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BOUNDARY REGULARITY FOR NONLOCAL OPERATORS WITH

KERNELS OF VARIABLE ORDERS

MINHYUN KIM, PANKI KIM, JAEHUN LEE, AND KI-AHM LEE

Abstract. We study the boundary regularity of solutions of the Dirichlet problem for the
nonlocal operator with a kernel of variable orders. Since the order of differentiability of the
kernel is not represented by a single number, we consider the generalized Hölder space. We
prove that there exists a unique viscosity solution of Lu = f in D, u = 0 in Rn \D, where D is
a bounded C1,1 open set, and that the solution u satisfies u ∈ CV (D) and u/V (dD) ∈ Cα(D)
with the uniform estimates, where V is the renewal function and dD(x) = dist(x, ∂D).
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1. Introduction

In this paper, we will consider the viscosity solutions for the following Dirichlet (exterior)
problem

(1.1)

{
−φ(−∆)u = f in D,

u = 0 in R
n\D,

where φ is in the class of functions called Bernstein function, which contains φ(λ) = λα with
0 < α < 1, and D is a bounded C1,1 open set in R

n. For example, if φ(λ) = λα, then −φ(−∆) =
−(−∆)α is a fractional Laplacian.

We will focus on the boundary behavior of the viscosity solutions of the Dirichlet problem (1.1)
under assumptions (1.6) and (1.7) below.
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1.1. Probabilistic point of view. The operator −φ(−∆) can be understood as the infinitesimal
generator of subordinate Brownian motions, thus we can use probabilistic tools to study the
behavior of solutions of (1.1).

Let S = (St)t≥0 be a subordinator, that is, an increasing Lévy process in R. It is known that
its Laplace exponent is given by

E[e−λSt ] = exp(−tφ(λ)), λ > 0,

where the function φ : (0,∞) → (0,∞) satisfies lim
λ↓0

φ(λ) = 0 and

(1.2) φ(λ) = bλ+

∫

(0,∞)

(1− e−λx)µ(dx)

with a drift b ≥ 0 and a measure µ on (0,∞) satisfying
∫
(0,∞)

(1 ∧ x)µ(dx) < ∞. It is known

that the function φ of the form (1.2) is a Bernstein function, it means, φ : (0,∞) → (0,∞) is a
C∞-function satisfying

(−1)n+1φ(n)(λ) ≥ 0 for all n ∈ N.

Here φ(n) is the n-th derivative of φ. Also, it is known that every Bernstein function can be
uniquely represented by (1.2).

Subordinate Brownian motion Y = (Yt)t≥0 = (BSt)t≥0 in R
n is a Lévy process obtained

by replacing the time of Brownian motion in R
n by an independent subordinator. Then, the

characteristic exponent of Y is given by z 7→ φ(|z|2). Also, the Lévy measure of the process has a
density y 7→ j(|y|) where j : (0,∞) → (0,∞) is the function given by

(1.3) j(r) = jn(r) =

∫ ∞

0

(4πt)−n/2e−
r2

4t µ(dt),

and we have

(1.4) φ(|z|2) =
∫

Rn\{0}
(1− cos(z · y))j(|y|)dy.

Let A be the infinitesimal generator of Y . Then, by [34, Section 4.1] we have

(1.5) Au(x) = −φ(−∆)u(x) =

∫

Rn\{0}

(
u(x+ y)− u(x)− 1{|y|≤1}y · ∇u(x)

)
j(|y|)dy.

for any u ∈ C2(Rn). See Section 1.4 for the definition of function spaces and Section 2 for the
definition of infinitesimal generator.

Note that when φ(λ) = λα with 0 < α < 1, the corresponding subordinate Brownian motion
in R

n is a rotationally symmetric 2α-stable process. We also have j(|y|) = c(n, α)|y|−n−2α. Thus
the corresponding infinitesimal generator is the fractional Laplacian −(−∆)α.

Now we introduce some conditions which we will impose in this paper. The first condition is
weak scaling condition at the infinity for φ, that is, there exist constants 0 < α1 ≤ α2 < 1 and
b1 ≥ 1 such that

(1.6) b−1
1

(
R

r

)α1

≤ φ(R)

φ(r)
≤ b1

(
R

r

)α2

for all 1 ≤ r ≤ R <∞.

The constant 1 in above condition can be changed into other positive constant without loss of
generality. Note that (1.2) and (1.6) imply that b = 0 and that µ is an infinite measure. The
second one is that the Lévy density of process satisfies

(1.7) j(r + 1) ≤ b2j(r) for all r ≥ 1

for some constant b2 > 0. (1.7) is valid for any complete Bernstein function satisfying (1.6).
See [35, Definition 6.1] and [27, Theorem 13.3.5] for details. Moreover, we also have (1.7) when
(1.6) holds for any 0 < r ≤ R <∞ (See [3, Corollary 22]).

We will see that the renewal function V with respect to one dimensional Lévy process is related
to the boundary behavior of solutions. This function plays an important role throughout this
paper. For the definition of the renewal function, see Section 2.2.
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1.2. Analytic point of view. In analytic point of view, nonlocal operators can be defined via
the Fourier transformation. For example, the fractional Laplacian is defined by

−(−∆)σ/2f(x) := −(|ξ|σf̂)∨(x)

= P.V.

∫

Rn

f(y)− f(x)

|y − x|n+σ dy

=

∫

Rn

f(y)− f(x)−∇f(x) · (y − x)1{|y−x|<k}
|y − x|n+σ dy

for f ∈ C∞
c (Rn) and it is well-known that

lim
σ→2

(2− σ)c(n, σ)(−∆)σ/2f(x) = −∆f(x).

Moreover, Caffarelli and Silvestre [14] provided Harnack inequality and interior C1,α regularity
for fully nonlinear integro-differential equations associated with kernels comparable to that of
fractional Laplacian, which remain uniform as σ → 2. These results were generalized in [23]
and [19] to more general integro-differential equations. These results make the theory of integro-
differential operators and elliptic differential operators become unified.

The fractional Laplacian (−∆)σ/2f can be also thought as the normal derivative of some ex-
tension of f (the Dirichlet to Neumann operator of f). Consider the extension problem

{
−∇(y1−σ∇u) = 0 in R

n × (0,∞),

u(x, 0) = f(x) for x ∈ R
n.

It is known in [13] that the following holds:

(−∆)σ/2f(x) = ∂νu(x, 0) = − lim
y→0

y1−σuy(x, y),

where ∂νu is the outward normal derivative of u on the boundary {y = 0}.
We are interested in the operator of the form

(1.8) Lu(x) = P.V.

∫

Rn\{0}
(u(x+ y)− u(x)) j(|y|) dy

where j : (0,∞) → (0,∞) is an non-increasing function satisfying (1.4), (1.6) and (1.7), or
satisfying (2.3) and (2.4) in Section 2.1. Let us call the function j(|y|) be the kernel of operator
L. Note that Lu(x) is well-defined if u ∈ C2(x) ∩ B(Rn), where C2(x) denotes the family of all
functions which are C2 in some neighborhood of x and B(Rn) denotes the family of all bounded
functions defined on R

n, and this is why we needed the assumption 0 < α1 ≤ α2 < 1. Due to the
symmetry of the kernel j(|y|)dy, the operator can be rewritten without the principal value as

Lu(x) =

∫

Rn\{0}

(
u(x+ y)− u(x)− 1{|y|≤1}y · ∇u(x)

)
j(|y|)dy

=
1

2

∫

Rn\{0}
(u(x+ y) + u(x− y)− 2u(x)) j(|y|) dy

(1.9)

when u ∈ C2(x) ∩ B(Rn). The important point to note here is that Lu = Au for u ∈ C2(Rn)
when j(|y|) in (1.5) and (1.8) are the same. In Section 3.2 we discuss the connection between two
operators in (1.5) and (1.8).

We will consider the viscosity solution of Lu = f in D. A function u : Rn → R which is
upper (resp. lower) semicontinuous on D is said to be a viscosity subsolution (resp. viscosity
supersolution) to Lu = f , and we write Lu ≥ f (resp. Lu ≤ f) in viscosity sense, if for any x ∈ D
and a test function v ∈ C2(x) satisfying v(x) = u(x) and

v(y) > u(y) (resp. < ), y ∈ R
n \ {x} ,

it holds that

Lv(x) ≥ f(x) (resp. ≤).

A function u is said to be a viscosity solution if u is both sub and supersolution.
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We are going to prove the Hölder regularity of viscosity solutions of nonlocal Dirichlet problem
{
Lu = f in D,

u = 0 in R
n \D,(1.10)

up to the boundary using the gradient heat kernel estimates and prove higher boundary regularity
using PDE tools: barriers, comparison principle, and Harnack inequality. It is important that the
boundary condition in (1.10) is given not only on ∂D but on the whole complement of D because
of the nonlocal character of the operator L. See Section 3.2 for details.

The PDE approach can be applied to nonlinear integro-differential equations. There are many
literatures dealing with regularity results with PDE approach. See [1,7,14,21,23,29] and [19]. We
expect that similar results such as Harnack inequality and Hölder regularity hold for nonlinear
equations with our L.

1.3. History. Over the last few decades there have been a lot of studies for the nonlocal operators,
and regularity theory for nonlocal operators is one of the main areas as the one for local operators.
In [8] Bass and Levin proved Hölder regularity of harmonic functions with respect to a class of
pure jump Markov processes in R

n, whose kernels are comparable to those of symmetric stable
processes. Bass and Kassmann generalized this result to kernels with variable order in [5,6]. Bass
also established in [2] the Schauder estimates for stable-like operators in R

n. All these works were
done by probabilistic methods.

On the other hand, in [33] Silvestre provided a purely analytic proof of Hölder estimates for
solutions to integro-differential equation. His assumptions include the case of an operator with
variable orders. In [14] Caffarelli and Silvestre generalized this result to fully nonlinear integro-
differential equations associated with symmetric kernels comparable to fractional Laplacian by
PDE methods. Kim and Lee, in [21] and [23], extended this result to fully nonlinear integro-
differential equations associated with nonsymmetric kernels. A singular regularity theory for
parabolic nonlocal nonlinear equations was also established at [22]. In [1], Bae proved Hölder
regularity for solutions of fully nonlinear integro-differential equations with kernels of variable
orders in [1]. Bae and Kassmann in [7] established Schauder estimates for integro-differential
equation with kernels of variable orders. In [19], they extended the regularity results for the
integro-differential operators of the fractional Laplacian type by Caffarelli and Silvestre [14] to
those for the integro-differential operators associated with symmetric, regularly varying kernels at
zero.

There are relatively fewer results concerning boundary regularity of solutions of Dirichlet prob-
lem. For the boundary regularity for local operators, see [15]. Kim and Lee proved regularity up
to the boundary for the fractional heat flow in [20]. The boundary regularity up to the boundary
is well-known for the fractional Laplacian, and for fully nonlinear integro-differential equations,
when D is a bounded C1,1 domain. See [28,29]. Ros-Oton and Serra also proved the similar result
when D is a bounded C1,α or C1 domain in [30]. However, there is no boundary regularity result
for the operators with kernels having variable orders.

1.4. Notation. In this paper, we denote a ∧ b = min{a, b} and a ∨ b = max{a, b}. For any
nonnegative functions f and g, f(r) ≍ g(r) for r > 0 (resp. 0 < r ≤ r0) means that there is
a constant c ≥ 1 such that c−1f(r) ≤ g(r) ≤ cf(r) for r > 0 (resp. 0 < r ≤ r0). We call
c the comparison constant of f and g. We also denote B(x, r) := {y ∈ R

n : |x − y| < r} for
the open ball and dD(x) := dist(x,Dc) for the distance between x ∈ D and Dc. For n ≥ 1, let
ωn =

∫
Rn 1{|y|≤1}dy be the volume of n-dimensional ball.

We denote by C(D) the Banach space of bounded and continuous functions on D, equipped
with the supremum norm ‖f‖C(D) := supx∈D |f(x)|, and denote by Ck(D), k ≥ 1, the Banach
space of k-times continuously differentiable functions on D, equipped with the norm ‖f‖Ck(D) :=∑

|γ|≤k supx∈D |Dγf(x)|. Also, denote C0(D) := {u ∈ C(D) : u vanishes at the boundary of D}.
For x ∈ R

n, define C1(x) as the collection of functions which are C1 in some neighborhood of x.
Similarly, we define C2(x), C1,1(x), etc. For 0 < α < 1, the Hölder space Cα(Rn) is defined as

Cα(Rn) :=
{
f ∈ C(Rn) | ‖f‖Cα(Rn) <∞

}
,(1.11)
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equipped with the Cα-norm

‖f‖Cα(Rn) := ‖f‖C(Rn) + sup
x,y∈Rn,x 6=y

|f(x)− f(y)|
|x− y|α .

Also, for given open set D ⊂ R
n we define Cα(D) by

Cα(D) :=
{
f ∈ C(D) | ‖f‖Cα(D) <∞

}

with the norm

‖f‖Cα(D) := ‖f‖C(D) + sup
x,y∈D,x 6=y

|f(x) − f(y)|
|x− y|α .

For given function h : (0,∞) → (0,∞), we define Generalized Hölder space Ch(D) for bounded
open set D by

Ch(D) :=
{
f ∈ C(D) | ‖f‖Ch(D) <∞

}
,(1.12)

equipped with the norm

‖f‖Ch(D) := ‖f‖C(D) + sup
x,y∈D,x 6=y

|f(x)− f(y)|
h(|x− y|) .

We define seminorm [ · ]Ch(D) by

[f ]Ch(D) := sup
x,y∈D,x 6=y

|f(x)− f(y)|
h(|x− y|) .

We denote the diameter of D by diam(D). Note that if h1 ≍ h2 in 0 < r ≤ diam(D), ‖ · ‖Ch1(D)

and ‖ · ‖Ch2(D) are equivalent and Ch1(D) = Ch2(D).

We say that D ⊂ R
n (when n ≥ 2) is a C1,1 open set if there exist a localization radius R0 > 0

and a constant Λ > 0 such that for every z ∈ ∂D there exist a C1,1-function ϕ = ϕz : Rn−1 → R

satisfying ϕ(0) = 0, ∇ϕ(0) = (0, . . . , 0), ‖∇ϕ‖∞ ≤ Λ, |∇ϕ(x) − ∇ϕ(w)| ≤ Λ|x − w| and an
orthonormal coordinate system CSz of z = (z1, · · · , zn−1, zn) := (z̃, zn) with origin at z such that
D ∩B(z,R0) = {y = (ỹ, yn) ∈ B(0, R0) in CSz : yn > ϕ(ỹ)}. The pair (R0,Λ) will be called the
C1,1 characteristics of the open set D. Note that a C1,1 open set D with characteristics (R0,Λ)
can be unbounded and disconnected, and the distance between two distinct components of D is at
least R0. By a C1,1 open set in R with a characteristic R0 > 0, we mean an open set that can be
written as the union of disjoint intervals so that the infimum of the lengths of all these intervals
is at least R0 and the infimum of the distances between these intervals is at least R0.

