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Application of Symmetry Groups to the Observability Analysis of

Partial Differential Equations

Bernd Kolar, Hubert Rams, and Markus Schöberl

Abstract— Symmetry groups of PDEs allow to transform
solutions continuously into other solutions. In this paper, we
use this property for the observability analysis of nonlinear
PDEs with input and output. Based on a differential-geometric
representation of the nonlinear system, we derive conditions
for the existence of special symmetry groups that do not
change the trajectories of the input and the output. If such a
symmetry group exists, every solution can be transformed into
other solutions with the same input and output trajectories but
different initial conditions, and this property can be used to
prove that the system is not observable. We also put emphasis
on showing how the approach simplifies for linear systems, and
how it is related to the well-known observability concepts from
infinite-dimensional linear systems theory.

Index Terms— differential geometry, nonlinear partial differ-
ential equations, observability, symmetry groups

I. INTRODUCTION

Symmetry groups of (nonlinear) partial differential equa-

tions (PDEs) were introduced by S. Lie in the late nineteenth

century, and have a wide range of applications. Roughly

speaking, a symmetry group of a system of PDEs is a group

which transforms solutions of the system into other solutions,

see [1]. Thus, symmetry groups can be used to construct

new solutions from given ones. In this contribution, we shall

employ symmetry groups to analyze the observability – or

rather, to prove the non-observability – of nonlinear infinite-

dimensional systems with input and output.

The mathematical framework for the calculation of sym-

metry groups is differential geometry. Even though they

are probably not as widely used as functional-analytic ap-

proaches, differential-geometric methods have turned out to

be well-suited for the system- and control-theoretic analysis

of PDEs, see e.g. [2], [3], [4], [5], [6], [7], or [8], to mention

but a few.

The observability problem is about determining the initial

conditions of a system uniquely from the trajectories of

the input and the output. Following the terminology used

in [9] and [10] for finite-dimensional systems, a pair of

initial conditions is said to be indistinguishable if for every

admissible trajectory of the input, the system generates for

both initial conditions the same trajectory of the output.

In other words, the initial conditions are said to be indis-

tinguishable if they determine the same input-output map.

The system is said to be observable, if (locally) there exists

no pair of indistinguishable initial conditions. As pointed
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out in [9], already for finite-dimensional nonlinear systems

the choice of the input trajectory is important, since the

observability of a system does not imply that every input

trajectory distinguishes two initial conditions. For linear

systems the situation is simpler. Because of the superposition

principle the choice of the input does not matter: If one input

distinguishes two initial conditions, then every input does.

In [11] and [12], symmetry groups have already been used

to show that a system of nonlinear PDEs with input and

output is not “observable along a trajectory”. Furthermore,

in [13] they have also been used to study the accessibility of

nonlinear PDEs with input. The term “along a trajectory”

in [11] and [12] means that the observability problem is

considered only for a fixed choice of the input trajectory.

Substituting the trajectory of the input into the system

equations yields an autonomous, time-variant system, and

then symmetry groups are used to show that there exist

indistinguishable initial conditions that generate the same

output trajectory.

In this contribution, in contrast, we consider the full

observability problem, where the input is free, for a class

of second-order nonlinear PDEs with a single input and a

single output. The idea is very simple and roughly speaking

as follows: If there exists a symmetry group that does not

change the trajectories of the input and the output, then the

system cannot be observable. This is due to the fact that

such a symmetry group allows to transform every solution

into (infinitely many) other solutions with the same input

trajectory and the same output trajectory, but different initial

conditions. These initial conditions are indistinguishable, and

consequently the system is not observable. We also put

emphasis on showing how the symmetry group approach

simplifies for linear systems. In particular, we want to point

out how it is related to the well-known observability concepts

from infinite-dimensional linear systems theory, that can be

found e.g. in [14]. Of course, it is important to remark

that such a comparison suffers from the different solution

concepts for PDEs. For the calculation of symmetry groups

we need a differential-geometric framework and consider like

in [1] only smooth solutions, whereas the semigroup theory

used in [14] is based on mild or generalized solutions.

The paper is structured as follows: First, in Section II we

discuss the representation of the considered class of PDEs

as submanifolds of certain jet manifolds. This differential-

geometric framework is the basis for the calculation of

symmetry groups, which is discussed in Section III. In

Section IV we show how symmetry groups can be used

for our control-theoretic application, and demonstrate it by
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means of two examples. Finally, in Section V we show how

our approach simplifies for linear systems.

II. GEOMETRIC REPRESENTATION OF PDES

In this contribution, we consider nonlinear PDEs

∂tx
α(z, t) = fα(z, t, x(z, t), ∂zx(z, t), ∂

2
zx(z, t), u(t)) ,

(1)

α = 1, . . . , nx, on a 1-dimensional spatial domain Ω =
(0, 1) ⊂ R with a single input u(t), boundary conditions

gλ(t, x(0, t), ∂zx(0, t)) = 0 , λ = 1, . . . , nA

hµ(t, x(1, t), ∂zx(1, t)) = 0 , µ = 1, . . . , nB ,
(2)

and an output function

y(t) = c(t, x(z0, t), ∂zx(z0, t)) (3)

defined at some point z0 ∈ Ω̄. The functions fα, gλ, hµ,

and c are assumed to be smooth, and nA and nB denote

the number of boundary conditions at z = 0 and z = 1. As

usual, by Ω̄ = [0, 1] we denote the closure of Ω. Throughout

this paper, we take for granted that solutions of the PDEs

(1) with the boundary conditions (2) exist and are uniquely

determined by the initial condition x(z, 0) and the input

function u(t) (well-posedness, see e.g. [15]). Since our focus

is on analyzing the PDEs from a formal geometric point of

view, we shall not verify this assumption. This is in general

a difficult task, which would require additional functional-

analytic methods.

