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Strong instability of standing waves for

nonlinear Schrödinger equations with

attractive inverse power potential

Noriyoshi Fukaya and Masahito Ohta

Abstract

We study the strong instability of standing waves eiωtφω(x) for nonlinear Schrödinger

equations with an L2-supercritical nonlinearity and an attractive inverse power po-

tential, where ω ∈ R is a frequency, and φω ∈ H1(RN ) is a ground state of the

corresponding stationary equation. Recently, for nonlinear Schrödinger equations

with a harmonic potential, Ohta (2018) proved that if ∂2
λSω(φλ

ω)|λ=1 ≤ 0, then

the standing wave is strongly unstable, where Sω is the action, and φλ
ω(x) :=

λN/2φω(λx) is the scaling, which does not change the L2-norm. In this paper, we

prove the strong instability under the same assumption as the above-mentioned

in inverse power potential case. Our proof is applicable to nonlinear Schrödinger

equations with other potentials such as an attractive Dirac delta potential.

1 Introduction

In this paper, we consider the nonlinear Schrödinger equation with an attractive inverse

power potential

(NLS) i∂tu = −∆u −
γ

|x|α
u− |u|p−1u, (t, x) ∈ R × R

N ,

where

N ∈ N, γ > 0, 0 < α < min{2, N}, 1 +
4

N
< p < 1 +

4

N − 2
,(1.1)
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and u : R × RN → C is an unknown function of (t, x) ∈ R × RN . Here, 1 + 4/(N − 2)

stands for ∞ if N = 1 or 2.

Let us consider the Cauchy problem for (NLS). Since the potential V (x) := −γ|x|−α

belongs to (Lr + L∞)(RN) for some r > min{1, N/2} under the assumption (1.1), the

multiplication operator v 7→ V (x)v is continuous fromH1(RN) to (Lρ′

+L2)(RN) for some

ρ ∈ [2, 2N/(N − 2)), and thus, the potential energy
∫

RN V (x)|v(x)|2 dx is well-defined

on H1(RN). Therefore, the local well-posedness of (NLS) in the energy space H1(RN )

follows from the standard theory, e.g. [3, Theorems 3.3.5, 3.3.9, Proposition 4.2.3]. More

precisely, for each u0 ∈ H1(RN), there exist a maximal interval Imax = [0, T+) ⊂ R with

T+ = T+(u0) ∈ (0,∞] and a unique solution u ∈ C(Imax, H
1(RN)) of (NLS) with

u(0) = u0 such that if T+ < ∞, then limtրT + ‖u(t)‖H1 = ∞. Here, if T+ < ∞, we

say that the solution u(t) blows up in finite time. Moreover, (NLS) satisfies the two

conservation laws

E(u(t)) = E(u0), ‖u(t)‖L2 = ‖u0‖L2

for all t ∈ Imax, where

E(v) :=
1

2
‖∇v‖2

L2 −
γ

2

∫

RN

|v(x)|2

|x|α
dx−

1

p+ 1
‖v‖p+1

Lp+1

is the energy.

By a standing wave, we mean a solution of (NLS) with the form eiωtφ(x), where ω ∈ R

is a frequency, and φ ∈ H1(RN) is a nontrivial solution of the stationary equation

(1.2) − ∆φ+ ωφ−
γ

|x|α
φ− |φ|p−1φ = 0, x ∈ R

N .

Eq. (1.2) can be written as S ′
ω(φ) = 0, where

Sω(v) := E(v) +
ω

2
‖v‖2

L2

is the action. The following existence and variational characterization of ground states

by using the Nehari functional

Kω(v) := ∂λSω(λv)|λ=1 = 〈S ′
ω(v), v〉

= ‖∇v‖2
L2 + ω‖v‖2

L2 − γ

∫

RN

|v(x)|2

|x|α
dx− ‖v‖p+1

Lp+1

are known (see [6, Remarks 1.2 and 1.3]), where a ground state is a nontrivial solution

of (1.2) with the least action.
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Proposition 1.1. Assume (1.1) and

(1.3) ω > ω0 := − inf

{

‖∇v‖2
L2 − γ

∫

RN

|v(x)|2

|x|α
dx

∣

∣

∣

∣

v ∈ H1(RN), ‖v‖L2 = 1

}

.

Then the set of ground states

Gω := {φ ∈ Fω | Sω(φ) ≤ Sω(v) for all v ∈ Fω }

is not empty, where

Fω := {φ ∈ H1(RN) \ {0} | S ′
ω(φ) = 0 }

is the set of all nontrivial solutions of (1.2). Moreover, if φ ∈ Gω, then

(1.4) Sω(φ) = inf{Sω(v) | v ∈ H1(RN) \ {0}, Kω(v) = 0 }.