1.5. Main theorems. The main results of this paper are the existence and the uniqueness of the
viscosity solution u of (1.1), the generalized Hölder regularity estimates of such solution u and the
regularity of the quotient uφ(d−2

D ) up to the boundary.
The boundary estimate for nonlinear PDE has been studied for a long time, where the solution

behaves as a linear function. See [11] and references therein. For the degenerate or singular
PDE, [22], it has been proved that the solution behaves in various ways just as that of the
fractional Laplace equation. In [28], Ros-Oton and Serra applied the known techniques for local
operators to fractional Laplacian, which has a nice scaling invariance and a simple barrier of the
form xαn . On the other hand, our φ has only a weak scaling condition at infinity and it has a general
form which allows nontrivial boundary behavior different from xαn. In this paper, we track down u
in every scale to find scaling invariant uniform estimates only with the weak scaling condition at
infinity. We also construct the renewal function, V (·), of the ladder height process defined at (2.7)
to overcome the lack of a simple barrier. In addition, we provide the existence and uniqueness
theory for given Dirichlet problem by utilizing the concept of viscosity solution.

The first result is the Hölder estimates up to the boundary of solutions of the Dirichlet problem
(1.1). Unlike the case of the fractional Laplacian, it is inappropriate to represent Hölder regularity
as a single number since kernel in (1.8) has variable orders. Therefore it is natural to consider a
generalized Hölder space.
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Theorem 1.1 (Hölder estimates up to the boundary). Assume that D is a bounded C1,1 open set
in R

n, and φ is a Bernstein function satisfying (1.6) and (1.7). If f ∈ C(D), then there exists a

unique viscosity solution u of (1.10) and u ∈ Cφ(D). Moreover, we have

‖u‖Cφ(D) ≤ C‖f‖C(D),

where φ(r) := φ(r−2)−1/2, for some constant C > 0 depending only on n,D, and φ.

We will prove Theorem 1.1 using the potential operator, which is the inverse of the operator
L, and the estimates on the transition density and its spatial derivatives, see Section 3 for details.
In whole space R

n, estimates on any order of spatial derivatives of the transition density are
known. Based on these estimates, Bae and Kassmann established Schauder estimates for the
integro-differential operators with kernels of variable orders in [7]. However, in a bounded C1,1

open set, estimates on the first order derivative of the transition density are only known. Higher
order regularities up to the boundary require further research in future.

It is well known that φ̄ is comparable to renewal function V (see Section 2.2.) Thus any solution
u of Dirichlet problem (1.1) is in CV up to the boundary by Theorem 1.1. Hence it is of importance
to study the regularity of u/V (dD) up to the boundary. The following is our second main result.

Theorem 1.2 (Boundary estimates). Assume that D is a bounded C1,1 open set in R
n, and φ

is a Bernstein function satisfying (1.6) and (1.7). If f ∈ C(D) and u is the viscosity solution of
(1.10), then u/V (dD) ∈ Cα(D) and

∥∥∥∥
u

V (dD)

∥∥∥∥
Cα(D)

≤ C‖f‖C(D)

for some constants α > 0 and C > 0 depending only on n,D, and φ.

One of the methods proving the above result follows the standard argument of Krylov in [26]. In
the other words, we are going to control the oscillation of the function uφ(d−2

D )1/2 near the bound-
ary using barriers, comparison principle, and the Harnack inequality. However, the construction
of barriers are highly nontrivial. The difficulty mainly comes from the fact that the operator (1.8)
is not scale-invariant.

In fact, we will prove Theorems 1.1 and 1.2 for a little more general operators including −φ(−∆).
In section 2 we will state the generalization of these theorems, and we collect some known results
about the renewal function V . We will prove Theorem 1.1 in Section 3, and Theorem 1.2 in section
4.

2. Preliminaries

The operators we consider in this paper coincides with infinitesimal generators of isotropic
unimodal Lévy processes for C2(Rn) functions. Thus, in Section 2.1 we first explain the definitions
and properties of Lévy processes, and some related concepts. Then we introduce some additional
conditions that will be needed in this paper. With these concepts, we state Theorems 2.1 and
2.2, which are generalized version of Theorems 1.1 and 1.2. Throughout this paper, we prove
Theorems 2.1 and 2.2.

Next, in Section 2.2 we will define the renewal function V , which will be act as a barrier, and
record some properties of renewal function.

2.1. Lévy processes. Let X = (Xt,P
x, t ≥ 0, x ∈ R

n) be a Lévy process in R
n defined on the

probability space (Ω,F ,Px) with P
x(X0 = x) = 1. For the precise definition of Lévy process,

see [32, Definition 1.5]. Note that P
x(Xt ∈ A) = P

0(Xt + x ∈ A). By Lévy-Khintchine formula,
the characteristic exponent of Lévy process is given by

E
0[eiz·Xt ] = etΦ(z), z ∈ R

n,

where

Φ(z) = −1

2
z · Uz + iγ · z +

∫

Rn

(
eiz·x − 1− iz · x1{|x|≤1}

)
J(dx)
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with an n× n symmetric nonnegative-definite matrix U = (Uij), γ ∈ R
n and a measure J(dx) on

R
n\{0} satisfying ∫

Rn\{0}

(
1 ∧ |x|2

)
J(dx) <∞.

Let (Pt)t≥0 be a transition semigroup for X , it means that

Ptf(x) := E
x[f(Xt)] = E

0[f(x+Xt)].

Now, define the infinitesimal generator A of X by

Au(x) := lim
t↓0

Ptu(x)− u(x)

t

if the limit exists. By [34, Section 4.1], Au is well-defined for u ∈ C2(Rn) and represented by

Au(x) =
1

2

n∑

i,j=1

Uij∂iju(x) +

n∑

i=1

γi∂iu(x) +

∫

Rn\{0}

(
u(x+ y)− u(x)− 1{|y|≤1}y · ∇u(x)

)
J(dy).

Throughout this paper, we will assume that X is an isotropic unimodal pure jump Lévy process
with an infinite Lévy measure, that is, U = 0, γ = 0 and J(dy) is an infinite measure with
an isotropic density J(|y|)dy, where r 7→ J(r) is non-increasing. Under these assumptions, X
possesses transition density p : (0,∞)× R+ → R+ satisfying

Ptf(x) = E
x[f(Xt)] =

∫

Rn

f(y)p(t, |x− y|)dy

and characteristic exponent Φ : R
n → R+ is an isotropic function. From now on, we regard

isotropic functions J and Φ as functions on R+.
For every open subset D ⊂ R

n, let τD := inf{t > 0 : Xt /∈ D} be the first exit time of D by X .
We define subprocess XD = (XD

t )t≥0, which is called the killed process of X upon D, by XD
t = Xt

when t < τD and XD
t = ∂ when t ≤ τD where ∂ is a cemetery point. Since X has the transition

density, XD also possesses the transition density pD(t, x, y) with

pD(t, x, y) = p(t, |x− y|)− E
x[p(t− τD, |XτD − y|); τD < t],

and its transition semigroup (PDt )t≥0 is represented by

PDt f(x) := E
x[f(XD

t )] =

∫

D

f(y)pD(t, x, y) dy.

Now we are ready to introduce main assumptions in this paper. Note that, under settings
above, the infinitesimal generator can be rewritten as

Au(x) =
1

2

∫

Rn\{0}
(u(x+ y) + u(x− y)− 2u(x)) J(|y|)dy(2.1)

for u ∈ C2(Rn). Moreover, it is known in [9, Lemma 2.6] that (2.1) still holds for u ∈ C2(x) ∩
C0(R

n). Recall that the operator L in (1.8) with kernel J(|y|) is represented as

Lu(x) =
1

2

∫

Rn\{0}
(u(x+ y) + u(x− y)− 2u(x))J(|y|)dy(2.2)

for u ∈ C2(x) ∩ B(Rn) since J is symmetric. We record that Au(x) = Lu(x) for any u ∈
C2(x) ∩ C0(R

n) for the next use.
We first assume that the characteristic exponent Φ satisfies weak scaling condition with con-

stants a1 ≥ 1 and 0 < α1 ≤ α2 < 1 so that

(2.3) a−1
1

(
R

r

)2α1

≤ Φ(R)

Φ(r)
≤ a1

(
R

r

)2α2

for all 1 < r ≤ R ≤ ∞.

We also assume that The Lévy measure of the isotropic unimodal pure jump Lévy process X has
the density y → J(|y|) and it satisfies that there exists a constant a2 > 0 such that

(2.4) J(r + 1) ≤ a2J(r) for all r > 0, and r 7→ −J
′(r)

r
is non-increasing.
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Let

ϕ(r) :=
J(1)

J(r)rn
.

By [3], for any c > 0 we have Φ(r−1)−1 ≍ ϕ(r) in 0 < r ≤ c with comparison constant depending
only on c and n. Thus, there exists a constant a3 = a3(n, a1) ≥ 1 such that

(2.5) a−1
3

(
R

r

)2α1

≤ ϕ(R)

ϕ(r)
≤ a3

(
R

r

)2α2

for all 0 < r ≤ R ≤ 1,

where α1 and α2 are constants in (2.3). Note that (2.5) implies that ϕ(r) ≤ cr2α1 for r ≤ 1, so by
definition of ϕ we see that J(|y|)dy is an infinite measure.

We say that D ⊂ R
d (when d ≥ 2) is a C1,1 open set with C1,1 characteristics (R0,Λ) if there

exist a localization radius R0 > 0 and a constant Λ > 0 such that for every z ∈ ∂D there exist a
C1,1-function ϕ = ϕz : R

d−1 → R satisfying ϕ(0) = 0, ∇ϕ(0) = (0, . . . , 0), ‖∇ϕ‖∞ ≤ Λ, |∇ϕ(x)−
∇ϕ(w)| ≤ Λ|x−w| and an orthonormal coordinate system CSz of z = (z1, · · · , zd−1, zd) := (z̃, zd)
with origin at z such that D ∩ B(z,R0) = {y = (ỹ, yd) ∈ B(0, R0) in CSz : yd > ϕ(ỹ)}. The pair
(R0,Λ) will be called the C1,1 characteristics of the open set D. Note that a bounded C1,1 open
set D with characteristics (R0,Λ) can be disconnected, and the distance between two distinct
components of D is at least R0. By a C1,1 open set in R with a characteristic R0 > 0, we mean an
open set that can be written as the union of disjoint intervals so that the infimum of the lengths
of all these intervals is at least R0 and the infimum of the distances between these intervals is at
least R0.

Now, consider the following Dirichlet (exterior) problem on a bounded C1,1 open set D ⊂ R
n:

(2.6)

{
Lu = f in D,

u = 0 in R
n\D,

where L is the operator in (2.2), which coincides with (1.10) when the process X is a subordinate
Brownian motion. We will prove the following theorems, which contain Theorem 1.1 and 1.2 (See
Remark 2.3 below), in Sections 3 and 4, respectively.

Theorem 2.1 (Hölder estimates up to the boundary). Assume that D is a bounded C1,1 open
set in R

n, and X is an isotropic pure jump Lévy process satisfying (2.3) and (2.4). If f ∈ C(D),

then there exists a unique viscosity solution u of (2.6) and u ∈ Cφ(D). Moreover, we have

‖u‖Cφ(D) ≤ C‖f‖C(D),

where φ(r) := ϕ(r)1/2, for some constant C > 0 depending only on n,D, and Φ.

Theorem 2.2 (Boundary estimates). Assume that D is a bounded C1,1 open set in R
n, and X is

an isotropic pure jump Lévy process satisfying (2.3) and (2.4). If f ∈ C(D) and u is the viscosity
solution of (2.6), then u/V (dD) ∈ Cα(D) and

∥∥∥∥
u

V (dD)

∥∥∥∥
Cα(D)

≤ C‖f‖C(D)

for some constants α > 0 and C > 0 depending only on n,D, and Φ.

In the next remark, we explain that assumptions in Theorem 1.1 and Theorem 1.2 imply assump-
tions in Theorem 2.1 and Theorem 2.2.

Remark 2.3. When X is a subordinate Brownian motion satisfying (1.6) and (1.7), we have
(2.3) by using Φ(r) = φ(r2) and (1.6). We also have that by (1.3)

J(r) = Jn(r) =

∫ ∞

0

(4πt)−n/2e−
r2

4t µ(dt).

Thus J(r) is decreasing. Also, differentiating above equation we obtain

−J
′
n(r)

r
= 2πJn+2(r), r > 0,
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so −J(r)
r is decreasing. Therefore, (2.4) holds.

Note that by [3, Corollary 23] and (2.3) we have ϕ(r) ≍ Φ(r−1)−1. Using this and Φ(r) = φ(r2),

both φ’s in Theorem 1.1 and Theorem 2.1 are comparable. Therefore, two Cφ(D) norms are
equivalent.

2.2. Renewal function. Let Z = (Zt)t≥0 be an one-dimensional Lévy process with characteristic
exponent Φ(|z|) and Mt := sup{Zs : 0 ≤ s ≤ t} be the supremum of Z. Let L = (Lt)t≥0 be a local
time of Mt − Zt at 0, which satisfies

Lt =

∫ t

0

1{Mt=Zt}(s)ds.

Note that since t 7→ Lt is non-decreasing and continuous with probability 1, we can define the
right-continuous inverse of L by

L−1(t) := inf{s > 0 : L(s) > t}.
The mapping t 7→ L−1(t) is non-decreasing and right-continuous a.s. The process L−1 = (L−1

t )t≥0

with L−1
t = L−1(t) is called the ascending ladder time process of Z. The ascending ladder height

process H = (Ht)t≥0 is defined as

Ht :=

{
ML−1

t
(= ZL−1

t
) if L−1

t <∞,

∞ otherwise.

(See [17] for details.) Define the renewal function of the ladder height process H with respect to
Φ by

V (x) =

∫ ∞

0

P(Hs ≤ x)ds, x ∈ R.(2.7)

It is known that V (x) = 0 if x ≤ 0, V (∞) = ∞ and V is strictly increasing, differentiable on
[0,∞). So, there exists the inverse function V −1 : [0,∞) → [0,∞).

