2u|| < ¢; in U. Then we have

| S [ (M) ) s,
0 Jgn 2 t :

Since there is a constant ¢o > 0 such that @ < ¢oJ(r) for any ¢ > 0 and r > 0, we have

/.

u+y)+tul@—y) u(x)’ p(t, Iyl)dy

2 t
uetg) tule—y) | plty) uwty) tule—y) o pltlu)
S/B 5 —u(a:)‘ Tdy—l—/c 5 —u(x) fdy
2 2
<o [ WP gy o [ PGy <oy [0 A neartuay < oo

for any ¢t > 0 so that we can apply dominate convergence theorem in the right-handed side of
([@26). Thus, using hi%l @ = J(r) we obtain
t

. u(z +y) +ulr —y) (t. ly))
A= L < 2 - u(x)) — W
= /n (u(ar +9) -;- u(lz—y) u(ac)) J(ly))dy = Lu(z).

This concludes the claim. Now, by Lemma [Z5] we have that V (¢)) € Cy(D) is twice-differentiable
and V2V (¢) is locally bounded on D. Therefore, we arrive L(V (¢)) = A(V ()) in D. It imme-
diately follows from (LIT) that V() € F(D). O

Now we are ready to construct a subsolution with respect to the generator A.

Lemma 4.7 (subsolution). There exist a constant Cy = Cy(n, a1, a2, a1,a2) > 0 independent of
r and a radial function w = w, € F(Ba,) satisfying

Aw >0 in By, \ By,
w < V(r) in By,

w > CyV(4r — |z|) in By, \ By,
w=0 in R™\ By,

where B, := B(0,r).

Proof. Let U = Uy, be the regularized version of dp,, in [@2]) and choose a function n € C°(By)
satisfying ||n|lc(p,y = 1 and = 1 on Byy. Define n.(z) := V(r)n(z/r) € C°(B,). Then, we
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have

ne(x +y) +n-(z —y)
2

A ()] = | Lo (2)] < / — e@)| J(lyDdy

n

< (IVnell Lo,y + H77r||L°<>(BT))/]R (lyP> A1) J(Jyl)dy < oo

for any x € R™, which implies 7, € F(By,). Also, for x € By, \B,,

/m(x+y)+m(x—y) J(1) y

n 2 ly["e(|yl)

I V) a2V o
= [ el ® 2 /BH,T/Q) wme(u) ™ = ©Or/2ye(or/2) = V()

Here we used (Z8) and (2.9) for the last inequality.
Define a function w, by

Anp(z) = Ly, (z) =

~ C2
r:_V\IJ i)
U= () +n

where Cj3 is the constant in Proposition We have @, € F(By,) by Lemma Also, for
x € By, \B,, using Proposition 5] and Lemma [.0] again, we have

~ C2 Co

and

_ c

Wy (x) = éV(\IJ(:r)) >3V (dp(x)) = csV(4r — |z|).
For x € B,,

Wy (z) < 2—2‘/(407“) LV () < eaV(r)
3

by (#2) and ([Z3). Define w,(z) := éuﬁ(m) Then w, satisfies all assertions in Lemma 7] with
constant Cy = Z—z, which is independent of 7. a

We end this section with the Harnack inequality and the maximum principle of probabilistic
version. For local operators, the Harnack inequality implies Holder regularity of solutions of
differential equations. However for nonlocal operators, as Silvestre mentioned in [33], this is not
true because the nonnegativity of the function wu is required in the whole space R"™. The Harnack
inequality, maximum principle, and the subsolution constructed in Lemma .7 will play a key role
in the proof of Theorem We emphasize that the following theorem is the Harnack inequality
for harmonic function with respect to A, and it does not imply the Harnack inequality for the
viscosity solution with respect to L. See [14] for the statement of Harnack inequality for viscosity
solution.

Theorem 4.8 (Harnack inequality). [36, Theorem 2.2] Let D be a bounded C*' open set. Then,
there exists a constant C' > 0 such that for any ball B(xo,r) C D, and any nonnegative function
u € F(D) satisfying Au =0 a.e. in B(xg,r), we have

sup u<C inf .
B(zo,r/2) B(zo,r/2)

Also, we have the following maximum principle.

