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SPECTRAL THEORY OF RANK ONE PERTURBATIONS

OF NORMAL COMPACT OPERATORS

ANTON BARANOV

Abstract. We construct a functional model for rank one perturbations of compact nor-

mal operators acting in a certain Hilbert spaces of entire functions generalizing de Branges

spaces. Using this model we study completeness and spectral synthesis problems for such

perturbations. Previously, in [10] the spectral theory of rank one perturbations was de-

veloped in the selfadjoint case. In the present paper we extend and significantly simplify

most of known results in the area. We also prove an Ordering Theorem for invariant

subspaces with common spectral part. This result is essentially new even for rank one

perturbations of compact selfadjoint operators.

1. Introduction

1.1. Spectral synthesis problem. One of the basic question in the abstract operator

theory is whether a linear operator L from a given class has a complete set of eigenvectors

or generalized eigenvectors (that is, elements of Ker (L− λI)n for some λ ∈ C and n ∈ N).

If the answer is positive, then the next question arises, whether it is possible to reconstruct

all L-invariant subspaces from its generalized eigenvectors. Namely, given an L-invariant
subspace M, the question is whether

(1.1) M = Span
{
x ∈ M : x ∈

⋃

λ,n

Ker (L− λI)n
}
,

i.e., whether M coincides with the closed linear span of the generalized eigenvectors it

contains. All subspaces are assumed to be closed.

A continuous linear operator L in a separable Hilbert (or Banach, or Frechét) space H

is said to admit spectral synthesis if for any invariant subspace M of L we have (1.1). The

notion of the spectral synthesis for a general operator goes back to J. Wermer [39], who

showed, in particular, that any compact normal operator in a Hilbert space admits spectral

Theorems 2.1–2.6 and the results of Sections 3–6 were obtained with the support of Russian Science

Foundation project 14-21-00035. Theorems 2.7–2.8 and the results of Sections 7–8 were obtained as a part

of joint grant of Russian Foundation for Basic Research (project 17-51-150005-NCNI-a) and CNRS, France

(project PRC CNRS/RFBR 2017-2019 “Noyaux reproduisants dans des espaces de Hilbert de fonctions

analytiques”).
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synthesis. Moreover, Wermer proved that a normal operator A with simple eigenvalues λn

does not admit spectral synthesis if and only if the set {λn} carries a complex measure

orthogonal to polynomials, i.e., there exists a nontrivial sequence {µn} ∈ ℓ1 such that∑
n µnλ

k
n = 0, k ∈ N0. Existence of such measures follows from classical Wolff’s example

[40] of a Cauchy transform vanishing outside of the disc: there exist λn ∈ D = {z ∈ C :

|z| < 1} and {µn} ∈ ℓ1 such that
∑

n
µn

z−λn
≡ 0, |z| > 1.

The first example of a compact operator which does not admit spectral synthesis was

implicitly given by H. Hamburger [20] (even before Wermer’s paper). Further results were

obtained in the 1970s by N. Nikolski [33] and A. Markus [32]. E.g., Nikolski [33] proved that

any Volterra operator can be a part of a complete compact operator (recall that Volterra

operator is a compact operator whose spectrum is {0}).

1.2. Rank one perturbations. One of the major subareas of spectral theory deals with

“small” perturbations of “good” operators (e.g., trace class or Schatten class perturbations

of selfadjoint operators). However, even in this case there are few general results about

completeness and synthesis. The best studied are the cases of dissipative operators and of

weak perturbations in the sense of Keldysh and Matsaev (for a survey of these results see

[18] or [10] and references therein).

We study spectral properties of rank one perturbations of compact normal operators.

While compact normal operators are among the simplest infinite-dimensional operators

(being unitarily equivalent to a diagonal operator in ℓ2), we will see that the spectral

theory of their rank one perturbations is highly nontrivial.

Let A be a bounded cyclic normal operator in a Hilbert space H . Then, by the Spectral

Theorem, A is unitarily equivalent to the operator of multiplication by z in L2(ν) for

some finite compactly supported positive Borel measure ν. In what follows we will always

identify H with L2(ν) and A with multiplication by the variable z.

For a, b ∈ H consider the rank one perturbation L = A+ a⊗ b of A,

Lx = Ax+ (x, b)a, x ∈ H.

The goal of the present paper is to study the spectral properties of rank one perturbations

in the case when A is compact. In particular, we are interested in completeness of (gen-

eralized) eigenvectors of L (in which case we say that L is complete), relations between

completeness of L and its adjoint L∗, and the spectral synthesis for L. Earlier, in [10] we

considered rank one perturbations of selfadjoint operators. Here a unified treatment for the

normal operators case will be presented. Not only will we extend the results of [5, 10] to
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the case of normal operators, but also give substantially simplified proofs of several results

from [5, 10].

One of the main novel features of this paper is the proof of the fact that, for a rank one

perturbation, the lattice of all its invariant subspaces with fixed spectral part is totally

ordered. This result is essentially new even for perturbations of selfadjoint operators. For

the case of normal operators we will have to impose some conditions on the spectrum of

the unperturbed operator.

1.3. Notations. In what follows we write U(x) . V (x) if there is a constant C such that

U(x) ≤ CV (x) holds for all x in the set in question. We write U(x) ≍ V (x) if both

U(x) . V (x) and V (x) . U(x). The standard Landau notations O and o also will be

used.

For an entire function f we denote by f ∗ the conjugate entire function f ∗(z) = f(z̄).

The zero set of an entire function f (ignoring multiplicities) will be denoted by Zf . We

denote by D(z, R) the disc with center z of radius R. By Pn we denote the set of all

polynomials of degree at most n. By N0 we denote the set of n ∈ Z such that n ≥ 0.

1.4. Acknowledgements. This paper is a continuation of our work with Dmitry

Yakubovich on spectral theory of rank one perturbations of selfadjoint operators which

we started 10 years ago. I am deeply grateful to Dmitry for introducing me to the field of

functional models and for our continued fruitfull colaboration. His influence on the subject

and the results of the present paper is very important. I also want to thank my friends

and coauthors Evgeny Abakumov, Yurii Belov and Alexander Borichev for their numerous

ideas and insights which are widely used in this paper. And I want to express my deep

gratitude to my Teachers – the late Professor Victor Havin and Professor Nikolai Nikolski

– who guided me through the exciting world of Spectral Function Theory.

2. Main results.

In what follows we use the following notation. Given a bounded linear operator U we

denote by E(U) the subspace generated by all generalized eigenvectors (also known as root

vectors) of U . Similarly, given a U-invariant subspace M, we denote by E(M,U) its spectral
part

E(M,U) = Span
{
x ∈ M : x ∈

⋃

λ,n

Ker (U − λI)n
}
.
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With this notation, the spectral synthesis problem for U is whether M = E(M,U) for any
U-invariant subspace M.

Now we are able to state the main results of the paper. As we will see, there are two (ap-

parently different) reasons for completeness or spectral synthesis for rank one perturbations

(sometimes understood up to finite-dimensional complement): nonvanishing moments and

domination.

Throughout this section we always assume that A is a cyclic compact normal operator,

i.e., the operator of multiplication by z in H = L2(ν), where ν =
∑

n νnδsn, sn ∈ C, sn 6= 0.

We will impose one more restriction on A:

there exists p > 0 such that
∑

n

|sn|p < ∞,

that is, A belongs to some Schatten ideal Sp. Equivalently, this means that the sequence

tn = s−1
n has a finite convergence exponent and, thus, is the zero set of some entire function

of finite order. All main theorems except Theorems 2.2, 2.6 and 2.7 apply only to this case.

We identify the elements of H with sequences. For a = (an), b = (bn) ∈ H we consider

the associated rank one perturbation of A,

L = A+ a⊗ b.

We write a ∈ zL2(ν), if a ∈ AH , that is,
∑

n |an|2|sn|−2νn =
∑

n |an|2|tn|2νn < ∞. How-

ever, as we will see many results will depend on the products anb̄n and so it will be conve-

nient to introduce the following notation: we write a ∈′ zL2(ν) if
∑

n:bn 6=0 |an|2|tn|2νn < ∞,

and b ∈′ zL2(ν) if
∑

n:an 6=0 |bn|2|tn|2νn < ∞.