In the following lemma we collect some basic scaling properties of renewal function in [3] and [4].

Lemma 2.4. For any c > 0, There exist constants Ci(c) = Ci(c, n, a1, α1, α2) > 0 for i = 1, 2, 3
such that

(2.8) C−1
1 ϕ(r) ≤ V (r)2 ≤ C1ϕ(r), 0 < r ≤ c,

(2.9) C−1
2

(
R

r

)α1

≤ V (R)

V (r)
≤ C2

(
R

r

)α2

, 0 < r ≤ R ≤ c and

(2.10) C−1
3

(
T

t

)1/α2

≤ V −1(T )

V −1(t)
≤ C3

(
T

t

)1/α1

, 0 < t ≤ T < V (c).

Proof. By [3, Corollary 3] and [4, Proposition 2.4], we have

(V (r))−2 ≍ Φ(r−1), r > 0.

with comparison constant depending only on n. Combining this with Φ(r−1)−1 ≍ ϕ(r) in 0 < r ≤
c, we conclude (2.8).

By (2.8) and (2.5) we have (2.9). Using [3, Remark 4], we also obtain the weak scaling property
of the inverse function in (2.10). �

The most important property of renewal function in this paper is the following: w(x) := V (xn)
is a solution of the following Dirichlet problem :

(2.11)

{
Lw = 0 in R

n
+,

w = 0 in R
n\Rn+,

where L is of the form (2.2) and R
n
+ := {x = (x1, ..., xn) ∈ R

n | xn > 0} is upper half plane (see [18,
Theorem 3.3]).

The following estimates for derivatives of V are in [18, Proposition 3.1] and [24, Theorem 1.2].
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Lemma 2.5. Assume X is an isotropic pure jump Lévy process satisfying (2.3) and (2.4). Then
r 7→ V (r) is twice-differentiable for any r > 0. Moreover, for any c > 0 there exists a constant
C(c) = C(c, n, a1, α1, α2) > 0 such that

(2.12) |V ′′(r)| ≤ C
V ′(r)

r ∧ c , V ′(r) ≤ C
V (r)

r ∧ c .

We are going to utilize the space CV (D) in Section 3 and adopt V (dD) as a barrier in Section 4.

3. Hölder regularity up to the boundary

In this section, we give the proof of Theorem 2.1. First we introduce the following Dirichlet
heat kernel estimates from [12, Corollary 1.6] and [25, Thoerem 1.1 and 1.2]. We reformulate here
for the usage of our proofs.

Theorem 3.1. Let X be an isotropic unimodal Lévy process satisfying (2.3) and (2.4). Let
D ⊂ R

n be a bounded C1,1 open set satisfying diam(D) ≤ 1 and pD(t, x, y) be the Dirichlet heat
kernel for X on D. Then x 7→ pD(t, x, y) is differentiable for any y ∈ D, t > 0, and there exist
constants Ci = Ci(n,D, a1, a2, α1, α2,Φ(1)) > 0, i = 1, . . . , 4 satisfying the following estimates:

(a) For any (t, x, y) ∈ (0, 1]×D ×D,

pD(t, x, y) ≤ C1

(
1 ∧ V (dD(x))

t1/2

)(
1 ∧ V (dD(y))

t1/2

)
p (t, |x− y|/4)

and

|∇xpD(t, x, y)| ≤ C2

[
1

dD(x) ∧ 1
∨ 1

V −1(
√
t)

]
pD(t, x, y).

(b) For any (t, x, y) ∈ [1,∞)×D ×D,

pD(t, x, y) ≤ C3e
−λ1tV (dD(x))V (dD(y))

and

|∇xpD(t, x, y)| ≤ C4

[
1

dD(x) ∧ 1
∨ 1

V −1(1)

]
pD(t, x, y),

where −λ1 = −λ1(n, a1, a2, α1, α2,Φ(1)) < 0 is the largest eigenvalue of the generator of XB(0,1).

In the estimates of Theorem 3.1, we used dD(x) ∨ dD(y) ≤ diam(D) ≤ 1, V (r) ≍ ϕ(r)1/2 in
0 < r ≤ 1 and 1

V −1(
√
t)

≍ ϕ−1(t) to reformulate theorems in our references. In addition, estimates

in [12, Corollary 1.6] are of the form

pD(t, x, y) ≤ ce−λ(D)tV (dD(x))V (dD(y))

where −λ(D) < 0 is the largest eigenvalue of the generator of XD. Using [16, (6.4.14) and Lemma
6.4.5], we have λ(D) = inf{

∫
Rn −Lu(x)u(x)dx | ‖u‖2 = 1, supp(u) ⊂ D}, thus we can obtain

λ1 ≤ λ(D). This implies heat kernel estimates in Theorem 3.1(b).
Without loss of generality, we will always assume diam(D) ≤ 1 in this paper.

3.1. Potential operator for the killed process of subordinate Brownian motion. In this
subsection, we assume that D ⊂ R

n is a bounded C1,1 open set with diam(D) ≤ 1 and X is a
Lévy process satisfying (2.3) and (2.4), which are conditions in Theorem 3.1. We define the Green
function of XD by

GD(x, y) =

∫ ∞

0

pD(t, x, y)dt

for x, y ∈ D with x 6= y. Note that by Theorem 3.1(b), GD(x, y) is finite for any x 6= y.
We define a potential operator RD for XD as

(3.1) RDf(x) :=

∫ ∞

0

∫

D

pD(t, x, y)f(y)dydt.
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Using definitions of PDt and GD, we also have

RDf(x) =

∫

D\{x}
GD(x, y)f(y)dy =

∫ ∞

0

PDt f(x)dt.(3.2)

In the next subsection, we will see that RD acts as the inverse of −A.
First we will prove interior Hölder estimate of RDf . For the next usage, we prove the following

proposition for the functions in L∞(D).

Proposition 3.2. For any f ∈ L∞(D) and any ball B(x0, r) ⊂ D satisfying dD(x0) ≤ 2r, we
have RDf ∈ CV (B/2) and there is a constant C = C(n, a1, a2, α1, α2, D,Φ(1)) > 0 satisfying

(3.3) ‖RDf‖CV (B/2) ≤ C
(
‖f‖L∞(D) + ‖RDf‖C(B)

)

Here we have denoted B = B(x0, r) and B/2 = B(x0, r/2).

Proof. We have |x− y| < r for any x, y ∈ B/2. Thus, we have

[RDf ]CV (B/2) ≤ sup
|h|≤r

sup
x∈B/2

|RDf(x+ h)−RDf(x)|
V (|h|)

≤ sup
|h|≤r

∫ ∞

0

sup
x∈B/2

|PDs f(x+ h)− PDs f(x)|
V (|h|) ds

≤ sup
|h|≤r

(∫ V (|h|)V (r)

0

+

∫ V (r)2

V (|h|)V (r)

+

∫ ∞

V (r)2

)
sup
x∈B/2

|PDs f(x+ h)− PDs f(x)|
V (|h|) ds

=: sup
|h|≤r

(I + II + III) .

To estimate I, we use |PDs f(x)| ≤ ‖f‖L∞(D) so that

I =

∫ V (|h|)V (r)

0

sup
x∈B/2

|PDs f(x+ h)− PDs f(x)|
V (|h|) ds

≤
∫ V (|h|)V (r)

0

2‖f‖L∞(D)

V (|h|) ds ≤ c1V (r)‖f‖L∞(D).

(3.4)

To estimate II, we will use Theorem 3.1(a). Since s ≤ V (r)2 and x ∈ B/2, we obtain

1

dD(x) ∧ 1
∨ 1

V −1(
√
s)

≤ c2
V −1(

√
s)
.

Therefore, for s ≤ V (r)2 we have

|∇xP
D
s f(x)| ≤ c3

(
1

dD(x) ∧ 1
∨ 1

V −1(
√
s)

)
‖PDs f‖L∞(D) ≤

c2c3
V −1(

√
s)
‖f‖L∞(D)

for every x ∈ D. Here we used Theorem 3.1(a) for the first inequality. Using above inequality we
conclude

II =

∫ V (r)2

V (|h|)V (r)

sup
x∈B/2

|PDs f(x+ h)− PDs f(x)|
V (|h|) ds

≤ |h|
V (|h|)

∫ V (r)2

V (|h|)V (r)

sup
x∈B/2

|∇xP
D
s f(x

∗)| ds

≤ c2c3‖f‖L∞(D)
|h|

V (|h|)

∫ V (r)2

V (|h|)V (r)

1

V −1(
√
s)
ds,

(3.5)

where x∗ is a point on the segment between x and x+h. Using change of variables with s = V 2(t)
in the first equality and Lemma 2.5 for the second inequality, we get

∫ V (r)2

V (r)V (|h|)

1

V −1(
√
s)
ds = 2

∫ r

V −1(V (r)1/2V (|h|)1/2)

V (t)V ′(t)

t
dt ≤ c4

∫ r

ε

V (t)

t

V (t)

t
dt,(3.6)
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where ε := V −1(V (|h|)1/2V (r)1/2). Also, by (2.9) we have

V (t)

V (ε)
≤ c5

(
t

ε

)α2

≤ c5
t

ε
, t ≥ ε

and ∫ r

0

V (t)

t
dt =

∫ r

0

V (r)

t

V (t)

V (r)
dt ≤ c6V (r)

∫ r

0

1

t

(
t

r

)α1

dt ≤ c7V (r).

Using above two inequalities, we deduce from (3.6) that

∫ V (r)2

V (r)V (|h|)

1

V −1(
√
s)
ds ≤ c4

∫ r

ε

V (t)

t

V (t)

t
dt ≤ c8

V (ε)

ε

∫ r

0

V (t)

t
dt

≤ c9V (r)
V (ε)

ε
= c9V (r)

V (|h|)1/2V (r)1/2

V −1(V (|h|)1/2V (r)1/2)
.

(3.7)

Combining (3.5) and (3.7), we conclude that

II ≤ c10‖f‖L∞(D)
|h|

V (|h|) · V (r)
V (|h|)1/2V (r)1/2

V −1(V (|h|)1/2V (r)1/2)

= c10‖f‖L∞(D)V (r)
V (r)

u

V −1(u2/V (r))

V −1(u)
≤ c11‖f‖L∞(D)V (r)

(
u

V (r)

) 1
α2

−1

≤ c11V (r)‖f‖L∞(D),

where u := V (h)1/2V (r)1/2 ≤ V (r). Here we used (2.10) and α2 < 1 for the second line.
For III, first note that for any V (r)2 ≤ s ≤ 1,

1

dD(x) ∧ 1
∨ 1

V −1(
√
s)

∨ 1

V −1(1)
≤ 1

r
∨ 1

V −1(
√
s)

∨ 1

V −1(1)
≤ 1

r
.

So, by Theorem 3.1(a) we have for V (r)2 ≤ s ≤ 1,

|∇xpD(s, x, y)| ≤
c12
r
pD(s, x, y) ≤

c13
r

(
1 ∧ V (dD(x))

s1/2

)(
1 ∧ V (dD(y))

s1/2

)
p(s, |x− y|/4)

≤ c14
r

V (r)√
s
p(s, |x− y|/4).

(3.8)

Here in the second line we used V (dD(x)) ≤ c15V (r), which follows from (2.9) and dD(x) ≤ 2r.
Thus, we obtain

|PDs f(x+ h)− PDs f(x)| = |h||∇xP
D
s f(x∗)| ≤ |h|‖f‖L∞(D)

∫

D

|∇xpD(s, x
∗, y)| dy

≤ c16|h|‖f‖L∞(D)
V (r)

r
√
s

∫

D

p

(
s,

|x∗ − y|
4

)
dy ≤ c17|h|‖f‖L∞(D)

V (r)

r
√
s
,

(3.9)

where x∗ is a point on the line segment between x and x+ h. Here we used
∫
Rn p(s, y/4)dy = 4n

for the last inequality.
For s ≥ 1, using Theorem 3.1(b) we have

(3.10) |∇xpD(s, x, y)| ≤
c18
r
pD(s, x, y) ≤

c19
r
e−λ1sV (dD(x))V (dD(y)) ≤

c20V (r)

r
e−λ1s,

Here we used dD(x) ≤ 2r, dD(y) ≤ 1 and (2.9) in the last inequality. Thus we arrive

|PDs f(x+ h)− PDs f(x)| = |h||∇xP
D
s f(x∗)| ≤ |h|‖f‖L∞(D)

∫

D

|∇xpD(s, x
∗, y)| dy

≤ c21|h|‖f‖L∞(D)
V (r)

r

∫

D

e−λ1s dy ≤ c22|h|‖f‖L∞(D)
V (r)

r
e−λ1s,

(3.11)

where x∗ is a point on the line segment between x and x+ h.
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Now combining (3.9) and (3.11), we obtain

III =

∫ ∞

V (r)2

|PDs f(x+ h)− PDs f(x)|
V (|h|) ds =

(∫ 1

V (r)2
+

∫ ∞

1

)
|PDs f(x+ h)− PDs f(x)|

V (|h|) ds

≤ c23
V (r)

r

|h|
V (|h|)‖f‖L∞(D)

(∫ 1

V (r)2

1√
s
ds+

∫ ∞

1

e−λ1s ds

)

≤ c24‖f‖L∞(D)(2− 2V (r) + λ−1
1 ).

(3.12)

The last inequality follows from V (r)
V (|h|) ≤ c25

(
r
|h|
)α2 ≤ c25

(
r
|h|
)
since |h| ≤ r.

Combining (3.4), (3.7) and (3.12), we conclude

[Rf ]CV (B/2) ≤ c26(1 + V (r))‖f‖L∞(D) ≤ c26(1 + V (1))‖f‖L∞(D).

Above inequality and that ‖Rf‖CV (B/2) = [Rf ]CV (B/2) + ‖Rf‖C(B/2) finish the proof. �

We next provide an upper bound of RDf near the boundary. In the proof we apply the estimates
on the Green function in [18, Theorem 1.6].

Lemma 3.3. There exists a constant C = C(n, a1, a2, α1, α2, D,Φ(1)) > 0 such that

|RDf(x)| ≤ C‖f‖L∞(D)V (diam(D))V (dD(x))

for any f ∈ L∞(D) and x ∈ D.

