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BLOW-UP AND GLOBAL EXISTENCE

FOR THE POROUS MEDIUM EQUATION WITH REACTION

ON A CLASS OF CARTAN-HADAMARD MANIFOLDS

GABRIELE GRILLO, MATTEO MURATORI, AND FABIO PUNZO

Abstract. We consider the porous medium equation with power-type reaction terms up on negatively curved Rie-

mannian manifolds, and solutions corresponding to bounded, nonnegative and compactly supported data. If p > m,

small data give rise to global-in-time solutions while solutions associated to large data blow up in finite time. If p < m,

large data blow up at worst in infinite time, and under the stronger restriction p ∈ (1, (1 +m)/2] all data give rise to

solutions existing globally in time, whereas solutions corresponding to large data blow up in infinite time. The results

are in several aspects significantly different from the Euclidean ones, as has to be expected since negative curvature

is known to give rise to faster diffusion properties of the porous medium equation.

1. Introduction

We consider solutions to the nonlinear evolution problem
{

ut = ∆(um) + up in M × (0, T ) ,

u = u0 in M × {0} ,
(1.1)

where M is an N -dimensional complete, simply connected Riemannian manifold with non-
positive sectional curvatures (namely a Cartan-Hadamard manifold) and ∆ is the Laplace-
Beltrami operator on M , m > 1, p > 1, T ∈ (0,∞]. The assumption m > 1 corresponds to
consider the slow diffusion case, see [41]. The initial datum u0 will be always assumed to be
nonnegative and bounded. We shall always suppose, without further comment, that N ≥ 2.

We shall concentrate on the situation in which the curvature bounds

Rico(x) ≤ −(N − 1)h2 or Rico(x) ≥ −(N − 1)k2

hold for some h, k > 0, where Rico(x) is the Ricci curvature at x in the radial direction ∂
∂r .

In particular a global negative curvature condition like the one above, involving sectional
curvatures, implies that the spectrum of −∆ on M is bounded away from zero, see [25],
this being in sharp contrast with the Euclidean setting and resembling, to some extent,
the case of a bounded Euclidean domain. In fact, the basic example we have in mind is
the hyperbolic space H

n
h, namely the complete, simply connected manifold with sectional

curvatures everywhere equal to −h2. It is known that, on H
n
h, Brownian motion, associated

to −∆ by a standard procedure, has an expected speed which is linear for large times (see
e.g. [5, Cor. 5.7.3]), hence diffusion occurs at a much faster rate than the one typical of the
Euclidean situation.

The behaviour of solutions to the porous medium or fast diffusion equations

ut = ∆(um) in M × (0, T ) . (1.2)

has been the subject of recent results (see e.g. [13], [14], [15], [16], [17], [33], [35], [34],
[42]). That even nonlinear diffusion gives rise to speedup phenomena can be seen at least
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in two different ways, see [42] for M = H
N , and [17] for extensions on some more general

manifolds. First, the L∞ norm of a solution corresponding to a compactly supported datum

obeys the law ‖u(t)‖∞ ≍
(

log t
t

)1/(m−1)
as t→ +∞, which is faster than the corresponding

Euclidean bound, the latter being given in term of a power t−α(N,m) with α(N,m) = (m−
1 + (2/N))−1 < 1/(m − 1). Besides, the volume V(t) of the support of the solution u(t)

satisfies V(t) ≍ t1/(m−1) while in the Euclidean situation one has V(t) ≍ tβ(N,m) with
β(N,m) = n(2 + n(m− 1))−1 =< 1/(m − 1).

The behaviour of solutions to problem (1.1) is therefore determined by competing phe-
nomena: the diffusion pattern associated to −∆, the reaction due to the power source, and
the (slow, but faster than in the Euclidean case) diffusion properties of the porous medium
equation ut = ∆(um). In fact, in the case of linear diffusion (m = 1) it is known (see [2],
[43], [44], [32]) that, when M = H

N , for all p > 1 and sufficiently small nonnegative data
there exists a global in time solution. The situation is different in R

N : indeed, blowup
occurs for all nontrivial nonnegative data when p ≤ 1+2/N , while global existence prevails
for p > 1 + 2/N (for more specific results, see e.g. [4], [6], [8], [7], [18], [22], [36], [39], [45],
[47].)

To understand more precisely the differences between the Euclidean results and the ones
proved in the present paper, let us first summarize qualitatively some of the former ones,
quoting from [38]. For subsequent, more detailed results see e.g. [9], [28], [40] and references
quoted therein.

The case M = R
N . We suppose that the initial datum is nonnegative, nontrivial and

compactly supported. In this case we have:

• ([38, Th. 1, p. 216]) For any p > 1, all sufficiently large data give rise to solutions
blowing up in finite time;

• ([38, Th. 2, p. 217]) if p ∈
(

1,m+ 2
N

)

, all data give rise to solutions blowing up in
finite time;

• ([38, Th. 3, p. 220]) if p > m + 2
N , all sufficiently small data give rise to solutions

existing globally in time.

Let us mention that further nonexistence results for quasilinear parabolic equations, also
involving p-Laplace type operators, have been obtained in [26], [27], [31] (see also [24] for
the case of Riemannian manifolds). Moreover, in [37] problem











ut = ∆(um) + λup in Ω× (0, T ) ,

u = 0 on ∂Ω× (0, T ) ,

u = u0 in Ω× {0} ,

where Ω is a bounded domain of RN and λ is a positive parameter, has been studied. Let
λ1(Ω) be the first eigenvalue of −∆ in Ω, completed with homogeneous Dirichlet boundary
conditions. It is shown that (see [37, Theorem 1.3]) there exists a global solution for any
u0 ∈ Lq(Ω), q > 1, and for any λ ≤ λ1(Ω). In addition, when p > m, or p = m and λ > λ1(Ω)
(see [37, Section 4]), then depending on the initial datum u0, solutions may or may not exist
for all times. Analogous results can also be found in [38, Chapter VII].

Existence of global solutions and blow-up in finite time for problem (1.1) have been studied
in [48], if the volume of geodesic balls grows as a power of the radius R, namely as Rα with
α ≥ 2; this occurs, in particular, when Ricci curvature is nonnegative. However, we should
note that such a condition tipically is not satisfied in our setting, in which the volume of
geodesic balls can grow exponentially or faster with respect to the radius. In particular,
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in [48] it is proved that if m < p ≤ m + 2/α, then problem (1.1) does not have global
(nontrivial) solutions. Instead, if α = N, p > m+ 2/N , under a suitable assumption on the
metric tensor, there exists a global solution of (1.1), for some u0. Such results extend some
of those in [38] to general Riemannian manifolds.

The situation on negatively curved manifolds is significantly different, as we now briefly
summarize by singling out qualitatively some of our results.

The case of a Cartan-Hadamard manifold M . We suppose that the initial datum is
nonnegative, nontrivial and compactly supported. In this case we have:

• (see Theorems 3.1, 3.6) If p > m and upper curvature bounds (see (2.7)) hold, all
sufficiently small data give rise to solutions existing globally in time. Besides, a class
of sufficiently small data shows propagation properties identical to the ones valid for
the unforced porous medium equation (1.2). Moreover, small data non necessarily
with compact support and possibly with arbitrarily large Lp norms (p ≥ 1) give rise
to solutions existing globally in time if p > m, and also if p = m and a suitable
curvature bound holds;

• (see Theorem 3.2) If p > m and lower curvature bounds (see (2.6)) hold, all suffi-
ciently large data give rise to solutions blowing up in finite time;

• (see Theorem 3.3). If p ∈
(

1, 1+m2
]

and upper curvature bounds (see (2.7)) hold, all
data exist globally in time;

• (see Theorem 3.4). If p ∈ (1,m) and lower curvature bounds (see (2.6)) hold, all
sufficiently large data give rise to solutions blowing up at worst in infinite time.

Thus the overall picture is considerably different from the Euclidean one, on the one hand
since the main critical exponent turns out to be p = m, on the other hand since a completely
new phenomenon, namely existence of solutions blowing up in infinite time, appears when
p ≤ (1+m)/2. We do not know, and leave these as challenging open problems, whether for
p ∈

(

1+m
2 ,m

)

solutions corresponding to small initial data exist for all time and if solutions
corresponding to large data blow up in finite or infinite time.

The paper is organized as follow. Section 2 contains some geometric preliminaries, the
relevant notation, a concise discussion of Laplacian comparison in Riemannian geometry,
and, finally, a brief discussion of local existence of solution to (1.1) and comparison princi-
ples. Section 3 contains the statements of our main results. Section 4 contains two general
auxiliary lemmas, that will be repeatedly used in the construction of the barriers we need
in the proofs of our main results. Such proofs are contained in Section 5.