For the sake of completeness, we give a proof of Proposition 1.1 in Section 2 by using

the argument in [8, Section 3].

In the present paper, we study the strong instability of the standing wave solution

eiωtφω of (NLS), where ω > ω0 and φω ∈ Gω. We recall the definitions of stability and

instability of standing waves.

Definition 1.2. Let eiωtφ be a standing wave solution of (NLS).

• We say that eiωtφ is stable if for each ε > 0, there exists δ > 0 such that if

u0 ∈ H1(RN) satisfies ‖u0 − φ‖H1 < δ, then the solution u(t) of (NLS) with

u(0) = u0 exists globally in time, and satisfies

sup
t≥0

inf
θ∈R

‖u(t) − eiθφ‖H1 < ε.

• We say that eiωtφ is unstable if eiωtφ is not stable.

• We say that eiωtφ is strongly unstable if for each ε > 0, there exists u0 ∈ H1(RN )

such that ‖u0 − φ‖H1 < ε and the solution u(t) of (NLS) with u(0) = u0 blows up

in finite time.

Here, we state some known results related to our works. The stability and instability of

standing waves with a ground state profile for nonlinear Schrödinger equations have been

studied by many researchers. For (NLS) in the nonpotential case γ = 0, Berestycki and

Cazenave [1] proved the strong instability for any ω > 0 when 1+4/N ≤ p < 1+4/(N−2)

(for the case p = 1 + 4/N , see also [22]). Cazenave and Lions [4] proved the stability for
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any ω > 0 if 1 < p < 1 + 4/N . For abstract Hamiltonian systems including nonlinear

Schrödinger equations, Grillakis, Shatah, and Strauss [10, 11] gave sufficient conditions

for the stability and instability, that is, if ∂ω‖φω‖2
L2 > 0, the standing wave is stable, and

if ∂ω‖φω‖2
L2 < 0, the standing wave is unstable (see also [20, 21, 23]). For the nonlinear

Schrödinger equation with a general potential

(1.5) i∂tu = −∆u + Ṽ (x)u− |u|p−1u, (t, x) ∈ R × R
N ,

Rose and Weinstein [19] proved the stability for ω > ω̃0 sufficiently closed to ω̃0 even

when 1 + 4/N ≤ p < 1 + 4/(N − 2) by using the criteria of Grillakis, Shatah, and

Strauss [10], where −ω̃0 is the smallest eigenvalue of the Schrödinger operator −∆ + Ṽ .

In [6], Ohta and Fukuizumi improved the stability results of Rose and Weinstein, and in

[7], they proved the instability for sufficiently large ω when 1+4/N < p < 1+4/(N −2)

by using the sufficient condition of Ohta [15], that is, if ∂2
λS̃ω(φλ

ω)|λ=1 < 0, the standing

wave is unstable, where S̃ω is the action corresponding to (1.5), and vλ(x) := λN/2v(λx)

is the scaling, which does not change the L2-norm (see also [8, 9] in the Dirac delta

potential case and [5] in the harmonic potential case). For the nonlinear Schrödinger

equation with an attractive Dirac delta potential

(1.6) i∂tu = −∂2
xu− γ̃δ(x)u− |u|p−1u, (t, x) ∈ R × R,

Ohta and Yamaguchi [18] proved the strong instability of the standing wave with positive

energy Ẽ(φω) > 0 when γ̃ > 0 and p > 5, and as a corollary, they proved the strong

instability for sufficiently large ω (see also [17] for related works). Recently, for the

nonlinear Schrödinger equation with a harmonic potential

(1.7) i∂tu = −∆u + |x|2u− |u|p−1u, (t, x) ∈ R × R
N ,

Ohta [16] proved the strong instability under the same assumption ∂2
λS̃ω(φλ

ω)|λ=1 ≤ 0 as

in [15] when 1 + 4/N < p < 1 + 4/(N − 2).

In view of the graph of λ 7→ S̃ω(φλ
ω), we see that Ẽ(φω) > 0 implies ∂2

λS̃ω(φλ
ω)|λ=1 < 0.

Therefore, the question naturally arises whether the standing wave is strongly unstable

or not in the case Ẽ(φω) ≤ 0 and ∂2
λS̃ω(φλ

ω)|λ=1 ≤ 0 for (1.6). However, the proof for

(1.7) in [16] is not applicable to (1.6).

In this paper, we consider the strong instability of standing waves under the same

assumption as in [16]. In order to treat more general potentials with suitable properties

related to the scaling λ 7→ vλ, we study the nonlinear Schrödinger equation (NLS) with

an inverse power potential. Now, we state our main result.