2.1. Completeness of the operator and its adjoint. The first result shows that L and

L∗ are (nearly) complete when certain moments of the sequence anb̄nνn do not vanish.

Theorem 2.1. Let A be a normal operator in the class Sp and let L = A + a ⊗ b be its

rank one perturbation.

1. Assume that
∑

n |anbntn|νn < ∞ and

(2.1)
∑

n

anb̄ntnνn 6= −1.

Then both L and L∗ are complete.
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2. Assume that there exists N ∈ N such that
∑

n |anbn||tn|N+1νn < ∞,

(2.2)

∑

n

anb̄ntnνn = −1,

∑

n

anb̄nt
k
nνn = 0, k = 2, . . .N,

∑

n

anb̄nt
N+1
n νn 6= 0.

Then dim
(
E(L)

)⊥ ≤ N and dim
(
E(L∗)

)⊥ ≤ N .

3. If under conditions (2.2) we have b /∈′ zL2(ν), then L is complete. If a /∈′ zL2(ν),

then L∗ is complete.

Statement 1 of Theorem 2.1 is a variation on the Keldysh–Matsaev theorems which deal

with the so-called weak perturbations of the form A(I + S) or (I + S)A where S is a

compact operator of some class (note, however, that perturbations satisfying (2.1) need

not be weak). For related results see [10, Theorem 1.1, Proposition 3.1]. A result similar

to Statement 2 was proved in [11, Theorem 1.1]. However, in all these results a restriction

on geometry of the spectrum {sn} was imposed – it was either real or contained in a finite

union of rays. Here we get rid of any geometrical restrictions by using new estimates of

Cauchy transforms of planar measures from [7] (see Subsection 3.2).

It was shown in [11, Theorem 1.3] that for Hadamard-lacunary spectra one can prove a

result converse to Statement 2 in Theorem 2.1: if the operator is incomplete with infinite

defect, then all moments are zero. This statement is no longer true when the lacunarity

condition is relaxed (see [11, Theorem 1.4]).

The second result gives conditions sufficient for completeness of L∗ when completeness

of L is known. Here the crucial assumption is the domination of the vector b by a.

Theorem 2.2. Let A be a compact normal operator (not necessarily in Sp for some p > 0).

Assume that L = A+ a⊗ b is complete and there exists N ∈ N0 such that

(2.3)
∑

n

|bn|2
|an|2|tn|2N

< ∞.

Then dim (E(L∗))⊥ ≤ N .

If, moreover, a /∈ zL2(ν), then L∗ is complete.
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2.2. Spectral synthesis. Here we state our positive results about the possibility of the

spectral synthesis. As in the previous section, nonvanishing moments and a domination

condition will play the role. The first result is similar to some results of Markus [32, §2],
but again we do not need any restrictions on the spectrum location.

Theorem 2.3. Let A be a normal operator in the class Sp and let L = A + a ⊗ b be its

rank one perturbation. Assume that either an 6= 0 for any n and a ∈ zL2(ν), or bn 6= 0 for

any n and b ∈ zL2(ν). If (2.1) is satisfied, then L admits spectral synthesis.

Theorem 2.4. Let A be a normal operator in the class Sp and let L = A + a ⊗ b be its

rank one perturbation. Let either an 6= 0 for any n or bn 6= 0 for any n. Assume that there

exists N ∈ N0 such that
∑

n |anbn||tn|N+1νn < ∞ and either N = 0 and condition (2.1) is

satisfied or N ≥ 1 and conditions (2.2) are satisfied. Then for any L-invariant subspace
M we have

dim
(
M⊖E(M,L)

)
≤ (N + 1)2.

To state a “domination” result we need the following definition. We say that the sequence

T = {tn} ⊂ C is power separated if there exists M > 0 such that

(2.4) dist (tn, T \ {tn}) & |tn|−M .

Condition (2.4) implies that T has a finite convergence exponent.

Theorem 2.5. Let L = A + a ⊗ b be complete and let T = {tn} be power separated with

exponent M . Assume that a and b satisfy (2.3) and (for the same N)

(2.5) |an|2νn & |tn|−2N−2.

Then for any L-invariant subspace M we have

dim
(
M⊖E(M,L)

)
≤ (M +N + 1)2.

Remark. Conditions (2.3) and (2.5) in Theorem 2.5 can be replaced by a slightly stronger

assumption |an|2νn & |tn|−2N , which obviously implies (2.3).

2.3. Counterexamples. We now turn to negative results. One of the main points of the

present paper (as well as of [10]) is that already for such small class as rank one pertur-

bations of normal operators one has a very rich and complicated spectral structure. We

construct counterexamples showing that completeness of the adjoint operator or spectral

synthesis may fail with any finite or infinite defect.
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Theorem 2.6. Let A be a compact normal operator with simple point spectrum and trivial

kernel and let N ∈ N ∪ {∞}. Then the following statements hold true.

1. There exists a rank one perturbation L of A such that kerL = kerL∗ = 0 and L is

complete, but L∗ is not complete and

dim (E(L∗))⊥ = N.

2. There exists a rank one perturbation L of A such that

(i) kerL = kerL∗ = 0;

(ii) both L and L∗ are complete;

(iii) L does not admit spectral synthesis and, moreover, there exists L-invariant sub-
space M such that

dimM⊖E(M,L) = N.

Note that, for a bounded operator B, if kerB 6= 0, but kerB∗ = 0, then B∗ is not

complete. An explicit example of a complete compact operator B such that kerB =

kerB∗ = 0, while B∗ is not complete, was given by Deckard, Foiaş and Pearcy [15]. However,

in their examples one cannot conclude that the corresponding operator is a finite rank

perturbation of a normal operator. Surprisingly, one can find such examples among rank

one perturbations of a compact normal operator with an arbitrary spectrum.

A concrete example of a rank one perturbation L of a compact normal operator such

that kerL = kerL∗ = 0, L is complete, but L∗ is not, can be extracted from the results by

A.A. Lunyov and M.M. Malamud [29, Section 4]. The operator in this example is realized

as the inverse to a two-dimensional first order differential operator with specially chosen

boundary conditions. A version of this example was presented in [10, Appendix 1].

At the same time, Lunyov and Malamud [30] showed that for a class of dissipative

realizations of Dirac-type differential operators, completeness property is equivalent to the

spectral synthesis property.

2.4. Ordered structure of invariant subspaces. Assume that both a compact operator

L and its adjoint L∗ are complete, but the spectral synthesis fails. If we denote by {xn}n∈N
the (generalized) eigenvectors of L and by {yn} the eigenvectors of L∗ this means that there

exist an L-invariant subspace M and N1 ⊂ N such that xn ∈ M if and only if n ∈ N1,

but Span{xn : n ∈ N1} 6= M. It is not difficult to show that M⊥ ⊃ {yn : n ∈ N \ N1}
(see, e.g., the proof of Lemma 4.2 in [32]). Hence,

(2.6) Span{xn : n ∈ N1} ⊂ M ⊂ {yn : n ∈ N2}⊥,
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where N2 = N \N1. We say that all invariant subspaces M satisfying (2.6) for a fixed set

N1 have common spectral part Span{xn : n ∈ N1}.
A natural problem is to describe all non-spectral invariant subspaces or, at least, to find

some structural properties of them. Apparently, in general, one cannot expect any structure

of the lattice. However, for the case of rank one perturbations of normal operators, there

are good reasons to believe that the set of invariant subspaces M satisfying (2.6) (i.e., the

subspaces with the common spectral part) is totally ordered by inclusion, that is, for any

M1,M2 satisfying (2.6) one has M1 ⊂ M2 or M2 ⊂ M1. We state this as a conjecture.

Conjecture. Let L be a rank one perturbation of a compact normal operator. Then the set

of all invariant subspaces with fixed common spectral part is totally ordered by inclusion.