Lemma 4.9 (Maximum principle). Let D be a bounded C' open set and U be an open subset of
D. If the function u € F(D,U) satisfies Au=0 a.e. in U and u >0 in U, then u > 0 in R™.
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Proof. Suppose that there exists x € U satisfying u(z) < 0. Since u € Cy(D), the set U_ := {x €
R? : u(z) < 0} is bounded and open set with positive Lebesgue measure. For any ¢ > 0 we have

/U Pou(z) — u(x)de = /U /Rd u(y)p(t, |z — y[)dydz — /U u(z)dz

=/Rdu(y)/U p(t, Iw—yl)dwdy—/ u(y)dy

_/UC u(y)/ ot |3;_y|)d:1:dy+/ u(y) </U

> / uly) (/U p(t,|:c—y|>dw—1>dy.

Since U_ is bounded, diam(U_) =: R < co. Thus, for any y € U_ C B(y, R),

1- p(t,|$—y|)d17 1- ptu r—y dx 0 >
Ju_ : . I5(.5) t(l ) :%(1_@%63(%}3))):1@(|X,;|_R)'

Using heat kernel estimates in [3] Theorem 21], we have p(t,r) < (wfl(t)*" A #(T)) for (t,r) €

(0,1] x Ry. Note that ﬁ(r) <@ L(t)7" for t < ¢(r). Thus, there exists ¢ = e(R) > 0 satisfying

p(t, & —yl)de — 1) dy

PO(|X;| > R) _ 1 S
Xl = F) > —/ p(t,|z])dz > c/ dr > e forall te(0,¢(R).
3 U JR<|z|<2R r T(r)

Combining above estimates we obtain
; de > —5/ u(y)dy for all te (0,0(R)].
Letting t — 0, we collclude 7
0= /7 Au(x)dx = }1_% . Mdm > —5/7 u(y)dy > 0,

which is contradiction. Therefore, © > 0 in R™. O

4.3. Proof of Theorem In this section we will prove Theorem More precisely, we
prove the Holder regularity for the function u/V(dp) up to the boundary of D. We will control
the oscillation of this function using the Harnack inequality, the maximum principle and the
subsolution constructed in Lemma 7]

Let us adopt notations in [28, Definition 3.3]. Let x > 0 be a fixed small constant and let
k' =1/2+ 2k. Given xg € 9D and r > 0, define

D, = D,(z9) = B(zg,7) N D
and
D, = D% (z0) = B(zo,k'r) N{x € D: —x-v(x0) > 257},

where v(z¢) is the unit outward normal at xg. Since D is a bounded C'*! open set, there exists
po > 0 such that for each xg € 9D and r < pg, there exists an orthonormal system C'S,, with its
origin at 2o and a C!-function ¥ : R"~! — R satisfying ¥(0) = 0, Vs, ¥(0) = 0, [|¥]lcrr < &,
and

{y=(F:yn) n CSy = |y| < 2r,W(yg) < yn <2r} C D.
Then we have
(4.27) B(y, kr) C Dy (z) for all y € DY, (z),
and we can take a C*! subdomain D}'! satisfying D,, C D} C Dy, and
(4.28) dist(y, 9D;") = dp(y)
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for all y € D,.. Since D, is not C''! in general, we will use this subdomain instead of D,.
Since D is bounded and C'''! again, we can assume that for each o € D and r < py,

(4.29) B(y* — 4rrv(y*),4kr) C Dy(z0) and B(y* — 4krv(y*), kr) C DY, (x0)

for all y € D, /5(x0), where y* € 9D is the unique boundary point satisfying |y — y*| = dp(y).
The following oscillation lemma is the key lemma to prove Theorem

Lemma 4.10 (Oscillation lemma). Assume f € C(D) and let u € D be the viscosity solution of
@5). Then there exist constants v € (0,1) and C1 > 0, depending only on n, a1, a2, a1, s and D,
such that

u U

up ——— — inf

4.30 S
( ) D, (z0) V(dp) D.(z0) V(dp)

< CLV(r) ' fllzee ()

for any o € OD and r > 0.

To prove the oscillation lemma, we need some preparation. Note that in the following two
lemmas we aim to verify inequalities for every function u € F, since we want to utilize the
subsolution constructed in Lemma[L7 The first one is a generalized version of Harnack inequality.