2. Preliminaries

2.1. Notations from Riemannian geometry. Let M be a complete noncompact Rie-
mannian manifold. Let ∆ denote the Laplace-Beltrami operator, ∇ the Riemannian gradient
and dV the Riemannian volume element on M .

We consider Cartan-Hadamard manifolds, i.e. complete, noncompact, simply connected
Riemannian manifolds with nonpositive sectional curvatures everywhere. Observe that on
Cartan-Hadamard manifolds the cut locus of any point o is empty [11, 12]. Hence, for any
x ∈ M \ {o} one can define its polar coordinates with pole at o, namely r(x) := d(x, o) and
θ ∈ S

N−1. If we denote by BR the Riemannian ball of radius R centred at o and SR := ∂BR,
there holds

meas(SR) =

∫

SN−1

A(R, θ) dθ1dθ2 . . . dθN−1 ,
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for a specific positive function A which is related to the metric tensor, [11, Sect. 3]. Moreover,
it is direct to see that the Laplace-Beltrami operator in polar coordinates has the form

∆ =
∂2

∂r2
+m(r, θ)

∂

∂r
+∆Sr , (2.1)

where m(r, θ) := ∂
∂r (logA) and ∆Sr is the Laplace-Beltrami operator on Sr. Thanks to

(2.1), we have that

m(r, θ) = ∆r(x) for every x ≡ (r, θ) ∈M \ {o} .

Let

A :=
{

f ∈ C∞((0,∞)) ∩ C1([0,∞)) : f ′(0) = 1, f(0) = 0, f > 0 in (0,∞)
}

.

We say that M is a spherically symmetric manifold or a model manifold if the Riemannian
metric is given by

ds2 = dr2 + ψ(r)2 dθ2,

where dθ2 is the standard metric on S
N−1 and ψ ∈ A. In this case, we shall write M ≡Mψ;

furthermore, we have A(r, θ) = ψ(r)N−1 η(θ) for a suitable angular function η, so that

∆ =
∂2

∂r2
+ (N − 1)

ψ′

ψ

∂

∂r
+

1

ψ2
∆SN−1 .

Note that ψ(r) = r corresponds to M = R
N , while ψ(r) = sinh r corresponds to M = H

N ,
namely the N -dimensional hyperbolic space.

For any x ∈M \{o}, we denote by Rico(x) the Ricci curvature at x in the radial direction
∂
∂r . Let ω be any pair of tangent vectors from TxM having the form

(

∂
∂r , V

)

, where V is a

unit vector orthogonal to ∂
∂r . We denote by Kω(x) the sectional curvature at x ∈M of the

2-section determined by ω.

2.2. Laplacian comparison. Let us recall some crucial Laplacian comparison results. It
is by now classical (see e.g. [10] and [11, Section 15]) that if

Rico(x) ≥ −(N − 1) k2 for all x ≡ (r, θ) ∈M \ {o}

for some k > 0, then

m(r, θ) ≤ (N − 1)k coth(kr) for all r > 0, θ ∈ S
N−1 .

So, in particular,

m(r, θ) ≤ (N − 1)k coth(k) for all r ≥ 1, θ ∈ S
N−1 , (2.2)

since r 7→ coth r is decreasing. On the other hand, if

Rico(x) ≤ −(N − 1)h2 for all x ≡ (r, θ) ∈M \ {o} (2.3)

for some h > 0, then (see [46, Theorem 2.15])

m(r, θ) ≥ (N − 1)h coth(hr) ≥ (N − 1)h for all r > 0, θ ∈ S
N−1 (2.4)

(the second inequality is merely due to the fact that coth(r) ≥ 1 for all r > 0). Let
us observe that the latter implication is based upon the assumption that M is a Cartan-
Hadamard manifold. Indeed, on general Riemannian manifolds with a pole o, namely with
a point o ∈M having empty cut locus, inequality (2.4) is valid, provided that

Kω(x) ≤ −h2 for all x ≡ (r, θ) ∈M \ {o} .

Clearly, (2.3) is a weaker condition than the previous one concerning the sectional curvature.
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In the special case of a model manifold Mψ, for any x ≡ (r, θ) ∈Mψ \ {o} we have

Kω(x) = −
ψ′′(r)

ψ(r)
, Rico(x) = −(N − 1)

ψ′′(r)

ψ(r)
.

In particular, as ψ ∈ A, the condition ψ′′ ≥ 0 in (0,∞) is necessary and sufficient for Mψ

to be a Cartan-Hadamard manifold. Finally, note that for any Cartan-Hadamard manifold
we have Kω(x) ≤ 0, therefore the Laplace comparison theorem easily gives that

m(r, θ) ≥
N − 1

r
for any x ≡ (r, θ) ∈M \ {o} .

2.3. Main assumptions and consequences. Throughout the paper we shall work under
the following assumption:

M is a Cartan-Hadamard manifold of dimension N ≥ 2. (2.5)

Besides, one or both the following curvature bounds will be required:

Rico(x) ≥ −(N − 1)k2 for some k > 0 ; (2.6)

Rico(x) ≤ −(N − 1)h2 for some h > 0 . (2.7)

2.4. Local existence and comparison. In this brief section we first give a precise meaning
to the concept of solution to (1.1) we shall deal with, and then establish some elementary
existence results and comparison principles, which are essential to be able to exploit all of
the barrier functions we provide below.

Definition 2.1. Let u0 ∈ L∞(M), with u0 ≥ 0. Let T > 0 and p,m > 1. We say that
a nonnegative function u ∈ L∞(M × (0, S)) (for all S < T ) is a (very weak) solution to
problem (1.1) if it satisfies

−

∫

M

∫ T

0
uϕt dt dV =

∫

M
u0(x)ϕ(x, 0) dV(x) +

∫

M

∫ T

0
(um∆ϕ+ up ϕ) dt dV (2.8)

for all nonnegative ϕ ∈ C∞

c (M × [0, T )).
Similarly, we say that a nonnegative function u ∈ L∞(M × (0, S)) (for all S < T ) is a

(very weak) subsolution [supersolution] to problem (1.1) if it satisfies (2.8) with “=” replaced
by “≤” [“≥”].

In order to give a (rather standard) local existence result, let us briefly discuss about
minimal solutions. To this end, we first need to introduce the auxiliary problems (let R > 0)











ut = ∆(um) + up in BR × (0, T ) ,

u = 0 on ∂BR × (0, T ) ,

u(·, 0) = u0 in BR .

(2.9)

Definition 2.2. Let u0 ∈ L∞(BR), with u0 ≥ 0. Let T > 0 and p,m > 1. We say that
a nonnegative function u ∈ L∞(BR × (0, S)) (for all S < T ) is a (very weak) solution to
problem (2.9) if it satisfies

−

∫

BR

∫ T

0
uϕt dt dV =

∫

BR

u0(x)ϕ(x, 0) dV(x) +

∫

BR

∫ T

0
(um∆ϕ+ up ϕ) dt dV (2.10)

for all nonnegative ϕ ∈ C∞(BR × [0, T ]) with ϕ = 0 on ∂BR for all t ∈ [0, T ] and at t = T .
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Similarly, we say that a nonnegative function u ∈ L∞(BR × (0, S)) (for all S < T ) is a
(very weak) subsolution [supersolution] to problem (2.9) if it satisfies (2.10) with “=” replaced
by “≤” [“≥”].

Note that problem (2.9) admits a nonnegative solution uR ∈ L∞(BR × (0, S)), for all
S < TR, where TR is the maximal existence time, i.e. ‖uR(t)‖∞ → +∞ as t → T−

R ;
moreover, for problem (2.9) the comparison principle between sub– and supersolutions holds
(see [1]). Observe that TR ≥ T for any R > 0, where T can be quantified depending on the
initial datum u0 by simple comparison with the solution of the associated ODE:

{

x′ = xp ,

x(0) = ‖u0‖∞ ,

that is

uR(x, t) ≤
‖u0‖∞

(

1− (p − 1)‖u0‖
p−1
∞ t

)
1

p−1

=⇒ TR ≥ T :=
1

(p− 1)‖u0‖
p−1
∞

. (2.11)

Moreover, such a solution is unique. In particular, uR ≤ uR+1, so that the family uR is
monotone increasing and, thanks to the upper bound (2.11), it converges as R → ∞ to
some solution u to (1.1). Such a solution is necessary smaller than any other solution, due
again to comparison on balls (see also Proposition 2.4 below). In this sense it is referred
to as minimal. We can define the maximal existence time T of u as the supremum over all
S > 0 for which limR→∞ uR ∈ L∞(M × (0, S)): note that u does solve (1.1), at least in the
sense of Definition 2.1, up to such time.