We prove this conjecture in two cases: for rank one perturbations of compact selfadjoint

operators (without any additional restrictions on the spectrum such as membership in a

Schatten class) and for the case of Schatten-class normal operators under certain conditions

on the location of the spectrum.

Theorem 2.7. Let A be a compact selfadjoint operator with simple point spectrum and

trivial kernel and let L = A+ a ⊗ b be its rank one perturbation such that bn 6= 0 for any

n. Assume that L and L∗ are complete. Then the set of all invariant subspaces with fixed

common spectral part is totally ordered by inclusion.

In the case of normal operators we establish the ordered structure of invariant subspaces

with fixed common spectral part when one of the following conditions holds:

(i) Z : T is the zero set of some entire function of zero exponential type;

(ii) Π : T lies in some strip and has finite convergence exponent;

(iii) Aγ : T lies in some angle of size πγ, 0 < γ < 1, and the convergence exponent of

T is less than γ−1.

Theorem 2.8. Let A be a compact normal operator with simple point spectrum {sn}
such that its inverse spectrum T = {tn} satisfies one of the conditions Z, Π or Aγ. Let

L = A+ a⊗ b be its rank one perturbation such that bn 6= 0 for any n and assume that L
and L∗ are complete. Then the set of all invariant subspaces with fixed common spectral

part is totally ordered by inclusion.

In [1] the theory of Cauchy–de Branges spaces H(T,A, µ) (see the definition in Subsec-

tion 2.5) was developed which generalizes the theory of classical de Branges spaces. In

particular, in the cases Z, Π and Aγ an ordering theorem for nearly invariant subspaces
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of the backward shift (see the definition in Section 7) in H(T,A, µ) was obtained similar

to the classical de Branges’ Ordering Theorem [14, Theorem 35]. On the other hand, it is

shown in [1] that in general there is no ordered structure for nearly invariant subspaces in

Cauchy–de Branges spaces.

As we will see, the functional model translates the ordering problem for invariant sub-

spaces of rank one perturbations into the ordering problem for nearly invariant subspaces in

the spaces H(T,A, µ). The proofs of Theorems 2.7 and 2.8 are variations on the beautiful

idea used by L. de Branges in the proof of [14, Theorem 35].

2.5. Functional model. The model for rank one perturbations constructed in [10] acted

in some de Branges space. De Branges spaces’ theory is a deep and important field which

has numerous applications in operator theory and in spectral theory of differential opera-

tors. For the basics of de Branges theory we refer to L. de Branges’ classical monograph

[14] and to [36]; some further results and applications can be found in [31, 35]. In the

normal case their role is played by a more general class of spaces of Cauchy transforms

that we will call Cauchy–de Branges spaces.

Let T = {tn}∞n=1 ⊂ C, where tn are distinct, let |tn| → ∞ as n → ∞, and let µ =∑
n µnδtn be a positive measure such that

∑
n

µn

|tn|2+1
< ∞. Also let A be an entire function

which has only simple zeros and whose zero set ZA coincides with T . With any such T , A

and µ we associate the Cauchy–de Branges space H(T,A, µ) of entire functions,

H(T,A, µ) :=

{
f : f(z) = A(z)

∑

n

anµ
1/2
n

z − tn
, a = {an} ∈ ℓ2

}

equipped with the norm ‖f‖H(T,A,µ) := ‖a‖ℓ2. Note that the series in the definition of

H(T,A, µ) converge absolutely and uniformly on compact sets.

The spaces H(T,A, µ) were introduced in full generality by Yu. Belov, T. Mengestie,

and K. Seip [13]. Essentially, they are spaces of Cauchy transforms. We need the function

A to get rid of poles and make the elements entire, but the spaces with the same T , µ and

different A’s are isomorphic. In what follows we will usually (but not always) assume that

T has a finite convergence exponent and A in this case will be chosen to be some canonical

product of the corresponding order. We call the pair (T, µ) the spectral data for H(T,A, µ).

Each space H(T,A, µ) is a reproducing kernel Hilbert space. It is noted in [13] that if

H is a reproducing kernel Hilbert space of entire functions such that H has the division

property (that is, f(z)
z−w

∈ H whenever f ∈ H and f(w) = 0) and there exists a Riesz basis

of reproducing kernels in H, then H = H(T,A, µ) (as sets with equivalence of norms) for

some choice of the parameters. Note that the functions A′(tn)µn · A(z)
z−tn

form an orthogonal
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basis in H(T,A, µ) and are the reproducing kernels at the points tn. Reproducing kernels

at other points can be written in a standard way using this orthogonal basis, but we do

not have a good explicit formula for them. The reproducing kernel of the space H(T,A, µ)

at the point λ will be denoted by kλ.

In the case when T ⊂ R and A is real on R, the space H(T,A, µ) is a de Branges space.

This follows, e.g., from the axiomatic description of de Branges spaces [14, Theorem 23].

In a recent preprint [1] certain properties of de Branges spaces (e.g., ordered structure of

subspaces) are extended to a class of Cauchy–de Branges spaces.

Following de Branges, we say that an entire function G is associated to the space

H(T,A, µ) and write G ∈ Assoc (T,A, µ) if, for any F ∈ H(T,A, µ) and w ∈ C, we

have
F (w)G(z)−G(w)F (z)

z − w
∈ H(T,A, µ).

Equivalently, this means that G ∈ P1H(T,A, µ). We write F ∈ PnH(T,A, µ) if

F (z) =
∑n

j=0 z
jFj(z), Fj ∈ H(T,A, µ). Finally, if G has zeros, then the inclusion

G ∈ Assoc (T,A, µ) is equivalent to G(z)
z−λ

∈ H(T,A, µ) for some (any) λ ∈ ZG. Note

that, in particular, A ∈ Assoc (T,A, µ) \ H(T,A, µ).

Now we are able to formulate the functional model of rank one perturbations of normal

operators. Here and in what follows (except a part of Section 3) we assume that A is a

compact normal operator in a Hilbert space H with simple point spectrum {sn}, sn 6= 0.

We identify H with L2(ν), where ν =
∑

n νnδsn, and A with multiplication by z in L2(ν).

The elements of L2(ν) are identified with sequences., i.e., for a ∈ L2(ν) we write a = (an),

where an = a(sn).

Theorem 2.9. Let A be multiplication by z in L2(ν), ν =
∑

n νnδsn. Put tn = s−1
n . Let

L = A+a⊗ b be a rank one perturbation of A such that b = {bn} ∈ L2(ν) is a cyclic vector

for A, i.e., bn 6= 0 for any n. Then there exist

• a positive measure µ =
∑

n µnδtn such that
∑

n
µn

|tn|2+1
< ∞;

• a space H(T,A, µ);

• an entire function G ∈ Assoc (T,A, µ) with G(0) = 1

such that L is unitarily equivalent to the model operator TG : H(T,A, µ) → H(T,A, µ),

(TGf)(z) =
f(z)− f(0)G(z)

z
, f ∈ H(T,A, µ).

Conversely, for any space H(T,A, µ) and the function G ∈ Assoc (T,A, µ) with G(0) = 1

the corresponding operator TG is a model of a rank one perturbation for some compact

normal operator A with spectrum {sn}, sn = t−1
n .
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As we will see in Lemma 4.1, the assumption bn 6= 0 does not lead to the loss of generality

when we study completeness of eigenvectors of L and L∗.

The model itself is by no means original. In the case of selfadjoint operators it was

constructed in [10], but many similar models for rank one perturbations (in slightly different

situations or under some additional restrictions) were known previously. We will mention

the model of V. Kapustin [23] for rank one perturbations of unitary operators and the

model of G. Gubreev and A. Tarasenko for selfadjoint operators [19]. The latter model is

especially close to ours with the same operator TG as the model operator (in de Branges

space setting).

The main novelty of the present work is not in the model but in its applications: com-

bined with recent developments in the theory of reproducing kernel Hilbert spaces of entire

functions from [4, 5, 6, 7, 10] it leads to a more or less complete understanding of com-

pleteness and spectral synthesis problems for rank one perturbations of normal operators.