Lemma 4.11 (Harnack inequality). There exists a constant Co = Co(n, a1, as,a1,a0,D) > 0
such that for any v < po,z0 € OD and nonnegative function u € F(D, D}Y),

u u
4.31 < inf ——— A so( Pl .
(4.31) STy S C <D+1n(zo) Vo) + [ Aull oo pp 1)V(T)>

K/

Proof. We first prove that if a nonnegative function v satisfies Av = 0 a.e. in D}1, then

v v
(4.32) sup <c¢ inf
D}, (o) V(dp) D}, (o) V(dp)

for a constant ¢ > 0 which is independent of r and v. Indeed, for each y € D::/T, we have
B(y,kr) C D' by @Z1) hence Av = 0 a.e. in B(y,xr). We may cover D/, by finitely many
balls B(y;, kr/2). Here the number of balls is independent of r. By the Theorem 1.8 we have for

each 1,

sup v < ¢ inf o.
B(yi,kr/2) B(yi,kr/2)

If « € B(y;, kr/2), we have kr/2 < dp(z) <r/2+ 5kr/2. Thus, using (29) we obtain

( v . v

su < su —— <e¢ inf _
B(yi,fg/z) V(dp) — B(yi,,g/z) V(kr/2) = 7 Blyiwr/2) V(r/2 + 5rr/2)

<ec inf Y
=2 B(yi,kxr/2) V(dD) '

Now ([#32]) follows from the standard covering argument, possibly with a larger constant.
We next prove (£31]). Let us write u = uq 4 ug, where uy := u+RPY' Ay and Uy 1= —RDPY Au.
We claim that u; > 0 in R" and Au; = 0 a.e. in D11

Following the calculations of ([B:2I]) we obtain that for any open subset U C D, = € U and
u e F(D,U),

. Pu(r) —u(z) PtUu(:zr) —u(x)
(4.33) Au(x) = ltll%l — = 1t1§)1 —

Let us emphasize that we only have used u € Cy(D) in (BZI]) so we can repeat the same argument
for u € F(D,U).
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Let g € L>®(U). Deducing RV g € Cy(U) from Proposition 3.2 and (B.1J), we obtain the following
counterpart of [B:23): For any x € U,

ARUg(;v):A</OOOPSUg(-)ds>( )—%t (Pt (/0 PYg( ) / PYg( )

L
(134 it ([T Pl — [ Pgtwas)
tio t \ Jo 0
t t
~ m Jo PZg(x)ds ~ bm Jo Psg(:zc)ds-
t10 t t10 t

Here we used ([@33) for the first line. Let

1
Ug:={ze€U: hm—/ lg(x) — g(y)|dy = 0}
rl0 r" B(z,r)

Then, we have |U \ U,| = 0 since g € L>(U) C L*(U). For z € U,, we have
Pate) ~ o) =| [ pttle = sDlat) = s(eNds| < [ pielo=sblot) - o0l

Let € > 0. Using p(t,r) =< (<p L) A - (T)> for t € (0,1] x Ry in [3l Theorem 21] again, there
exist constants c3(g), c4(e) > 0 such that for any t € (0,1] and r > 0,
plt,r) < cap™H ()"
and
P*(|X;| > c3p M (t)) < e.
Indeed, using (0] and ([2.5) we have

- © dr cst 9
P*(| X¢| > csp 1(t)) = / p(t,|z])dz < C4t/ < < cgea °M
! |2|>cap=1(t) csp—1(t) TP(T) T pleap™(t)) ’
Thus, we obtain
|Prg(x) — g(z)] S/ p(t, [z —yl)lg(y) —g(l‘)ldy+/ p(t, [z —yl)lg(y) — g(x)|dy
B(z,c30~1(t)) B(z,c3p~1(t))°
< cw’l(t)’”/ l9(y) —g(:v)ldy+2||g||oo/ p(t, |z —y|)dy
B(z,c30-1(t)) B(z,c3p~1(1))

< e () / 19(9) — 9(@)|dy + 29l oce.
B(z,c3071(t))

Since € > 0 is arbitrary and x € U, we conclude
tim | Pog (@) — g()] = 0.

Combining this with [L34)) we arrive that for any open subset U C D and g € L*>°(D),
(4.35) ARYg=—g ae. in U.