Proof. The estimate on the Green function in [18, Theorem 1.6] and (2.8) give that for any
x, y ∈ D,

GD(x, y) ≤ c1
ϕ(|x − y|)
|x− y|n

(
1 ∧ ϕ(dD(x))

ϕ(|x − y|)

)1/2(
1 ∧ ϕ(dD(y))

ϕ(|x− y|)

)1/2

≤ c1
ϕ(|x − y|)1/2

|x− y|n ϕ(dD(x))
1/2 ≤ c2

V (|x − y|)
|x− y|n V (dD(x)).

(3.13)

Substituting (3.13) to (3.2) we obtain

|RDf(x)| ≤ c3‖f‖L∞(D)V (dD(x))

∫

D

V (|x− y|)
|x− y|n dy.(3.14)

Also, using (2.9) we have
∫

D

V (|x− y|)
|x− y|n dy ≤

∫

B(x,diam(D))

V (|x− y|)
|x− y|n dy ≤ c4

∫ diam(D)

0

V (r)

r
dr

≤ c5
V (diam(D))

diam(D)α1

∫ diam(D)

0

rα1−1 dr ≤ c6V (diam(D)).

(3.15)

Combining above two inequalities we have proved the lemma. �

Remark 3.4. As a corollary of Lemma 3.3, we have

‖RDf‖L∞(D) ≤ C‖f‖L∞(D).

Hence we can simplify (3.3) to

‖RDf‖CV (B/2) ≤ C̃‖f‖L∞(D)(3.16)

for some constant C̃ = C̃(n, a1, a2, α1, α2, D,Φ(1)) > 0.

Now we are ready to prove Theorem 2.1 for the function RDf .

Proposition 3.5. Assume f ∈ L∞(D). Then, RDf ∈ CV (D) and there exists a constant C > 0
such that

(3.17) ‖RDf‖CV (D) ≤ C‖f‖L∞(D).

The constant C > 0 depends only on n, a1, a2, α1, α2, D and Φ(1).
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Proof. By (3.16) we have

|RDf(x)−RDf(y)| ≤ c1‖f‖L∞(D)V (|x− y|)(3.18)

for all x, y satisfying |x− y| < dD(x)/2. We want to show that (3.18) holds, perhaps with a bigger
constant, for all x, y ∈ D.

Let (R0,Λ) be the C1,1 characteristics of D. Then D can be covered by finitely many balls
of the form B(zi, dD(zi)/2) with zi ∈ D and finitely many sets of the form B(z∗j , R0) ∩ D with

z∗j ∈ ∂D. Thus, it is enough to show that (3.18) holds for all x, y ∈ B(z∗j , R0)∩D possibly with a
larger constant.

Fix B(z∗0 , R0) ∩D and assume that the outward normal vector at z0 is (0, · · · , 0,−1). This is
possible because the operator is invariant under the rotation. Now let x = (x′, xn) and y = (y′, yn)
be two points in B(z∗0 , R0) ∩D, and let r = |x− y|. Let us define for k ≥ 0

xk = (x′, xn + λkr) and yk = (y′, yn + λkr),

for some 1− 2−1(1 + Λ2)−1/2 ≤ λ < 1. Since (1 + Λ2)−1/2(xk)n ≤ dD(x
k), we have

|xk − xk+1| = λk(1 − λ)r ≤ 1

2
√
1 + Λ2

(xk)n ≤ 1

2
dD(x

k).

Thus, we have from (3.18) that

|RDf(xk)−RDf(xk+1)| ≤ c1‖f‖L∞(D)V (|xk − xk+1|) = c1‖f‖L∞(D)V (λk(1− λ)r)

and similarly that |RDf(yk)−RDf(yk+1)| ≤ c1‖f‖L∞(D)V (λk(1− λ)r). Moreover, note that the

distance from the line segment joining x0 and y0 to the boundary ∂D is more than r(1 − Λ/2).
Thus, this line can be split into finitely many line segments of length less than r(1−Λ/2)/2. The
number of small line segments depends only on Λ. Therefore, we have |RDf(x0) − RDf(y0)| ≤
c2‖f‖L∞(D)V (r) and hence

|RDf(x)−RDf(y)|
≤ |RDf(x0)−RDf(y0)|+

∑

k≥0

(
|RDf(xk)−RDf(xk+1)|+ |RDf(yk)−RDf(yk+1)|

)

≤ c3‖f‖L∞(D)

(
V (r) +

∑

k≥0

V (λk(1− λ)r)
)

≤ c4‖f‖L∞(D)V (r)

(
1 + c5

∑

k≥0

(
λk(1− λ)

)α1

)

≤ c6‖f‖L∞(D)V (r).

Recall that r = |x− y|. This finishes the proof. �

In the next subsection, we will prove that the function u = −RDf is the unique viscosity
solution for (2.6) when f ∈ C(D).

3.2. Nonlocal operator and infinitesimal generator. In this section we establish the relation
between viscosity solutions of (2.6) and solutions of the following:

(3.19)

{
Au = f in D,

u = 0 in R
n\D.

In [9], the authors discussed the relation between operators A and L, for instance, domain or
values of the operators; see [9] for the application to heat equations.

At the beginning of this section we apply the strategies in [9] to our settings and obtain some
related properties. After then, we obtain comparison principle for the viscosity solution. Com-
bining these results, we finally obtain the existence and uniqueness for Dirichlet problems (2.6)
and (3.19). Moreover, these two solutions coincide under some conditions. Also, in Section 4.2
we obtain Harnack inequality, which is one of the key ingredients for the standard argument of
Krylov in [26]. In Section 4.3 we will make use of Harnack inequality and the comparison principle
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to prove Theorem 2.2.

Let D ⊂ R
n be a bounded C1,1 open set and let

D = D(D) := {u ∈ C0(D) : Au ∈ C(D)}

be the domain of operator A. Recall that by [9, Lemma 2.6] we have

(3.20) Au(x) = Lu(x)

for any u ∈ C2(x) ∩ C0(R
n), x ∈ D. We first show that u = −RDf satisfies (3.19) when f is

continuous.

Lemma 3.6. Let f ∈ C(D) and define u = −RDf . Then, u is a solution for (3.19).

Proof. First we claim that for any u ∈ C0(D) and x ∈ D,

(3.21) Au(x) = lim
t↓0

PDt u(x)− u(x)

t
.

To show (3.21), we follow the proof in [9, Theorem 2.3]. Note that our domain of operator is
slightly different from it in [9, (2.8)].

We first observe that for any u ∈ D and x ∈ D,

PDt u(x)− Ptu(x) = E
xu(XD

t )− E
xu(Xt)

= E
x[u(XD

t )1{τD≥t}]− E
x[u(Xt)1{τD≥t}]− E

x[u(Xt)1{τD<t}]

= −E
x[u(Xt)1{τD<t}].

Indeed, the first and the third term in the second line cancel. Hence

(3.22)
PDt u(x)− u(x)

t
− Ptu(x)− u(x)

t
= −E

x[u(Xt)1{τD<t}]

t
=

E
x[
(
u(XτD)− u(Xt)

)
1{τD<t}]

t
.

Meanwhile, by the strong Markov property we obtain
∣∣Ex

[(
u(XτD)− u(Xt)

)
1{τD<t}

]∣∣ ≤ E
x
[∣∣EXτD [u(X0)− u(Xt−τD)]

∣∣ 1{τD<t}
]
.

Since u ∈ C0(D) is uniformly continuous, with stochastic continuity of Lévy process we have that
for any ε > 0 there is δ = δ(ε) > 0 such that

|Ez[u(Xs)]− u(z)| < ε

for any z ∈ D and 0 < s ≤ δ. Combining above two equations we conclude
∣∣Ex[

(
u(XτD)− u(Xt)

)
1{τD<t}]

∣∣ ≤ εPx(τD < t)

for 0 < t ≤ δ. Since D is open, for any x ∈ D we have a constant rx > 0 such that B(x, rx) ⊂ D.
Using [10, Theroem 5.1 and Proposition 2.27(d)] there exists some M > 0 such that

P
x(τD < t)

t
≤ P

x(τB(x,rx) < t)

t
≤M for all t > 0.

Combining above inequalities we obtain that

lim
t↓0

∣∣∣∣
PDt u(x)− u(x)

t
−Au(x)

∣∣∣∣ = lim
t↓0

∣∣∣∣
PDt u(x)− u(x)

t
− Ptu(x)− u(x)

t

∣∣∣∣

≤ ε lim
t↓0

P
x[τD < t]

t
≤ εM.

Since ε > 0 is arbitrarily, this concludes the claim.
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Now we prove the lemma. Note that u = 0 in Dc immediately follows from the definition of
RD. Then, by (3.21) and (3.2) we have that for x ∈ D,

Au(x) = A(−RDf)(x) = − lim
t↓0

PDt (RDf)(x) −RDf(x)

s

= − lim
t↓0

1

t

[
PDt

(∫ ∞

0

PDs f(·)ds
)
(x) −

∫ ∞

0

PDs f(x)ds

]

= lim
t↓0

1

t

(
−
∫ ∞

0

PDt+sf(x)ds+

∫ ∞

0

PDs f(x)ds

)

= lim
t↓0

1

t

(
−
∫ ∞

t

PDs f(x)ds+

∫ ∞

0

PDs f(x)ds

)

= lim
t↓0

∫ t
0 P

D
s f(x)ds

t
= f(x).

(3.23)

Indeed, the third line follows from the semigroup property PDs P
D
t = PDs+t and that RDf ∈ C0(D)

which follows from Proposition 3.2. This finishes the proof. �

The next lemma shows that every solution of (3.19) is a viscosity solution of (2.6).

Lemma 3.7. Assume that f ∈ C(D) and u ∈ D satisfies Au = f in D. Then, u is a viscosity
solution of Lu = f .

Proof. For any x0 ∈ D and test function v ∈ C2(Rn) with v(x0) = u(x0) and v(y) > u(y) for
y ∈ R

n \ {x0}, we have

Av(x0) = Lv(x0).

Since v(x0) = u(x0) and P
D
t v(x0) ≥ PDt u(x0) for every t > 0, we have

Av(x0) = lim
t↓0

PDt v(x0)− v(x0)

t
≥ lim

t↓0

PDt u(x0)− u(x0)

t
= Au(x0).

Thus, we arrive

Lv(x0) ≥ Au(x0),

which concludes that u is a viscosity solution of (2.6). �

Now we see comparison principle in [14]. This implies the uniqueness of viscosity solution for
(2.6).

Theorem 3.8 (Comparison principle). Let D be a bounded open set in R
n. Let u and v be bounded

functions satisfying Lu ≥ f and Lv ≤ f in D in viscosity sense for some continuous function f ,
and let u ≤ v in R

n \D. Then u ≤ v in D.

Proof. We first claim that L satisfies [14, Assumption 5.1]. More precisely, there exists constant
r0 ≥ 1 such that for every r ≥ r0, there exists a constant δ = δ(r) > 0 satisfying Lw > δ in Br,

where w(x) = 1 ∧ |x|2
r3 .

Let r0 = 4, r ≥ 4 and x ∈ Br. Note that by r ≥ 4 we have

|y|2
r3

≤ 4r2

r3
≤ 1, y ∈ B2r.

Thus, for y ∈ Br we obtain

w(x+ y) + w(x − y)− 2w(x) =
|x+ y|2 + |x− y|2 − 2|x|2

r3
=

2|y|2
r3

.

On the other hand, for y ∈ Bcr we have

w(x + y) + w(x − y)− 2w(x) ≥ 2|y|2
r3

∧ (1− 2w(x)) > 0.
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Therefore, since w ∈ C2(Rd) we have

Lw(x) :=
1

2

∫

Rn

(w(x + y) + w(x− y)− 2w(x)) J(y) dy

=
1

2

∫

Br

(w(x + y) + w(x − y)− 2w(x)) J(y) dy +
1

2

∫

Bc
r

(w(x + y) + w(x − y)− 2w(x)) J(y) dy

≥ 1

r3

∫

Br

|y|2J(y)dy =: δ(r) > 0

for every r ≥ r0 = 4 and x ∈ Br. Since L satisfies [14, Assumption 5.1], we can apply Theorem
5.2 therein, which proves the theorem. �

The following uniqueness of viscosity solution is immediate.

Corollary 3.9. Let D be a bounded open set in R
n and let f ∈ C(D). Then there is at most one

viscosity solution of (2.6).

Here is the main result in this section.

Theorem 3.10. Assume that f ∈ C(D). Then, u = −RDf ∈ D is the unique solution of (3.19).
Also, u is the unique viscosity solution of (2.6).

Proof. By Lemma 3.6, we have that u = −RDf ∈ D is solution of (3.19). Now, Lemma 3.7 and
Corollary 3.9 conclude the proof. �

Proof of Theorem 2.1 By Theorem 3.10, the unique viscosity solution for (2.6) is given by
u = −RDf . Therefore, Proposition 3.5 yields the Hölder regularity of viscosity solution with
respect to CV -norm. By (2.8), we have V ≍ φ and this concludes the proof. �

4. Boundary regularity

4.1. Barriers. Throughout this section, D ⊂ R
n is a bounded C1,1 open set. Without loss of

generality, we assume that diam(D) ≤ 1. Since dD is only C1,1 near ∂D, we need to consider the
following “regularized version” of dD.

Definition 4.1. We call ψ : D → (0,∞) the regularized version of dD if ψ ∈ C1,1(D) and it
satisfies

(4.1) C̃−1dD(x) ≤ ψ(x) ≤ C̃dD(x), ‖∇ψ(x)‖ ≤ C̃ and ‖∇ψ(x)−∇ψ(y)‖ ≤ C̃|x− y|
for any x, y ∈ D, where the constant C̃ > 0 depends only on D.

For D = B(0, 1), there exists a regularized version of dB(0,1) which is C2 and isotropic. Denote
this function by Ψ and let C = C(n) be the constant in (4.1) for the function Ψ. For any open ball
Br := B(x0, r), we will take the regularized version of dBr which is defined by Ψr(x) := Ψ(x−x0

r ).
Then, Ψr satisfies

(4.2) C−1dBr (x) ≤ Ψr(x) ≤ CdBr (x), ‖∇Ψr‖ ≤ C and ‖∇2Ψr(x)‖ ≤ C

r

for any x, y ∈ B(x0, r). The last estimate follows from the fact that Ψ ∈ C2(Br).
We first introduce the following three lemmas which will be used to construct a barrier for L.