2.6. Organization of the paper. The paper is organized as follows. In Section 3 we

construct the functional model for rank one perturbations. Completeness of L and L∗ is

studied in Section 4, while in Section 5 positive results on the spectral synthesis (Theorems

2.3–2.5) are proved. In Section 6 we prove Theorem 2.6. The Ordering Theorem for

invariant subspaces of rank one perturbations with common spectral part is established in

Section 7. Finally, in Section 8 we discuss the description of compact normal operators

which have a Volterra rank one perturbation.

3. Functional model

In this section we prove Theorem 2.9. In fact, we construct a similar model for general

normal (not necessarily compact) operators.

3.1. General normal operators. Let A be the operator of multiplication by z in L2(ν)

where ν is a finite measure with compact closed support K and assume that K has zero

planar Lebesgue measure. Here we do not assume that ν is an atomic measure. By the

classical Hartogs–Rosenthal theorem, we have the following uniqueness property:

u ∈ L2(ν) and

∫
u(ζ)dν(ζ)

ζ − z
= 0 for all z ∈ C \K =⇒ u = 0.

Note that Wolff’s example shows that there exist atomic measures with closed support

K = {|z| ≤ 1} such that the Cauchy transform of some nonzero function from L2(ν) is

identically zero in C \K.
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Consider the space of all Cauchy transforms

C(K, ν) =

{
f(z) =

∫
u(ζ)dν(ζ)

ζ − z
, u ∈ L2(ν)

}
,

considered as the space of analytic functions in C \ K and equipped with the norm

‖f‖C(K,ν) = ‖u‖L2(ν). Then C(K, ν) is a Hilbert space.

Note that for any f ∈ C(K, ν) the mapping f 7→ (zf)∞, where (zf)∞ = lim|z|→∞ zf(z) =

−
∫
udν is a bounded linear functional on C(K, ν).

Theorem 3.1. Let A be multiplication by z in L2(ν), and L = A + a ⊗ b be a rank one

perturbation of A such that a, b ∈ L2(ν) and b 6= 0 ν-a.e. Put σ = |b|2ν. Then there exists

a function β analytic in C \K with the properties

(i) β /∈ C(K, σ);

(ii) β(z)−β(λ)
z−λ

∈ C(K, σ) for any λ ∈ C \K;

(iii) β(∞) = 1,

such that L is unitarily equivalent to the model operator Mβ : C(K, σ) → C(K, σ),

(Mβf)(z) = zf(z)− (zf)∞β(z), f ∈ C(K, σ).

Conversely, for any space C(K, σ), where σ is a finite Borel measure, and for any function

β having the properties (i)–(iii), the corresponding operator Mβ is a model of a rank one

perturbation of some normal cyclic operator A.

Proof. By the resolvent identity, for u ∈ L2(ν),

(A− zI)−1u− (L − zI)−1u =
(
(L− zI)−1u, b

)
(A− zI)−1a

and so
(
(A− zI)−1u, b

)
−

(
(L− zI)−1u, b

)
=

(
(L − zI)−1u, b

)(
A− zI)−1a, b

)
.

Thus,
(
(L − zI)−1u, b

)
= (β(z))−1

(
(A− zI)−1u, b

)
,

where

(3.1) β(z) = 1 +
(
(A− zI)−1a, b

)
= 1 +

∫
a(ζ)b̄(ζ)

ζ − z
dν(ζ).

The mapping

V : u 7→
(
(A− zI)−1u, b

)
=

∫
u(ζ)b−1(ζ)

ζ − z
dσ(ζ)
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is a unitary map from L2(ν) to C(K, σ). Let z, w ∈ ρ(L) ∩ ρ(A) (where ρ(U) denotes the
resolvent set for an operator U) and let β(w) 6= 0. Then

V (L − wI)−1u(z) = β(z)
(
(L− zI)−1(L − wI)−1u, b

)

= β(z)

(
(L − zI)−1u, b

)
−

(
(L− wI)−1u, b

)

z − w

=

(V u)(z)− β(z)

β(w)
(V u)(w)

z − w

Now let Mβ be the model operator on C(K, σ). Let us compute (Mβ −wI)−1 assuming

w ∈ ρ(Mβ), w /∈ K, β(w) 6= 0. Assume that (Mβ − wI)g = (z − w)g − cgβ = h, where

g, h ∈ C(K, σ), cg = (zg)∞. Then g = h+cgβ

z−w
. Since g, h, β are analytic outside K and

β(w) 6= 0 we conclude that cg = −g(w)/β(w) and so

(Mβ − wI)−1g(z) =

g(z)− β(z)

β(w)
g(w)

z − w
.

Thus,
(
V (L − wI)−1u

)
(z) =

(
(Mβ − wI)−1V u

)
(z)

for any w /∈ K w ∈ ρ(Mβ) ∩ ρ(L), β(w) 6= 0. Since there are infinitely many such w, we

conclude that V L = MβV .

Clearly, β(∞) = 1 and so β /∈ C(K, σ). Also,

β(z)− β(λ)

z − λ
=

∫
a(ζ)b−1(ζ)

(ζ − λ)(ζ − z)
dσ(ζ) ∈ C(K, σ)

for any λ ∈ C \K.

Let us prove the converse. Assume that β satisfy conditions (i)–(iii). Then, for some

fixed λ ∈ C \K, there exists u ∈ L2(σ) such that

β(z) = β(λ) + (z − λ)

∫
u(ζ)

ζ − z
dσ(ζ) = β(λ)−

∫
u(ζ)dσ(ζ) +

∫
(ζ − λ)u(ζ)

ζ − z
dσ(ζ).

From (iii) it follows that β(λ)−
∫
u(ζ)dσ(ζ) = 1. It remains to take any b 6= 0 σ-a.e. and

to put ν = |b|−2σ and a(ζ) = (ζ−λ)u(ζ)b(ζ). Then β is of the form (3.1) and so it appears

in the model for a rank one perturbation of multiplication by z in L2(ν). �
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3.2. Preliminaries on Cauchy transforms and spaces H(T,A, µ). To apply the func-

tional model to the study of completeness one needs to have good growth estimates for the

Cauchy transforms of (discrete) planar measures. Powerfull tools for this were developed

in [7]. The following results from [7] will be extensively used in what follows.

We say that Ω ⊂ C is a set of zero area density if

lim
R→∞

m2(Ω ∩D(0, R))

R2
= 0,

where m2 denotes the area Lebesgue measure in C. Clearly, a union of two sets of zero

density has zero density, a fact that we will constantly use.

The first statement shows that the Cauchy transform of a finite measure ν behaves

asymptotically as ν(C)z−1 when |z| → ∞. This is trivial for measures with compact

support. The same is true in general up to a set of zero density.

Lemma 3.2. ([7, Proof of Lemma 4.3]) Let ν be a finite complex Borel measure in C.

Then, for any ε > 0, there exists a set Ω of zero area density such that
∣∣∣∣
∫

C

dν(ξ)

z − ξ
− ν(C)

z

∣∣∣∣ <
ε

|z| , z ∈ C \ Ω.

The following variant of this statement will be often useful: if
∑

n |t−1
n dn| < ∞, then

(3.2)
∑

n

dn
z − tn

= o(1), |z| → ∞, z ∈ C \ Ω,

for some set Ω of zero area density. This follows from Lemma 3.2 and the formula

∑

n

dn
z − tn

= −
∑

n

dn
tn

+
∑

n

dn
tn(z − tn)

.

Let us mention one simple situation where we can conclude that the Cauchy transform

has the natural asymptotics along some rays.

Lemma 3.3. Let ν be a finite complex Borel measure such that for some θ0 ∈ [0, 2π) and

δ > 0 we have supp ν ∩ {reiθ : r ≥ 0, |θ − θ0| ≤ δ} = ∅. Then
∫

C

dν(ξ)

z − ξ
=

ν(C)

z
+ o

(1
z

)
, z = reiθ0 , r → ∞.