Theorem 1.3. Assume (1.1), ω > ω0, and that φω ∈ Gω satisfies ∂2
λSω(φλ

ω)|λ=1 ≤ 0,

where φλ
ω(x) = λN/2φω(λx). Then the standing wave solution eiωtφω of (NLS) is strongly

unstable.
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It is proven in [7, Section 2] that the assumption ∂2
λSω(φλ

ω)|λ=1 ≤ 0 is satisfied for

sufficiently large ω. Therefore, we have the following corollary.

Corollary 1.4. Assume (1.1). Then there exists ω1 > ω0 such that if ω ≥ ω1 and

φω ∈ Gω, the standing wave solution eiωtφω of (NLS) is strongly unstable.

Remark 1.5. Theorem 1.3 can be extended to more general settings. The important

feature used in the proof of Theorem 1.3 is that the energy satisfies

E(v) =
1

2
‖∇v‖2

L2 −
1

2
G(v) −

1

p+ 1
‖v‖p+1

Lp+1,(1.8)

G(v) ≥ 0, G(λv) = λ2G(v), G(vλ) = λαG(v), ‖vλ‖p+1
Lp+1 = λβ‖v‖p+1

Lp+1(1.9)

with β > 2 > α > 0. Since the energy of (1.6) satisfies (1.8) and (1.9) with G(v) =

γ|v(0)|2, α = 1, and β = (p− 1)/2, the proof is applicable to (1.6) for p > 5. This gives

an improvement of the result of Ohta and Yamaguchi [18].

The proof of blowup for nonlinear Schrödinger equations relies on the virial identity

(1.10)
d2

dt2
‖xu(t)‖2

L2 = 8Q(u(t)),

where Q is the functional on H1(RN) defined by

Q(v) = ‖∇v‖2
L2 −

γα

2

∫

RN

|v(x)|2

|x|α
dx−

N(p− 1)

2(p+ 1)
‖v‖p+1

Lp+1.

Note that

Sω(vλ) =
λ2

2
‖∇v‖2

L2 +
ω

2
‖v‖2

L2 −
γλα

2

∫

RN

|v(x)|2

|x|α
dx−

λN(p−1)/2

p+ 1
‖v‖p+1

Lp+1,

Q(v) = ∂λSω(vλ)|λ=1.

Since x · ∇V (x) = γα|x|−α ∈ (Lq + L∞)(RN) for some q > min{1, N/2} under the

assumption (1.1), from the standard theory [3, Proposition 6.5.1], we obtain the local

well-posedness of the Cauchy problem for (NLS) in the weighted space

Σ := { v ∈ H1(RN) | ‖xv‖L2 < ∞ },

and the virial identity (1.10) holds for all t ∈ Imax.

To prove Theorem 1.3, we introduce the set

Bω =

{

v ∈ H1(RN)

∣

∣

∣

∣

∣

Sω(v) < Sω(φω), ‖v‖L2 ≤ ‖φω‖L2,

‖v‖Lp+1 > ‖φω‖Lp+1, Q(v) < 0

}

.

Then we have the following blowup result.



6 N. Fukaya and M. Ohta

Theorem 1.6. Assume (1.1), ω > ω0, and that φω ∈ Gω satisfies ∂2
λSω(φλ

ω)|λ=1 ≤ 0. If

u0 ∈ Bω ∩ Σ, then the solution u(t) of (NLS) with u(0) = u0 blows up in finite time.

Theorem 1.3 follows from Theorem 1.6 and the fact that the ground state φω belongs

to the closure of Bω ∩ Σ in H1-topology.

The key to the proof of Theorem 1.6 is Lemma 3.2 below. The same assertion of

Lemma 3.2 is proven in [16, Lemma 4] for (1.7). In [16, Lemma 4], the proof is divided

into two cases ‖xφω‖2
L2 ≤ ‖xv‖2

L2 and ‖xv‖2
L2 ≤ ‖xφω‖2

L2 . Although the first case is

easy to treat, the second case is more complicated. In the second case, the inequality

‖xv‖2
L2 ≤ ‖xφω‖2

L2 is used to obtain upper bounds for the potential energy. However, in

our case, this argument does not work well because the sign of the potential is different

from that of (1.7). In our proof here, to obtain upper bounds for the potential energy,

we use the inequality coming out of the variational characterization of the ground state

(see Lemma 2.6 (i) below).