Lemma 4.2. Assume that D is a bounded C1,1 open set and let ψ be a regularized version of dD.
Then, for every x ∈ R

n and x0 ∈ D we have

(4.3) |ψ(x) − (ψ(x0) +∇ψ(x0) · (x− x0))+| ≤ C̃|x− x0|2

where C̃ is the constant in (4.1). In addition, when D = B(0, r) and ψ = Ψr we have (4.3) with

C̃ = C
r where C is the constant in (4.2).
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Proof. Let ψ̃ be a C1,1 extension of ψ|D satisfying ψ̃ ≤ 0 in R
n\D. Then, since ψ̃ ∈ C1,1(Rn) we

clearly have

(4.4) |ψ̃(x)− ψ(x0)−∇ψ(x0) · (x − x0)| = |ψ̃(x) − ψ̃(x0)−∇ψ̃ · (x− x0)| ≤ C̃|x− x0|2

in all of x ∈ R
n. Using |a+ − b+| ≤ |a− b| and (ψ̃)+ = ψ, we have

|ψ(x)− (ψ(x0) +∇ψ(x0) · (x− x0))+| ≤ |ψ̃(x) − ψ(x0)−∇ψ(x0) · (x− x0)| ≤ C̃|x− x0|2

for all x ∈ R
n. If D = B(0, r) and ψ = Ψr, the constant C̃ in (4.4) become C

r . Thus, the
conclusion of lemma follows. �

Next lemma is a collection of inequalities which will be used for this section. Note that we can
easily check these inequalities when ϕ(r) = r2α and V (r) = rα with 0 < α < 1. The inequalities
(4.6) and (4.8) are in [4, Lemma 3.5]. We provide the proof for the completeness.

Lemma 4.3. There exists a constant C1 = C1(n, a1, α1, α2) > 0 such that for any 0 < r ≤ 1,

(4.5)

∫ r

0

s

ϕ(s)
ds ≤ C1r

2

ϕ(r)
,

(4.6)

∫ ∞

r

1

sϕ(s)
ds ≤ C1

ϕ(r)
,

(4.7)

∫ r

0

1

V (s)
ds ≤ C1r

V (r)
,

∫ r

0

V (s)

s
ds ≤ C1V (r)

and

(4.8)

∫ ∞

r

V (s)

sϕ(s)
ds ≤ C1

V (r)
.

Proof. The inequalities (4.5) and (4.7) can be proved using weak scaling conditions (2.5) and
(2.9): by (2.5), we have

∫ r

0

s

ϕ(s)
ds =

∫ r

0

s

ϕ(r)

ϕ(r)

ϕ(s)
ds ≤ c1

∫ r

0

s

ϕ(r)

(r
s

)2α2

ds =
c1

2− 2α2

r2

ϕ(r)
,

and by (2.9) we have
∫ r

0

1

V (s)
ds =

∫ r

0

1

V (r)

V (r)

V (s)
ds ≤

∫ r

0

c2

(r
s

)α2

ds =
c2

1− α2

r

V (r)

and ∫ r

0

V (s)

s
ds =

∫ r

0

V (r)

s

V (s)

V (r)
ds ≤

∫ r

0

V (r)

s
c2

(s
r

)α1

ds =
c2
α1
V (r).

Let P(r) :=
∫
R

(
1 ∧ |x|2

r2

)
J(x)dx be the Pruitt function of X . By [3, (6) and Lemma 1] and (2.8),

we have a constant c3 > 0 satisfying

(4.9) P(r) ≤ cϕ(r)−1 ≤ c3V (r)−2, r > 0.

Let P1(r) :=
∫∞
r

1
sϕ(s)ds. Note that we have

(4.10) P1(r) = ω−1
n

∫

B(0,r)c

(
1 ∧ |x|2

r2

)
J(|x|)dx ≤ ω−1

n P(r) ≤ c4V (r)−2, r > 0.

Thus, (4.10) and (2.8) imply (4.6). Also, using integration by parts and (4.10) we have
∫ ∞

r

V (s)

sϕ(s)
ds =

∫ ∞

r

V (s)d(−P1)(s)

= V (r)P1(r)− lim
s→∞

V (s)P1(s) +

∫ ∞

r

V ′(s)P1(s)ds

≤ c5

(
1

V (r)
− lim
s→∞

1

V (s)
+

∫ ∞

r

V ′(s)

V (s)2
ds

)
=

2c5
V (r)

,
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which concludes (4.8). �

Lemma 4.4. Let U ⊂ R
n be a C1,1 open set, which can be unbounded. Then there exists a

constant C2 = C2(n, U, a1, a2, α1, α2) > 0 such that for any x ∈ U and 0 < r ≤ 1,

(4.11)

∫

U∩
(
B(x,r)\B(x,dU(x)/2)

)
V (dU (y))

dU (y)

dy

|x− y|n−2ϕ(|x − y|) ≤ C2r

V (r)
.

Proof. Fix x ∈ U and denote ρ := dU (x) < 2r, Br := B(x, r) for r > 0 and Br = ∅ for r ≤ 0. First
note that there is a constant κ = κ(U) > 0 such that the level set {dU ≥ t} = {x ∈ U |dU (x) ≥ t}
is C1,1 for any t ∈ (0, κ] since U is C1,1. Without loss of generality we can assume κ ≤ r because
κ can be arbitrarily small.

Since BR ∩ {dU ≥ κ} = ∅ for every R ≤ κ− ρ, we have
∫

(Br\Bρ/2)∩{dU≥κ}

V (dU (y))

dU (y)

dy

|x− y|n−2ϕ(|x− y|)

=

∫

(Br\Bmax{ρ/2,κ−ρ})∩{dU≥κ}

V (dU (y))

dU (y)

dy

|x− y|n−2ϕ(|x− y|)

≤
∫

(Br\B2κ/3)∩{dU≥κ}

V (dU (y))

dU (y)

dy

|x− y|n−2ϕ(|x − y|) ,

where the last line follows from ρ/2 ∨ (κ− ρ) ≥ 2κ
3 . Using

κ ≤ dU (y) ≤ r + κ ≤ 2r and
2κ

3
≤ |x− y| ≤ r

for every y ∈ (Br\B2κ/3) ∩ {dU ≥ κ}, we arrive that for any x ∈ U ,
∫

(Br\B2κ/3)∩{dU≥κ}

V (dD(y))

dD(y)

dy

|x− y|n−2ϕ(|x − y|)

≤
∫

(Br\B2κ/3)∩{dU≥κ}

V (2r)

κ

dy

|x− y|n−2ϕ(|x− y|)

≤ c1
V (r)

κ

∫ r

0

s

ϕ(s)
ds ≤ c2(κ)

r2

V (r)
≤ c2(κ)

r

V (r)
,

(4.12)

where we used (2.8) and (4.5) for the second last inequality. Thus, it suffices to estimate the
integrand (4.11) in the set (Br\Bρ/2) ∩ {0 < dU < κ}.

We will utilize the following estimates on Hausdorff measure in [RV15], that is, there exists a
constant c3(U) > 0 such that that for every x ∈ U and t ∈ (0, κ) ,

(4.13) Hn−1({dU = t} ∩ (B2−k+1r\B2−kr)) ≤ c3(2
−kr)n−1

which follows from the fact that the level set {dU = t} is C1,1 for t ∈ (0, κ).
Let us denote Cn := Br2−n for n ≥ 0 and let M ∈ N be the natural number satisfying

2−Mr ≤ ρ/2 ≤ 2−M+1r. Using |x − y| ≥ 2−kr for every y ∈ Ck−1\Ck and ϕ is increasing for the
third line, we have

∫

(Br\Bρ/2)∩{0<dU<κ}

V (dU (y))

dU (y)

dy

|x− y|n−2ϕ(|x − y|)

≤
M∑

k=1

∫

(Ck−1\Ck)∩{0<dU<κ}

V (dU (y))

dU (y)

dy

|x− y|n−2ϕ(|x− y|)

≤
M∑

k=1

1

(2−kr)n−2ϕ(2−kr)

∫

(Ck−1\Ck)∩{0<dU<κ}

V (dU (y))

dU (y)
dy

=

M∑

k=1

1

(2−kr)n−2ϕ(2−kr)

∫

(Ck−1\Ck)∩{0<dU<κ}

V (dU (y))

dU (y)
|∇dU (y)|dy.
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Here we used |∇dU (y)| = 1 for y ∈ {0 < dU < κ} for the last line. (See [31].)
For any 1 ≤ k ≤ M and y ∈ Ck−1 we have dU (y) ≤ 2−k+1r + ρ ≤ (2−k+1 + 2−M+2)r ≤ 6 · 2−kr,
which implies Ck−1 ⊂ {dU < 6 · 2−kr}. Thus, combining this with above inequality we have

∫

(Br\Bρ/2)∩{0<dU<κ}

V (dU (y))

dU (y)

dy

|x− y|n−2ϕ(|x− y|)

≤
M∑

k=1

1

(2−kr)n−2ϕ(2−kr)

∫

(Ck−1\Ck)∩{0<dU<6·2−kr}

V (dU (y))

dU (y)
|∇dU (y)|dy.

(4.14)

Plugging u(y) = dU (y) and g(y) =
V (dU (y))
dU (y) into the following coarea formula

∫

D

g(y)|∇u(y)|dy =

∫ ∞

−∞

(∫

u−1(t)

g(y)dHn−1(y)

)
dt,

we obtain
M∑

k=1

1

(2−kr)n−2ϕ(2−kr)

∫

(Ck−1\Ck)∩{0<dU<6·2−kr}

V (dU (y))

dU (y)
|∇dU (y)|dy

=

M∑

k=1

1

(2−kr)n−2ϕ(2−kr)

∫ 6·2−kr

0

∫

(Ck−1\Ck)∩{d=t}

V (t)

t
dHn−1(y)dt

≤
M∑

k=1

1

(2−kr)n−2ϕ(2−kr)

∫ 6·2−kr

0

c3(2
−kr)n−1 V (t)

t
dt

= c3

M∑

k=1

2−kr

ϕ(2−kr)

∫ 6·2−kr

0

V (t)

t
dt ≤ c4

M∑

k=1

2−kr

ϕ(2−kr)
V (6 · 2−kr),

(4.15)

where we used (4.13) for the third line and (4.7) for the last line. Also, by (2.9) and (2.8),

M∑

k=1

2−kr

ϕ(2−kr)
V (6 · 2−kr) ≤

M∑

k=1

2−kr

V (2−kr)
=

M∑

k=1

∫ 2−k+1r

2−kr

1

V (2−kr)
ds

≤
∫ r

0

1

V (s)
ds ≤ c5

r

V (r)
,

(4.16)

where in the last two inequalities we have used that V is increasing and (4.7).

Using (4.14), (4.15), and (4.16), we conclude
∫

(Br\Bρ/2)∩{d<κ}

V (dU (y))

dU (y)

dy

|x− y|n−2ϕ(|x − y|) ≤ c4c5r

V (r)
.

This and (4.12) finish the proof. �

Now we are ready to show that V (ψ) acts as a barrier of L on D.

Proposition 4.5. Let L be given by (2.2) and ψ be a regularlized version of dD. Then there exists

a constant C̃3 = C̃3(n, a1, a2, α1, α2, D) > 0 such that

(4.17) |L(V (ψ))| ≤ C̃3 in D.

where V is the renewal function with respect to Φ. In addition, if D = B(0, r) is a ball with radius
r, there exists a constant C3 = C3(n, a1, a2, α1, α2) > 0 such that

(4.18) |L(V (ψ))| ≤ C3

V (r)
in B(0, r),

where ψ = Ψr is a regularized version of dB(0,r) defined in (4.2). Note that C3 is independent of
r.
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Proof. We prove (4.18) only. The proof of (4.17) is similar.
Let x0 ∈ Br := B(0, r) and ρ := dBr (x0). First we prove (4.18) for the case ρ ≥ κr > 0 with

κ = 1/(8C2). In this case, we have

|L(V (ψ))(x0)| =
∣∣∣∣
∫

Rn

(
V (ψ(x0 + y)) + V (ψ(x0 − y))

2
− V (ψ(x0))

)
J(1)

|y|nϕ(|y|)dy
∣∣∣∣

≤
∫

Bκr/2

∥∥∇2[V (ψ(x∗))]
∥∥ J(1)

|y|n−2ϕ(|y|)dy

+

∫

Bc
κr/2

∣∣∣∣
V (ψ(x0 + y)) + V (ψ(x0 − y))

2
− V (ψ(x0))

∣∣∣∣
J(1)

|y|nϕ(|y|)dy,

(4.19)

where x∗ is a point on the segment between x0 − y and x0 + y, so that dBr (x∗) ≥ κr/2 when
y ∈ Bκr/2. Using (2.9), (4.2), and Lemma 2.5, we have

‖∇2[V (ψ(x∗))]‖ ≤ |V ′′(ψ(x))|‖∇ψ(x)‖2 + |V ′(ψ(x))|‖∇2ψ(x)‖ ≤ c1(κ)V (r)

r2
,

which yields to estimate the first term of (4.19) by
∫

Bκr/2

‖∇2[V (ψ(x∗))]‖
J(1)

|y|n−2ϕ(|y|)dy ≤ c1
V (r)

r2

∫

Bκr/2

1

|y|n−2ϕ(|y|)dy

= c2
V (r)

r2

∫ κr/2

0

s

ϕ(s)
ds ≤ c3

V (r)
.

In the last inequality above, we have used (4.5), (2.5), and (2.8). For the second term, using
ψ(x) ≤ CdBr (x) ≤ Cr for any x ∈ Br, we have

∣∣∣∣
V (ψ(x0 + y)) + V (ψ(x0 − y))

2
− V (ψ(x0))

∣∣∣∣ ≤ 2V (Cr) ≤ c4V (r).

Therefore,
∫

Bc
κr/2

∣∣∣∣
V (ψ(x0 + y)) + V (ψ(x0 − y))

2
− V (ψ(x0))

∣∣∣∣
J(1)

|y|nϕ(|y|)dy ≤ c5V (r)

∫ ∞

κr/2

1

sϕ(s)
ds ≤ c6(κ)

V (r)
.

In the last inequality we have used (4.6), (2.5), and (2.8). Therefore, (4.18) for the case ρ ≥ κr
holds with C3 = c3 + c6.

Now it suffices to consider the case ρ < κr. Denote

l(x) := (ψ(x0) +∇ψ(x0) · (x− x0))+,

which satisfies
L(V (l)) = 0 on {l > 0}

by (2.11). Note that ψ(x0) = l(x0) and ∇ψ(x0) = ∇l(x0). Moreover, by (4.3) we have

(4.20) |ψ(x) − l(x)| ≤ C

r
|x− x0|2.