Since u € F(D,U), we have Au € L>®(U). Thus, taking U = D! and g = Au in {@35) we
conclude
1,1
Auy = Au+ ARP" Au=0 a.e. in D}
Also, u; > 0 follows from applying Lemma 3 with above equation and u; = u > 0 in R™\ D}
Applying (£32) to uy, we get

Meanwhile, using [I28)) and Lemma B3] we have
()] < el iy V (diam(DE )V (dist o, 0DF1) < coll Aully sy V(W (A (2)
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for all x € DY, Therefore, combining above two inequalities we conclude that

s Y < “ f 42
up ——— < sup ———— 1n —
ST S 5P Ty T < T 5 Vi
< c5 inf + (c5 + 1) sup [u2| <Oy | inf —2— + [ Aull oo pry V(1) ] -
Dﬁ, V(dD) D+ V(d ) D:’IT V(dD) T

O
The next lemma gives the link between D:,T and D,./o. Here we are going to use the subsolution
w in Lemma 7]

Lemma 4.12. Letr < pg,zo € OD. Ifu € F(D, D}Y) is nonnegative, then there exists a constant
C3 = Cs(n,a1,as, a1, a9, D) >0 such that

u

u
inf < (! inf —— A o mL1V .
i) Vidp) = 3<D$?<mo> Vidp) 1Al ory (”)

Proof. First assume that Au is nonnegative. As in the proof of Lemma LTIl we write u = w1 +uo,
1,1 1,1 . . .
where u; = u + RP" Au and uy = —RP~" Au. Then u; is a nonnegative solution for

{Aul =0 ae. in DM

up =u inR"\ DML
Let

U
= > 0.
pt, V(dp) ~

For y € DT/Q, we have either y € D, or dp(y) < 4kr by [@EZ29).
If y € DI, , then clearly

KT

u1(y)
(4.36) m< —2Y
V(dp(y))
If dp(y) < 47, let y* be the closest point to y on DL and let § = y* — 4krv(y*). By ([@29),
we have Buy, () C D, and B, () C D}, .
Now consider w € F(Buyr (7)) C ]-"(D B4,.W( N\Byr (7)) satisfying

Aw Z 0 in B4m« (Zj) \ Bnr(g)a
w S V(FLT) iIl Bnr(g)u

w > 1 V(dkr — v —g])  in Baer(9) \ Ber(9),
w=0 in R™ \ By (7),

which can be obtained by translating the subsolution in Lemma B7 Since Au; = 0 a.e. in
By (§), we have

Auy =0 < A(mw) a.e. in By (9) \ Brr(9),
up >mV(dp) > mw in B, (7),
u; > 0 = mw in R™ \ Byyr (7).

Now by the maximum principle in Lemma L9l with the function u; —mw and U = B (§)\ Ber (7).
we obtain w; > mw in R™. In particular, for y € Bk, (9) \ Bur(9),

ui(y) = comV(dwr — |y — g|) = comV (dp(y)).
Therefore, we obtain

£ g
n C 1n .
V(dD) 2D V(dp)
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On the other hand, us satisfies
luz(2)] < esl|Aull oo (pr1yV(r)V (dp ()

for all z € D}, which gives the desired result. |
We prove the oscillation lemma (£30) by using Lemmas FLTT] and T2

Proof of Lemma As a consequence of Remark [3.4] by dividing || f|| = py on both sides of
(28) if necessary, we may assume || f||py < 1 and ||lullc(py = |R” fllc(p) < 1 without loss
of generality. Fix xg € 9D. We will prove that there exist constants ca > 0, p1 € (0, pp/16], and
v € (0,1) and monotone sequences (my)g>0 and (My)g>o such that My — my = V(rp+1/2)7,

—V(p1/16) < mp < mypyp1 < My < My <V (p1/16),

and
U

Y < MyinD, =D,
CQV(dD) > M 1 k k(xo)

my <

for all k > 0, where 7, = p18~*. If we have such constants and sequences, then for any 0 < r < p;
we have k£ >0 satisfying re (T;H_l,T‘k] and
U

su 1nf <su 1nf < co(My —my) = eV (r 2)7 < eV (r)".
p (dD) (dD) p (dD) (dD) = 2( k k) 2 ( k?-‘rl/ ) =~ €2 ( )
Also, for any r > p; we have
sup 1nf <eg <eVipr)? <edV(r)?