It should be noted that we consider an input u(t) that only

depends on the time t and not on the spatial variable z, even

though it acts on the domain Ω and not on the boundary. The

motivation for this restriction is that in many engineering

applications we do not have an input u(z, t) that can be

chosen as a function of z and t, but rather an input u(t) that

appears in the PDEs multiplied with some fixed function of

z, i.e. in the form b(z)u(t).
In the following, we discuss the representation of the

considered nonlinear systems as submanifolds of certain

jet manifolds. This differential-geometric framework is the

basis for the calculation of symmetry groups, see [1]. For

an introduction to differential geometry and to jet bundles

we refer e.g. to [16], [17], [18], and [19]. We frequently

use index notation and especially the Einstein summation

convention to keep formulas short and readable. Thus, we

write e.g. a vector field on an m-dimensional manifold

M with coordinates x = (x1, . . . , xm) as v = vα(x)∂xα

instead of v =
∑m

α=1 v
α(x)∂xα . The Lie derivative of a

function ϕ(x) along a vector field v is denoted by Lv(ϕ). To

avoid mathematical subtleties, we assume that all functions,

vector fields, etc., are smooth. Furthermore, it is important

to emphasize that all our investigations are only local.

For a differential-geometric representation of the PDEs

(1), we introduce the bundle (E , π, Ω̄ × R
+), where

E is a (3 + nx)-dimensional manifold with coordinates

(z, t, x, u), Ω̄ × R
+ is a 2-dimensional space-time man-

ifold with coordinates (z, t), and π is the canonical

projection given in coordinates by π : (z, t, x, u) →

(z, t). The second jet manifold J2(E) has coordinates

(z, t, x, u, xz, xt, uz, ut, xzz, xzt, xtt, uzz, uzt, utt), i.e. the

coordinates of E plus the derivatives of x and u with respect

to z and t up to order two.1 In this framework, the PDEs

(1) can be represented as a subvariety S2 ⊂ J2(E), which

is determined by the equations

xα
t − fα(z, t, x, xz , xzz, u) = 0 , α = 1, . . . , nx

uz = 0
uzz = 0
uzt = 0 .

(4)

Here the additional equations for uz, uzz , and uzt incorporate

the restriction that we only allow solutions where u does not

depend on z. To avoid mathematical subtleties, we assume

that the Jacobian matrix of the nx + 3 functions

xα
t − fα(z, t, x, xz, xzz , u) , α = 1, . . . , nx

uz

uzz

uzt

with respect to the coordinates of J2(E) has maximal rank

nx + 3 on the subvariety S2. With this assumption, S2 is a

regular submanifold of J2(E) (of codimension nx + 3).2

The boundary conditions (2) are equations on manifolds

BA and BB with coordinates (t, x, u, xz, xt, uz, ut), i.e. with

all coordinates of J1(E) except for z. Provided that the Ja-

cobian matrices of the functions gλ(t, x, xz), λ = 1, . . . , nA

and hµ(t, x, xz), µ = 1, . . . , nB have both maximal rank nA

and nB , the boundary conditions describe regular submani-

folds S1
A ⊂ BA and S1

B ⊂ BB .

Within this paper, we consider only smooth solutions of

PDEs. A smooth section γ : Ω̄× R
+ → E

z = z xα = γα
x (z, t)

t = t u = γu(z, t)

of the bundle (E , π, Ω̄ × R
+) is a solution of the PDEs (1)

with the boundary conditions (2) if and only if its second

prolongation j2(γ) : Ω̄×R
+ → J2(E), given in coordinates

by
z = z xα = γα

x (z, t)
t = t u = γu(z, t)

xα
z = ∂zγ

α
x (z, t) xα

zz = ∂2
zγ

α
x (z, t)

xα
t = ∂tγ

α
x (z, t) xα

zt = ∂t∂zγ
α
x (z, t)

uz = ∂zγu(z, t) xα
tt = ∂2

t γ
α
x (z, t)

ut = ∂tγu(z, t) uzz = ∂2
zγu(z, t)

uzt = ∂t∂zγu(z, t)
utt = ∂2

t γu(z, t) ,

(5)

satisfies

(xα
t − fα(z, t, x, xz, xzz , u)) ◦ j

2(γ) = 0
uz ◦ j

2(γ) = 0
uzz ◦ j

2(γ) = 0
uzt ◦ j

2(γ) = 0

(6)

1Note that x is here an abbreviation for (x1, . . . , xnx). Likewise, xz is
an abbreviation for (x1

z
, . . . , x

nx

z ), and so on.
2The superscript in S2 highlights that it is a submanifold of the second

jet manifold.



on Ω× R
+, as well as

gλ(t, x, xz) ◦ j
1(γ)

∣
∣
z=0

= 0
hµ(t, x, xz) ◦ j

1(γ)
∣
∣
z=1

= 0
(7)

on 0×R
+ and 1×R

+, respectively. Because of the last three

equations in (6), a section (5) can only be a solution if γu
is independent of z.