Proof. Since dist(z, supp ν) ≍ |z|, z = reiθ0, we have
∣∣∣∣
∫

C

dν(ξ)

z − ξ
− ν(C)

z

∣∣∣∣ ≤
1

|z|

∫

C

|ξ|d|ν|(ξ)
|z − ξ| = o

(1
z

)
, z = reiθ0 , r → ∞,

by the Dominated Convergence theorem. �
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We also will need the following extension of the Liouville theorem. This result which

is due to A. Borichev appeared in [7, Lemma 4.2] (in a slightly more general form). We

include a short proof to make the exposition self-contained.

Theorem 3.4. If an entire function f of finite order is bounded on C \ Ω for some set Ω

of zero area density, then f is a constant.

Proof. We prove an equivalent statement: If f is an entire function of finite order and

|f(z)| → 0 as |z| → ∞, z /∈ Ω, for some set Ω of zero area density, then f ≡ 0.

Assume that f is non-zero. Then ϕ(z) = log |f(z)| is subharmonic. Since f takes

arbitrarily large values, we may assume without loss of generality that ϕ(0) = 1. At the

same time ϕ < 0 on C \ Ω for some set Ω of zero density. Let W (R) be the connected

component of the open set {z : ϕ(z) > 0} ∩ D(0, R) which contains the point 0 and let

S(R) = {|z| = R} ∩ ∂W (R). Denote by σ(R) the total length of the arcs in S(R).

Denote by ωW (R)(0, E) the harmonic measure at 0 of E ⊂ ∂W (R). By the Ahlfors–

Carleman estimate [17, Ch. IV, Th. 6.2], there exists r0 > 0 such that for R > r0,

ωW (R)(0, S(R)) ≤ C exp

(
− π

∫ R

r0

dr

σ(r)

)
,

where C > 0 is some absolute constant. Recall that f is of finite order. So, for some

C1, N > 0, ϕ(z) ≤ C1R
N , |z| = R. Since ϕ = 0 on ∂W (R) \ {|z| = R} and ϕ(z) . RN ,

|z| = R, we conclude by the “Two Constants Theorem” that

ϕ(0) ≤ C1R
NωW (R)(0, S(R)) ≤ CC1R

N exp

(
− π

∫ R

r0

dr

σ(r)

)
.

It remains to show that since the set {z : ϕ(z) > 0} has zero density, we have σ(r) = o(r)

on “most of the circles”. This can be formalized as follows. Given ε > 0, for any sufficiently

large k (say, k ≥ n0) there exists Ek ⊂ [2k, 2k+1] with |Ek| > 2k−1 such that for r ∈ Ek we

have σ(r) < εr. Otherwise,

m2(W (R) ∩ {2k < |z| < 2k+1}) =
∫ 2k+1

2k
σ(r)dr ≥ ε22k−1,

a contradiction to the fact that Ω has zero area density.
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Now, for 2n+1 ≤ R ≤ 2n+2 we have for some constant C2 > 0,

ϕ(0) ≤ C2R
N exp

(
− π

n∑

k=n0

∫

Ek

dr

σ(r)

)

≤ C2R
N exp

(
− π

n∑

k=n0

∫

Ek

dr

εr

)

≤ C2R
N exp

(
− π

4ε
(n− n0)

)

≤ C2R
N exp

(
− π

4ε
(logR− n0)

)
.

If ε is sufficiently small and R is sufficiently large, we conclude that ϕ(0) < 1, a contradic-

tion. �

In [1] the following properties of functions in the spaces H(T,A, µ) were discussed.

Lemma 3.5. ([1, Lemma 2.5]) Let A be an entire function of order ρ with the zero set T .

Then for any ε > 0 there exists a set E ⊂ (0,∞) of zero linear density (i.e., |E ∩ (0, R)| =
o(R), R → ∞, where |e| denotes one-dimensional Lebesgue measure of e ⊂ R) such that

for any entire function f ∈ H(T,A, µ),

(3.3) |f(z)| . |z|ρ+1+ε|A(z)|, |z| /∈ E.

In particular, if A is of order ρ and of type κ, then any element of H(T,A, µ) is of order

at most ρ and of type at most κ with respect to this order.

Lemma 3.6. If f ∈ H(T,A, µ), then

‖f‖2H(T,A,µ) =
∑

n

|f(tn)|2
|A′(tn)|2µn

and there exists a set Ω of zero area density such that

|f(z)| = o(|A(z)|), |z| → ∞, z ∈ C \ Ω.

Proof. Note that for f = A
∑

n
cnµ

1/2
n

z−tn
∈ H(T,A, µ) we have f(tn) = A′(tn)cnµ

1/2
n and, by

definition, ‖f‖H(T,A,µ) = ‖{cn}‖ℓ2 .
To prove that |f(z)| = o(|A(z)|) recall that

∑
n(1 + |tn|)−2µn < ∞ whence∑

n |cnt−1
n |µ1/2

n < ∞ and the estimate follows from (3.2). �

Using the above estimates one can state various criteria for the inclusion of f into

H(T,A, µ).
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Theorem 3.7. ([1, Theorem 2.6]) Let H(T,A, µ) be a Cauchy–de Branges space and let

A be of finite order. Then an entire function f is in H(T,A, µ) if and only if the following

three conditions hold:

(i)
∑

n

|f(tn)|2
|A′(tn)|2µn

< ∞;

(ii) there exists a set E ⊂ (0,∞) of zero linear density and N > 0 such that |f(z)| ≤
|z|N |A(z)|, |z| /∈ E;

(iii) there exists a set Ω of positive area density such that |f(z)| = o(|A(z)|), |z| → ∞,

z ∈ Ω.

In many cases one can relax the conditions (ii)–(iii) and require the estimates on a

smaller set.

3.3. Proof of Theorem 2.9. Let ν =
∑

n νnδsn, sn ∈ C, sn 6= 0, sn → 0, and tn = s−1
n .

Let a, b ∈ L2(ν), bn 6= 0 for any n and σ = |b|2ν. By Theorem 3.1 the perturbation

L = A+a⊗ b is unitary equivalent to the model operator Mβ on C(K, σ) where β is given

by (3.1). Now we put

µn = |tn|2σn = |tn|2|bn|2νn.
Fix an entire function A with zero set {tn} and A(0) = 1, and consider the spaceH(T,A, µ).

Put G(z) = A(z)β(z−1). Then we have

(3.4)

G(z) = A(z)β(z−1) = A(z)

(
1 + z

∑

n

anb̄ntnνn
z − tn

)

= A(z)

(
1 +

∑

n

anb̄nt
2
nνn

( 1

z − tn
+

1

tn

))
.

It is easy to see that G ∈ Assoc (T,A, µ) and G(0) = 1.

We will show that the mapping U : f 7→ A(z)z−1f(z−1) maps C(K, σ) unitarily onto

H(T,A, µ) and realizes a unitary equivalence between Mβ and TG.

Let f(z) =
∑

n
unσn

z−sn
, u = (un) ∈ L2(σ) and g(z) = A(z)z−1f(z−1). Since

z−1f(z−1) =
∑

n

untnσn

tn − z
=

∑

n

untn|tn|−1σ
1/2
n µ

1/2
n

tn − z
,

we conclude that g ∈ H(T,A, µ) and

‖g‖2H(T,A,µ) =
∑

n

|un|2σn = ‖f‖2C(K,σ).
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Note also that (zf)∞ =
∑

n unσn = (Uf)(0). Then we have

(UMβf)(z) = A(z)
(
z−2f(z−1)− (zf)∞z−1β(z−1)

)

=
(Uf)(z)− (Uf)(0)G(z)

z
= (TGUf)(z).

Thus, L is unitary equivalent to TG.

Finally, it is easy to see that any function G ∈ Assoc (T,A, µ) with G(0) = 1 admits

representation (3.4) for some a, b, ν such that a, b ∈ L2(ν) and µn = |bn|2|tn|2νn. Therefore,
the function β such that G(z) = A(z)β(z−1) satisfies conditions (i)–(iii) of Theorem 3.1.