For any 0 < a ≤ b ≤ C, there exists a∗ ∈ [a, b] satisfying |V (a) − V (b)| = |a − b|V ′(a∗). Using
Lemma 2.5 in the first inequality we have

|V (a)− V (b)| = |a− b|V ′(a∗) ≤ c7|a− b|V (a∗)

a∗
≤ c8|a− b|V (a)

a
.

Here we used (2.9) with c = C for the second inequality. Therefore, for any a, b ∈ (0, C] we have

|V (a)− V (b)| ≤ c8|a− b|
(
V (a)

a
+
V (b)

b

)
.

Also, one can easily see the following inequality

(4.21) |V (a)− V (b)| ≤ c8|a− b|
(
V (a)

a
1{a>0} +

V (b)

b
· 1{b>0}

)

for any 0 ≤ a, b ≤ C by using Lemma 2.5.
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By (4.20) and (4.21) we have that for any x ∈ Br(x0),

|V (ψ(x)) − V (ℓ(x))| ≤ c8
r
|x− x0|2

(
V (ψ(x))

ψ(x)
1{ψ(x)>0} +

V (ℓ(x))

ℓ(x)
1{ℓ(x)>0}

)
(4.22)

≤ c9
r
|x− x0|2

(
V (dBr (x))

dBr (x)
1{dBr (x)>0} +

V (ℓ(x))

ℓ(x)
1{ℓ(x)>0}

)
,

where we used ψ(x) ≤ CdBr (x) ≤ C and ℓ(x) = (ψ(x0)+∇ψ(x0)·(x−x0))+ ≤ CdBr (x0)+Cr ≤ C
for the first inequality and (2.9) for the second.

On the other hand, for any x ∈ Bρ/2(x0) with ρ ≤ κr we have

|ℓ(x)− ψ(x)| ≤ C

r
|x− x0|2 ≤ C

r
ρ2 ≤ Cκρ

and

C−1 ρ

2
≤ C−1dBr (x) ≤ ψ(x).

Thus, using κ = 1/(8C2) we obtain

1

2
ψ(x) ≤ ℓ(x) ≤ 2ψ(x) for any x ∈ Bρ/2(x0).

Using ρ
2 ≤ dBr (x) ≤ 2ρ, we arrive at

ψ(x), ℓ(x) ∈ [(4C)−1ρ, 4Cρ].

Therefore, there exists y ∈ ((4C)−1ρ, 4Cρ) satisfying

V (ψ(x)) − V (ℓ(x))

ψ(x)− ℓ(x)
= V ′(y),

so using (4.20) and (2.12), we have

|V (ψ(x)) − V (ℓ(x))| = |ψ(x)− ℓ(x)|V ′(y) ≤ c10
r
|x− x0|2

V (y)

y
(4.23)

≤ c11
r
|x− x0|2

V ((4C)−1ρ)

(4C)−1ρ
≤ c12

r
|x− x0|2

V (ρ)

ρ

for x ∈ Bρ/2(x0). Here we used (2.12) and (2.9) for the second line. Also, for any x ∈ Bcr(x0) we
have

V (ℓ(x)) = V (ψ(x0) + (x− x0)∇ψ(x0)) ≤ V (Cρ+ C|x− x0|) ≤ V (2C|x− x0|) ≤ c13V (|x− x0|)

and

V (ψ(x)) ≤ V (Cr) ≤ V (C|x− x0|) ≤ c13V (|x− x0|),

where we have used (2.9) and ρ ≤ r ≤ |x− x0|. Thus we obtain

(4.24) |V (ψ)− V (ℓ)|(x) ≤ c14V (|x − x0|)

for x ∈ Bcr(x0). Therefore, by taking x = y + x0 for (4.22), (4.23), and (4.24) we have

|V (ψ)− V (ℓ)|(y + x0) ≤ c






1
r
V (ρ)
ρ |y|2 for y ∈ Bρ/2

|y|2
r

(
V (dBr (x0+y))
dBr (x0+y)

1{dBr (x0+y)>0} +
V (l(x0+y))
l(x0+y)

1{l(x0+y)>0}
)

for y ∈ Br\Bρ/2
V (|y|) for y ∈ Bcr
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where c = c9 ∨ c12 ∨ c14. Hence, recalling that L(V (ℓ))(x0) = 0 and ψ(x0) = ℓ(x0), we find that

|L(V (ψ))(x0)| = |L(V (ψ)− L(V (ℓ)))(x0)|

=

∫

Rn

|V (ψ)− V (ℓ)|(x0 + y)
J(1)

|y|nϕ(|y|)dy

≤ c

r

V (ρ)

ρ

∫

Bρ/2

|y|2 J(1)

|y|nϕ(|y|)dy + c

∫

Bc
r

V (|y|) J(1)

|y|nϕ(|y|)dy

+ c

∫

Br\Bρ/2

|y|2
r

(
V (dBr (x0 + y))

dBr (x0 + y)
1{dBr (x0+y)>0} +

V (ℓ(x0 + y))

ℓ(x0 + y)
1{ℓ(x0+y)>0}

)
J(1)

|y|nϕ(|y|)dy

=: I + II + III.

For I, using (4.5) we have

I =
c

r

V (ρ)

ρ

∫

Bρ/2

|y|2 J(1)

|y|nϕ(|y|)dy =
c15
r

V (ρ)

ρ

∫ ρ/2

0

s

ϕ(s)
ds

≤ c16
r

V (ρ)

ρ

(ρ/2)2

ϕ(ρ/2)
≤ c17
V (r)

(
ρ

r

V (r)

V (ρ)

)
≤ c18
V (r)

,

where we used (2.8) and (2.9) for the last two inequalities. Also, using (4.8) we obtain

II = c

∫

Bc
r

V (|y|) J(1)

|y|nϕ(|y|)dy = c19

∫ ∞

r

V (s)

sϕ(s)
ds ≤ c20

V (r)
.

For the estimate of III, we first observe that for any y ∈ {ℓ > 0} := H ,
∣∣∣∣
ℓ(y)

dH(y)

∣∣∣∣ = ‖∇ψ(x0)‖ ≤ C.

Thus, by (2.9) we have

V (ℓ(y))

ℓ(y)
≤ c21

V (CdH(y))

dH(y)
≤ c22

V (dH(y))

dH(y)
.

Therefore, using Lemma 4.4 for Br and the half plane H := {ℓ > 0} for each line, we conclude

III =
c

r

∫

Br∩
(
B1(x0)\Bρ/2(x0)

)
V (dBr (y))

dBr (y)

J(1)

|y − x0|n−2ϕ(|y − x0|)
dy

+
c

r

∫

H∩
(
B1(x0)\Bρ/2(x0)

)
V (ℓ(y))

ℓ(y)

J(1)

|x− y|n−2ϕ(|x0 − y|)dy

≤ c23
r

r

V (r)
+
c24
r

∫

H∩
(
B1(x0)\Bρ/2(x0)

)
V (dH(y))

dH(y)

1

|x− y|n−2ϕ(|x0 − y|)dy ≤ c25
V (r)

.

Combining estimates of I,II and III we arrive

|L(V (ψ))(x0)| ≤ I + II + III ≤ (c18 + c20 + c25)
1

V (r)

and (4.18) follows. �

4.2. Subsolution and Harnack inequality. In this section we construct a subsolution from the
barrier we have obtained in Proposition 4.5. Recall that we defined the domain of infinitesimal
generator A by

D = D(D) = {u ∈ C0(D) : Au ∈ C(D)}
in Section 3.2. It is uncertain whether V (ψ) ∈ D(D) since A(V (ψ)) is not continuous in general.
To make our barrier included in the domain of operator, we construct a new domain of generator
which contains V (ψ). For given C1,1 bounded open set D and open subset U in D, define

F = F(D,U) := {u ∈ C0(D) : Au ∈ L∞(U)}.
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for the usage of proof. Denote F(D) = F(D,D). Clearly F(D,U2) ⊂ F(D,U1) for any U1 ⊂ U2.
We first prove that V (ψ) ∈ F(D).

Lemma 4.6. Let ψ be the regularized version of dD. Then, A(V (ψ)) = L(V (ψ)) in D. Moreover,
V (ψ) ∈ F(D).

Proof. Let u ∈ C0(D) be a twice-differentiable function in D. Assume that ∇2u is bounded in
some U ⊂⊂ D. We first claim that

(4.25) Lu(x) = Au(x) for any x ∈ U.

Indeed, fix x ∈ U and let rx > 0 be a constant satisfying B = B(x, rx) ⊂ U . Without loss of
generality we can assume rx ≤ 1. Note that there exists a constant c1 > 0 such that 2|u| +
r2x‖∇2u‖ ≤ c1 in U . Then we have

Au(x) = lim
t↓0

Ptu(x)− u(x)

t
= lim

t↓0

1

t

(∫

Rn

u(x+ y)p(t, |y|)dy − u(x)

)

= lim
t↓0

∫

Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
p(t, |y|)

t
dy.

(4.26)

Since there is a constant c2 > 0 such that p(t,r)
t ≤ c2J(r) for any t > 0 and r > 0, we have

∫

Rn

∣∣∣∣
u(x+ y) + u(x− y)

2
− u(x)

∣∣∣∣
p(t, |y|)

t
dy

≤
∫

B

∣∣∣∣
u(x+ y) + u(x− y)

2
− u(x)

∣∣∣∣
p(t, |y|)

t
dy +

∫

Bc

∣∣∣∣
u(x+ y) + u(x− y)

2
− u(x)

∣∣∣∣
p(t, |y|)

t
dy

≤ c1

∫

B

|y|2
r2x

p(t, |y|)
t

dy + c1

∫

Bc

p(t, |y|)
t

dy ≤ c1

∫

Rn

(
|y|2
r2x

∧ 1)(c3J(|y|))dy <∞

for any t > 0 so that we can apply dominate convergence theorem in the right-handed side of

(4.26). Thus, using lim
t↓0

p(t,r)
t = J(r) we obtain

Au(x) = lim
t↓0

∫

Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
p(t, |y|)

t
dy

=

∫

Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
J(|y|)dy = Lu(x).

This concludes the claim. Now, by Lemma 2.5 we have that V (ψ) ∈ C0(D) is twice-differentiable
and ∇2V (ψ) is locally bounded on D. Therefore, we arrive L(V (ψ)) = A(V (ψ)) in D. It imme-
diately follows from (4.17) that V (ψ) ∈ F(D). �

Now we are ready to construct a subsolution with respect to the generator A.

Lemma 4.7 (subsolution). There exist a constant C4 = C4(n, a1, a2, α1, α2) > 0 independent of
r and a radial function w = wr ∈ F(B4r) satisfying






Aw ≥ 0 in B4r \Br,
w ≤ V (r) in Br,

w ≥ C4V (4r − |x|) in B4r \Br,
w ≡ 0 in R

n \B4r,

where Br := B(0, r).

Proof. Let Ψ = Ψ4r be the regularized version of dB4r in (4.2) and choose a function η ∈ C∞
c (B1)

satisfying ‖η‖C(B1) = 1 and η ≡ 1 on B1/2. Define ηr(x) := V (r)η(x/r) ∈ C∞
c (Br). Then, we
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have

|Aηr(x)| = |Lηr(x)| ≤
∫

Rn

∣∣∣∣
ηr(x+ y) + ηr(x− y)

2
− ηr(x)

∣∣∣∣ J(|y|)dy

≤
(
‖∇2ηr‖L∞(Br) + ‖ηr‖L∞(Br)

) ∫

Rn

(
|y|2 ∧ 1

)
J(|y|)dy <∞

for any x ∈ R
n, which implies ηr ∈ F(B4r). Also, for x ∈ B4r\Br,

Aηr(x) = Lηr(x) =

∫

Rn

ηr(x+ y) + ηr(x− y)

2

J(1)

|y|nϕ(|y|)dy

=

∫

Rn

ηr(x+ y)
J(1)

|y|nϕ(|y|)dy ≥
∫

B(−x,r/2)

V (r)J(1)

|y|nϕ(|y|)dy ≥ c1(r/2)
nV (r)

(9r/2)nϕ(9r/2)
≥ c2
V (4r)

.

Here we used (2.8) and (2.9) for the last inequality.
Define a function w̃r by

w̃r =
c2
C3
V (Ψ) + ηr,

where C3 is the constant in Proposition 4.5. We have w̃r ∈ F(B4r) by Lemma 4.6. Also, for
x ∈ B4r\Br, using Proposition 4.5 and Lemma 4.6 again, we have

Aw̃r(x) =
c2
C3
AV (Ψ)(x) +Aηr(x) ≥ − c2

C3
|LV (Ψ)(x)| +Aηr(x) ≥ − c2

V (4r)
+

c2
V (4r)

= 0

and

w̃r(x) =
c2
C3
V (Ψ(x)) ≥ c3V (dD(x)) = c3V (4r − |x|).

For x ∈ Br,

w̃r(x) ≤
c2
C3
V (4Cr) + V (r) ≤ c4V (r)

by (4.2) and (2.9). Define wr(x) :=
1
c4
w̃r(x). Then wr satisfies all assertions in Lemma 4.7 with

constant C4 = c3
c4
, which is independent of r. �

We end this section with the Harnack inequality and the maximum principle of probabilistic
version. For local operators, the Harnack inequality implies Hölder regularity of solutions of
differential equations. However for nonlocal operators, as Silvestre mentioned in [33], this is not
true because the nonnegativity of the function u is required in the whole space R

n. The Harnack
inequality, maximum principle, and the subsolution constructed in Lemma 4.7 will play a key role
in the proof of Theorem 2.2. We emphasize that the following theorem is the Harnack inequality
for harmonic function with respect to A, and it does not imply the Harnack inequality for the
viscosity solution with respect to L. See [14] for the statement of Harnack inequality for viscosity
solution.

Theorem 4.8 (Harnack inequality). [36, Theorem 2.2] Let D be a bounded C1,1 open set. Then,
there exists a constant C > 0 such that for any ball B(x0, r) ⊂ D, and any nonnegative function
u ∈ F(D) satisfying Au = 0 a.e. in B(x0, r), we have

sup
B(x0,r/2)

u ≤ C inf
B(x0,r/2)

u.

Also, we have the following maximum principle.