The condition (6) is equivalent to the statement that the

image of Ω×R
+ under the map j2(γ), written as j2(γ)(Ω×

R
+), must lie entirely in the submanifold S2 ⊂ J2(E)

determined by the equations (4), see [1]. Likewise, condition

(7) is equivalent to the statement that the images of the

boundaries 0 × R
+ and 1 × R

+ under the restricted maps

j1(γ)
∣
∣
z=0

and j1(γ)
∣
∣
z=1

, written as j1(γ)
∣
∣
z=0

(0×R
+) and

j1(γ)
∣
∣
z=1

(1 × R
+), must lie entirely in the submanifolds

S1
A ⊂ BA and S1

B ⊂ BB determined by the boundary

conditions.

III. SYMMETRY GROUPS

For an extensive introduction to Lie groups, transformation

groups, and symmetry groups of differential equations, we

refer to [1]. In the following, we briefly recapitulate some

basics. First, a Lie group is a group that carries the structure

of a smooth manifold, so the group elements can be con-

tinuously varied. More precisely, an r-parameter Lie group

carries the structure of an r-dimensional manifold in such

a way that both the group operation and the inversion are

smooth maps between manifolds. Second, a transformation

group acting on some manifold M is a Lie group G together

with a map from (an open subset of) G × M to M that

satisfies certain properties. Thus, to each group element

g ∈ G there is associated a map from M to itself, and this

map is a diffeomorphism on M (where it is defined). An

important example of a (1-parameter) transformation group

is the flow Φε of a vector field v defined on M. Here the

Lie group is an interval I0 ⊂ R containing 0, and for every

ε ∈ I0, Φε is a diffeomorphism on M. We shall use this

type of transformation group throughout the paper. Finally,

a symmetry group of a system of PDEs (1) is, roughly

speaking, a transformation group acting on the space of

independent and dependent variables E that maps solutions

onto solutions. The following definition of a symmetry group

can be found in [1].

Definition 1: A symmetry group of the system (1) is a

local group of transformations G acting on an open subset of

the space of independent and dependent variables E , with the

property that whenever γ is a solution of (1), and whenever

g · γ with g ∈ G is defined, then g · γ is also a solution of

(1). Here g ·γ denotes the application of the diffeomorphism

associated with the group element g to the solution γ.

Instead of considering arbitrary transformation groups

acting on E , for our control-theoretic application we make

two simplifications. First, we consider only transformation

groups that do not affect the independent variables. With

respect to the bundle (E , π, Ω̄ × R
+), this means that the

transformations shift points of E only in vertical direction,

i.e., tangent to the fibers. For this reason, we also speak of

vertical transformation groups. Second, for proving that a

system is not observable, it is sufficient to consider only 1-

parameter transformation groups, where the group elements

can be varied by a single group parameter. We denote such a

vertical 1-parameter transformation group that acts on E by

Φε, with the group parameter ε. In coordinates, it is given

by

Φε : (z, t, x, u) → (z, t,Φx,ε(z, t, x, u),Φu,ε(z, t, x, u)) .
(8)

For every ε in some interval I0 ⊂ R containing zero, (8) is

a diffeomorphism on E , and for ε = 0 it is the identity map.

Every vertical 1-parameter transformation group Φε that

acts on E is generated by a vector field

v = vαx (z, t, x, u)∂xα + vu(z, t, x, u)∂u (9)

on E . This vector field is called the infinitesimal generator,

and can be calculated from the coordinate representation (8)

of Φε via the relation

v =
(

∂εΦ
α
x,ε

∣
∣
ε=0

)

∂xα +
(
∂εΦu,ε|ε=0

)
∂u . (10)

Since we consider a transformation group (8) that does not

affect the independent variables, the infinitesimal generator

is a vertical vector field, which means that it is tangent to

the fibers of the bundle (E , π, Ω̄× R
+). The transformation

group Φε is just the flow of this vector field, with the

flow parameter ε. This one-to-one correspondence between

1-parameter transformation groups and their infinitesimal

generators is very useful for the calculation of symmetry

groups. The conditions, which a transformation group Φε

must satisfy to be a symmetry group of a system of PDEs,

can be formulated in terms of its infinitesimal generator

v. Since the transformation group operates on E but the

PDEs (1) determine (algebraic) equations on J2(E), these

conditions involve the second prolongation

j2(v) = vαx∂xα + vu∂u+
+dz(v

α
x )∂xα

z
+ dt(v

α
x )∂xα

t
+

+dz(vu)∂uz
+ dt(vu)∂ut

+
+dzz(v

α
x )∂xα

zz
+ dzt(v

α
x )∂xα

zt
+ dtt(v

α
x )∂xα

tt
+

+dzz(vu)∂uzz
+ dzt(vu)∂uzt

+ dtt(vu)∂utt

of v. Here

dz = ∂z+xα
z ∂xα+uz∂u+xα

zz∂xα

z
+xα

zt∂xα

t
+uzz∂uz

+uzt∂ut

and

dt = ∂t+xα
t ∂xα +ut∂u+xα

zt∂xα
z
+xα

tt∂xα

t
+uzt∂uz

+utt∂ut

are the total derivatives with respect to z and t. For repeated

total derivatives of a function ϕ(z, t, x, u) we use the ab-

breviations dzz(ϕ) = dz(dz(ϕ)), dzt(ϕ) = dt(dz(ϕ)), and

dtt(ϕ) = dt(dt(ϕ)).
The vector field j2(v) is defined on J2(E), and it is the

infinitesimal generator of the second prolongation j2(Φε) :
J2(E) → J2(E) of Φε, which is a transformation group