As a reference for these results, we quote e.g. [1], where in fact the authors mainly dis-
cuss the one-dimensional Euclidean case, for more general nonlinearities. However, their
arguments are easily adaptable to our framework as well. We omit details. See also [29, 30]
for similar techniques applied to a related (but substantially different) problem in general
Euclidean space.

In agreement with the above discussion, we can state the following existence result.

Proposition 2.3 (Existence). Let u0 ∈ L∞(M), with u0 ≥ 0. Then there exists a solution
to problem (1.1), in the sense of Definition 2.1, with

T =
1

(p− 1)‖u0‖
p−1
∞

,

which is obtained as a monotone limit of the solutions to the approximate problems (2.9).
Moreover, such a solution is minimal, in the sense that any other solution is larger.

By taking advantage of the construction of the minimal solution, we can readily prove a
fundamental comparison theorem.

Proposition 2.4 (Comparison with supersolutions). Let u0 ∈ L∞(M), with u0 ≥ 0. Let u
be a supersolution to (1.1) (for some T > 0), according to Definition 2.1. Then, if u is the
minimal solution provided by Proposition 2.3, there holds

u ≤ u in M × (0, T ) . (2.12)

In particular, if the supersolution exists at least up to time T , then also u does, i.e. the
maximal existence time for u is at least T .
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Proof. It is enough to apply the above-mentioned comparison results in BR: since u is clearly
also a supersolution to (2.9), for each R > 0, we have

uR ≤ u in BR × (0, T ) . (2.13)

By passing to the limit as R→ ∞ in (2.13) we obtain (2.12), which trivially ensures that u
does exist at least up to T , by the definition of maximal existence time. �

We also have a similar result for subsolutions.

Proposition 2.5 (Comparison with subsolutions). Let u0 ∈ L∞(M), with u0 ≥ 0. Let u be
a solution (for some T ≡ T1 > 0) and u be a subsolution (for some T ≡ T2 > 0) to (1.1),
according to Definition 2.1. Suppose that u has the following additional property:

suppu|M×[0,S] is compact for all S < T2 .

Then

u ≥ u in M × (0, T1 ∧ T2) . (2.14)

Proof. Again, it is sufficient to apply comparison on balls: we fix any S < T1 ∧ T2 and
observe that, if R is so large that suppu⌋M×[0,S] ⊂ BR, then u and u are a supersolution
and a subsolution, respectively, to (2.9), whence

u ≥ u in BR × (0, S) .

Inequality (2.14) then just follows by letting R→ ∞ and using the arbitrariness of S. �

In the sequel, by “solution” to (1.1) we shall tacitly mean the minimal one, according to
Proposition 2.3, to which therefore the crucial comparison results provided by Propositions
2.4–2.5 are directly applicable.

Remark 2.6. It can be shown that if, for some C > 0,

Rico(x) ≥ −C(1 + r(x))2 for all x ∈M ,

then the comparison principle between any bounded sub– and supersolution holds for prob-
lem (1.1); consequently, problem (1.1) admits a unique solution in L∞(M × (0, T )). These
results follow by combining the arguments of [15] (where the Cauchy problem for (1.2) has
been dealt with) and those in [1], in order to consider the source term up. In this direction,
let us mention that such a hypothesis on the Ricci curvature to get uniqueness is quite
natural; see, e.g., [19, 20, 21] for the linear case, m = 1, without source terms. We omit the
details, since a general comparison principle for problem (1.1) is not the main concern of the
present paper; in fact, in order to prove our results, we do not need it, but it is sufficient to
use the comparison principle in the form of Propositions 2.4, 2.5.

3. Statements of the main results

Our first main result concerns global existence of solutions for sufficiently small, compactly
supported data, in the case p > m. Besides, such small data show propagation properties
identical to the ones valid for the unforced porous medium equation (1.2). Hereafter, given
a compactly supported datum u0, we define R(t) to be the radius of the smallest ball that
contains the support of the solution at time t.
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Theorem 3.1. Let assumptions (2.5), (2.7) be satisfied. Let u0 ∈ L∞(M), u0 ≥ 0 with
supp u0 ⊂ BR0 for some R0 > 0. Suppose that p > m and that ‖u0‖∞ is sufficiently small
in a sense to be made more precise below. Then problem (1.1) (with T = ∞) has a global in
time solution u(t). Besides, the bound

u(x, t) ≤ Cζ(t)
[

1−
r

a
η(t)

]
1

m−1

+
∀t ≥ 0, ∀x ∈M

holds for the following choices of functions η, ζ, of the constants C > 0, a > 0, and of the
initial data u0:

(i)

ζ(t) := (τ + t)−
1

m−1 [log(τ + t)]
β

m−1 , η(t) := [log(τ + t)]−β

for any given β ≥ 1. The constants a = a1(h,N,m,R0), τ = τ1(m,β, p, a) must be
large enough and Cm−1 = c a2 for a suitable c = c(β,m). Finally, one requires that
‖u0‖∞ ≤ C1(h,N,m, β, p,R0) is sufficiently small.

As a consequence one has, for the class of data considered and all t ≥ 0:

R(t) ≤ a [log(τ + t)]β , ‖u(t)‖∞ ≤ C (τ + t)−
1

m−1 [log(τ + t)]
β

m−1 ; (3.1)

(ii)

ζ(t) := (τ + t)−α , η(t) := (τ + t)−β

with
1

p− 1
< α <

1

m− 1
, β = 1− α(m− 1) .

The constants a = a2(h,N,m,R0), τ = τ2(m,α, p, a) must be large enough and Cm−1 =
c a2 for a suitable c = c(α,m). Finally, one requires that ‖u0‖∞ ≤ C2(h,N,m, β, p,R0)
is sufficiently small, with C2 > C1 given in item (i).

As a consequence one has, for the class of data considered and all t ≥ 0:

R(t) ≤ a (τ + t)β, ‖u(t)‖∞ ≤ C (τ + t)−α.

The above theorem provides upper bounds on solutions, and hence on the corresponding
L∞ norm and free boundary radius R(t), that depend on the parameters involved and hence
on the class of data considered. Of course, rougher bounds correspond to a wider set of
initial data. It is important to stress that both bounds appearing in (3.1), in the case β = 1,
correspond exactly to those valid for the free porous medium equation on H

N proved in [42]
and developed upon in [17], which are known to be sharp. We do not know whether the
rougher upper bounds stated above are optimal for some class of data, but we complement
the results by showing that, under lower curvature bounds, blow-up can occur for sufficiently
big, although compactly supported, data.

In our next result we show in fact that if p > m and lower curvature bounds (see (2.6))
hold, all sufficiently large data give rise to solutions blowing up in finite time.

Theorem 3.2. Let assumptions (2.5), (2.6) be satisfied. Suppose that p > m. For any T > 0
there exist compactly supported initial data u0 ∈ L∞(M), u0 ≥ 0 such that the corresponding
solution u(t) of problem (1.1) blows up at a time S ≤ T in the sense that ‖u(t)‖∞ → +∞
as t→ S−. More precisely, the bound

u(x, t) ≥ Cζ(t)
[

1−
r

a
η(t)

]
1

m−1

+
∀t ∈ (0, T ∧ S), ∀x ∈M
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holds for the following choices of functions η, ζ, of the constants C, a, T > 0, and of the class
of initial data u0:

(i)

ζ(t) := (T − t)−α[− log(T − t)]
β

m−1 , η(t) := [− log(T − t)]−β for every t ∈ [0, T ) ,

with T ∈ (0, 1) and

α >
1

m− 1
, β > 0 or α =

1

m− 1
, 0 < β ≤ 1 .

The constant C = C(a, α, β,m, k,N,C0, p) must be large enough (C0 is as in (4.16))
and that T = T (a,C, p,m,α, β,N, k,C0) ∈ (0, 1) is small enough. Finally one re-
quires that supp u0 ⊃ BR0 with R0 = R0(a, T, β) large enough and infBR0

u0 ≥

K(C, T,m,α, β) large enough;

(ii)

ζ(t) := (T − t)−α , η(t) := (T − t)β for every t ∈ [0, T ) ,

with

α >
1

m− 1
, 0 < β ≤

α(m− 1)− 1

2
.

The constant C = C(a, α, β,m, k,N,C0, p) must be large enough and that T = T (a,C,
p,m,α, β,N, k,C0) ∈ (0, 1) is small enough. Finally one requires that supp u0 ⊃ BR0

with R0 = R0(a, T, β) large enough and infBR0
u0 ≥ K(C, T, α) large enough.