Lemma 4.9 (Maximum principle). Let D be a bounded C1,1 open set and U be an open subset of
D. If the function u ∈ F(D,U) satisfies Au = 0 a.e. in U and u ≥ 0 in U c, then u ≥ 0 in R

n.
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Proof. Suppose that there exists x ∈ U satisfying u(x) < 0. Since u ∈ C0(D), the set U− := {x ∈
R
d : u(x) < 0} is bounded and open set with positive Lebesgue measure. For any t > 0 we have
∫

U−

Ptu(x)− u(x)dx =

∫

U−

∫

Rd

u(y)p(t, |x− y|)dydx−
∫

U−

u(x)dx

=

∫

Rd

u(y)

∫

U−

p(t, |x− y|)dxdy −
∫

U−

u(y)dy

=

∫

Uc
−

u(y)

∫

U−

p(t, |x− y|)dxdy +
∫

U−

u(y)

(∫

U−

p(t, |x− y|)dx− 1

)
dy

≥
∫

U−

u(y)

(∫

U−

p(t, |x− y|)dx− 1

)
dy.

Since U− is bounded, diam(U−) =: R <∞. Thus, for any y ∈ U− ⊂ B(y,R),

1−
∫
U−

p(t, |x− y|)dx
t

≥
1−

∫
B(y,R) p(t, |x− y|)dx

t
=

1

t
(1− P

y(Xt ∈ B(y,R))) =
P
0(|Xt| ≥ R)

t
.

Using heat kernel estimates in [3, Theorem 21], we have p(t, r) ≍
(
ϕ−1(t)−n ∧ t

rnϕ(r)

)
for (t, r) ∈

(0, 1]× R+. Note that t
rnϕ(r) ≤ ϕ−1(t)−n for t ≤ ϕ(r). Thus, there exists ε = ε(R) > 0 satisfying

P
0(|Xt| ≥ R)

t
≥ 1

t

∫

R≤|z|≤2R

p(t, |z|)dz ≥ c

∫ 2R

R

1

rϕ(r)
dr ≥ ε for all t ∈ (0, ϕ(R)].

Combining above estimates we obtain
∫

U−

Ptu(x)− u(x)

t
dx ≥ −ε

∫

U−

u(y)dy for all t ∈ (0, ϕ(R)].

Letting t→ 0, we conclude

0 =

∫

U−

Au(x)dx = lim
t→0

∫

U−

Ptu(x)− u(x)

t
dx ≥ −ε

∫

U−

u(y)dy > 0,

which is contradiction. Therefore, u ≥ 0 in R
n. �

4.3. Proof of Theorem 2.2. In this section we will prove Theorem 2.2. More precisely, we
prove the Hölder regularity for the function u/V (dD) up to the boundary of D. We will control
the oscillation of this function using the Harnack inequality, the maximum principle and the
subsolution constructed in Lemma 4.7.

Let us adopt notations in [28, Definition 3.3]. Let κ > 0 be a fixed small constant and let
κ′ = 1/2 + 2κ. Given x0 ∈ ∂D and r > 0, define

Dr = Dr(x0) = B(x0, r) ∩D
and

D+
κ′r = D+

κ′r(x0) = B(x0, κ
′r) ∩ {x ∈ D : −x · ν(x0) ≥ 2κr} ,

where ν(x0) is the unit outward normal at x0. Since D is a bounded C1,1 open set, there exists
ρ0 > 0 such that for each x0 ∈ ∂D and r ≤ ρ0, there exists an orthonormal system CSx0

with its
origin at x0 and a C1,1-function Ψ : Rn−1 → R satisfying Ψ(0̃) = 0,∇CSx0

Ψ(0̃) = 0, ‖Ψ‖C1,1 ≤ κ,
and

{y = (ỹ, yn) in CSx0
: |ỹ| < 2r,Ψ(ỹ) < yn < 2r} ⊂ D.

Then we have

B(y, κr) ⊂ Dr(x0) for all y ∈ D+
κ′r(x0),(4.27)

and we can take a C1.1 subdomain D1,1
r satisfying Dr ⊂ D1,1

r ⊂ D2r and

dist(y, ∂D1,1
r ) = dD(y)(4.28)
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for all y ∈ Dr. Since Dr is not C1,1 in general, we will use this subdomain instead of Dr.
Since D is bounded and C1,1 again, we can assume that for each x0 ∈ ∂D and r ≤ ρ0,

B(y∗ − 4κrν(y∗), 4κr) ⊂ Dr(x0) and B(y∗ − 4κrν(y∗), κr) ⊂ D+
κ′r(x0)(4.29)

for all y ∈ Dr/2(x0), where y
∗ ∈ ∂D is the unique boundary point satisfying |y − y∗| = dD(y).

The following oscillation lemma is the key lemma to prove Theorem 2.2.

Lemma 4.10 (Oscillation lemma). Assume f ∈ C(D) and let u ∈ D be the viscosity solution of
(2.6). Then there exist constants γ ∈ (0, 1) and C1 > 0, depending only on n, a1, a2, α1, α2 and D,
such that

sup
Dr(x0)

u

V (dD)
− inf
Dr(x0)

u

V (dD)
≤ C1V (r)γ‖f‖L∞(D)(4.30)

for any x0 ∈ ∂D and r > 0.

To prove the oscillation lemma, we need some preparation. Note that in the following two
lemmas we aim to verify inequalities for every function u ∈ F , since we want to utilize the
subsolution constructed in Lemma 4.7. The first one is a generalized version of Harnack inequality.

Lemma 4.11 (Harnack inequality). There exists a constant C2 = C2(n, a1, a2, α1, α2, D) > 0
such that for any r ≤ ρ0, x0 ∈ ∂D and nonnegative function u ∈ F(D,D1,1

r ),

sup
D+

κ′r
(x0)

u

V (dD)
≤ C2

(
inf

D+

κ′r
(x0)

u

V (dD)
+ ‖Au‖L∞(D1,1

r )V (r)

)
.(4.31)

Proof. We first prove that if a nonnegative function v satisfies Av = 0 a.e. in D1,1
r , then

sup
D+

κ′r
(x0)

v

V (dD)
≤ c inf

D+

κ′r
(x0)

v

V (dD)
(4.32)

for a constant c > 0 which is independent of r and v. Indeed, for each y ∈ D+
κ′r, we have

B(y, κr) ⊂ D1,1
r by (4.27) hence Av = 0 a.e. in B(y, κr). We may cover D+

κ′r by finitely many
balls B(yi, κr/2). Here the number of balls is independent of r. By the Theorem 4.8, we have for
each i,

sup
B(yi,κr/2)

v ≤ c1 inf
B(yi,κr/2)

v.

If x ∈ B(yi, κr/2), we have κr/2 ≤ dD(x) ≤ r/2 + 5κr/2. Thus, using (2.9) we obtain

sup
B(yi,κr/2)

v

V (dD)
≤ sup

B(yi,κr/2)

v

V (κr/2)
≤ c2 inf

B(yi,κr/2)

v

V (r/2 + 5κr/2)
≤ c2 inf

B(yi,κr/2)

v

V (dD)
.

Now (4.32) follows from the standard covering argument, possibly with a larger constant.

We next prove (4.31). Let us write u = u1+u2, where u1 := u+RD
1,1
r Au and u2 := −RD1,1

r Au.
We claim that u1 ≥ 0 in R

n and Au1 = 0 a.e. in D1,1
r .

Following the calculations of (3.21) we obtain that for any open subset U ⊂ D, x ∈ U and
u ∈ F(D,U),

(4.33) Au(x) = lim
t↓0

Ptu(x)− u(x)

t
= lim

t↓0

PUt u(x)− u(x)

t
.

Let us emphasize that we only have used u ∈ C0(D) in (3.21) so we can repeat the same argument
for u ∈ F(D,U).
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Let g ∈ L∞(U). Deducing RUg ∈ C0(U) from Proposition 3.2 and (3.1), we obtain the following
counterpart of (3.23): For any x ∈ U ,

ARUg(x) = A

(∫ ∞

0

PUs g(·)ds
)
(x) = lim

t↓0

1

t

(
PUt

(∫ ∞

0

PUs g(·)ds
)
(x)−

∫ ∞

0

PUs g(x)ds

)

= lim
t↓0

1

t

(∫ ∞

0

PUs+tg(x)ds−
∫ ∞

0

PUs g(x)ds

)

= − lim
t↓0

∫ t
0
PUs g(x)ds

t
= − lim

t↓0

∫ t
0
Psg(x)ds

t
.

(4.34)

Here we used (4.33) for the first line. Let

Ug := {x ∈ U : lim
r↓0

1

rn

∫

B(x,r)

|g(x)− g(y)|dy = 0}.

Then, we have |U \ Ug| = 0 since g ∈ L∞(U) ⊂ L1(U). For x ∈ Ug, we have

|Ptg(x)− g(x)| =
∣∣∣∣
∫

Rn

p(t, |x− y|)(g(y)− g(x))dy

∣∣∣∣ ≤
∫

Rn

p(t, |x− y|)|g(y)− g(x)|dy.

Let ε > 0. Using p(t, r) ≍
(
ϕ−1(t)−n ∧ t

rnϕ(r)

)
for t ∈ (0, 1]×R+ in [3, Theorem 21] again, there

exist constants c3(ε), c4(ε) > 0 such that for any t ∈ (0, 1] and r > 0,

p(t, r) ≤ c4ϕ
−1(t)−n

and

P
x(|Xt| > c3ϕ

−1(t)) ≤ ε.

Indeed, using (4.6) and (2.5) we have

P
x(|Xt| > c3ϕ

−1(t)) =

∫

|z|>c3ϕ−1(t)

p(t, |z|)dz ≤ c4t

∫ ∞

c3ϕ−1(t)

dr

rϕ(r)
≤ c5t

ϕ(c3ϕ−1(t))
≤ c6c

−2α1

3 .

Thus, we obtain

|Ptg(x)− g(x)| ≤
∫

B(x,c3ϕ−1(t))

p(t, |x− y|)|g(y)− g(x)|dy +
∫

B(x,c3ϕ−1(t))c
p(t, |x− y|)|g(y)− g(x)|dy

≤ c4ϕ
−1(t)−n

∫

B(x,c3ϕ−1(t))

|g(y)− g(x)|dy + 2‖g‖∞
∫

B(x,c3ϕ−1(t))

p(t, |x− y|)dy

≤ c4ϕ
−1(t)−n

∫

B(x,c3ϕ−1(t))

|g(y)− g(x)|dy + 2‖g‖∞ε.

Since ε > 0 is arbitrary and x ∈ Ug, we conclude

lim
t↓0

|Ptg(x)− g(x)| = 0.

Combining this with (4.34) we arrive that for any open subset U ⊂ D and g ∈ L∞(D),

(4.35) ARUg = −g a.e. in U.

Since u ∈ F(D,U), we have Au ∈ L∞(U). Thus, taking U = D1,1
r and g = Au in (4.35) we

conclude

Au1 = Au+ARD
1,1
r Au = 0 a.e. in D1,1

r .

Also, u1 ≥ 0 follows from applying Lemma 4.9 with above equation and u1 = u ≥ 0 in R
n\D1,1

r .
Applying (4.32) to u1, we get

sup
D+

κ′r

u1
V (dD)

≤ c7 inf
D+

κ′r

u1
V (dD)

.

Meanwhile, using (4.28) and Lemma 3.3 we have

|u2(x)| ≤ c8‖Au‖L∞(D1,1
r )V (diam(D1,1

r ))V (dist(x, ∂D1,1
r )) ≤ c9‖Au‖L∞(D1,1

r )V (r)V (dD(x))
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for all x ∈ D1,1
r . Therefore, combining above two inequalities we conclude that

sup
D+

κ′r

u

V (dD)
≤ sup

D+

κ′r

u1
V (dD)

+ sup
D+

κ′r

u2
V (dD)

≤ c5 inf
D+

κ′r

u1
V (dD)

+ sup
D+

κ′r

u2
V (dD)

≤ c5 inf
D+

κ′r

u

V (dD)
+ (c5 + 1) sup

D+

κ′r

|u2|
V (dD)

≤ C2

(
inf
D+

κ′r

u

V (dD)
+ ‖Au‖L∞(D1,1

r )V (r)

)
.

�

The next lemma gives the link between D+
κ′r and Dr/2. Here we are going to use the subsolution

w in Lemma 4.7.

Lemma 4.12. Let r ≤ ρ0, x0 ∈ ∂D. If u ∈ F(D,D1,1
r ) is nonnegative, then there exists a constant

C3 = C3(n, a1, a2, α1, α2, D) > 0 such that

inf
D+

κ′r
(x0)

u

V (dD)
≤ C3

(
inf

Dr/2(x0)

u

V (dD)
+ ‖Au‖L∞(D1,1

r )V (r)

)
.

Proof. First assume that Au is nonnegative. As in the proof of Lemma 4.11, we write u = u1+u2,

where u1 = u+RD
1,1
r Au and u2 = −RD1,1

r Au. Then u1 is a nonnegative solution for
{
Au1 = 0 a.e. in D1,1

r ,

u1 = u in R
n \D1,1

r .

Let

m := inf
D+

κ′r

u1
V (dD)

≥ 0.

For y ∈ Dr/2, we have either y ∈ D+
κ′r or dD(y) < 4κr by (4.29).

If y ∈ D+
κ′r, then clearly

m ≤ u1(y)

V (dD(y))
.(4.36)

If dD(y) < 4κr, let y∗ be the closest point to y on ∂D1,1
r and let ỹ = y∗ − 4κrν(y∗). By (4.29),

we have B4κr(ỹ) ⊂ Dr and Bκr(ỹ) ⊂ D+
κ′r.

Now consider w ∈ F(B4κr(ỹ)) ⊂ F(D,B4κr(ỹ)\Bκr(ỹ)) satisfying




Aw ≥ 0 in B4κr(ỹ) \Bκr(ỹ),
w ≤ V (κr) in Bκr(ỹ),

w ≥ c1V (4κr − |x− ỹ|) in B4κr(ỹ) \Bκr(ỹ),
w ≡ 0 in R

n \B4κr(ỹ),

which can be obtained by translating the subsolution in Lemma 4.7. Since Au1 = 0 a.e. in
B4κr(ỹ), we have





Au1 = 0 ≤ A(mw) a.e. in B4κr(ỹ) \Bκr(ỹ),
u1 ≥ mV (dD) ≥ mw in Bκr(ỹ),

u1 ≥ 0 = mw in R
n \B4κr(ỹ).

Now by the maximum principle in Lemma 4.9 with the function u1−mw and U = B4κr(ỹ)\Bκr(ỹ),
we obtain u1 ≥ mw in R

n. In particular, for y ∈ B4κr(ỹ) \Bκr(ỹ),
u1(y) ≥ c1mV (4κr − |y − ỹ|) = c1mV (dD(y)).