on J2(E). The coordinate representation of j2(Φε) can

be obtained from (8) by adding all first and second total



derivatives of Φx,ε(z, t, x, u) and Φu,ε(z, t, x, u) with respect

to z and t.

The following theorem provides conditions which ensure

that a vertical vector field generates a 1-parameter symmetry

group of the system (1) with boundary conditions (2). It

should be noted that in [1] only the case without boundary

conditions is considered. Therefore, we need additional con-

ditions, which ensure that the transformation group does not

violate the boundary conditions.

Theorem 1: If the prolongations of a smooth vector field

(9) satisfy the conditions

Lj2(v) (x
α
t − fα(z, t, x, xz, xzz , u)) = 0

Lj2(v)uz = 0
Lj2(v)uzz = 0
Lj2(v)uzt = 0

(11)

on the submanifold S2 ⊂ J2(E), and the conditions

Lj1(v)g
λ(t, x, xz)

∣
∣
z=0

= 0

Lj1(v)h
µ(t, x, xz)

∣
∣
z=1

= 0
(12)

on the submanifolds S1
A ⊂ BA and S1

B ⊂ BB, then it is the

infinitesimal generator of a vertical 1-parameter symmetry

group of the system (1) with the boundary conditions (2).

Proof: The condition (11) ensures that v is the infinites-

imal generator of a symmetry group of the system (1) without

boundary conditions, see [1]. Geometrically, the condition

that the Lie derivatives (11) vanish on the submanifold

S2 ⊂ J2(E) means that the vector field j2(v) is tangent

to S2. Therefore, the corresponding transformation group

j2(Φε) : J
2(E) → J2(E) has the property

j2(Φε)(S
2) ⊂ S2 , (13)

i.e. it maps all points of S2 again on S2. As already remarked

before, a section γ : Ω̄×R
+→ E of the bundle (E , π, Ω̄×R

+)
is a solution of (1) if and only if the image of Ω×R

+ under

the prolonged section j2(γ) lies in S2. If j2(γ)(Ω × R
+)

lies in S2, then because of (13) also

j2(Φε ◦ γ)(Ω× R
+) = j2(Φε) ◦ j

2(γ)(Ω× R
+)

lies in S2. Thus, the deformed section Φε◦γ is also a solution

of (1).

The additional condition (12) ensures that the new solution

Φε ◦ γ also satisfies the boundary conditions (2). The proof

relies on the same arguments as before. First, it should

be noted that the restrictions j1(v)
∣
∣
z=0

and j1(v)
∣
∣
z=1

of

the vector field j1(v) are vector fields on the manifolds

BA and BB . Geometrically, the condition (12) means that

j1(v)
∣
∣
z=0

and j1(v)
∣
∣
z=1

are tangent to the submanifolds

S1
A ⊂ BA and S1

B ⊂ BB determined by the boundary

conditions (2). Therefore, the transformation group generated

by v maps solutions that satisfy the boundary conditions

again on solutions that satisfy the boundary conditions.

Remark 1: It should be noted that the conditions of

Theorem 1 are only sufficient conditions. They are not

necessary, since we do not make the assumption of local

solvability. For the case without boundary conditions, which

is discussed in [1], local solvability means, roughly speaking,

that through every point of the submanifold S2 ⊂ J2(E)
there passes a solution of the PDEs (1). With this assumption,

the conditions (11) become necessary and sufficient.

IV. APPLICATION TO THE OBSERVABILITY ANALYSIS

With respect to the observability problem, we are inter-

ested in symmetry groups that deform the solutions without

changing the trajectories of input and output. If we can find

such a symmetry group Φε, then we can transform every

solution γ into other solutions Φε ◦ γ with different initial

conditions but the same input u(t) and output y(t). Thus,

the initial condition can never be determined uniquely from

the input and the output.

To construct a symmetry group that does not change

the input trajectory, we simply have to set the component

vu(z, t, x, u) of the infinitesimal generator (9) to zero, i.e. we

must consider vector fields of the form v = vαx (z, t, x, u)∂xα .

The second requirement – invariance of the output trajectory

– means that the symmetry group must satisfy

c(t, x, xz) ◦ j
1(γ)

∣
∣
z=z0

= c(t, x, xz) ◦ j
1(Φε ◦ γ)

∣
∣
z=z0

for all solutions γ and all ε ∈ I0 in some interval I0 ⊂ R

containing zero, i.e. the output must be the same for the

solution γ and all solutions Φε◦γ parametrized by the group

parameter ε. Because of j1(Φε ◦ γ) = j1(Φε) ◦ j1(γ) and

the fact that j1(v) is the infinitesimal generator of j1(Φε),
this condition holds if the Lie derivative

Lj1(v)c(t, x, xz)
∣
∣
z=z0

vanishes at z = z0. The following theorem summarizes our

results.