We comment that the above result will be shown by constructing appropriate subsolutions
that blow up everywhere in M at time T , with support becoming the whole M exactly at
time T . This does not rule out the possibility that u blows up locally in the L∞ norm at
some earlier time S.

We now discuss the case p < m. As concerns global existence results, we are forced to
restrict ourselves to the range 1 < p ≤ (1+m)/2. In that range, and under an upper bound
on curvature (see (2.7)), all compactly supported data give rise to a global in time solution.

Theorem 3.3. Let assumptions (2.5), (2.7) be satisfied. Let u0 ∈ L∞(M), u0 ≥ 0 with
supp u0 ⊂ BR0 for some R0 > 0. Suppose that

1 < p ≤
m+ 1

2
.

Then problem (1.1) (with T = ∞) has a global in time solution u(t). More precisely the
bound

u(x, t) ≤ Cζ(t)
[

1−
r

a
η(t)

]
1

m−1

+
∀t ≥ 0, ∀x ∈M

holds for the following choices of functions η, ζ, of the constants C, a > 0:

(i) If 1 < p < m+1
2 one chooses

ζ(t) := (τ + t)α , η(t) := (τ + t)−β ,

with

α ≥
1

m− 2p + 1
, β =

1 + α(m− 1)

2
, τ ≥ 1 ,

supposing in addition that a ≥ 2R0 ∨ H with H = H(m,N, h, β) sufficiently large,

and that C = C(m,N, h, a, p) satisfies the (compatible) bounds c1 a
1/(m−p) ≤ C ≤
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c2 a
2/(m−1), where c1, c2 depend on m,N, h, p and τ = τ(C,α,m, u0) is sufficiently

large.
(ii) If p = (m+ 1)/2 one chooses

ζ(t) := exp{α(τ + t)} , η(t) := exp{−β(τ + t)} ,

with

α ≥ α0(N,m, p, h) > 0 , β =
α(m− 1)

2
, τ ≥ 0,

supposing in addition that the conditions on a,C, τ given in item i) above hold.

In the whole range 1 < p < m we can prove qualitatively similar lower bounds. In fact,
if p ∈ (1,m) and lower curvature bounds (see (2.6)) hold, all sufficiently large data give rise
to solutions blowing up at worst in infinite time.

Theorem 3.4. Let assumptions (2.5), (2.6) be satisfied. Let u0 ∈ L∞(M), u0 ≥ 0 with
supp u0 ⊃ BR0 for some R0 > 0. Suppose that

1 < p < m

and that

0 < α <
1

m− 1
, β =

α(m− 1) + 1

2
.

Then the bound

u(x, t) ≥ Cζ(t)
[

1−
r

a
η(t)

]
1

m−1

+
∀t ∈ (0, S), ∀x ∈M

holds, S ≤ +∞ being the maximal existence time, for the following choices of functions η, ζ,
of the constants C, a > 0, and of the class of initial data u0:

ζ(t) := (τ + t)α , η(t) := (τ + t)−β for every t ∈ [0,∞) ,

where C = C(a,m, k,N, α, β,C0) (C0 is as in (4.16)) and must be sufficiently large,
τ = τ(a,C, p,m,α, β,N, k,C0) ≥ 1 is sufficiently large, and finally one requires that R0 =
R0(a, τ, β) is large enough and that infBR0

u0 ≥ K(C, τ, α) is large enough.

Remark 3.5. We stress that, in the range 1 < p ≤ (1+m)/2, the combination of the results
given in Theorems 3.3, 3.4 shows that large data give rise to solutions existing for all times
but blowing up pointwise everywhere as t→ +∞.

Let M = H
N
h be the simply connected manifold with sectional curvatures everywhere

equal to −h2. Then λ1(H
N
h ) =

(N−1)2

4 h2. Let v > 0 be a positive, bounded solution of the
equation −∆

HN
h
v = λ1v. It is known that v is radial w.r.t. a given pole and monotonically

decreasing as a function of the geodesic distance. Notice that v can be chosen so that
‖v‖∞ ≤ 1.

As a final result, we show that data which are below a suitable profile related either to
the equation −∆u = uq, or to a ground state of −∆, both equations being in principle
considered on H

n
h, and the corresponding solutions being transplanted on M , give rise to

global in time solutions when p ≥ m. In fact, we remind the reader that the equation

−∆u = uq, on H
n
h (3.2)

admits strictly positive solutions for all q > 1, see [3]. Stationary solutions to (1.1) correspond
to solutions of (3.2) with q = p/m, which is larger than one iff p > m. Notice that positive,
bounded, energy solutions to (3.2) do exist (and are unique up to hyperbolic translations)
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when q ∈
(

1, N+2
N−2

)

due to the results of [23]. We shall show that small data not necessarily

with compact support and possibly with large Lp norms (p ≥ 1) give rise to solutions existing
globally in time.

Theorem 3.6. Let assumptions (2.5), (2.7) be satisfied. Suppose that p ≥ m and, in the
case p = m only, that radial sectional curvatures Kω satisfy Kω(x) ≤ −h2 for all x ∈M \{o},
with h ≥ 2/(N − 1).

Let v be a ground state of the Laplacian on H
n
h and, for p > m, let V be a strictly positive

solution to (3.2) with q = p/m, and transplant such functions on M . Suppose that, in case

p = m, u0 ≤ v
1
m and that, in case p > m, u0 ≤ V

1
m . Then problem (1.1) (with T = ∞) has

a global in time solution u(t) that satisfies 0 ≤ u(t) ≤ v
1
m or, respectively, 0 ≤ u(t) ≤ V

1
m ,

for all t ≥ 0.

Remark 3.7. By the results of [3] one knows that there exist, for all q > 1, infinitely many
strictly positive solutions to (3.2). All of them have polynomial decay at infinity, except
the unique (up to translations) energy solution. In particular, the Lp norm (p ≥ 1) of data
complying with the assumptions of Theorem 3.6 can be arbitrarily large. The same comment
applies when p = m since any ground state of −∆ can be chosen. Notice that data might not
have compact support provided they are positive and below the suitable stationary profile.

4. A family of supersolutions and subsolutions

We recall that, throughout this section, m > 1 and p > 1.
In order to construct a family of supersolutions and of subsolutions of equation

ut = ∆(um) + up in M × (0, T ) , (4.1)

consider two functions η, ζ ∈ C1([0, T ];R+) and two constants C > 0, a > 0. Define

u(x, t) ≡ u(r(x), t) := Cζ(t)
[

1−
r

a
η(t)

]
1

m−1

+
. (4.2)

For further references, we compute

ut −∆(um)− up.

To this aim, set

F (r, t) := 1−
r

a
η(t) ,

D := {(x, t) ∈ (M \ {o})× (0, T ) | 0 < F (r, t) < 1} .

For any (x, t) ∈ D we have

ut(r, t) = Cζ ′(t)F
1

m−1 −
C

m− 1
ζ(t)F

1
m−1

−1 η
′(t)

η(t)

r

a
η(t)

= Cζ ′(t)F
1

m−1 −
C

m− 1
ζ(t)

η′(t)

η(t)
F

1
m−1

−1 +
C

m− 1
ζ(t)

η′(t)

η(t)
F

1
m−1 ;

(4.3)

umr (r, t) = −
Cmm

a(m− 1)
ζm(t)η(t)F

1
m−1 ; (4.4)

umrr(r, t) =
Cmm

a2(m− 1)2
ζm(t)η2(t)F

1
m−1

−1 . (4.5)
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By (2.1), (4.3)–(4.5),

ut −∆(um)− up = CF
1

m−1
−1

{

F

[

ζ ′(t) +
Cm−1m

a(m− 1)
ζm(t)η(t)m(r, θ) +

ζ(t)

m− 1

η′(t)

η(t)

]

−
ζ(t)

m− 1

η′(t)

η(t)
−

Cm−1m

a2(m− 1)2
ζm(t)η2(t)− Cp−1ζp(t)F

p−2+m

m−1

}

in D.

(4.6)

Proposition 4.1 (Supersolution conditions). Let assumptions (2.5), (2.7) be satisfied. Let
T ∈ (0,∞], ζ, η ∈ C1([0, T );R+). If, for all t ∈ (0, T ),

−
η′(t)

η3(t)
≥

Cm−1m

a2(m− 1)
ζm−1(t) (4.7)

and

ζ ′(t) +
Cm−1m

a(m− 1)
ζm(t)η(t)

[

(N − 1)h−
η(t)

a(m− 1)

]

≥ Cp−1ζp(t) , (4.8)

then u as defined in (4.2) is a weak supersolution of equation (4.1).