We remark that in [16, 18], they consider

{

v ∈ H1(RN)

∣

∣

∣

∣

∣

Ẽ(v) < Ẽ(φω), ‖v‖L2 = ‖φω‖L2 ,

‖v‖Lp+1 > ‖φω‖Lp+1, Q̃(v) < 0

}

∩ Σ

as the set of initial data of blowup solutions. On the other hand, in our definition of Bω,

we use the action Sω instead of the energy E in order to treat more general initial data.

We finally remark that the assumption ∂2
λSω(φλ

ω)|λ=1 ≤ 0 is not a necessary condition

for the instability because it is known for (1.6) that there exist unstable standing waves

satisfying ∂2
λS̃ω(φλ

ω)|λ=1 > 0 (see [18, Section 4]). It is an open problem whether the

standing wave is strongly unstable or not in this case.

This paper is organized as follows. In Section 2, we give a proof of Proposition 1.1

and prove a useful lemma (Lemma 2.6 below). In Section 3, we prove Theorem 1.6. In

Section 4, we prove Theorem 1.3.

2 Existence and Variational Characterization of

ground states

The aim of this section is to prove Proposition 1.1 and Lemma 2.6 below. Here, we

assume (1.1) and ω > ω0, where ω0 is defined in (1.3). Hereafter, we denote

(2.1) G(v) = γ

∫

RN

|v(x)|2

|x|α
dx.
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We define

d(ω) = inf{Sω(v) | v ∈ H1(RN) \ {0}, Kω(v) = 0 },

Mω = { v ∈ H1(RN) \ {0} | Kω(v) = 0, Sω(v) = d(ω) }.

Note that since −ω0 is the smallest eigenvalue of the Schrödinger operator −∆−γ|x|−α,

under the assumption ω > ω0, we have the equivalence of norms

(2.2)
√

Lω(v) ≃ ‖v‖H1,

where

Lω(v) = ‖∇v‖2
L2 + ω‖v‖2

L2 −G(v).

First, we show that ground states of (1.2) are characterized as the minimizers for Sω

under the constraint Kω = 0.

Lemma 2.1. Mω ⊂ Gω.

Proof. Let φ ∈ Mω. Then by Lω(φ) − ‖φ‖p+1
Lp+1 = Kω(φ) = 0, we have

(2.3) 〈K ′
ω(φ), φ〉 = 2Lω(φ) − (p+ 1)‖φ‖p+1

Lp+1 = −(p− 1)‖φ‖p+1
Lp+1 < 0.

Therefore, there exists a Lagrange multiplier η ∈ R such that S ′
ω(φ) = ηK ′

ω(φ). More-

over, since

η〈K ′
ω(φ), φ〉 = 〈S ′

ω(φ), φ〉 = Kω(φ) = 0,

it follows from (2.3) that η = 0, which implies S ′
ω(φ) = 0.

Furthermore, if v ∈ H1(RN) satisfies v 6= 0 and S ′
ω(v) = 0, then by Kω(v) =

〈S ′
ω(v), v〉 = 0 and the definition of Mω, we have Sω(φ) ≤ Sω(v). Thus, we obtain

φ ∈ Gω. This completes the proof.

Lemma 2.2. If Mω is not empty, then Gω ⊂ Mω.

Proof. Let φ ∈ Gω. Since Mω is not empty, we take ψ ∈ Mω. Then by Lemma 2.1,

we have ψ ∈ Gω. Therefore, if v ∈ H1(RN) satisfies v 6= 0 and Kω(v) = 0, then

Sω(φ) = Sω(ψ) ≤ Sω(v). This implies φ ∈ Mω. This completes the proof.

Next, we show that Mω is not empty. By using

Sω(v) =
1

2
Kω(v) +

p− 1

2(p+ 1)
‖v‖p+1

Lp+1(2.4)

=
1

p+ 1
Kω(v) +

p − 1

2(p+ 1)
Lω(v),
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we rewrite

d(ω) = inf

{

p− 1

2(p+ 1)
‖v‖p+1

Lp+1

∣

∣

∣

∣

v ∈ H1(RN ) \ {0}, Kω(v) = 0

}

(2.5)

= inf

{

p− 1

2(p+ 1)
Lω(v)

∣

∣

∣

∣

v ∈ H1(RN) \ {0}, Kω(v) = 0

}

.(2.6)

Lemma 2.3. If Kω(v) < 0, then

p − 1

2(p+ 1)
‖v‖p+1

Lp+1 > d(ω),
p− 1

2(p+ 1)
Lω(v) > d(ω).