Theorem 2: Consider the system (1) with boundary con-

ditions (2) and output (3). If there exists a smooth vector

field

v = vαx (z, t, x, u)∂xα (14)

on E with

∂uv
α
x |t=0 = 0 , α = 1, . . . , nx (15)

and

v|t=0 6= 0 (16)

that satisfies the conditions

Lj2(v) (x
α
t − fα(z, t, x, xz, xzz , u)) = 0 (17)

on the submanifold S2 ⊂ J2(E), the conditions

Lj1(v)g
λ(t, x, xz)

∣
∣
z=0

= 0

Lj1(v)h
µ(t, x, xz)

∣
∣
z=1

= 0
(18)

on the submanifolds S1
A ⊂ BA and S1

B ⊂ BB , and the

condition

Lj1(v)c(t, x, xz)
∣
∣
z=z0

= 0 , (19)

then the system is not observable.

Proof: Because of Theorem 1, a vector field (14) that

meets (17) and (18) generates a vertical 1-parameter sym-

metry group Φε of the system (1) with boundary conditions



(2). Since the vector field (14) has no components in ∂u-

direction, the conditions Lj2(v)uz = 0, Lj2(v)uzz = 0, and

Lj2(v)uzt = 0 of Theorem 1 are always satisfied and do not

need to be checked. For the same reason, the symmetry group

does not deform the trajectory of the input, and because of

condition (19) it does not deform the trajectory of the output.

The condition (15) means that for t = 0 the vector field

is independent of the input u. This ensures that the initial

condition of a transformed solution Φε ◦ γ depends only on

the initial condition γx(z, 0) of the original solution γ =
(z, t, γx, γu), and not on the input γu at time t = 0.3

If we consider now two initial conditions γx(z, 0) and

γ̄x(z, 0) = Φx,ε ◦ γx(z, 0) ,

where γ̄x(z, 0) is generated from γx(z, 0) by means of Φε

with some suitable value of the group parameter ε, then

they are clearly indistinguishable: For every solution γ =
(z, t, γx, γu) with initial condition γx(z, 0), because of the

properties of the symmetry group Φε there exists a solution

γ̄ = Φε ◦ γ = (z, t,Φx,ε ◦ γ
︸ ︷︷ ︸

, γu
︸︷︷︸

)

γ̄x γ̄u

with initial condition γ̄x(z, 0) that has the same input γ̄u =
γu and yields the same output

c(t, x, xz) ◦ j
1(γ̄)

∣
∣
z=z0

= c(t, x, xz) ◦ j
1(γ)

∣
∣
z=z0

.

Consequently, for every initial condition γx(z, 0), the sym-

metry group generates a set of indistinguishable initial con-

ditions

I(γx(z, 0)) = {Φx,ε ◦ γx(z, 0)| ε ∈ I0}

by varying the group parameter ε in some interval I0 ⊂ R

containing zero. Since condition (16) guarantees that the

vector field (14) does not vanish for t = 0,4 for every initial

condition γx(z, 0) the set of indistinguishable initial condi-

tions I(γx(z, 0)) contains more than one element (in fact,

infinitely many elements parametrized by ε), and therefore

the system is not observable.

It should be noted that, even though the original system

is nonlinear, the obtained conditions (17), (18), and (19) are

linear PDEs in the unknown coefficients vαx of the vector

field (14). In the following, we demonstrate the approach by

means of two examples.

3For this reason, we often use the sloppy but convenient notation
Φx,ε ◦ γx(z, 0) to express transformed initial conditions, even though
Φx,ε(z, t, x, u) has of course more arguments than the variables x that
are determined by γx(z, 0). Note also that we write γ = (z, t, γx, γu)
instead of just γ = (γx, γu), since we defined solutions geometrically as
sections of the bundle (E, π, Ω̄× R

+), and E has coordinates (z, t, x, u).
4We have included the condition (16) only for the sake of completeness.

If the vector field (14) would vanish for t = 0, the corresponding symmetry
group would generate different solutions with the same initial condition and
the same input trajectory. However, since we have assumed that the solution
is uniquely determined by the initial condition and the input (see Section
II), this cannot happen.

A. A Simple Nonlinear Example

Consider the system

∂tx
1(z, t) = x2(z, t)

∂tx
2(z, t) = ∂2

zx
1(z, t)− x2(z, t)3 + u(t)

(20)

on the domain Ω = (0, 1) with Neumann boundary condi-

tions
∂zx

1(0, t) = 0
∂zx

1(1, t) = 0
(21)

at z = 0 and z = 1, and the output

y = x2(0, t) (22)

at z0 = 0. This system is a wave equation with a nonlinear

damping described by the term −x2(z, t)3, and reflecting

boundary conditions at both ends. The input u(t) can be

interpreted e.g. as an equally distributed force density, and

the output is the velocity x2 at the left end z0 = 0.