Thus, any such function G appears in the model of some rank one perturbation of the

compact normal operator with the spectral measure ν. �

In what follows we will often use the following simple observation.

Lemma 3.8. The function G given by (3.4) belongs to H(T,A, µ) if and only if a ∈ zL2(ν)

(i.e.,
∑

n |an|2|tn|2νn < ∞) and

(3.5) 1 +
∑

n

anb̄ntnνn = 0.

Proof. Assume that G ∈ H(T,A, µ). Note that G(tn) = A′(tn)t
2
nanb̄nνn. Then, by Lemma

3.6 and the fact that µn = |tn|2|bn|2νn,
∑

n

|G(tn)|2
|A′(tn)|2µn

=
∑

n

|an|2|tn|2νn < ∞.

Now the series
∑

n |anbntn|νn converges and we may write

(3.6) G(z) = A(z)

(
1 +

∑

n

anb̄ntnνn +
∑

n

anb̄nt
2
nνn

z − tn

)
.

Inclusion A(z)
∑

n
anb̄nt2nνn

z−tn
∈ H(T,A, µ) also follows from the condition

∑
n |an|2|tn|2νn <

∞. Since, A /∈ H(T,A, µ) we conclude that the coefficient given by the left-hand side of

(3.5) is zero.

The converse statement follows immediately from (3.6). �

It is easy to describe the point spectrum and eigenfunctions of the model operator TG.

Lemma 3.9. η 6= 0 is an eigenvalue for TG if and only if λ = η−1 is a zero of G.

The corresponding eigenvector of TG is given by G
z−λ

while the reproducing kernel kλ of

H(T,A, µ) is the eigenvector of T ∗
G corresponding to η̄.
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Proof. We have TGf = ηf if and only if f = c G
1−ηz

∈ H(T,A, µ). Since f is entire, this

is equivalent to G(λ) = 0, λ = η−1. Note that 0 is an eigenvalue of TG if and only if

G ∈ H(T,A, µ).

Now, if λ 6= 0 and G(λ) = 0, then we have for any f ∈ H(T,A, µ),

(f, T ∗
Gkλ) = (TGf, kλ) =

f(z)− f(0)G(z)

z

∣∣∣∣
z=λ

=
f(λ)

λ
=

1

λ
(f, kλ),

whence T ∗
Gkλ = η̄kλ. �

Remark 3.10. If G has a zero λ of multiplicity m > 1, then the corresponding root

subspace for TG is spanned by G
(z−λ)j

, j = 1, . . . , m. Similarly, one can find root vectors for

T ∗
G which are essentially the reproducing kernels for the derivatives (see [10] for details). To

avoid uninteresting technicalities we assume in what follows that all zeros of G are simple.

Thus, the properties of rank one perturbations of normal compact operators may be

translated via the functional model to the geometric properties of systems of reproducing

kernels in H(T,A, µ), e.g.:

• L∗ is complete if and only if the system {kλ}λ∈ZG
is complete in H(T,A, µ) (equiv-

alently, ZG is a uniqueness set for H(T,A, µ));

• L is complete if and only if the biorthogonal system
{

G
z−λ

}
λ∈ZG

is complete;

• L admits spectral synthesis if and only if the system {kλ}λ∈ZG
is hereditarily com-

plete (see the definition in Section 5).

Uniqueness sets in de Branges spaces (and in a more general setting of model subspaces

of the Hardy space) were studied in [3, 16, 31]. Completeness of systems biorthogonal to

systems of reproducing kernels was considered in [4], while in [5, 6] a more or less complete

understanding of hereditary completeness in de Branges spaces was achieved.

4. Completeness of L and L∗

In this section we prove Theorems 2.1 and 2.2 on completeness of rank one perturbations

and their adjoints. First we remark that the condition bn 6= 0 (which is required in the

functional model) does not lead to a loss of generality.

Lemma 4.1. Let A be a compact normal operator with simple spectrum {sn}n∈N , i.e.,

multiplication by z in H = L2(ν), ν =
∑

n νnδsn. Let N = N1 ∪ N2, N1 ∩ N2 = ∅. Then

we can write A = A1 ⊕ A2, where Aj is multiplication by z in Hj = L2(ν|{sn}n∈Nj
). Now

let L = A + a ⊗ b. Assume that with respect to decomposition H = H1 ⊕ H2 we have

a = a1 ⊕ a2, b = b1 ⊕ 0. Consider the operator L1 = A1 + a1 ⊗ b1 on H1. Then
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(i) if L1 is complete, then L is complete;

(ii) if L∗
1 is complete, then L∗ is complete.

Proof. For u = u1 ⊕ u2 we have

Lu =
(
A1u1 + (u1, b1)a1

)
⊕

(
A2u2 + (u1, b1)a2

)
.

Denote by (em)m∈N1 the standard orthogonal basis ofH2, (em)n = 0,m 6= n, and (em)m = 1.

It is clear that 0⊕ em is an eigenvector of L corresponding to the eigenvalue sm, m ∈ N2.

Denote by (fk) the eigenvectors of L1 corresponding to the eigenvalues λk. For simplicity

we assume that all eigenvalues are simple and also that {λk} ∩ {sm}m∈N2 = ∅. If u is an

eigenvector of L and u1 6= 0, then u1 = fk for some k. In this case for u2 we have the

equation:

A2u2 + (u1, b1)a2 = λku2,

whence u2 = −(u1, b1)(A2 − λkI)
−1a2. In the case when λk = sm for some m we have a

root vector instead of an eigenvector. We omit the details.

Thus, the eigenvectors of L are of the form {0⊕ em} ∪ {fk ⊕ gk} for some gk ∈ H2. It is

now obvious that this system is complete in H if and only if the system {fk} is complete

in H1.

The statement for the adjoint operator is based on similar straightforward computations.

Indeed,

L∗u =
(
A∗

1u1 + ((u1, a1) + (u2, a2))b1
)
⊕A∗

2u2.

Let f ∗
k be the eigenvectors of L∗

1. Clearly, u1 ⊕ 0 is an eigenvector of L∗ if and only if

u1 = f ∗
k for some k. If u2 6= 0 and L∗u = λu, then λ = s̄m, u2 = em for some m and u1 can

be found from the equation (L∗
1 − s̄mI)u1 = −(em, a2)b1. If sm 6= λk for any k, then there

exists a unique vector hm such that hm ⊕ em is an eigenvector of L∗ (in the case sm = λk

there is a root vector). Again, it is obvious that if the system {f ∗
k} is complete in H1,

then the system {f ∗
k ⊕ 0} ∪ {hm ⊕ em} is complete in H . Note that the converse is not so

clear. �

4.1. Proof of Theorem 2.1. By Lemma 4.1 we may assume without loss of generality

that bn 6= 0 for any n. Then we can construct the functional model for L in H(T,A, µ).

In view of the symmetry of conditions, it is sufficient to prove the theorem for the adjoint

operator L∗. In this case the eigenvectors are given by reproducing kernels kλ, λ ∈ ZG.

Assume first that (2.1) holds, that is, the first moment is nonzero. If the system {kλ}λ∈ZG

is incomplete, then there exists a nonzero function f ∈ H(T,A, µ) which vanish on ZG and
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so f = GU for some entire function U . By Lemma 3.6 we have |G(z)U(z)| = o(|A(z)|),
|z| → ∞, outside a zero density set Ω1. On the other hand,

G(z) = A(z)

(
1 +

∑

n

anb̄ntnνn +
∑

n

anb̄nt
2
nνn

z − tn

)
.

The last sum in brackets can be estimated by (3.2) and we conclude that |G(z)| & |A(z)|,
z ∈ C \ Ω2, for some Ω2 of zero density. Hence, |U(z)| = o(1) when |z| → ∞, z ∈ C \ Ω,
for some set Ω of zero density.

Recall that all elements of H(T,A, µ) are of finite order not exceeding the order of A.

Hence, U is of finite order. By Theorem 3.4 U ≡ 0.