D, V(dD) (dD)

by Lemmal[33l Above two inequalities conclude the lemma so it suffices to construct such constants
and sequences.

Let us use the induction on k. The case k = 0 follows from Lemma[B.3] provided we take co large
enough. The constants p; and  will be chosen later. Assume that we have sequences up to my
and Mj. Let ¢ be the regularized version of dp. We may assume that ) = dp in {dp(z) < p1}.
Define

u

1

in R™. Note that uy € F(D) since Au = f by the consequence of Theorem BI0 Moreover,
for © € D1 1/4 we have u; € C?(x) since we know that u, = 0 in B(zo, %) by the induction

hypothesis. Thus, we have Au, (x) = Lu, (x) by (3:20), which implies that Au, is well-defined in

Di 1/4, and so is Au;". We will apply Lemmas ELTT] and EEI2 for the function u; and r = 1y, /4 to

find my41 and My41. By (EI7) and Lemma G we have
1
|Auf | < [Aug| + |Au;, | < ‘—Au - mkAV(w)‘ + |Auy, |
C2
(4.37) .
< (S VO ON) + A < o + ]

in D. Thus, we need to estimate |Au, | in Di;1/4 for the usage of Lemmas [A.11] and 12
Let z € DT /1

uy, € C?*(z). Thus, we compute the value Au; (z) using the operator L as follows:

ogAu;(x)=Lu;(w):%/Rn (“k(””h)*“k(x_h))%dh

= U (T 7(](1)
‘/megrk B e

By the induction hypothesis, we have u,, = 0 in B(xo,7), which implies that

(4.38)
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For any y € B, \ By,, there is 0 < j < k such that y € B,, \ B
dp =1 in B,;, we have
uk(y) = 3 "uly) — meV(@(y)) > (m; —mi)V (¥ (y))
= (mj — Mj+ My —mp)V(dp(y)) = —(V(rj+1/2)" = V(res1/2))V (r;).

Since ¢; 'u > m;V (1) and

T4t

It follows from 7,11 < |y — xo| < 1; < 8|y — x| < 1 that
ug (y) < ea (V(Iy = w0l/2)" = V(ri/16)7) V(8ly — o)
< e (V(ly = 20l/2)7 = V(r/16)7) V(ly — wol/2).

Note that ([@39) possibly with a larger constant also holds for y € R™ \ B, because [Juy|c®n) <
creyt +V(1/16)V(C) for any k and

(V(ly = 20l /2)7 = V(rr/16)7) V(ly — w0l/2) = (V(p1/2)” = V(p1/16)") V(p1/2) > 0
for any y € R™\ B,,. Thus, by [@38) and [@39), we have

(4.39)

dh.

B T _V(r o V(z+y—w0]/2)
|Aug, (7)] < cg /z+y¢3% (V(Jx +h —z0//2)" = V(ri/16)7) R o(h)

If x4y ¢ By, then |h| > |[x+h—xo|—|z—x0| > 11 —71/2 = 1 /2 and |x+h—xo| < 11 /2+|h] < 2|h].
Thus, recalling that P;(r) = [7° %2 we obtain

r sp(s)
. O 4 (1),
A co [ WVONT = Vi 16 s d
<o / LWV V1) V)P

= er{( - V6" = V0167 VP

+ /°° (L4+7)V(s)Y =V (re/16)) V'(s)Py (s)ds) =7 (I4+11).

k/2
By (EI0) we have
. _V(s)Y = V(rg/16)”
v _ gl =
Tim (V(s)? = V(r/16)) V(s)Pi(5) < es lim V) =0,
hence

V(T;g/2)7 — V(T‘k/16)V '

TV

Also, using ([I0) again we have

IT < cg /00 (L4+7V(s)Y = V(rg/16)7) V(s) ds

v/2 V(s)?
. Gf—zvm@ 2 — V(s /16)7> m

Therefore, combining above two inequalities and using ([2.9]) we get

[ Au (2)] < o (%V(Tkﬂy - 2V(rk/16)7) m

e Vri2/2)
STV (e /4)
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and hence

V(rks2/2)7
+
P (e B

Note that e, — 0 as v — 0.
Now we apply Lemma EIT] and @12 for u) € F(D, Di;1/4). Since uy = u) and dp = in D,
we have