In particular,

d(ω) = inf

{

p− 1

2(p+ 1)
‖v‖p+1

Lp+1

∣

∣

∣

∣

v ∈ H1(RN ) \ {0}, Kω(v) ≤ 0

}

= inf

{

p− 1

2(p+ 1)
Lω(v)

∣

∣

∣

∣

v ∈ H1(RN) \ {0}, Kω(v) ≤ 0

}

.(2.7)

Proof. Let

λ1 =

(

Lω(v)

‖v‖p+1
Lp+1

)1/(p−1)

,

where note that Lω(v) > 0 by (2.2). Then since Kω(λv) = λ2Lω(v) − λp+1‖v‖p+1
Lp+1 and

Kω(v) < 0, we have Kω(λ1v) = 0 and 0 < λ1 < 1. Therefore, by (2.5),

d(ω) ≤
p− 1

2(p+ 1)
‖λ1v‖p+1

Lp+1 = λp+1
1

p− 1

2(p+ 1)
‖v‖p+1

Lp+1 <
p− 1

2(p+ 1)
‖v‖p+1

Lp+1.

Similarly, by using (2.6), we obtain d(ω) < p−1
2(p+1)

Lω(v). This completes the proof.

It is well known that in the nonpotential case γ = 0, the set of all minimizers

M0
ω := { v ∈ H1(RN) \ {0} | K0

ω(v) = 0, S0
ω(v) = d0(ω) }

is not empty (see e.g. [12, 14]), where

S0
ω(v) =

1

2
‖∇v‖2

L2 +
ω

2
‖v‖2

L2 −
1

p+ 1
‖v‖p+1

Lp+1,

K0
ω(v) = ‖∇v‖2

L2 + ω‖v‖2
L2 − ‖v‖p+1

Lp+1,

d0(ω) = inf{S0
ω(v) | v ∈ H1(RN) \ {0}, K0

ω(v) = 0 }

= inf

{

p − 1

2(p+ 1)
‖v‖p+1

Lp+1

∣

∣

∣

∣

v ∈ H1(RN) \ {0}, K0
ω(v) = 0

}

.
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Lemma 2.4. d0(ω) > d(ω) > 0.

Proof. First, we show d0(ω) > d(ω). Since M0
ω is not empty, we take ψ ∈ M0

ω. Since

Kω(ψ) = K0
ω(ψ) −G(ψ) = −G(ψ) < 0,

by Lemma 2.3, we have

d(ω) <
p− 1

2(p+ 1)
‖ψ‖p+1

Lp+1 = d0(ω).

Next, we show that d(ω) > 0. Let v ∈ H1(RN) satisfy v 6= 0 and Kω(v) = 0. By the

Sobolev embedding, (2.2), and Lω(v) = ‖v‖p+1
Lp+1, we have

‖v‖2
Lp+1 ≤ C1‖v‖2

H1 ≤ C2Lω(v) = C2‖v‖p+1
Lp+1.

for some C1, C2 > 0. Since v 6= 0, we have ‖v‖Lp+1 ≥ C
−1/(p−1)
2 . Taking the infimum

over v, we obtain d(ω) > 0. This completes the proof.

Lemma 2.5. Let (vn)n ⊂ H1(RN) be a minimizing sequence for d(ω), that is,

vn 6= 0, Kω(vn) = 0, Sω(vn) → d(ω).

Then there exist a subsequence (vnk
)k of (vn)n and v0 ∈ H1(RN) such that vnk

→ v0 in

H1(RN), Kω(v0) = 0, and Sω(v0) = d(ω). In particular, Mω is not empty.

Proof. First, by Kω(vn) = 0, Sω(vn) → d(ω), and (2.4), we have

(2.8)
p− 1

2(p+ 1)
Lω(vn) =

p− 1

2(p+ 1)
‖vn‖p+1

Lp+1 → d(ω).

Therefore, it follows from (2.2) that (vn)n is bounded in H1(RN). This implies that

there exist a subsequence of (vn)n, which is still denoted by (vn)n, and v0 ∈ H1(RN )

such that vn ⇀ v0 weakly in H1(RN).

Next, we show v0 6= 0. Since vn 6= 0, letting

λn =

(

‖∇vn‖2
L2 + ω‖vn‖2

L2

‖vn‖p+1
Lp+1

)1/(p−1)

=

(

Lω(vn) +G(vn)

‖vn‖p+1
Lp+1

)1/(p−1)

,

then we have λn > 0 and K0
ω(λnvn) = 0. Moreover, by (2.8) and the weak continuity of

the potential energy (cf. [13, Theorem 11.4]), we obtain

(2.9) lim
n→∞

λn =

(

d(ω) + p−1
2(p+1)

G(v0)

d(ω)

)1/(p−1)

.
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By Lemma 2.4, K0
ω(λnvn) = 0, and the definition of d0(ω), it follows that

d(ω) < d0(ω) ≤
p− 1

2(p+ 1)
‖λnvn‖p+1

Lp+1 = λp+1
n

p− 1

2(p+ 1)
‖vn‖p+1

Lp+1

for all n ∈ N. Therefore, taking the limit, by (2.8), (2.9), and d(ω) > 0, we obtain

G(v0) > 0. This implies v0 6= 0.