Proof. In view of (2.5), (2.7) (2.4), (4.6) and the fact that u is radially decreasing, for any
(x, t) ∈ D we get

ut −∆(um)− up ≥ CF
1

m−1
−1

{

ξ(t)F − δ(t) − γ(t)F
p−2+m

m−1

}

, (4.9)

where

ξ(t) := ζ ′(t) +
Cm−1m

a(m− 1)
(N − 1)hζm(t)η(t) +

ζ(t)

m− 1

η′(t)

η(t)
,

δ(t) :=
ζ(t)

m− 1

η′(t)

η(t)
+

Cm−1m

a2(m− 1)2
ζm(t)η2(t) , (4.10)

γ(t) := Cp−1ζp(t) . (4.11)

For every t ∈ (0, T ) and F ∈ [0, 1], let us define

ϕ(F, t) := ξ(t)F − δ(t) − γ(t)F
p−2+m

m−1 .

Note that (4.7) implies

ϕ(0, t) ≥ 0 for every t ∈ (0, T ) ,

whereas (4.8) implies

ϕ(1, t) ≥ 0 for every t ∈ (0, T ) .

Therefore, since F 7→ ϕ(F, t) is concave (recall that p,m > 1),

ϕ(F, t) ≥ 0 for every 0 ≤ F ≤ 1 and t ∈ (0, T ) . (4.12)

Thus, because for each (x, t) ∈ D there holds 0 < F (x, t) < 1, due to (4.12) and (4.9) we
deduce that

ut −∆(um)− up ≥ 0 in D .

Now observe that u ∈ C(M × [0, T )), um ∈ C1((M \ {o})× [0, T )) (recall (4.4)) and, by the
definition of u,

u ≡ 0 in M \ D \ [{o} × (0, T )] .

Hence,

ut −∆(um)− up ≥ 0 in (M \ {o})× (0, T )
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in the weak sense. On the other hand, thanks to a standard Kato-type inequality (note that
umr (0, t) ≤ 0), we can easily infer that

ut −∆(um)− up ≥ 0 weakly in M × (0, T ) .

�

In order to construct subsolutions, we need to introduce some preliminary materials. Let

σ(t) := ζ ′(t) +
Cm−1m

a(m− 1)
(N − 1)k coth(k)ζm(t)η(t) +

ζ(t)

m− 1

η′(t)

η(t)
, (4.13)

δ0(t) :=
ζ(t)

m− 1

η′(t)

η(t)
, (4.14)

and

σ0(t) := ζ ′(t) +
Cm−1m

a(m− 1)
(N − 1)C0ζ

m(t)η(t) +
ζ(t)

m− 1

η′(t)

η(t)
, (4.15)

where

(N − 1)C0 ≥ 1 + max
(r,θ)∈[0,1]×SN−1

m(r, θ) r . (4.16)

Note that such a C0 > 0 does exist since M is locally Euclidean, i.e. m(r, θ) ∼ N−1
r as r → 0.

Let us set

w(x, t) ≡ w(r(x), t) :=

{

u(x, t) in (M \B1)× (0, T ) ,

v(x, t) in B1 × (0, T ) ,
(4.17)

where

v(x, t) ≡ v(r(x), t) := Cζ(t)

[

1−
η(t)

2a
(r2 + 1)

]
1

m−1

+

, (x, t) ∈ B1 × [0, T ) . (4.18)

Notice that wm is of class C1.

Proposition 4.2 (Subsolution conditions). Let assumptions (2.5), (2.6) be satisfied. Let
T ∈ (0,∞], ζ, η ∈ C1([0, T );R+) with

0 < η(t) ≤
a

2
for all t ∈ (0, T ) . (4.19)

Let σ, δ, γ, σ0, δ0 be defined by (4.13), (4.10), (4.11), (4.15) and, respectively, (4.14). Assume
that, for all t ∈ (0, T ),

[

(

m− 1

p− 2 +m

)
m−1
p−1

−

(

m− 1

p− 2 +m

)
p−2+m

p−1

]

σ
p−2+m

p−1

+ (t) ≤ δ(t) γ
m−1
p−1 (t) , (4.20)

(m− 1)σ(t) ≤ (p− 2 +m)γ(t) , (4.21)

2
p−2+m

m−1 [σ0(t)− δ0(t)] ≤ γ(t) . (4.22)

Then w as defined in (4.17) is a weak subsolution of equation (4.1).

Proof. Let u be as in (4.2), and set

E := {(x, t) ∈ (M \B1)× (0, T ) : 0 < F (r, t) < 1} .

In view of (2.5), (2.6), (2.1), (2.2) and again the fact that u is radially decreasing, we deduce
that

ut −∆(um)− up ≤ CF
1

m−1
−1

{

σ(t)F − δ(t)− γ(t)F
p−2+m

m−1

}

, (4.23)
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Given (4.23), we can suppose with no loss of generality that σ(t) ≥ 0 for all t ∈ (0, T ). Let

ϕ0(F, t) := σ(t)F − δ(t) − γ(t)F
p−2+m

m−1 for all F ∈ [0, 1] and t ∈ (0, T ) .

Observe that (for better readability from now on we omit time dependence)

∂ϕ0

∂F
(F, t) = σ −

p− 2 +m

m− 1
γ F

p−1
m−1 ;

as a consequence,

∂ϕ0

∂F
(F, t) = 0 if and only if F = F0 :=

(

m− 1

p− 2 +m

σ

γ

)
m−1
p−1

,

and F0 is the maximum point of the (concave) function F 7→ ϕ0(F, t). Thanks to (4.21),
0 ≤ F0 ≤ 1. Moreover, an explicit computation shows that

ϕ0(F0, t) =
σ

p−2+m

p−1

γ
m−1
p−1

[

(

m− 1

p− 2 +m

)
m−1
p−1

−

(

m− 1

p− 2 +m

)
p−2+m

p−1

]

− δ . (4.24)

From (4.20) and (4.24) we obtain

ϕ0(F0) ≤ 0

which, combined with (4.23), yields

ut −∆(um)− up ≤ 0 in E .

Since u ∈ C(M × [0, T )), um ∈ C1((M \ {o})× [0, T )) and, by the definition of u,

u ≡ 0 in M \B1 \ E ,

there holds

ut −∆(um)− up ≤ 0 weakly in (M \B1)× (0, T ) . (4.25)

Now let v be as in (4.18). Set

P := {x ∈ B1 × (0, T ) : 0 < G(r, t) < 1} ,

where the function G is defined as

G(r, t) := 1−
η(t)

2a
(r2 + 1) .

For any (x, t) ∈ P, we have:

vt(r, t) = Cζ ′(t)G
1

m−1 −
C

m− 1
ζ(t)

η′(t)

η(t)
G

1
m−1

−1 +
C

m− 1
ζ(t)

η′(t)

η(t)
G

1
m−1 ; (4.26)

vmr (r, t) = −
Cmm

a(m− 1)
ζm(t)η(t)rG

1
m−1 ;

vmrr(r, t) = −
Cmm

a(m− 1)
η(t)ζm(t)G

1
m−1 +

Cmm

a2(m− 1)2
ζm(t)η2(t)r2G

1
m−1

−1

≥ −
Cmm

a(m− 1)
η(t)ζm(t)G

1
m−1 .

(4.27)

In view of (4.16), (2.1) and (4.26)–(4.27), we deduce that

vt −∆(um)− vp ≤ C G
1

m−1
−1

{

σ0(t)G− δ0(t)− γ(t)G
p−2+m

m−1

}

. (4.28)
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Due to (4.19), for each (x, t) ∈ P there holds

1

2
≤ G(r, t) ≤ 1 .

So, (4.28) and (4.22) yield

vt −∆(vm)− vp ≤ 0 in P ≡ B1 × (0, T ) , (4.29)

in the classical sense. Because w ∈ C(M × [0, T )) and wm ∈ C1(M × [0, T )) (note that by
construction u = v and umr = vmr on ∂B1 × (0, T )), from (4.25) and (4.29) the thesis easily
follows. �

5. Proofs of the main results

We provide here complete proofs of our main results, by using explicit barrier arguments
based on the results of Section 4 and on the comparison results given in Section 2.4.

5.1. Supersolutions. We now provide some explicit supersolutions from which the results
of Theorems 3.1, 3.3, 3.6 will follow.

