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GEOMETRY OF INTEGERS REVISITED

IGOR V. NIKOLAEV1

Abstract. We study geometry of the ring of integers OK of a number field
K. Namely, it is proved that the inclusion Z ⊂ OK defines a covering of
the Riemann sphere CP 1 ramified over the points {0, 1,∞}. Our approach is
based on the notion of a Serre C∗-algebra. As an application, a new proof of
the Belyi Theorem is given.

1. Introduction

An interplay between arithmetic and geometry is well known [Weil 1949] [11].
The Weil’s Conjectures were a motivation for the notion of a scheme [Grothendieck
1960] [3]. Recall that the spectrum Spec R of a commutative ring R is the set
of all prime ideals of R endowed with the Zariski topology. Such a topology is
non-Hausdorff but admits a cohomology theory and an analog of the Lefschetz
Fixed-Point Theorem. The latter is enough to prove Weil’s Conjectures.

Let Z be the ring of integers. It was noticed long ago that the space Spec Z
is “similar” to the Riemann sphere CP 1 [Eisenbud & Harris 1999] [2, p. 83].
Moreover, if OK is the ring of integers of a number field K, then the inclusion
Z ⊂ OK corresponds to a Riemann surface R, such that there exists a ramified
covering map R → CP 1. The Grothendieck’s theory of schemes cannot explain
this analogy [Manin 2006] [6, Section 2.2].

In this note we clarify the relation between the ring Z and the sphere CP 1.
Namely, it is proved that the inclusion Z ⊂ OK defines a covering R → CP 1

ramified over three points {0, 1,∞} (theorem 1.3). Our approach is based on the
notion of a Serre C∗-algebra [7, Section 5.3.1]. To formalize our results, we need
the following definitions.

Let V be a complex projective variety. Denote by B(V,L, σ) the twisted homoge-
neous coordinate ring of V , where L is an invertible sheaf and σ is an automorphism
of V [Stafford & van den Bergh 2001] [10, p. 173]. Recall that the Serre C∗-algebra,
AV , is the norm closure of a self-adjoint representation of the ring B(V,L, σ) by
the bounded linear operators on a Hilbert space H ; such an algebra depends on V
alone, since the values of L and σ are fixed by the ∗-involution of algebra B(V,L, σ)
[7, Section 5.3.1]. The map V 7→ AV is a functor. Namely, if V and V ′ are defined
over a number field K ⊂ C, then V is K-isomorphic to V ′ if and only if the algebra
AV is isomorphic to AV ′ . In contrast, the variety V is C-isomorphic to V ′ if and
only if AV is Morita equivalent to AV ′ , i.e. AV ⊗ K ∼= AV ′ ⊗ K , where K is
the C∗-algebra of compact operators [9, Corollary 1.2]. In other words, the tensor
product AV ⊗ K is an analog of the change of base from K to C.
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The latter remark can be used to “geometrize” the ring OK as follows. Recall
that there exists an isomorphism B(V,L, σ) ∼= M2(R), where R is the homogeneous
coordinate ring of a variety V [Stafford & van den Bergh 2001] [10, Section 8]. If
R ∼= OK , then the norm closure of a self-adjoint representation of the ring M2(OK)
is a C∗-algebra which we denote by AOK

. Notice that in general the AOK
is no

longer the Serre C∗-algebra. However, changing the base from K to C, we conclude
that the tensor product AOK

⊗K must be isomorphic to a Serre C∗-algebra. Thus,
one gets the following definition.

Definition 1.1. The complex projective variety V will be called an avatar 1 of the
ring OK , if there exists a C∗-algebra homomorphism

h : AV → AOK
⊗ K . (1.1)

Example 1.2. If R is the homogeneous coordinate ring of a complex projective
variety V , then V is the avatar of R. In this case, AR ⊗ K ∼= AV , i.e. the map h
is a C∗-algebra isomorphism.

Our main result can be formulated as follows.

Theorem 1.3. Let Z be the ring of rational integers and let OK be the ring of
algebraic integers of a number field K. Then:

(i) the Riemann sphere CP 1 is an avatar of the ring Z;

(ii) there exists a Riemann surface R = R(K), such that R is an avatar of the
ring OK ;

(iii) the inclusion Z ⊂ OK defines a covering R → CP 1 ramified over the points
{0, 1,∞}.

The article is organized as follows. In Section 2 we briefly review noncommutative
algebraic geometry and arithmetic groups. Theorem 1.3 is proved in Section 3. As
an application of theorem 1.3, we give a new proof of the Belyi Theorem [Belyi
1979] [1, Theorem 4].

2. Preliminaries

We review some facts of noncommutative algebraic geometry and arithmetic
groups. The reader is referred to [Humphreys 1980] [4] and [Stafford & van den Bergh
2001] [10] for a detailed account.