Finally, we show the strong convergence of (vn)n in H1(RN). Taking a subsequence

of (vn)n if necessary, we may assume that vn → v0 a.e. in RN . Then by using the

Brezis–Lieb Lemma [2], we have

Lω(vn) − Lω(vn − v0) → Lω(v0),(2.10)

−Kω(vn − v0) → Kω(v0),(2.11)

where we used Kω(vn) = 0 in (2.11). Since Lω(v0) > 0 by v0 6= 0, it follows from (2.10)

and (2.8) that

p− 1

2(p+ 1)
lim

n→∞
Lω(vn − v0) <

p− 1

2(p+ 1)
lim

n→∞
Lω(vn) = d(ω).

From this and (2.7), we have Kω(vn − v0) > 0 for large n. Therefore, by (2.11), we

obtain Kω(v0) ≤ 0, and thus, by (2.7) and the weak lower semicontinuity of norms,

d(ω) ≤
p− 1

2(p+ 1)
Lω(v0) ≤

p− 1

2(p+ 1)
lim

n→∞
Lω(vn) = d(ω).

This and (2.10) imply that Lω(vn − v0) → 0, and therefore, vn → v0 in H1(RN). This

completes the proof.

Finally, we give a useful lemma for the proof of Theorem 1.6.

Lemma 2.6. Let φ ∈ Gω. If v ∈ H1(RN) satisfies ‖v‖Lp+1 = ‖φ‖Lp+1, then the following

hold.

(i) Kω(v) ≥ 0,

(ii) Sω(v) ≥ Sω(φ).

Proof. Inequality (i) follows from Lemma 2.3 and d(ω) = p−1
2(p+1)

‖φ‖p+1
Lp+1. Inequality (ii)

follows from (2.4) and (i).
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3 Blowup solutions

In this section, we prove Theorem 1.6. Throughout this section, we impose the same

assumption as in Theorem 1.6, that is, we assume (1.1), ω > ω0, and

(3.1) ∂2
λSω(φλ

ω)|λ=1 = ‖∇φω‖2
L2 −

α(α − 1)

2
G(φω) −

β(β − 1)

p + 1
‖φω‖p+1

Lp+1 ≤ 0,

where vλ(x) = λN/2v(λx), G is defined in (2.1), and

β =
N(p− 1)

2
.

By using this notation, we have

Sω(vλ) =
λ2

2
‖∇v‖2

L2 +
ω

2
‖v‖2

L2 −
λα

2
G(v) −

λβ

p+ 1
‖v‖p+1

Lp+1,(3.2)

Q(vλ) = λ2‖∇v‖2
L2 −

αλα

2
G(v) −

βλβ

p+ 1
‖v‖p+1

Lp+1 = λ∂λSω(vλ),(3.3)

Kω(vλ) = λ2‖∇v‖2
L2 + ω‖v‖2

L2 − λαG(v) − λβ‖v‖p+1
Lp+1.(3.4)

Here, we define

Aω = { v ∈ H1(RN) | Sω(v) < Sω(φω), ‖v‖L2 ≤ ‖φω‖L2, ‖v‖Lp+1 > ‖φω‖Lp+1 }.

Recall that

Bω = { v ∈ Aω | Q(v) < 0 }.

Lemma 3.1. If u0 ∈ Aω, then the solution u(t) of (NLS) with u(0) = u0 satisfies

u(t) ∈ Aω for all t ∈ Imax.

Proof. Since E and ‖·‖L2 are conserved quantities of (NLS), we have ‖u(t)‖L2 ≤ ‖φω‖L2

and Sω(u(t)) < Sω(φω) for all t ∈ Imax. By Lemma 2.6 (ii), it follows that ‖u(t)‖Lp+1 6=

‖φω‖Lp+1 for all t ∈ Imax. Therefore, by ‖u0‖Lp+1 > ‖φω‖Lp+1 and the continuity of the

solution u(t), we obtain ‖u(t)‖Lp+1 > ‖φω‖Lp+1 for all t ∈ Imax. This completes the

proof.

The following is the key lemma for our proof.

Lemma 3.2. Let v ∈ H1(RN) satisfy

‖v‖L2 ≤ ‖φω‖L2, ‖v‖Lp+1 ≥ ‖φω‖Lp+1, Q(v) ≤ 0.

Then

(3.5)
Q(v)

2
≤ Sω(v) − Sω(φω).