U m
. inf ([ —t 4 2)7
Diup 4 <02V(¢) mk) - Dg’rik/zx <C2V(1/’) mk> TVre/4) +eaVirea/2)

Repeating this procedure with the function u, = MV (dp) — cglu instead of uy = cglu -
miV(dp), we also have

D*[ Th41 C2V(¢)

wlre /4

sup (Mk - #@p)) <ecu ( inf <Mk - L) FV(re/4) + E,YV(T;HQ/Z)'Y) :

Adding up these two inequalities, we obtain

U U
M, —mp <c inf ———— sup ——— + M —mp +V(ry/4) +e,V(r 2)7 ).
k k 15 <Drk+1 czV(w) Drkljl C2V(¢) k k (k/) v (k+2/ ))

Thus, recalling that My — my = V(rg+1/2)7, we get

U . u c15 — 1
sup ———— — inf < Vir 2)7 +V(r,/4) + e, V(r 2)7
DTinl CQV(1/)) Drk+1 sz(q/}) 15 ( k+1/ ) ( k/ ) Y ( k+2/ )

1
< <Cli s+ V(o) + 57> V(rigz/2)7.
15

Now we choose v and p; small enough so that

015—1

C15 clg + C'1Y7V(Pl)l_7 +ey <1,

and it yields that

sup < V(rit2/2)".

vy
Dryiy c2V (1) Dry i c2V (1)
Therefore, we are able to choose my41 and Myq. ]

Finally, we prove the Theorem using the Lemma [£.10

Proof of Theorem By Remark [3.4] by dividing || f||z(p) on both sides of ([2.8]) if necessary,
we may assume that || f||zpy < 1 and |[ulc(py < c1. We first show that the following holds for
any x € D:

C

u
< -
[V(dD)]cB(B(m,r/z)) ~rfV(r)

for each 0 < 8 < «ay, where r = dp(z). We are going to use the inequality

(4.40) [%]Cﬁ < lulle [@LB + [ulos V(ilp)

C
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From (@B.I6) we know that [u]lov(p(ar/2)) < c2. Thus, we have [u]cs(p(s,r/2)) < c3 for each
0 < B <aj. Since dp(y) > r/2 for y € B(a: r/2), we have

Ca
<
C(B(z,r/2)) V(r)
and
1 V(d 1 _V(d -1
[ ] < swp [V(dp(y)) (dp(=))""|
V(dp)] cor(Bar2) ~ wreBr/2) ly — 2|
V'(d*) |d —d
< V) o) —doC)
y,z€B(x,r/2) V(d ) |y—Z|
< s ! [d]
=65 up " " CO-Y(B(z,r/2
y,2€B(x,r/2) d V(d ) (Bler/2)
Co
—rVi(r)’
where d* is a value in [dp(y),dp(z)], so d* > r/2. Thus, by interpolation, we obtain
7z o I o ;
<c7 < —
V(dp) CP(B(z,r/2)) V(dp) C(B(z,r/2)) V(dp) CO1(B(x,r/2)) rV(r)
and it follows from (£40) that
U c1C8 C3C4 C9
4.41 —_ .
) ) T S
Next, let z,y € D and let us show that
u(z) u(y)

<Clz —y|*

V(dp())  V(dp(y))
for some o > 0. Without loss of generality, we may assume that r := dp(x) > dp(y). Fix any
0<pfB<ajandlet p>1+ag/f. If [x —y| < rP/2, then we have |z —y| <r/2 and y € B(x,r/2)
since r < 1. Thus, by ([@4I]) we obtain
u@ ) | eyl la—gl
- < ¢ S Q0 Ty
Vidp(z))  V(dp(y)) PV (r) V(lz —yl'/P)
On the other hand, if [z —y| > rP /2, let xg, yo € OD be boundary points satisfying dp(x) = |x —x0|
and dp(y) = |y — yo|. Then by the oscillation lemma [T0l we have

<ecplr— y|ﬂ—(6+a2)/p_

u(2) u(zo)
WD) T @~ V(o) (o)

: uly) __ ulyo) . ¥
<V (o), |l = S < v ant)

and

u(zo) _ u(yo)
V(dp)(xo))  V(dp)(yo)
Using inequalities (£42)) and [43)) we obtain

(4.43) < eV (dp(z) + |z —y| +dp(y))” .

u(z) u(y) ’ /
- 12 (2V(r)? + V(2r + |z —y[)7) < casfo —y|* 7P,
‘ V(dp)(x))  V(dp)(y)
Therefore, taking o = min {5 — (8 + a2)/p, a177/p} gives the result. O

ACKNOWLEDGEMENT

The research of Minhyun Kim and Jaehun Lee is supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIP) : NRF-2016K2A9A2A13003815.
The research of Panki Kim and Kiahm Lee is supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIP) (No. NRF-2015R1A4A1041675).