Now we assume that conditions (2.2) are satisfied, i.e., the moment with number N + 1

is the first nonzero moment. Using the elementary formula

1

z − tn
=

1

z
+

tn
z2

+ · · ·+ tm−1
n

zm
+

tmn
zm(z − tn)

we get

G(z) =
A(z)

zN−1

∑

n

anb̄nt
N+1
n νn

z − tn
,

whence, by Lemma 3.2, |G(z)| & |z|−N |A(z)|, z /∈ Ω, for some Ω of zero density. If

f = GU ∈ H(T,A, µ) then, arguing as above, we conclude that |U(z)| = o(|z|N) as |z| → ∞
outside a set of zero density and so U is a polynomial of degree at most N − 1. Thus, the

orthogonal complement to {kλ}λ∈ZG
is contained in PN−1G and so dim (E(L∗))⊥ ≤ N .

It remains to show that if a /∈′ zL2(ν), then L∗ is complete. Indeed, by Lemma 3.8,

G /∈ H(T,A, µ). Therefore GU /∈ H(T,A, µ) for any polynomial U . Thus, the orthogonal

complement to {kλ}λ∈ZG
is trivial. �

4.2. Parametrization of the orthogonal complement to a system biorthogonal

to a system of reproducing kernels. Let {kλ}λ∈Λ be a minimal system in H(T,A, µ).

We assume that {λn} ∩ T = ∅. Let G be an entire function which vanishes on Λ and

such that G
z−λ

∈ H(T,A, µ). Such function exists due to minimality of the system {kλ}λ∈Λ;
it is possible that G /∈ H(T,A, µ), but G ∈ Assoc (T,A, µ). Then it is clear that the

system
{ G(z)

G′(λ)(z−λ)

}
λ∈Λ

is biorthogonal to {kλ}λ∈Λ. The following parametrization of the

orthogonal complement to the biorthogonal system was suggested in [4].
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Assume that h(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
∈ H(T,A, µ) is orthogonal to the system

{
G(z)
z−λ

}
λ∈Λ

.

Note that for g, h ∈ H(T,A, µ) one has (g, h) =
∑

n
g(tn)h(tn)
|A′(tn)|2µn

whence

∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (tn − λ)

= 0, λ ∈ Λ.

Therefore, the entire function A(z)
∑

n
G(tn)c̄n

A′(tn)µ
1/2
n (z−tn)

vanishes on Λ and we can write

(4.1) A(z)
∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (z − tn)

= G(z)S(z)

for some entire function S. Note that, conversely, for any entire function S which satisfies

equation (4.1) with some sequence (cn) ∈ ℓ2, the function h(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
belongs to

H(T,A, µ) and is orthogonal to the system
{G(z)

z−λ

}
λ∈Λ

. We denote the class of all functions

S of the form (4.1) by S. Note that S is a linear space.

Comparing the values at tn we see that G(tn)S(tn) = G(tn)c̄nµ
−1/2
n , whence S(tn) =

c̄nµ
−1/2
n and so

∑
n |S(tn)|2µn < ∞. When equipped with the norm ‖S‖2 = ∑

n |S(tn)|2µn

the space S becomes a Hilbert space and the mapping

S 7→ A(z)
∑

n

S(tn)µn

z − tn

is a unitary map from S onto the orthogonal complement to
{

G(z)
z−λ

}
λ∈Λ

in H(T,A, µ).

We will need the following result from [4]:

Lemma 4.2. [4, Lemma 2.3] If S ∈ S, then S(z)−S(w)
z−w

∈ S for any w ∈ C.

Proof. Let S ∈ S and let λ0 ∈ Λ. Then we have

G(z)S(z)

A(z)
=

∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (z − tn)

,
G(z)

A(z)
= (z − λ0)

∑

n

G(tn)

A′(tn)(tn − λ0)(z − tn)
.

From this it is easy to show that

1

z − w

(
G(z)S(z)

A(z)
− G(w)S(w)

A(w)

)
and

S(w)

z − w

(
G(w)

A(w)
− G(z)

A(z)

)

have required representations. �
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4.3. Proof of Theorem 2.2. We will need the following lemma.

Lemma 4.3. Let dn be such that

∑

n

|dn|
|tn|

< ∞ and
∑

n

|dn|2
|tn|2Nµn

< ∞

for some N ∈ N0. Then f(z) = A(z)
∑

n
dn

z−tn
∈ PNH(T,A, µ).

Proof. Since

(4.2)
1

z − tn
= − 1

tn
− z

t2n
− · · · − zN−1

tNn
+

zN

tNn (z − tn)
,

we have

f(z) = A(z)P (z) + zNA(z)
∑

n

dn
tNn (z − tn)

,

where P is a polynomial of degree at most N − 1. By the hypothesis A(z)
∑

n
dn

tNn (z−tn)
∈

H(T,A, µ) Also, A ∈ Assoc (T,A, µ) and so AP ∈ PNH(T,A, µ). �

Proof of Theorem 2.2. By Lemma 4.1 we may assume that an, bn 6= 0 for any n. Note that

L∗ = A∗ + b⊗ a also is a rank one perturbation of a normal operator. By the symmetry,

we can prove the following statement which is equivalent to Theorem 2.2:

If L∗ is complete and
∑

n

|an|2
|bn|2|tn|2N

< ∞,

then dim (E(L))⊥ ≤ N . If, moreover, b /∈ zL2(ν), then L is complete.

Consider the functional model for L in the Cauchy–de Branges space H = H(T,A, µ).

Recall that the eigenvectors of L are of the form G
z−λ

, λ ∈ ZG, where

G(z) = A(z)

(
1 + z

∑

n

anb̄ntnνn
z − tn

)
,

while the eigenfunctions of L∗ are the reproducing kernels kλ, λ ∈ ZG.

By the discussion in the Subsection 4.2, if f(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
is orthogonal to{

G
z−λ

}
λ∈ZG

, then there exists an entire function S from the corresponding space S such

that

G(z)S(z) = A(z)
∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (z − tn)

= A(z)
∑

n

dn
z − tn

.
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Note that the coefficients dn satisfy

(4.3) |dn| =
∣∣∣∣
G(tn)cn

A′(tn)µ
1/2
n

∣∣∣∣ =
∣∣∣∣
anbnt

2
nνncn

µ
1/2
n

∣∣∣∣ = |antnν1/2
n cn|.

Hence,

(4.4)
∑

n

|dn|2
|tn|2Nµn

.
∑

n

|an|2
|bn|2|tn|2N

< ∞,

and GS ∈ PNH(T,A, µ) by Lemma 4.3.

If S has at least N zeros z1, . . . zN counting multiplicities, then

(z − z1)
−1 . . . (z − zN)

−1G(z)S(z) ∈ H(T,A, µ).

This contradicts the fact that L is complete and so the set ZG is a uniqueness set for

H(T,A, µ). Thus, S = Q1e
Q2 where Q1 is a polynomial of degree at most N − 1 and Q2 is

some entire function.

By Lemma 4.2, S(z)−S(w)
z−w

∈ S for any S ∈ S. If S = Q1e
Q2 and Q2 6= const, then

there exists w ∈ C such that S(z)−S(w)
z−w

have infinitely many zeros and, repeating the

above argument, we again come to a contradiction. We conclude that S ⊂ PN−1 and so

dim (E(L))⊥ ≤ N .

Note that S(tn) = c̄nµ
−1/2
n and so

∑

n

|S(tn)|2|bn|2|tn|2νn < ∞.

If S is a polynomial and b /∈ zL2(ν), then S ≡ 0 and so L is complete. �

Remark 4.4. For the case of selfadjoint operators a result similar to Theorem 2.2 was

proved in [10] with pointwise (in place of integral) domination and for T with finite con-

vergence exponent. It is obvious that in this case each of the conditions |an|2νn & |tn|−N

or |bn| . |tn|N |an| of [10] implies condition (2.3).