Lemma 5.1. Let assumptions (2.5), (2.7) be satisfied. Let u0 ∈ L∞(M), u0 ≥ 0 with
supp u0 ⊂ BR0 for some R0 > 0. Suppose that p > m. Let

ζ(t) := (τ + t)−α[log(τ + t)]
β

m−1 , η(t) := [log(τ + t)]−β

with α = 1
m−1 , β ≥ 1. Suppose that

Cm−1

a2
≤
m− 1

m
β , (5.1)

a ≥
2

h(N − 1)(m− 1)
, (5.2)

2α ≤
(N − 1)h

2

Cm−1m

a(m− 1)
, (5.3)

and that τ = τ(m,β, p, a) ≥ e is large enough. Then the function u defined in (4.2) is a
weak supersolution of equation (4.1) with T = ∞. Moreover, if

a ≥ 2R0 , ‖u0‖∞ ≤
C

2m−1
τ−α (log τ)

β

m−1 , (5.4)

then u is also a supersolution of problem (1.1) with T = ∞.

Proof. Condition (4.7) with T = ∞ reads

β[log(τ + t)]β−1 ≥
mCm−1

a2(m− 1)
(τ + t)1−α(m−1) =

mCm−1

a2(m− 1)
for all t > 0 ,

which holds due to (5.1) and the fact that τ ≥ e. Moreover, condition (4.8) with T = ∞
reads

−α(τ + t)−α−1[log(τ + t)]
β

m−1 +
β

m− 1
(τ + t)−α−1[log(τ + t)]

β

m−1
−1

+
Cm−1m

a(m− 1)
(τ + t)−αm[log(τ + t)]

β

m−1

[

(N − 1)h−
[log(τ + t)]−β

a(m− 1)

]

≥ Cp−1(τ + t)−αp [log(τ + t)]
βp

m−1 for all t > 0 ,
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which is fulfilled, in view of (5.2) and (5.3), provided τ = τ(m,β, p, a) ≥ e is so large that
(note that α+ 1 = αm)

α (τ + t)−α−1 [log (t+ τ)]
β

m−1 ≥ Cp−1 (t+ τ)−αp [log(τ + t)]
βp

m−1 for all t > 0 , (5.5)

where in the r.h.s. one can replace C with the upper bound given in (5.1). We point out
that in this last inequality the existence of such a τ is ensured since p > m. Hence, in view
of Proposition 4.1, we obtain that u is a weak supersolution of equation (4.1). In addition,
(5.4) implies that (recall the explicit expression (4.2))

u0(x) ≤ u(x, 0) for all x ∈M . (5.6)

Hence u is also a supersolution of problem (1.1).
Finally, let us briefly explain how the above conditions can be made compatible: first

one picks C so as to satisfy (5.1) as equality, which means that Cm−1 ∼ a2, then plugs this
choice in (5.3) and selects a so large that both (5.3) and (5.2) are met. Lastly, τ ≥ e is
taken so large that (5.5) holds upon the previous choices. �

Lemma 5.2. Let assumptions (2.5), (2.7) hold and suppose that p > m. Let u0 ∈ L∞(M),
u0 ≥ 0 with supp u0 ⊂ BR0 for some R0 > 0. Let

ζ(t) := (τ + t)−α , η(t) := (τ + t)−β

with
1

p− 1
< α <

1

m− 1
, β = 1− α(m− 1) . (5.7)

Suppose that (5.1), (5.2), (5.3) hold and that τ = τ(m,α, p, a) ≥ 1 is large enough. Then the
function u defined in (4.2) is a weak supersolution of equation (4.1) with T = ∞. Moreover,
if

a ≥ 2R0 , ‖u0‖∞ ≤
C

2m−1
τ−α , (5.8)

then u is also a supersolution of problem (1.1).

Proof. Condition (4.7) with T = ∞ reads

β(τ + t)2β−1+α(m−1) ≥
mCm−1

a2(m− 1)
for all t > 0 ,

which holds for all τ ≥ 1, in view of (5.1), providing that

2β − 1 + α(m− 1) ≥ 0 ,

the latter inequality being trivially guaranteed by (5.7). Furthermore, condition (4.8) with
T = ∞ reads

−α(τ + t)−α−1 +
mCm−1

a(m− 1)
(τ + t)−αm−β

[

(N − 1)h−
(τ + t)−β

a(m− 1)

]

≥ Cp−1(τ + t)−αp for all t > 0 ,

which is fulfilled, thanks to (5.2) and (5.3), if

β − 1 + α(m− 1) ≤ 0, α(p −m) ≥ β > 0 (recall (5.7))

and τ = τ(m,α, p, a) ≥ 1 is so large that for all t > 0

α (τ + t)−α−1 ≥ Cp−1 (τ + t)−αp ;

this is always possible thanks to the first (lower) inequality in (5.7). Hence, in view of
Proposition 4.1, u is a weak supersolution of equation (4.1). The fact that C, a and τ can
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be chosen so as to satisfy the above conditions can be justified similarly to the end of the
proof of Lemma 5.1.

Finally, (5.8) yields (5.6), thus u is also a supersolution of problem (1.1). �

Proof of Theorem 3.1. We use comparison with the barriers constructed in Lemmas 5.1,
5.2 for solutions to approximating problems that involve homogeneous Dirichlet boundary
conditions on balls of radius R with R → +∞, see Proposition 2.4. The bounds still hold
in such limit and yield part i) of the claim by using Lemma 5.1 and part ii) of the claim by
using Lemma 5.2. It is standard although tedious to check that the conditions on the initial
data considered in item ii) give rise to a larger class than the one singled out in item i).

�

Lemma 5.3. Let assumptions (2.5), (2.7) be satisfied. Let u0 ∈ L∞(M), u0 ≥ 0 with
supp u0 ⊂ BR0 for some R0 > 0. Suppose that

1 < p <
m+ 1

2
. (5.9)

Let

ζ(t) := (τ + t)α , η(t) := (τ + t)−β ,

with

α ≥
1

m− 2p + 1
, β =

1 + α(m− 1)

2
, τ ≥ 1 . (5.10)

Suppose that (5.1)–(5.2) hold and that

Cm−p

a
≥

2(m− 1)

m(N − 1)h
. (5.11)

Then the function u defined in (4.2) is a weak supersolution of equation (4.1). Moreover, if

a ≥ 2R0 ∨H , Cτα ≥ 2m−1‖u0‖∞ , (5.12)

with H = H(m,N, h, β) sufficiently large, then u is also a supersolution of problem (1.1).

Proof. Condition (4.7) with T = ∞ reads

β(τ + t)2β−1−α(m−1) ≥
mCm−1

(m− 1) a2
for all t > 0 ,

which is satisfied, due to (5.1) and the fact that τ ≥ 1, whenever

2β − 1− α(m− 1) ≥ 0 ⇐⇒ β ≥
1 + α(m− 1)

2
. (5.13)

Furthermore, condition (4.8) with T = ∞ becomes

α(τ + t)α−1 +
mCm−1

a(m− 1)
(τ + t)αm−β

[

(N − 1)h−
(τ + t)−β

a(m− 1)

]

≥ Cp−1(τ + t)αp for all t > 0 ,

which is fulfilled, thanks to (5.2), (5.11) and τ ≥ 1, providing that and

α(m− p) ≥ β . (5.14)

It is straightforwardly checked that (5.10) (and (5.9)) ensures that both (5.13) and (5.14)
hold. Hence, from Proposition 4.1 we get that u is a supersolution of equation (4.1).
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As concerns the compatibility of the conditions involving C and a, we just point out that
(5.9) is crucial in order to guarantee that one can pick a so large that also (5.11) (in addition
to (5.1)–(5.2)) holds.

Finally, (5.12) implies (5.6), so u is also a supersolution of problem (1.1). �

Lemma 5.4. Let assumptions (2.5), (2.7) be satisfied. Let u0 ∈ L∞(M), u0 ≥ 0 with
supp u0 ⊂ BR0 for some R0 > 0. Suppose that

1 < p ≤
m+ 1

2
. (5.15)

Let

ζ(t) := exp{α(τ + t)} , η(t) := exp{−β(τ + t)} , τ ≥ 0 ,

with

α ≥ α0(N,m, p, h) > 0 , β =
α(m− 1)

2
. (5.16)

Suppose that (5.1), (5.2) and (5.11) hold. Then the function u defined in (4.2) is a weak
supersolution of equation (4.1). Moreover, if

a ≥ 2R0 , C exp{ατ} ≥ 2m−1‖u0‖∞ , (5.17)

then u is also a supersolution of problem (1.1).