It can be verified easily that the vector field

v = ∂x1 (23)

satisfies the conditions (17), (18), and (19) of Theorem 2.

Because of

j1(v) = j2(v) = ∂x1 ,

we have

Lj2(v)

(
x1
t − x2

)
= 0

Lj2(v)

(
x2
t − x1

zz + (x2)3 − u
)
= 0

(even on J2(E) and not only on S2 ⊂ J2(E)) as well as

Lj1(v)x
1
z

∣
∣
z=0

= 0

Lj1(v)x
1
z

∣
∣
z=1

= 0

(even on BA and BB , and not only on S1
A ⊂ BA and S1

B ⊂
BB) and

Lj1(v)x
2
∣
∣
z=0

= 0 .

The other conditions (15) and (16) are obviously also sat-

isfied. Consequently, according to Theorem 2 the system is

not observable. The vector field (23) generates the symmetry

group

Φε : (z, t, x
1, x2, u) → (z, t, x1 + ε, x2, u) ,

which simply adds a constant offset to the value of x1. Thus,

it maps a solution

γ = (z, t, γ1
x, γ

2
x, γu) (24)

to the solution

Φε ◦ γ = (z, t, γ1
x + ε, γ2

x, γu) , (25)

and the corresponding initial conditions (γ1
x(z, 0), γ

2
x(z, 0))

and (γ1
x(z, 0) + ε, γ2

x(z, 0)) are indistinguishable.

In this example it is of course obvious that (25) is again

a solution and produces the same output trajectory as (24),

since in the PDEs (20), the boundary conditions (21), and

the output (22) there appear only derivatives of x1, but not

its absolute value.



B. An Academic Example

Consider the system

∂tx
1(z, t) = x1(z, t)x2(z, t)∂2

zx
1(z, t) + u(t)

∂tx
2(z, t) = ∂zx

2(z, t)− x2(z, t)2∂2
zx

1(z, t)+

+x2(z,t)
x1(z,t)

(
∂zx

1(z, t)− u(t)
)

(26)

on the domain Ω = (0, 1) with the boundary conditions

∂zx
1(0, t) = 0

x1(0, t)x2(0, t)− 1 = 0
(27)

at z = 0 and

∂zx
1(1, t) = 0 (28)

at z = 1. The output is

y = ∂zx
1(12 , t) (29)

at z0 = 1
2 . It can be verified that the vector field

v = ∂x1 − x2

x1 ∂x2 (30)

satisfies all conditions of Theorem 2. First, since the vector

field (30) depends neither on t nor on u, the conditions (15)

and (16) are certainly met. The expressions for the prolonga-

tions j1(v) and j2(v) are too extensive to be presented here,

but it is not hard to verify with a computer algebra system

that the Lie derivatives

Lj2(v)

(
x1
t − x1x2x1

zz − u
)

Lj2(v)

(

x2
t − x2

z + (x2)2x1
zz −

x2

x1

(
x1
z − u

))

vanish on S2 ⊂ J2(E), the Lie derivatives

Lj1(v)x
1
z

∣
∣
z=0

Lj1(v)(x
1x2 − 1)

∣
∣
z=0

vanish on BA (and not only on S1
A ⊂ BA), and the Lie

derivative

Lj1(v)x
1
z

∣
∣
z=1

vanishes on BB (and not only on S1
B ⊂ BB). Since the Lie

derivative

Lj1(v)x
1
z

∣
∣
z=

1
2

of the output also vanishes, all conditions are met and the

system is not observable.

V. LINEAR SYSTEMS

In this section, we shall discuss how the results of Section

IV simplify for linear systems. In the nonlinear case, the

conditions of Theorem 2 are sufficient for non-observability.

For linear systems, we show that they become necessary and

sufficient. In other words, a linear system is not observable

if and only if there exists a symmetry group that does not

change the trajectories of the input and the output. We also

show that the symmetry group approach is closely related

to the notion of non-observable subspace from infinite-

dimensional linear systems theory. Here it is important to

remark that for infinite-dimensional linear systems there exist

the concepts of approximate and exact observability, see [14].

These concepts are defined in terms of the observability map,

which assigns to each initial condition the corresponding

output trajectory that is generated by the homogenous system

without input. Approximate observability means that the

observability map is injective, whereas exact observability

requires in addition that the inverse of the observability map

is also bounded, and therefore continuous. Our definition of

observability via the non-existence of indistinguishable initial

conditions corresponds to the injectivity of the observability

map, and therefore to approximate observability in the sense

of [14].

In the following, we consider linear time-invariant PDEs

of the form

∂tx
α(z, t) = Aα

β (z)x
β(z, t) +Aα

z,β(z)∂zx
β(z, t)+

+Aα
zz,β(z)∂

2
zx

β(z, t) +Bα(z)u(t) ,
(31)

α = 1, . . . , nx, on a 1-dimensional spatial domain Ω =
(0, 1) ⊂ R with boundary conditions

Gλ
βx

β(0, t) +Gλ
z,β∂zx

β(0, t) = 0 , λ = 1, . . . , nA

H
µ
βx

β(1, t) +H
µ
z,β∂zx

β(1, t) = 0 , µ = 1, . . . , nB

(32)

and an output function

y(t) = Cβx
β(z0, t) + Cz,β∂zx

β(z0, t) (33)

defined at some point z0 ∈ Ω̄. This system class is a special

case of the nonlinear systems considered in the previous

sections, and includes e.g. the heat equation and the wave

equation, with homogenous Dirichlet, Neumann, and Robin

boundary conditions. Geometrically, the PDEs (31) can be

represented as a submanifold S2 ⊂ J2(E) described by the

equations

xα
t −Aα

β(z)x
β −Aα

z,β(z)x
β
z−

−Aα
zz,β(z)x

β
zz −Bα(z)u = 0 , α = 1, . . . , nx

uz = 0
uzz = 0
uzt = 0 .