2.1. Noncommutative algebraic geometry. Let V be a projective variety over
the field k. Denote by L an invertible sheaf of the linear forms on V . If σ is an
automorphism of V , then the pullback of L along σ will be denoted by Lσ, i.e.
Lσ(U) := L(σU) for every U ⊂ V . The graded k-algebra

B(V,L, σ) =
⊕

i≥0

H0
(

V, L ⊗ Lσ ⊗ · · · ⊗ Lσi−1
)

(2.1)

is called a twisted homogeneous coordinate ring of V . Such a ring is always non-
commutative, unless the automorphism σ is trivial. A multiplication of sections of
B(V,L, σ) = ⊕∞

i=1Bi is defined by the rule ab = a⊗ b, where a ∈ Bm and b ∈ Bn.
An invertible sheaf L on V is called σ-ample, if for every coherent sheaf F on V ,

1For the lack of a better word meaning the “image”.
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the cohomology group Hk(V, L ⊗ Lσ ⊗ · · · ⊗ Lσn−1

⊗ F) vanishes for k > 0 and
n >> 0. If L is a σ-ample invertible sheaf on V , then

Mod (B(V,L, σ))/ Tors ∼= Coh (V ), (2.2)

where Mod is the category of graded left modules over the ring B(V,L, σ), Tors is
the full subcategory ofMod of the torsion modules and Coh is the category of quasi-
coherent sheaves on a scheme V . In other words, the B(V,L, σ) is a coordinate ring
of the variety V .

Example 2.1. ([Stafford & van den Bergh 2001] [10, p.173]) Denote by P 1(k) a
projective line over the field k. Consider an automorphism σ of the P 1(k) given
by the formula σ(u) = qu, where u ∈ P 1(k) and q ∈ k×. Then B(P 1(k),L, σ) ∼=
Uq, where Uq is the k-algebra of polynomials in variables x1 and x2 satisfying a
commutation relation:

x2x1 = qx1x2. (2.3)

Example 2.2. ([Stafford & van den Bergh 2001] [10, p.197]) Denote by E(k) =
{(u, v, w, z) ∈ P 3(k) | u2 + v2 + w2 + z2 = 1−α

1+β
v2 + 1+α

1−γ
w2 + z2 = 0} an elliptic

curve over the field k, where α, β, γ ∈ k are constants, such that β 6= −1 and γ 6= 1.
Let σ be a shift automorphism of the E(k). Then B(E(k),L, σ) ∼= S(α, β, γ), where
S(α, β, γ) is the Sklyanin algebra on four generators xi satisfying the commutation
relations:































x1x2 − x2x1 = α(x3x4 + x4x3),
x1x2 + x2x1 = x3x4 − x4x3,
x1x3 − x3x1 = β(x4x2 + x2x4),
x1x3 + x3x1 = x4x2 − x2x4,
x1x4 − x4x1 = γ(x2x3 + x3x2),
x1x4 + x4x1 = x2x3 − x3x2,

(2.4)

where α+ β + γ + αβγ = 0.

Example 2.3. ([8, Lemma 3.1]) Let R be an arithmetic Riemann surface, i.e. given
by the AF-algebra of stationary type [7, Section 5.2]. (Such Riemann surfaces can
be identified with the complex algebraic curves defined over a number field.). Then

B(R,L, σ) ∼= R[π1(S
3\L )], (2.5)

where L is a link embedded in the three-sphere S3 and R[π1(S
3\L )] is the group

ring of the fundamental group π1(S
3\L ).

2.2. Arithmetic groups. Let G be a linear algebraic group defined over the field
Q. Denote by GZ the group of integer points of G. A subgroup Γ ⊂ G is called
arithmetic if Γ is commensurable with the GZ, i.e. Γ ∩ GZ has a finite index
both in Γ and GZ. Informally, the arithmetic group is a discrete subgroup of
the group GLn(C) defined by some arithmetic properties. For instance, Z ⊂ R,
GLn(Z) ⊂ GLn(R) and SLn(Z) ⊂ SLn(R) are examples of the arithmetic groups.

Denote by O the ring of algebraic integers of all finite extensions of the number
field Q. Let H3 be the hyperbolic 3-dimensional space. The following remarkable
result establishes a deep link between arithmetic groups and topology.