In particular, if u0 ∈ Bω, then the solution u(t) of (NLS) with u(0) = u0 satisfies

u(t) ∈ Bω for all t ∈ Imax.
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Proof. Let

λ0 =

(

‖φω‖p+1
Lp+1

‖v‖p+1
Lp+1

)1/β

.

Then we have

0 < λ0 ≤ 1, ‖vλ0‖L2 = ‖v‖L2 ≤ ‖φω‖L2 , ‖vλ0‖p+1
Lp+1 = λβ

0 ‖v‖p+1
Lp+1 = ‖φω‖p+1

Lp+1.

Here, we define

f(λ) = Sω(vλ) −
λ2

2
Q(v)

= −
1

2

(

λα −
αλ2

2

)

G(v) +
ω

2
‖v‖2

L2 −
1

p+ 1

(

λβ −
βλ2

2

)

‖v‖p+1
Lp+1

for λ ∈ (0, 1]. If we have f(λ0) ≤ f(1), then it follows from Lemma 2.6 (ii), Q(v) ≤ 0,

and f(λ0) ≤ f(1) that

(3.6) Sω(φω) ≤ Sω(vλ0) ≤ Sω(vλ0) −
λ2

0

2
Q(v) ≤ Sω(v) −

Q(v)

2
,

which is the desired inequality (3.5).

In what follows, we prove f(λ0) ≤ f(1), which is rewritten as

G(v) ≤
2(2λβ

0 − βλ2
0 − 2 + β)

(p+ 1)(αλ2
0 − 2λα

0 − α + 2)
‖v‖p+1

Lp+1.(3.7)

By αKω(φω) − (α + 1)Q(φω) = 0 and (3.1), we have

αω‖φω‖2
L2 = ‖∇φω‖2

L2 −
α(α − 1)

2
G(φω) +

(

α−
β(α+ 1)

p+ 1

)

‖φω‖p+1
Lp+1

≤

(

α +
β(β − α − 2)

p+ 1

)

‖φω‖p+1
Lp+1.

Therefore, it follows from ‖v‖L2 ≤ ‖φω‖L2 and ‖φω‖p+1
Lp+1 = λβ

0 ‖v‖p+1
Lp+1 that

(3.8) ω‖v‖2
L2 ≤

(

1 +
β(β − α − 2)

(p+ 1)α

)

λβ
0 ‖v‖p+1

Lp+1.

By using Lemma 2.6 (i) for vλ0 , (3.4), (3.8), and Q(v) ≤ 0, we have

G(v) ≤ λ2−α
0 ‖∇v‖2

L2 + λ−α
0 ω‖v‖2

L2 − λβ−α
0 ‖v‖p+1

Lp+1

≤ λ2−α
0 ‖∇v‖2

L2 +
β(β − α − 2)

(p+ 1)α
λβ−α

0 ‖v‖p+1
Lp+1

≤
α

2
λ2−α

0 G(v) +
β

p + 1

(

λ2−α
0 +

β − α − 2

α
λβ−α

)

‖v‖p+1
Lp+1,



Strong instability of standing waves 13

and thus,

(3.9) G(v) ≤
2β

(p+ 1)(2 − αλ2−α
0 )

(

λ2−α
0 +

β − α− 2

α
λβ−α

)

‖v‖p+1
Lp+1.

In view of (3.7) and (3.9), we only have to show that

β

2 − αλ2−α

(

λ2−α
0 +

β − α − 2

α
λβ−α

)

≤
2λβ

0 − βλ2
0 − 2 + β

αλ2
0 − 2λα

0 − α+ 2

for all λ ∈ (0, 1), which is equivalent to

g1(λ) :=
(2 − αλ2−α)(2λβ − βλ2 − 2 + β)

βλβ−α(αλ2 − 2λα − α + 2)
−

1

λβ−2
−
β − α − 2

α
≥ 0.

Since limλր1 g1(λ) = 0, it suffices to show that

g′
1(λ) =

2(1 − λ2−α)

βλβ−α+1(αλ2 − 2λα − α + 2)2

(

2α(2 − α)λβ − αβ(β − α)λ2

+ 2β(β − 2)λα − (β − α)(β − 2)(2 − α)
)

≤ 0

for all λ ∈ (0, 1), which holds if we have

g2(λ) := 2α(2 − α)λβ − αβ(β − α)λ2 + 2β(β − 2)λα − (β − α)(β − 2)(2 − α) ≤ 0.

Since g2(1) = 0, it is enough to show that

g′
2(λ) = 2αβλα−1

(

(2 − α)λβ−α − (β − α)λ2−α + β − 2)
)

≥ 0

for all λ ∈ (0, 1). This is equivalent to

g3(λ) := (2 − α)λβ−α − (β − α)λ2−α + β − 2 ≥ 0.