34 MINHYUN KIM, PANKI KIM, JAEHUN LEE, AND KI-AHM LEE

REFERENCES

[1] J. Bae. Regularity for fully nonlinear equations driven by spatial-inhomogeneous nonlocal operators. Potential
Anal., 43(4):611-624, 2015.

[2] R. F. Bass. Regularity results for stable-like operators. J. Funct. Anal., 257(8):2693-2722, 2009.

[3] K. Bogdan, T. Grzywny, and M. Ryznar. Density and tails of unimodal convolution semigroups. J. Funct. Anal.,
266(6):3543-3571, 2014.

[4] K. Bogdan, T. Grzywny, and M. Ryznar. Barriers, exit time and survival probability for unimodal Lévy pro-
cesses. Probab. Theory Related Fields, 162(1-2):155-198, 2015.

[5] R. F. Bass and M. Kassmann. Harnack inequalities for non-local operators of variable order. Trans. Amer.
Math. Soc., 357(2):837-850, 2005.

[6] R. F. Bass and M. Kassmann. Holder continuity of harmonic functions with respect to operators of variable
order. Comm. Partial Differential Equations, 30(7-9):1249-1259, 2005.

[7] J. Bae and M. Kassmann. Schauder estimates in generalized Holder spaces. arXiv preprint |arXiv:1505.05498,
2015.

[8] R. F. Bass and D. A. Levin. Harnack inequalities for jump processes. Potential Anal., 17(4):375-388, 2002.

[9] B. Baeumer, T. Luks, and M. M. Meerschaert. Space-time fractional Dirichlet problems. arXiv preprint
arXw:1604.06421, 2016.

[10] B. Bottcher, R. L. Schilling, and Jian Wang. Lévy matters. III, volume 2099 of Lecture Notes in Mathematics.
Springer, Cham, 2013. Lévy-type processes: construction, approximation and sample path properties, With a
short biography of Paul Lévy by Jean Jacod, Lévy Matters.

[11] L. A. Caffarelli and X. Cabré. Fully nonlinear elliptic equations, volume 43 of American Mathematical Society
Collogquium Publications. American Mathematical Society, Providence, RI, 1995.

[12] Z.-Q. Chen, P. Kim, and R. Song. Dirichlet heat kernel estimates for rotationally symmetric Lévy processes.
Proc. Lond. Math. Soc. (8), 109(1):90-120, 2014.

[13] L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian. Comm. Partial Dif-
ferential Equations, 32(7-9):1245-1260, 2007.

[14] L. Caffarelli and L. Silvestre. Regularity theory for fully nonlinear integro-differential equations. Comm. Pure
Appl. Math., 62(5):597-638, 2009.

[15] P. Daskalopoulos and K.-A. Lee. Fully degenerate Monge-Ampére equations. J. Differential FEquations,
253(6):1665-1691, 2012.

[16] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet forms and symmetric Markov processes, volume 19 of
De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, extended edition, 2011.

[17] B. Fristedt. Sample functions of stochastic processes with stationary, independent increments. Advances in
probability and related topics, Vol. 3, pages 241-396, 1974.

[18] T. Grzywny, K.-Y. Kim, and P. Kim. Estimates of Dirichlet heat kernel for symmetric Markov processes. arXiv
preprint arXw:1512.02717, 2015.

[19] S. Kim, Y.-C. Kim, and K.-A. Lee. Regularity for fully nonlinear integro-differential operators with regularly
varying kernels. Potential Anal., 44(4):673-705, 2016.

[20] S. Kim and K.-A. Lee. Geometric property of the ground state eigenfunction for Cauchy process. arXiv preprint
arXiw:1105.3283, 2011.

[21] Y.-C. Kim and K.-A. Lee. Regularity results for fully nonlinear integro-differential operators with nonsymmetric
positive kernels. Manuscripta Math., 139(3-4):291-319, 2012.