Proof. Condition (4.7) with T = ∞ reads

β exp{[2β − α(m− 1)](τ + t)} ≥
mCm−1

(m− 1)a2
for all t > 0 ,

which is satisfied, in view of (5.1) and the fact that τ ≥ 0, as long as

2β − α(m− 1) ≥ 0 ⇐⇒ β ≥
α(m− 1)

2
. (5.18)

Furthermore, condition (4.8) with T = ∞ reads

α exp{α(τ + t)}+
mCm−1

a(m− 1)
exp{(αm− β)(τ + t)}

[

(N − 1)h −
exp{−β(τ + t)}

a(m− 1)

]

≥ Cp−1 exp{αp(τ + t)} for all t > 0 ,

which is fulfilled, due to (5.2), (5.11) and the fact that τ ≥ 0, providing that

α(m− p) ≥ β . (5.19)

Observe that (5.15) and (5.16) guarantee the validity of (5.18) and (5.19). Hence, Proposi-
tion 4.1 ensures that u is a supersolution of equation (4.1).

As concerns the compatibility of the conditions involving C and a, we point out that
if (5.15) holds with strict inequalities then the same comments as in the end of the proof
of Lemma 5.3 apply. Otherwise, in the critical case p = m+1

2 , by substituting C with the
r.h.s. of (5.1) in condition (5.11) one sees that the only degree of freedom left to make the
inequality hold is the one given by α (through β), which should be taken sufficiently large
depending on N,m, p, h (i.e. larger than a value that we labeled α0).

Finally, from (5.17) there follows (5.6), so u is also a supersolution of problem (1.1). �
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Proof of Theorem 3.3. We use comparison with the barriers constructed in Lemmas 5.3,
5.4 for solutions to approximating problems that involve homogeneous Dirichlet boundary
conditions on balls of radius R with R → +∞, see Proposition 2.4. The bounds still hold
in such limit and yield part i) of the claim by using Lemma 5.3 and part ii) of the claim by
using Lemma 5.4. �

We now turn to the proof of Theorem 3.6. Its statement will follow from the next result.

Lemma 5.5. Let assumptions (2.5), (2.7) be satisfied. Suppose that p ≥ m and that, in
case p = m only, radial sectional curvatures Kω satisfy Kω(x) ≤ −h2 for all x ∈ M \ {o},
with h ≥ 2/(N − 1).

Consider a ground state v of the Laplacian on H
n
h and, for p > m, a strictly positive

solution V to (3.2) with q = p/m, and transplant such functions on M . Then u = v
1
m when

p = m, u = V
1
m when p > m, are supersolutions of equation (4.1). Moreover, if u0 ≤ v

1
m ,

or u0 ≤ V
1
m respectively, then u is also a supersolution of problem (1.1).

Proof. By the properties of v recalled above and Laplacian comparison (2.4) we compute:

−∆v = −v′′ −m(r, θ)v′ ≥ −v′′ − (N − 1)h coth(hr)v′

= −∆Hn
h
v = λ1(H

n
h) v ≥ v in M ,

where we have used the known bound (see [25])

λ1 ≥
(N − 1)2

4
h2

and the running curvature assumption.

Since p = m, the function u := v
1
m is a positive stationary supersolution of equation (4.1).

In fact
−∆um = −∆v ≥ v = up.

Clearly, u is also a supersolution of problem (1.1), provided that u0 ≤ u = v
1
m in M . An

essentially identical proof works for the case p > m by replacing v with V . �

Proof of Theorem 3.6. We use comparison with the barrier constructed in Lemma
5.5 for solutions to approximating problems that involve homogeneous Dirichlet boundary
conditions on balls of radius R with R → +∞, see Proposition 2.4. The bounds still hold
in such limit. �

5.2. Subsolutions. We now provide some explicit supersolutions from which the results of
Theorems 3.2, 3.4 will follow.

Lemma 5.6. Let assumptions (2.5), (2.6) hold and assume that p > m. hold. Let u0 ∈
L∞(M), u0 ≥ 0 with supp u0 ⊃ BR0 for some R0 > 0. Let

ζ(t) := (T − t)−α[− log(T − t)]
β

m−1 , η(t) := [− log(T − t)]−β for every t ∈ [0, T ) ,

with T ∈ (0, 1) and

α >
1

m− 1
, β > 0 or α =

1

m− 1
, 0 < β ≤ 1 . (5.20)

Suppose that

Cm−1

a
≥ max

{

α(m− 1)

mk coth(k)(N − 1)
,
α(m− 1) + β

mC0(N − 1)
, C̃

}

, (5.21)
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Cm−1

a2
≥

2β(m− 1)

m
, (5.22)

for a suitable constant C̃ = C̃(p,m,N, k) > 0, and that T = T (a,C, p,m,α, β,N, k,C0) ∈
(0, 1) is small enough (C0 is as in (4.16)). Then the function u defined in (4.2) is a weak
subsolution of equation (4.1). Moreover, if

R0 ≥ a(− log T )β , u0 ≥ CT−α(− log T )
β

m−1 in BR0 , (5.23)

then u is also a subsolution of problem (1.1).

Proof. We take T = T (a, β) > 0 so small that (4.19) is fulfilled. With the above choices of
ζ and η, in view of (5.20) (for the moment we only use α ≥ 1

m−1 ), the first inequality of

(5.21) and the fact that T ≤ 1, we have that (recall the definition of σ given by (4.13))

σ(t) =α(T − t)−α−1 [− log(T − t)]
β

m−1

+
Cm−1m(N − 1)k coth(k)

a(m− 1)
(T − t)−αm [− log(T − t)]

β

m−1

≤
2Cm−1m(N − 1)k coth(k)

a(m− 1)
(T − t)−αm [− log(T − t)]

β

m−1 .

(5.24)

Furthermore, upon recalling the definition of δ given by (4.10), thanks to (5.22) we obtain
the estimate

δ(t) =−
β

m− 1
(T − t)−α−1 [− log(T − t)]

β

m−1
−1

+
Cm−1m

a2(m− 1)2
(T − t)−αm [− log(T − t)]

β(2−m)
m−1

≥
Cm−1m

2a2(m− 1)2
(T − t)−αm [− log(T − t)]

β(2−m)
m−1

(5.25)

as long as T ∈ (0, 1) is so small that

(T − t)−α−1 [− log(T − t)]
β

m−1
−1 ≤ (T − t)−αm [− log(T − t)]

β(2−m)
m−1 ∀t ∈ (0, T ) .

Note that such a choice of T is always feasible thanks to (5.20). Now set

K1 :=

(

m− 1

p− 2 +m

)
m−1
p−1

−

(

m− 1

p− 2 +m

)
p−2+m

p−1

> 0 . (5.26)

Due to (5.24) and (5.25), condition (4.20) is implied by

2K
p−1

p−2+m

1

Cm−1m(N − 1)k coth(k)

a(m− 1)
(T − t)−αm[− log(T − t)]

β

m−1

≤C
(p−1)(m−1)

p−2+m

(

Cm−1m

2a2(m− 1)2

)

p−1
p−2+m

(T − t)
−αp(m−1)−αm(p−1)

p−2+m [− log(T − t)]
β

m−1 ∀t ∈ (0, T ) .

(5.27)
Note that

αm ≤ αp
m− 1

p− 2 +m
+ αm

p− 1

p− 2 +m

if and only if

(p−m)(m− 1) ≥ 0 ,
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which trivially holds since p > m. Hence, in view of the third inequality in (5.21), we have
that (5.27) (and so (4.20)) is fulfilled: we point out that, for this purpose, the hypothesis
p > m is essential (at p = m the dependence on C and a vanishes and there is no more
degree of freedom to make (5.27) hold). Moreover, from (5.24) we deduce that (4.21) is
satisfied whenever

2mk coth(k)(N − 1)

p− 2 +m
≤ aCp−m (T − t)−α(p−m) [− log(T − t)]

β(p−1)
m−1 ∀t ∈ (0, T ) , (5.28)

and to this aim it is enough to choose T = T (a,C, p,m,α, β,N, k) > 0 small enough.
Finally, thanks to the middle inequality in (5.21), we have that (recall that σ0 and δ0 are

defined by (4.15) and (4.14), respectively)

σ0(t)− δ0(t) ≤
2Cm−1m(N − 1)C0

a(m− 1)
(T − t)−αm [− log(T − t)]

β

m−1 .