The additional equations for uz , uzz , and uzt again in-

corporate that we are only interested in solutions where u

does not depend on z. The boundary conditions (32) are

again equations on manifolds BA and BB with coordinates

(t, x, u, xz , xt, uz, ut), which describe submanifolds S1
A ⊂

BA and S1
B ⊂ BB.

A fundamental difference to the nonlinear case is that for

linear systems it is sufficient to consider symmetry groups

with infinitesimal generators of the form

v = vαx (z, t)∂xα + vu(z, t)∂u , (34)

where the coefficients only depend on the independent vari-

ables z and t. This can be justified by the superposition

principle: Because of the superposition principle, for every

pair of solutions γ and γ̄ we can construct a symmetry group

Φε : (z, t, x, u) → (z, t, x+ (γ̄x(z, t)− γx(z, t))ε,

u+ (γ̄u(z, t)− γu(z, t))ε) (35)

with infinitesimal generator

v = (γ̄α
x (z, t)−γα

x (z, t))∂xα+(γ̄u(z, t)−γu(z, t))∂u , (36)



that deforms γ for ε = 1 into γ̄. Since the vector field (36)

is of the form (34), we can construct every solution γ̄ by

deforming a given solution γ with a symmetry group of this

special type. Thus, for our application there is no advantage

in considering the general case, where the coefficients of the

infinitesimal generator (34) may also depend on x and u.

Remark 2: Note that (35) is indeed a symmetry group in

compliance with Definition 1. Because of the superposition

principle, it transforms all solutions into other solutions, and

not only the solutions γ and γ̄ that were used to construct

it.

Now let us apply Theorem 2 to the linear case. First, we

can replace the vector field (14) by the vector field

v = vαx (z, t)∂xα . (37)

With the second prolongation

j2(v) = vα∂xα + dz(v
α)∂xα

z
+ dt(v

α)∂xα

t
+

+dzz(v
α)∂xα

zz
+ dzt(v

α)∂xα

zt
+ dtt(v

α)∂xα

tt

of (37), an evaluation of the condition (17) with

fα = Aα
β (z)x

β +Aα
z,β(z)x

β
z +Aα

zz,β(z)x
β
zz +Bα(z)u

yields

dt(v
α)−Aα

β (z)v
β−Aα

z,β(z)dz(v
β)−Aα

zz,β(z)dzz(v
β) = 0 .

Since the coefficients of v only depend on z and t, the total

derivatives degenerate to partial derivatives, and we obtain

∂tv
α(z, t) = Aα

β (z)v
β(z, t) +Aα

z,β(z)∂zv
β(z, t)+

+Aα
zz,β(z)∂

2
zv

β(z, t) .
(38)

This is just the homogenous part of the original PDEs

(31). Note that in (38) there appear no variables xα
t , and

therefore it makes no difference whether we evaluate (38)

on the submanifold S2 ⊂ J2(E) determined by the system

equations, or on J2(E) itself. If the conditions hold on S2,

then they also hold on J2(E). Next, an evaluation of the

condition (18) with

gλ = Gλ
βx

β +Gλ
z,βx

β
z

hµ = H
µ
βx

β +H
µ
z,βx

β
z

yields (

Gλ
βv

β +Gλ
z,βdz(v

β)
)∣
∣
∣
z=0

= 0
(

H
µ
β v

β +H
µ
z,βdz(v

β)
)∣
∣
∣
z=1

= 0 .

For the same reason as above, the total derivatives degenerate

to partial derivatives, and we obtain

Gλ
βv

β(0, t) +Gλ
z,β∂zv

β(0, t) = 0

H
µ
β v

β(1, t) +H
µ
z,β∂zv

β(1, t) = 0 .
(39)

This are just the original boundary conditions (32). Since

in (39) there occur no variables xα or xα
z , it makes again

no difference whether we evaluate (39) on the submanifolds

S1
A ⊂ BA and S1

B ⊂ BB determined by the boundary

conditions, or on BA and BB themselves. Thus, we can

already observe that the coefficients of the infinitesimal

generator (37) of a vertical symmetry group must satisfy

the homogenous part of the original PDEs (31) with the

original boundary conditions (32). Finally, an evaluation of

the condition (19) with

c = Cβx
β + Cz,βx

β
z

yields
(
Cβv

β + Cz,βdz(v
β)
)∣
∣
z=z0

= 0 ,

and if we replace again the total derivatives by partial

derivatives we get

Cβv
β(z0, t) + Cz,β∂zv

β(z0, t) = 0 . (40)

The left-hand side of (40) is just the original system output

(33). Thus, for the coefficients of a vector field (37) that

satisfies the conditions of Theorem 2 we need (non-trivial)

solutions of the homogenous part of the PDEs (31) with the

boundary conditions (32) that generate an output (33) which

is identically zero, i.e. y(t) = 0 for all t.