[22] S. Kim and K.-A. Lee. Asymptotic behavior in degenerate parabolic fully nonlinear equations and its application
to elliptic eigenvalue problems. J. Differential Equations, 254(8):3259-3306, 2013.

[23] Y.-C. Kim and K.-A. Lee. Regularity results for fully nonlinear integro-differential operators with nonsymmetric
positive kernels: subcritical case. Potential Anal., 38(2):433-455, 2013.

[24] T. Kulezycki and M. Ryznar. Gradient estimates of harmonic functions and transition densities for Lévy
processes. Trans. Amer. Math. Soc., 368(1):281-318, 2016.

[25] T. Kulczycki and M. Ryznar. Gradient estimates of Dirichlet heat kernels for unimodal Lévy processes. Math-
ematische Nachrichten, 291(2-3):374-397, 2018.

[26] N. V. Krylov. Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nauk SSSR
Ser. Mat., 47(1):75-108, 1983.

[27] P. Kim, R. Song, and Z. Vondracek. Potential theory of subordinate Brownian motions revisited. In Stochastic
analysis and applications to finance, volume 13 of Interdiscip. Math. Sci., pages 243-290. World Sci. Publ.,
Hackensack, NJ, 2012.

[28] X. Ros-Oton and J. Serra. The Dirichlet problem for the fractional Laplacian: regularity up to the boundary.
J. Math. Pures Appl. (9), 101(3):275-302, 2014.

[29] X. Ros-Oton and J. Serra. Boundary regularity for fully nonlinear integro-differential equations. Duke Math.
J., 165(11):2079-2154, 2016.

[30] X. Ros-Oton and J. Serra. Boundary regularity estimates for nonlocal elliptic equations in C! and C®
domains. Ann. Mat. Pura Appl. (4), 196(5):1637-1668, 2017.

[31] X. Ros-Oton and E. Valdinoci. The Dirichlet problem for nonlocal operators with singular kernels: convex and
nonconvex domains. Adv. Math., 288:732-790, 2016.


http://arxiv.org/abs/1505.05498
http://arxiv.org/abs/1604.06421
http://arxiv.org/abs/1512.02717
http://arxiv.org/abs/1105.3283

BOUNDARY REGULARITY FOR NONLOCAL OPERATORS WITH KERNELS OF VARIABLE ORDERS 35

[32] K.-i. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2013. Translated from the 1990 Japanese original, Revised
edition of the 1999 English translation.

[33] L. Silvestre. Holder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana
Univ. Math. J., 55(3):1155-1174, 2006.

[34] A. V. Skorohod. Random processes with independent increments, volume 47 of Mathematics and its Applica-
tions (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the second Russian
edition by P. V. Malyshev.

[35] R. L. Schilling, R. Song, and Z. Vondracek. Bernstein functions, volume 37 of De Gruyter Studies in Mathe-
matics. Walter de Gruyter & Co., Berlin, second edition, 2012. Theory and applications.

[36] R. Song and Z. Vondrac¢ek. Harnack inequality for some classes of Markov processes. Math. Z., 246(1-2):177—
202, 2004.

DEPARTMENT OF MATHEMATICAL SCIENCES, SEOUL, KOREA
E-mail address: 201421187@snu.ac.kr

DEPARTMENT OF MATHEMATICAL SCIENCES, SEOUL, KOREA
E-mail address: pkim@snu.ac.kr

DEPARTMENT OF MATHEMATICAL SCIENCES, SEOUL, KOREA
E-mail address: hun618@snu.ac.kr

DEPARTMENT OF MATHEMATICAL SCIENCES, SEOUL, KOREA
E-mail address: kiahm@snu.ac.kr



	1. Introduction
	1.1. Probabilistic point of view
	1.2. Analytic point of view
	1.3. History
	1.4. Notation
	1.5. Main theorems

	2. Preliminaries
	2.1. Lévy processes
	2.2. Renewal function

	3. Hölder regularity up to the boundary
	3.1. Potential operator for the killed process of subordinate Brownian motion
	3.2. Nonlocal operator and infinitesimal generator

	4. Boundary regularity
	4.1. Barriers
	4.2. Subsolution and Harnack inequality
	4.3. Proof of Theorem 2.2

	Acknowledgement
	References