We therefore deduce that inequality (4.22) is satisfied provided

2
p−2+m

m−1
+1m(N − 1)C0

(m− 1)
≤ aCp−m (T − t)−α(p−m) [− log(T − t)]

β(p−1)
m−1 ∀t ∈ (0, T ) . (5.29)

Similarly to (5.28), it is plain that (5.29) holds if T = T (a,C, p,m,α, β,N,C0) > 0 is small
enough. Since we have established that (4.20), (4.21) and (4.22) hold, from Proposition 4.2
we get that u is a subsolution of equation (4.1). Furthemore, (5.23) implies that

u(x, 0) ≤ u0(x) for all x ∈M , (5.30)

so that u is also a subsolution of problem (1.1). �

Lemma 5.7. Let assumptions (2.5), (2.6) hold and suppose that p > m. Let u0 ∈ L∞(M),
u0 ≥ 0 with supp u0 ⊃ BR0 for some R0 > 0. Let

ζ(t) := (T − t)−α , η(t) := (T − t)β for every t ∈ [0, T ) ,

with

α >
1

m− 1
, 0 < β ≤

α(m− 1)− 1

2
. (5.31)

Suppose that (5.21)–(5.22) hold, and that T = T (a,C, p,m,α, β,N, k,C0) ∈ (0, 1) is small
enough (C0 is as in (4.16)). Then the function u defined in (4.2) is a weak subsolution of
equation (4.1). Moreover, if

R0 ≥ aT−β , u0 ≥ CT−α in BR0 , (5.32)

then u is also a subsolution of problem (1.1).

Proof. We take T = T (a, β) ∈ (0, 1) so small that (4.19) is fulfilled. In view of the first
inequality in (5.21) and (5.31) (for the moment we only use the fact that β ≤ α(m−1)−1),
we have (recall that σ is defined in (4.13))

σ(t) =α(T − t)−α−1 +
Cm−1m(N − 1)k coth(k)

a(m− 1)
(T − t)−αm+β −

β

m− 1
(T − t)−α−1

≤
2Cm−1m(N − 1)k coth(k)

a(m− 1)
(T − t)−αm+β .

(5.33)
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Moreover, thanks to (5.22) and (5.31) (recall that δ is defined in (4.10)),

δ(t) = −
β

m− 1
(T − t)−α−1 +

Cm−1m

a2(m− 1)2
(T − t)−αm+2β ≥

Cm−1m

2a2(m− 1)2
(T − t)−αm+2β ;

(5.34)

note that here we do need that β ≤ α(m−1)−1
2 . Now let K1 be defined as in (5.26). By virtue

of (5.33) and (5.34), condition (4.20) is implied by

2K
p−1

p−2+m

1

Cm−1m(N − 1)k coth(k)

a(m− 1)
(T − t)−αm+β

≤C
(p−1)(m−1)

p−2+m

(

Cm−1m

2a2(m− 1)2

)

p−1
p−2+m

(T − t)
−αp(m−1)+(2β−αm)(p−1)

p−2+m ∀t ∈ (0, T ) .

(5.35)

Observe that

αm− β ≤ αp
m− 1

p− 2 +m
+ (αm− 2β)

p− 1

p − 2 +m

holds if and only if

(p −m)[α(m− 1)− β] ≥ 0 ,

which is guaranteed since p > m and (5.31) holds. Therefore, from the third inequality in
(5.21) we infer that (5.35) is fulfilled: we point out, once again, that here it is essential that
p > m, for the same reasons as in the proof of Lemma 5.6. On the other hand, from (5.33)
we deduce that (4.21) is satisfied provided

2mk coth(k)(N − 1)

p− 2 +m
≤ aCp−m (T − t)−α(p−m)−β ∀t ∈ (0, T ) ;

to this end, it suffices to pick T = T (a,C, p,m,α, β,N, k) > 0 small enough.
Furthermore (recall that σ0 and δ0 are defined by (4.15) and (4.14), respectively), thanks

to the central inequality in (5.21) (actually here one can replace β with 0 in such inequality),
we deduce that

σ0(t)− δ0(t) ≤
2Cm−1m(N − 1)C0

a(m− 1)
(T − t)−αm+β .

We therefore infer that inequality (4.22) is met provided

2
p−2+m

m−1
+1m(N − 1)C0

(m− 1)
≤ aCp−m (T − t)−α(p−m)−β ∀t ∈ (0, T ) . (5.36)

It is apparent that (5.36) is satisfied if T = T (a,C, p,m,α, β,N,C0) > 0 is small enough.
Since (4.20), (4.21) and (4.22) hold, from Proposition 4.2 we get that u is a subsolution of
equation (4.1). Finally, (5.32) yields (5.30), so u is also a subsolution of problem (1.1). �

Proof of Theorem 3.2. We use comparison with the barriers constructed in Lemmas
5.6, 5.7, see Proposition 2.5. This yield part i) of the claim by using Lemma 5.6 and part
ii) of the claim by using Lemma 5.7. �

Lemma 5.8. Let assumptions (2.5), (2.6) be satisfied. Let u0 ∈ L∞(M), u0 ≥ 0 with
supp u0 ⊃ BR0 for some R0 > 0. Suppose that

1 < p < m . (5.37)

Let

ζ(t) := (τ + t)α , η(t) := (τ + t)−β for every t ∈ [0,∞) .
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Suppose that (5.22) holds,

0 < α <
1

m− 1
, β =

α(m− 1) + 1

2
, (5.38)

Cm−1

a
≥ max

{

α(m− 1)

mk coth(k)(N − 1)
,

α(m− 1)

mC0(N − 1)

}

(5.39)

and that τ = τ(a,C, p,m,α, β,N, k,C0) ≥ 1 is sufficiently large. Then the function u defined
in (4.2) is a weak subsolution of equation (4.1). Moreover, if

R0 ≥ aτβ, u0 ≥ Cτα in BR0 , (5.40)

then u is also a subsolution of problem (1.1).

Proof. We take τβ ≥ 2
a , so (4.19) is fulfilled. In view of (5.38), τ ≥ 1 and the first inequality

in (5.39), we have that (recall that σ is defined in (4.13))

σ(t) =α(τ + t)α−1 +
Cm−1m(N − 1)k coth(k)

a(m− 1)
(τ + t)αm−β −

β

m− 1
(τ + t)α−1

≤
2Cm−1m(N − 1)k coth(k)

a(m− 1)
(τ + t)αm−β .

(5.41)

Here we are only using the fact that β ≤ α(m− 1) + 1. Moreover, thanks to (5.22), (5.38),
(5.39) and τ ≥ 1 (recall that δ is defined in (4.10)),

δ(t) = −
β

m− 1
(τ + t)α−1 +

Cm−1m

a2(m− 1)2
(τ + t)αm−2β

≥
Cm−1m

2a2(m− 1)2
(τ + t)αm−2β .

(5.42)

Let K1 be defined as in (5.26). Due to (5.41) and (5.42), condition (4.20) is implied by

2K
p−1

p−2+m

1

Cm−1m(N − 1)k coth(k)

a(m− 1)
(τ + t)αm−β

≤C
(p−1)(m−1)

p−2+m

(

Cm−1m

2a2(m− 1)2

)

p−1
p−2+m

(τ + t)
αp(m−1)+(αm−2β)(p−1)

p−2+m ∀t > 0 .

(5.43)

Observe that

αm− β < αp
m− 1

p− 2 +m
+ (αm− 2β)

p− 1

p − 2 +m

holds if and only if

(p −m)[α(m− 1)− β] > 0 ,

which is valid thanks to (5.37) and (5.38)
It is therefore apparent that one can choose τ(a,C, p,m,α, β,N, k) ≥ 1 sufficiently large

to make (5.43) (and so (4.20)) hold. Note that here the extrema of the inequality (p = m or
β = α(m− 1)) have to be excluded, otherwise one does not have enough degrees of freedom
on C, a to make (5.43) hold).

Moreover, from (5.41) we deduce that (4.21) is fulfilled whenever

2mk coth(k)(N − 1)

p− 2 +m
≤ aCp−m (τ + t)α(p−m)+β ∀t ≥ 0 . (5.44)
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From (5.38) it follows that α(p −m) + β > 0. So, (5.44) is satisfied, providing again that
τ(a,C, p,m,α, β,N, k) ≥ 1 is sufficiently large. Furthermore, thanks to the last inequality
in (5.39) (recall that σ0 and δ0 are defined by (4.15) and (4.14), respectively), we have that

σ0(t)− δ0(t) ≤
2Cm−1m(N − 1)C0

a(m− 1)
(τ + t)αm−β .

Hence, from (5.38) we infer that inequality (4.22) is satisfied provided

2
p−2+m

m−1
+1m(N − 1)C0

(m− 1)
≤ aCp−m (τ + t)α(p−m)+β ∀t ≥ 1 . (5.45)

Clearly, (5.45) holds as long as τ(a,C, p,m,α, β,N,C0) ≥ 1 is sufficiently large. Since (4.20),
(4.21) and (4.22) hold, from Proposition 4.2 we get that u is a subsolution of equation (4.1).
Finally, (5.40) yields (5.30), so that u is also a subsolution of problem (1.1).

�

Proof of Theorem 3.4. We use comparison with the barriers constructed in Lemma
5.8, see Proposition 2.5. This yields immediately the claim. �
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