However, it is well-known from infinite-dimensional linear

systems theory that non-trivial solutions that generate an

output which is identically zero exist if and only if the system

is not (approximately) observable, see e.g. [14]: Because of

the superposition principle, for linear systems the output is

the sum of a part that depends on the initial condition and

a part that depends on the input. Therefore, the question

whether there exists a choice of the input such that two initial

conditions γx(z, 0) and γ̄x(z, 0) produce different outputs re-

duces to the question whether they produce different outputs

for the homogenous system without input. If they produce

the same output, then again because of the superposition

principle the initial condition γ̄x(z, 0) − γx(z, 0) generates

such an output which is identically zero. Consequently, for

linear systems, the conditions of Theorem 2, and therefore

the existence of a symmetry group Φε that does not change

the trajectories of the input and the output, are necessary and

sufficient for non-observability.

The set of initial conditions that generate an output iden-

tically zero is a subspace of the infinite-dimensional state

space which is called the non-observable subspace, see [14].

Thus, for linear systems, the symmetry groups Φε transform

solutions γ into other solutions Φε ◦ γ just in such a way

that the difference (Φx,ε ◦ γx(z, 0))− γx(z, 0) of the initial

conditions is an element of the non-observable subspace.

Of course, it is important to remark that a comparison

between the results of our symmetry group approach and the

observability concepts of [14] suffers from two problems.

First, as already pointed out, for the calculation of sym-

metry groups we need a differential-geometric framework

and consider like in [1] only smooth solutions, whereas

the semigroup theory used in [14] is based on mild or

generalized solutions. Second, we consider outputs which are

defined at a single point z0 ∈ Ω̄. In the geometric framework

this is perfectly possible, whereas in [14] point outputs are

not considered since the corresponding output maps are in

general not bounded. However, it would be as well possible

to consider instead of (3) distributed outputs

y(t) = c(t, x(z, t), ∂zx(z, t))



that are defined on the whole spatial domain Ω̄. The only

difference is that in Theorem 2 the Lie derivative (19) of the

output would have to vanish for all z ∈ Ω̄, and not only at

z0. The linear counterpart of such a distributed output is

y(t) = Cβ(z)x
β(z, t) + Cz,β(z)∂zx

β(z, t) .

For the case Cz,β(z) = 0 without derivatives, such a

distributed output might correspond to a bounded map from

the state space to the output space5, and therefore fit into the

system class considered in [14].

We also want to remark that the observability problem is

often considered for a finite time interval [0, τ ] with some

τ > 0. In infinite-dimensional linear systems theory this is

called observability on [0, τ ]. Although we have presented all

our results for the infinite time interval R+, they remain valid

if we replace the space-time manifold Ω̄×R
+ by Ω̄× [0, τ ].

A. A Linear Example

Consider the linear wave equation

∂tx
1(z, t) = x2(z, t)

∂tx
2(z, t) = ∂2

zx
1(z, t) + u(t)

(41)

on the domain Ω = (0, 1) with Dirichlet boundary conditions

x1(0, t) = 0
x1(1, t) = 0

(42)

at z = 0 and z = 1, and the output

y = x1(12 , t) (43)

at z0 = 1
2 . The input u(t) can be interpreted as an equally

distributed force density.

It may be verified that

x1(z, t) = sin(2πz) cos(2πt)
x2(z, t) = −2π sin(2πz) sin(2πt)

(44)

is a solution of the homogenous part

∂tx
1(z, t) = x2(z, t)

∂tx
2(z, t) = ∂2

zx
1(z, t)

(45)

of (41) that fulfills the boundary conditions (42) and pro-

duces an output (43) which is identically zero. Thus, the

corresponding initial condition

x1(z, 0) = sin(2πz)
x2(z, 0) = 0

is an element of the non-observable subspace, and the system

is not observable. The vector field

v = sin(2πz) cos(2πt)∂x1 − 2π sin(2πz) sin(2πt)∂x2

with coefficients from (44) satisfies the conditions of The-

orem 2, and is the infinitesimal generator of a symmetry

group

Φε : (z, t, x
1, x2, u) → (z, t, x1 + sin(2πz) cos(2πt)ε,

x2 − 2π sin(2πz) sin(2πt)ε, u)

that does not change the trajectories of input and output.

5The boundedness depends of course on the chosen norms of the involved
infinite-dimensional vector spaces.

VI. CONCLUSIONS

In this paper, we have suggested to use symmetry groups

that do not change the trajectories of the input and the output

for proving that a nonlinear infinite-dimensional system is

not observable. Based on a differential-geometric system

representation, we have derived conditions for the existence

of such special symmetry groups. Even though the original

system is described by nonlinear PDEs, these conditions are

linear PDEs with additional restrictions. For linear infinite-

dimensional systems, the derived conditions simplify con-

siderably, and become necessary and sufficient for non-

observability. In fact, they coincide with the existence of a

non-trivial non-observable subspace.
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