Since g3(1) = 0 and

g′
3(λ) = −(β − α)(2 − α)λ1−α(1 − λβ−2) ≤ 0,

we have g3(λ) ≥ 0 for all λ ∈ (0, 1). Therefore, we obtain f(λ0) ≤ f(1), and thus, the

inequality (3.6) follows.

The last claim of Lemma 3.2 follows from Lemma 3.1 and (3.5). This completes the

proof.

Proof of Theorem 1.6. Let u0 ∈ Bω ∩Σ and u(t) be the solution of (NLS) with u(0) = u0.

Then by the virial identity (1.10), Lemma 3.2, and the conservation of Sω, we have

(3.10)
d2

dt2
‖xu(t)‖2

L2 = 8Q(u(t)) ≤ 16
(

Sω(u(t)) − Sω(φω)
)

= 16
(

Sω(u0) − Sω(φω)
)

< 0

for all t ∈ Imax.

If T+ = ∞, then it follows from (3.10) that ‖xu(t)‖L2 becomes negative for large t.

This is a contradiction. Thus, the solution u(t) blows up in finite time.
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4 Strong instability of standing waves

In this section, we prove Theorem 1.3. Here, we impose the same assumption as in

Theorem 1.3.

Lemma 4.1. φλ
ω ∈ Bω for all λ > 1.

Proof. By the definition of the scaling λ 7→ φλ
ω, we have ‖φλ

ω‖L2 = ‖φω‖L2 and ‖φλ
ω‖Lp+1 =

λβ/(p+1)‖φω‖Lp+1 > ‖φω‖Lp+1 for all λ > 1, where β = N(p− 1)/2 > 2.

Now, we show that Sω(φλ
ω) < Sω(φω) and Q(φλ

ω) < 0 for all λ > 1. In view of (3.2),

the function Sω(φλ
ω) of λ has the form Sω(φλ

ω) = Aλ2 + B − Cλα − Dλβ with some

A,B,C,D > 0. By ∂λSω(φλ
ω)|λ=1 = 0 and the assumption ∂2

λSω(φλ
ω)|λ=1 ≤ 0, we have

−β(β − 2)D ≤ −α(2 − α)C. This leads to

∂3
λSω(φλ

ω) = α(α − 1)(2 − α)Cλα−3 − β(β − 1)(β − 2)Dλβ−3

≤ −α(2 − α)λα−3
(

(β − 1)λβ−α − (α − 1)
)

C < 0

for all λ > 1. Therefore, for λ > 1, it follows that ∂2
λSω(φλ

ω) < ∂2
λSω(φλ

ω)|λ=1 ≤ 0,

∂λSω(φλ
ω) < ∂λSω(φλ

ω)|λ=1 = 0, and thus Sω(φλ
ω) < Sω(φω). Moreover, by differentiating

(3.3), we have ∂λQ(φλ
ω) = ∂λSω(φλ

ω) +λ∂2
λSω(φλ

ω) < 0. This implies Q(φλ
ω) < Q(φω) = 0.

This completes the proof.

Now, we prove the main theorem.

Proof of Theorem 1.3. Let ε > 0. Then since φλ
ω → φω in H1(RN) as λ ց 1, there

exists λ0 > 1 such that ‖φω − φλ0

ω ‖H1 < ε/2. Let χ ∈ C∞[0,∞) be a function satisfying

0 ≤ χ ≤ 1, χ(r) = 1 if 0 ≤ r ≤ 1, and χ(r) = 0 if r ≥ 2. For M > 0, we define a

cutoff function χM ∈ C∞
c (RN) by χM(x) = χ(|x|/M). Then we see that χMφ

λ0

ω → φλ0

ω in

H1(RN) as M → ∞. Moreover, we have χMφ
λ0

ω ∈ Σ and ‖χMφ
λ0

ω ‖L2 ≤ ‖φλ0

ω ‖L2 = ‖φω‖L2

for all M > 0. Therefore, by Lemma 4.1 and the continuity of Sω, ‖ · ‖Lp+1, and Q, there

exists M0 > 0 such that ‖φλ0

ω − χM0
φλ0

ω ‖H1 < ε/2 and χM0
φλ0

ω ∈ Bω ∩ Σ. Thus, we

obtain ‖χM0
φλ0

ω −φω‖H1 < ε, and by Theorem 1.6, the solution u(t) with u(0) = χM0
φλ0

ω

blows up in finite time. Hence, the standing wave solution eiωtφω of (NLS) is strongly

unstable.
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