Theorem 2.4. ([Maclachlan & Reid 2003] [5, p. 169]) Let M = H
3/Γ be a

finite volume hyperbolic 3-manifold. Then Γ is conjugate to a subgroup of the group
PSL2(O).
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Example 2.5. Let L be a hyperbolic link, i.e. S3\L ∼= H
3/Γ for an arithmetic

group Γ. Then
π1(S

3\L ) ∼= Γ. (2.6)

3. Proof of theorem 1.3

(i) Let us show that the CP 1 is an avatar of Z. Indeed, in this case R ∼= Z and
AZ is the closure of a self-adjoint representation of the ring M2(Z). Consider the
group PSL2(Z) = SL2(Z)/ ± I, where SL2(Z) is the group of invertible elements
of M2(Z). Recall that the group PSL2(Z) is generated by the matrices:

u =

(

0 1
−1 0

)

and v =

(

0 −1
1 −1

)

(3.1)

which satisfy the relations modulo ±I:

u2 = v3 = 1. (3.2)

On the other hand, consider Example 2.1 with k ∼= Q and assume that q = −1
in relation (2.3). In other words, one gets a relation:

x2x1 = −x1x2. (3.3)

Consider a substitution:
{

u = x2x1x
−1
2 x−1

1

v = x2.
(3.4)

The reader can verify, that substitution (3.4) and relation (3.3) reduces relations
(3.2) to the form:

x3
2 = 1. (3.5)

Let I be a two-sided ideal in the algebra B(P 1(Q),L, σ) of Example 2.1 gener-
ated by relation (3.5). In view of (3.2)-(3.5), one gets a ring isomorphism:

B(P 1(Q),L, σ)/I ∼= M2(Z). (3.6)

Let ρ be a self-adjoint representation of the ring B(P 1(Q),L, σ) by the linear
operators on a Hilbert space H . Notice that such a representation exists, be-
cause relation (3.3) is invariant under the involution x∗

1 = x2 and x∗
2 = x1. Since

ρ(B(P 1(Q),L, σ)) = AP 1(Q) and ρ(M2(Z)) = AZ, it follows from (3.6) that there
exists a C∗-algebra homomorphism

h : AP 1(Q) → AZ, (3.7)

where Ker h = ρ(I ). The homomorphism h extends to a homomorphism between
the products

h : AP 1(Q) ⊗ K → AZ ⊗ K , (3.8)

where K is the C∗-algebra of compact operators. But AP 1(Q) ⊗ K ∼= ACP 1 and,
therefore, one gets a C∗-algebra homomorphism

h : ACP 1 → AZ ⊗ K . (3.9)

In other words, the Riemann sphere CP 1 is an avatar of the ring Z.

(ii) Let us show that if K is a number field, then there exists a Riemann surface
R, such that R is an avatar of the ring OK . Indeed, we can always assume that
K has at least one complex embedding and fix one of such embeddings K 6⊂ R.
(For otherwise, we replace K by a CM-field of K, i.e. a totally imaginary quadratic
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extension of the totally real field K. This case corresponds to the double covering
R′of the Riemann surface R.) For simplicity, let R ∼= OK and Γ ∼= PSL2(OK).
(The case of a non-maximal order Λ ⊆ OK is treated likewise and corresponds to
the covering of the Riemann surface R.) In view of (2.6), there exists a hyperbolic
link L , such that:

PSL2(OK) ∼= π1(S
3\L ). (3.10)

On the other hand, it is known that

R[π1(S
3\L )] ∼= B(R,L, σ), (3.11)

where R[π1(S
3\L )] is the group ring of π1(S

3\L ) and R is a Riemann surface,
see example 2.3. In particular, it follows from (3.10) that

B(R,L, σ) ∼= R[PSL2(OK)]. (3.12)

Let ρ be a self-adjoint representation of the ring B(R,L, σ) by the linear op-
erators on a Hilbert space H . The norm closure of ρ(B(R,L, σ)) is the Serre
C∗-algebra AR.

On the other hand, it follows from (3.12) that taking the norm closure of
ρ(R[PSL2(OK)]), one gets a C∗-algebra AOK

, such that

AOK
⊗ K ∼= AR. (3.13)

In other words, there exists an isomorphism:

h : AR → AOK
⊗ K . (3.14)

It follows from (3.14) that the Riemann surface R is an avatar of the ring OK .

(iii) Finally, let us show that the inclusion Z ⊂ OK defines a covering R → CP 1

ramified over three points {0, 1,∞}.
In the lemma below we shall prove a stronger result. Namely, let K be a category

of the Galois extensions of the field Q, such that the morphisms in K are inclusions
K ⊆ K ′, where K,K ′ ∈ K. Likewise, let R be a category of the Riemann surfaces,
such that the morphisms in R are holomorphic maps R → R′, where R,R′ ∈ R.
Let F : K → R be a map acting by the formula OK 7→ R, where R is the Riemann
surface defined by the isomorphism (3.12).