Therefore, we obtain

inf
D+

κ′r

u1
V (dD)

≤ c2 inf
Dr/2

u1
V (dD)

.



30 MINHYUN KIM, PANKI KIM, JAEHUN LEE, AND KI-AHM LEE

On the other hand, u2 satisfies

|u2(x)| ≤ c3‖Au‖L∞(D1,1
r )V (r)V (dD(x))

for all x ∈ D1,1
r , which gives the desired result. �

We prove the oscillation lemma (4.30) by using Lemmas 4.11 and 4.12.

Proof of Lemma 4.10 As a consequence of Remark 3.4, by dividing ‖f‖L∞(D) on both sides of

(2.6) if necessary, we may assume ‖f‖L∞(D) ≤ 1 and ‖u‖C(D) = ‖RDf‖C(D) ≤ c1 without loss
of generality. Fix x0 ∈ ∂D. We will prove that there exist constants c2 > 0, ρ1 ∈ (0, ρ0/16], and
γ ∈ (0, 1) and monotone sequences (mk)k≥0 and (Mk)k≥0 such that Mk −mk = V (rk+1/2)

γ ,

−V (ρ1/16) ≤ mk ≤ mk+1 < Mk+1 ≤Mk ≤ V (ρ1/16),

and

mk ≤ u

c2V (dD)
≤Mk in Drk = Drk(x0)

for all k ≥ 0, where rk = ρ18
−k. If we have such constants and sequences, then for any 0 < r ≤ ρ1

we have k ≥ 0 satisfying r ∈ (rk+1, rk] and

sup
Dr

u

V (dD)
− inf

Dr

u

V (dD)
≤ sup

Drk

u

V (dD)
− inf
Drk

u

V (dD)
≤ c2(Mk −mk) = c2V (rk+1/2)

γ ≤ c2V (r)γ .

Also, for any r > ρ1 we have

sup
Dr

u

V (dD)
− inf

Dr

u

V (dD)
≤ c3 ≤ c4V (ρ1)

γ ≤ c4V (r)γ

by Lemma 3.3. Above two inequalities conclude the lemma so it suffices to construct such constants
and sequences.

Let us use the induction on k. The case k = 0 follows from Lemma 3.3 provided we take c2 large
enough. The constants ρ1 and γ will be chosen later. Assume that we have sequences up to mk

and Mk. Let ψ be the regularized version of dD. We may assume that ψ = dD in {dD(x) ≤ ρ1}.
Define

uk = V (ψ)

(
u

c2V (ψ)
−mk

)
=

1

c2
u−mkV (ψ)

in R
n. Note that uk ∈ F(D) since Au = f by the consequence of Theorem 3.10. Moreover,

for x ∈ D1,1
rk/4

we have u−k ∈ C2(x) since we know that u−k ≡ 0 in B(x0, rk) by the induction

hypothesis. Thus, we have Au−k (x) = Lu−k (x) by (3.20), which implies that Au−k is well-defined in

D1,1
rk/4

, and so is Au+k . We will apply Lemmas 4.11 and 4.12 for the function u+k and r = rk/4 to

find mk+1 and Mk+1. By (4.17) and Lemma 4.6, we have

|Au+k | ≤ |Auk|+ |Au−k | ≤
∣∣∣∣
1

c2
Au −mkAV (ψ)

∣∣∣∣+ |Au−k |

≤
(

1

c2
|f |+ V (ρ1/16)|L(V (ψ))|

)
+ |Au−k | ≤ c3 + |Au−k |

(4.37)

in D. Thus, we need to estimate |Au−k | in D
1,1
rk/4

for the usage of Lemmas 4.11 and 4.12.

Let x ∈ D1,1
rk/4

. By the induction hypothesis, we have u−k ≡ 0 in B(x0, rk), which implies that

u−k ∈ C2(x). Thus, we compute the value Au−k (x) using the operator L as follows:

0 ≤ Au−k (x) = Lu−k (x) =
1

2

∫

Rn

(
u−k (x+ h) + u−k (x− h)

) J(1)

|h|nϕ(|h|) dh

=

∫

x+h/∈Brk

u−k (x+ h)
J(1)

|h|nϕ(|h|) dh.
(4.38)
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For any y ∈ Br0 \ Brk , there is 0 ≤ j < k such that y ∈ Brj \ Brj+1
. Since c−1

2 u ≥ mjV (ψ) and
dD = ψ in Brj , we have

uk(y) = c−1
2 u(y)−mkV (ψ(y)) ≥ (mj −mk)V (ψ(y))

≥ (mj −Mj +Mk −mk)V (dD(y)) ≥ −(V (rj+1/2)
γ − V (rk+1/2)

γ)V (rj).

It follows from rj+1 ≤ |y − x0| < rj ≤ 8|y − x0| ≤ 1 that

u−k (y) ≤ c4 (V (|y − x0|/2)γ − V (rk/16)
γ)V (8|y − x0|)

≤ c5 (V (|y − x0|/2)γ − V (rk/16)
γ)V (|y − x0|/2).

(4.39)

Note that (4.39) possibly with a larger constant also holds for y ∈ R
n \Br0 because ‖uk‖C(Rn) ≤

c1c
−1
2 + V (1/16)V (C̃) for any k and

(V (|y − x0|/2)γ − V (rk/16)
γ)V (|y − x0|/2) ≥ (V (ρ1/2)

γ − V (ρ1/16)
γ)V (ρ1/2) > 0

for any y ∈ R
n \Br0 . Thus, by (4.38) and (4.39), we have

|Au−k (x)| ≤ c6

∫

x+y/∈Brk

(V (|x + h− x0|/2)γ − V (rk/16)
γ)
V (|x+ y − x0|/2)

|h|nϕ(|h|) dh.

If x+y /∈ Brk , then |h| ≥ |x+h−x0|−|x−x0| ≥ rk−rk/2 = rk/2 and |x+h−x0| ≤ rk/2+|h| ≤ 2|h|.
Thus, recalling that P1(r) =

∫∞
r

ds
sϕ(s) , we obtain

|Au−k (x)| ≤ c6

∫

|h|≥rk/2
(V (|h|)γ − V (rk/16)

γ)
V (|h|)

|h|nϕ(|h|) dh

≤ c7

∫ ∞

rk/2

(V (s)γ − V (rk/16)
γ)V (s)d(−P1)(s)

= c7

(
[− (V (s)γ − V (rk/16)

γ) V (s)P1(s)]
∞
rk/2

+

∫ ∞

rk/2

((1 + γ)V (s)γ − V (rk/16)
γ)V ′(s)P1(s)ds

)
=: c7 (I + II) .

By (4.10) we have

lim
s→∞

(V (s)γ − V (rk/16)
γ)V (s)P1(s) ≤ c8 lim

s→∞
V (s)γ − V (rk/16)

γ

V (s)
= 0,

hence

I ≤ c8
V (rk/2)

γ − V (rk/16)
γ

V (rk/2)
.

Also, using (4.10) again we have

II ≤ c8

∫ ∞

rk/2

((1 + γ)V (s)γ − V (rk/16)
γ)
V ′(s)

V (s)2
ds

= c8

(
1 + γ

1− γ
V (rk/2)

γ − V (rk/16)
γ

)
1

V (rk/2)
.

Therefore, combining above two inequalities and using (2.9) we get

|Au−k (x)| ≤ c9

(
2

1− γ
V (rk/2)

γ − 2V (rk/16)
γ

)
1

V (rk/2)

≤ c9

(
2

1− γ
(c1064

α2)
γ − 2

(
c−1
10 8

α1
)γ
)
V (rk+2/2)

γ

V (rk/4)

=: c9εγ
V (rk+2/2)

γ

V (rk/4)
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and hence

‖Au+k ‖L∞(D1,1
rk/4

) ≤ c11

(
1 + εγ

V (rk+2/2)
γ

V (rk/4)

)
.

Note that εγ → 0 as γ → 0.

Now we apply Lemma 4.11 and 4.12 for u+k ∈ F(D,D1,1
rk/4

). Since uk = u+k and dD = ψ in Drk ,

we have

sup
D+

κ′rk/4

(
u

c2V (ψ)
−mk

)
≤ c12



 inf
D+

κ′rk/4

(
u

c2V (ψ)
−mk

)
+ V (rk/4) + εγV (rk+2/2)

γ





≤ c13

(
inf

Drk+1

(
u

c2V (ψ)
−mk

)
+ V (rk/4) + εγV (rk+2/2)

γ

)
.

Repeating this procedure with the function uk = MkV (dD) − c−1
2 u instead of uk = c−1

2 u −
mkV (dD), we also have

sup
D+

κ′rk/4

(
Mk −

u

c2V (ψ)

)
≤ c14

(
inf

Drk+1

(
Mk −

u

c2V (ψ)

)
+ V (rk/4) + εγV (rk+2/2)

γ

)
.

Adding up these two inequalities, we obtain

Mk −mk ≤ c15

(
inf

Drk+1

u

c2V (ψ)
− sup
Drk+1

u

c2V (ψ)
+Mk −mk + V (rk/4) + εγV (rk+2/2)

γ

)
.

Thus, recalling that Mk −mk = V (rk+1/2)
γ , we get

sup
Drk+1

u

c2V (ψ)
− inf
Drk+1

u

c2V (ψ)
≤ c15 − 1

c15
V (rk+1/2)

γ + V (rk/4) + εγV (rk+2/2)
γ

≤
(
c15 − 1

c15
cγ16 + cγ17V (ρ1)

1−γ + εγ

)
V (rk+2/2)

γ .

Now we choose γ and ρ1 small enough so that

c15 − 1

c15
cγ16 + cγ17V (ρ1)

1−γ + εγ ≤ 1,

and it yields that

sup
Drk+1

u

c2V (ψ)
− inf
Drk+1

u

c2V (ψ)
≤ V (rk+2/2)

γ .

Therefore, we are able to choose mk+1 and Mk+1. �

Finally, we prove the Theorem 2.2 using the Lemma 4.10.

Proof of Theorem 2.2 By Remark 3.4, by dividing ‖f‖L∞(D) on both sides of (2.6) if necessary,
we may assume that ‖f‖L∞(D) ≤ 1 and ‖u‖C(D) ≤ c1. We first show that the following holds for
any x ∈ D:

[
u

V (dD)

]

Cβ(B(x,r/2))

≤ C

rβV (r)

for each 0 < β ≤ α1, where r = dD(x). We are going to use the inequality
[

u

V (dD)

]

Cβ

≤ ‖u‖C
[

1

V (dD)

]

Cβ

+ [u]Cβ

∥∥∥∥
1

V (dD)

∥∥∥∥
C

.(4.40)
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From (3.16) we know that [u]CV (B(x,r/2)) ≤ c2. Thus, we have [u]Cβ(B(x,r/2)) ≤ c3 for each
0 < β ≤ α1. Since dD(y) ≥ r/2 for y ∈ B(x, r/2), we have

∥∥∥∥
1

V (dD)

∥∥∥∥
C(B(x,r/2))

≤ c4
V (r)

and [
1

V (dD)

]

C0,1(B(x,r/2))

≤ sup
y,z∈B(x,r/2)

|V (dD(y))
−1 − V (dD(z))

−1|
|y − z|

≤ sup
y,z∈B(x,r/2)

V ′(d∗)

V (d∗)2
|dD(y)− dD(z)|

|y − z|

≤ c5

(
sup

y,z∈B(x,r/2)

1

d∗V (d∗)

)
[d]C0,1(B(x,r/2))

≤ c6
rV (r)

,

where d∗ is a value in [dD(y), dD(z)], so d
∗ ≥ r/2. Thus, by interpolation, we obtain

[
1

V (dD)

]

Cβ(B(x,r/2))

≤ c7

∥∥∥∥
1

V (dD)

∥∥∥∥
1−β

C(B(x,r/2))

[
1

V (dD)

]β

C0,1(B(x,r/2))

≤ c8
rβV (r)

and it follows from (4.40) that
[

u

V (dD)

]

Cβ

≤ c1c8
rβV (r)

+
c3c4
V (r)

≤ c9
rβV (r)

.(4.41)

Next, let x, y ∈ D and let us show that
∣∣∣∣

u(x)

V (dD(x))
− u(y)

V (dD(y))

∣∣∣∣ ≤ C|x− y|α

for some α > 0. Without loss of generality, we may assume that r := dD(x) ≥ dD(y). Fix any
0 < β ≤ α1 and let p > 1 + α2/β. If |x− y| ≤ rp/2, then we have |x− y| ≤ r/2 and y ∈ B(x, r/2)
since r ≤ 1. Thus, by (4.41) we obtain

∣∣∣∣
u(x)

V (dD(x))
− u(y)

V (dD(y))

∣∣∣∣ ≤ c9
|x− y|β
rβV (r)

≤ c10
|x− y|β−β/p
V (|x− y|1/p) ≤ c11|x− y|β−(β+α2)/p.

On the other hand, if |x−y| ≥ rp/2, let x0, y0 ∈ ∂D be boundary points satisfying dD(x) = |x−x0|
and dD(y) = |y − y0|. Then by the oscillation lemma 4.10 we have

∣∣∣∣
u(x)

V (dD)(x)
− u(x0)

V (dD)(x0)

∣∣∣∣ ≤ c12V (dD(x))
γ ,

∣∣∣∣
u(y)

V (dD)(y)
− u(y0)

V (dD)(y0)

∣∣∣∣ ≤ c12V (dD(y))
γ(4.42)

and ∣∣∣∣
u(x0)

V (dD)(x0))
− u(y0)

V (dD)(y0)

∣∣∣∣ ≤ c12V (dD(x) + |x− y|+ dD(y))
γ .(4.43)

Using inequalities (4.42) and (4.43) we obtain
∣∣∣∣

u(x)

V (dD)(x))
− u(y)

V (dD)(y)

∣∣∣∣ ≤ c12 (2V (r)γ + V (2r + |x− y|)γ) ≤ c13|x− y|α1γ/p.

Therefore, taking α = min {β − (β + α2)/p, α1γ/p} gives the result. �
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cesses. Probab. Theory Related Fields, 162(1-2):155–198, 2015.

[5] R. F. Bass and M. Kassmann. Harnack inequalities for non-local operators of variable order. Trans. Amer.
Math. Soc., 357(2):837–850, 2005.
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[33] L. Silvestre. Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana
Univ. Math. J., 55(3):1155–1174, 2006.

[34] A. V. Skorohod. Random processes with independent increments, volume 47 of Mathematics and its Applica-
tions (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the second Russian
edition by P. V. Malyshev.
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