Remark 3.1. The category R consists of the Riemann surfaces, which are algebraic
curves defined over a number field. In particular, the morphisms inR can be defined
over the number field. Both facts follow from the property of the AF-algebra AR

being of a stationary type [7, Section 5.2]. We refer the reader to Example 2.3 and
[8, Lemma 3.1].

Lemma 3.2. The map F : K → R is a covariant functor, i.e. F transforms
inclusions in the category K to holomorphic maps in the category R.

Proof. Let K ∈ K be a number field and let R = F (K) be the corresponding
Riemann surface R ∈ R. Let K ⊆ K ′ be an inclusion, where K ′ ∈ K.

Using isomorphism (3.13), one gets an inclusion of the corresponding Serre C∗-
algebras:

AR ⊆ AR′. (3.15)

On the other hand, it is known the algebra AR is a coordinate ring of the
Riemann surface R [7, Theorem 5.2.1]. In particular, if h : AR′ → AR is a



6 NIKOLAEV

homomorphism, one gets a holomorphic map w : R′ → R defined by a commutative
diagram in Figure 1.

❄ ❄

✲

✲

AR′

h

w

AR

R
′

R

Figure 1. Holomorphic map w.

Thus F is a functor, which maps the inclusion K ⊆ K ′ into a holomorphic map
w : R′ → R. The reader can verify that F is a covariant functor. Lemma 3.2 is
proved. �

Lemma 3.3. The inclusion Z ⊂ OK defines a covering R → CP 1 ramified over
three points {0, 1,∞}.

Proof. Let U be the Riemann sphere CP 1 without three points, which we always
assume to be {0, 1,∞} after a proper Möbius transformation. It is easy to see, that
the fundamental group π1(U ) ∼= F2, where F2 is a free group on two generators u
and v.

Since the the Riemann surface U corresponds to an unlink L ∼= S1 ∪ S1, one
gets an isomorphism:

B(P 1(U ,L, σ)) ∼= R[F2]. (3.16)

Consider a two-sided ideal I ⊂ B(P 1(U ,L, σ)) generated by relations (3.2). In
view of (3.16), we have:

B(P 1(U ,L, σ))/I ∼= R[PSL2(Z)]. (3.17)

In other words, one gets a homomorphism between the C∗-algebras:

AU → ACP 1 . (3.18)

Using the commutative diagram in Figure 1, we get a holomorphic map between
the corresponding Riemann surfaces:

U → CP 1. (3.19)

Let now Z ⊂ OK be an inclusion, where K is a number field. By item (ii) of
theorem 1.3 there exists a Riemann surface R ∈ R corresponding to OK . By lemma
3.2, there exists a holomorphic map:

R → CP 1. (3.20)

Using (3.19) and (3.20), one gets a commutative digram in Figure 2.

We use the diagram in Figure 2 to define a holomorphic map:

R → U . (3.21)
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❄
✑
✑

✑
✑
✑
✑✸

✲

U

R CP 1

Figure 2. The map R → U .

Since U = CP 1\{0, 1,∞}, one gets the conclusion of lemma 3.3. �

Item (iii) of theorem 1.3 follows from lemmas 3.2 and 3.3.

Theorem 1.3 is proved.

4. Belyi’s Theorem

Belyi’s Theorem says that the algebraic curve R can be defined over a number
field if and only if there exist a covering R → CP 1 ramified over three points of
the Riemann sphere CP 1. This remarkable result was proved by [Belyi 1979] [1,
Theorem 4]. In this section we show that Belyi’s Theorem follows from theorem
1.3 and remark 3.1.

Theorem 4.1. (Belyi’s Theorem) A complete non-singular algebraic curve over
C can be defined over an algebraic number field if and only if such a curve is a
covering of the Riemann sphere CP 1 ramified over three points.

Proof. We identify the Riemann surface R ∈ R with a complete non-singular alge-
braic curve over the field of characteristic zero (Chow’s Theorem).

In view of the remark 3.1, we have R ∈ R is the algebraic curve defined over a
finite extension of the field Q. On the other hand, item (iii) of theorem 1.3 says
that each Riemann surface R ∈ R is a covering of the CP 1 ramified over the points
{0, 1,∞}. The “only if” part of Belyi’s Theorem follows.

Let R be a covering of the CP 1 ramified over the points {0, 1,∞}. Using lemma
3.2, one can construct a ring OK corresponding to the Riemann surface R. By
item (ii) of theorem 1.3 and remark 3.1 we have R ∈ R. In other words, R is an
algebraic curve defined over an algebraic number field. The “if” part of of Belyi’s
Theorem is proved. �

Remark 4.2. It is interesting to calculate the ramification data and equations of
the Belyi curves R in terms of the orders Λ ⊆ OK and number fields K obtained
in theorem 1.3.
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