5. Spectral synthesis

5.1. Hereditary complete systems. The spectral synthesis for an operator is equivalent

to a certain “strong completeness” property of its root vectors. Let {xn}n∈N be a complete

and minimal system in a separable Hilbert space H and let {x̃n}n∈N be its biorthogonal

system. The system {xn} is said to be hereditarily complete (or to be a strong Markushevich

basis, or to admit spectral synthesis) if x ∈ Span{(x, x̃n)xn} for any x ∈ H . In other
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words, any x can be approximated by partial sums of its Fourier series with respect to the

biorthogonal pair {xn}, {x̃n}.
An equivalent definition of a hereditarily complete system is that for any partition N =

N1 ∪N2, N1 ∩N2 = ∅, of the index set N , the mixed system

{xn}n∈N1 ∪ {x̃n}n∈N2

is complete in H .

By a theorem of A. Markus [32, Theorem 4.1], a compact operator with complete set of

root vectors {xn} admit the spectral synthesis if and only if the system {xn} is hereditarily

complete. For a survey of hereditary completeness and its relations to operator theory we

refer to [34, Chapter 4] (see also [6] and references therein).

5.2. Hereditary completeness for systems of reproducing kernels. Now let L be a

rank one perturbation of a compact normal operator and let TG be its functional model in a

space H(T,A, µ). Now the possibility of spectral synthesis for L reduces to the hereditary

completeness of the system
{

G
z−λ

}
λ∈ZG

(equivalently, {kλ}λ∈ZG
), that is, completeness of

all mixed systems. A method for the study of hereditary completeness of systems of

reproducing kernels in de Branges spaces was developed and successfully applied in [5,

6]. In particular, in [5] a long-standing problem of the spectral synthesis for exponential

systems was solved. In [10] these results were used to study spectral synthesis for rank one

perturbations of compact selfadjoint operators.

We will see that these methods apply to the Cauchy–de Branges spaces as well. Let

{kλ}λ∈Λ be a complete and minimal system of reproducing kernels and let
{G(z)

z−λ

}
λ∈Λ

be its

biorthogonal system. Here G is the unique (up to multiplication by a constant) function

in Assoc (T,A, µ) such that ZG = Λ. For the partition Λ = Λ1 ∪Λ2, Λ1 ∩Λ2 = ∅, consider
the corresponding mixed system

(5.1) K(Λ1,Λ2) := {kλ}λ∈Λ1 ∪
{ G

z − λ

}

λ∈Λ2

.

We assume that Λ ∩ T = ∅. This is not a restriction since both properties of being

hereditarily complete or to be a Riesz basis of reproducing kernels in H(T,A, µ) are stable

under small perturbations of points.

One can parametrize the orthogonal complement to the system (5.1) similarly to Sub-

section 4.2. Choose two functions G1 and G2 such that G = G1G2, ZG1 = Λ1, ZG2 = Λ2.

Assume that f(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
∈ H(T,A, µ) is orthogonal to the system (5.1). The

fact that f ⊥ {kλ}λ∈Λ1 is equivalent to f = G1S1 for some entire function S1. As in
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Subsection 4.2, the orthogonality f ⊥
{G(z)

z−λ

}
λ∈Λ2

can be rewritten as

∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (tn − λ)

= 0, λ ∈ Λ2,

and so the entire function A(z)
∑

n
G(tn)c̄n

A′(tn)µ
1/2
n (z−tn)

is divisible by G2,

We conclude that f(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
∈ H(T,A, µ) is orthogonal to the system (5.1)

if and only if there exist two entire functions S1, S2 such that we have two interpolation

formulas:

(5.2)

A(z)
∑

n

cnµ
1/2
n

z − tn
= G1(z)S1(z),

A(z)
∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (z − tn)

= G2(z)S2(z).

Conversely, if there exist two entire functions S1, S2 satisfying (5.2) for some (cn) ∈ ℓ2,

then f(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
is orthogonal to the system (5.1). We denote by S12 the set

of all pairs (S1, S2) satisfying (5.1), this set parametrizes the orthogonal complement to

(5.1). Note that if (S1, S2) and (S̃1, S̃2) are in S12, then (S1 + S̃1, S2 + S̃2) ∈ S12. However,

S12 is not a linear space: for (S1, S2) ∈ S12 and α ∈ C, we have (αS1, ᾱS2) ∈ S12.

Comparing the values at tn, we get

A′(tn)cnµ
1/2
n = G1(tn)S1(tn), G(tn)c̄nµ

−1/2
n = G2(tn)S2(tn),

whence

S1(tn)S2(tn) = |cn|2A′(tn).

Hence, if we put S = S1S2, we see that the entire functions S and A
∑

n
|cn|2

z−tn
coincide on

T . Thus, there exists an entire function R such that

S(z) = A(z)

(∑

n

|cn|2
z − tn

+R(z)

)
.

This representation will play the key role in the proofs of Theorems 2.3–2.5. Note that in

the case when A is of finite order all functions in the space H(T,A, µ) (for any admissible

measure µ) are of finite order by Lemma 3.5. In particular, G, G1S1, G2S2 are of finite

order and so R is of finite order.

The following observation also will be useful. Let (S̃1, S̃2) be another element of S12

corresponding to a function g(z) = A(z)
∑

n
dnµ

1/2
n

z−tn
orthogonal to K(Λ1,Λ2). Then, analo-

gously,

A′(tn)dnµ
1/2
n = G1(tn)S̃1(tn), G(tn)d̄nµ

−1/2
n = G2(tn)S̃2(tn),
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and so S1(tn)S̃2(tn) = cnd̄nA
′(tn), S̃1(tn)S2(tn) = c̄ndnA

′(tn), whence

S1(z)S̃2(z)

A(z)
=

∑

n

cnd̄n
z − tn

+ U(z),
S̃1(z)S2(z)

A(z)
=

∑

n

c̄ndn
z − tn

+ V (z),

for some entire functions U and V .

5.3. Proof of Theorem 2.3. Assume that bn 6= 0 for any n and b ∈ zL2(ν). Then for µ

defined by µn = |bn|2|tn|2νn we have
∑

n µn < ∞.

Let TG be the model operator in H(T,A, µ) unitarily equivalent to L. We need to

show that TG admits the spectral synthesis, i.e., that any mixed system K(Λ1,Λ2) (where

Λ1∪Λ2 = Λ = ZG) is complete inH(T,A, µ). Note that the systems {kλ}λ∈Λ and
{

G(z)
z−λ

}

λ∈Λ
are complete by Theorem 2.1.

As in Theorem 2.1, we have

G(z) = A(z)

(
1 +

∑

n

anb̄ntnνn +
∑

n

anb̄nt
2
nνn

z − tn

)
,

whence, by (3.2), |G(z)| ≍ |A(z)|, z ∈ C \ Ω1 for some Ω1 of zero density. Assume that

f(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
∈ H(T,A, µ) is orthogonal to K(Λ1,Λ2) and let (S1, S2) ∈ S12 be

the corresponding entire functions for which (5.2) holds. Multiplying the equations in (5.2)

we get

(5.3)
G(z)

A(z)

(∑

n

|cn|2
z − tn

+R(z)

)
=

(∑

n

cnµ
1/2
n

z − tn

)
·
(∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (z − tn)

)
,

which can be rewritten as

(5.4)
G(z)

A(z)
R(z) =

(∑

n

cnµ
1/2
n

z − tn

)
·
(∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (z − tn)

)
− G(z)

A(z)

∑

n

|cn|2
z − tn

.

By (3.2), the right-hand side in (5.4) is o(1) as |z| → ∞ outside a set of zero density.

Hence, |R(z)| = o(1), |z| → ∞, z /∈ Ω2, Ω2 of zero density. Since R is of finite order (see

Subsection 5.2), R ≡ 0 by Theorem 3.4. Thus, we have

(5.5)
G(z)

A(z)

∑

n

|cn|2
z − tn

=

(∑

n

cnµ
1/2
n

z − tn

)
·
(∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (z − tn)

)
.

By Lemma 3.2 and the fact that |G(z)| ≍ |A(z)| outside a set of zero density, the modulus

of the left-hand side is & |z|−1 outside a set of zero density. The second term in the
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right-hand side of (5.5) is o(1) as |z| → ∞ outside a set of zero density. Finally, note that

(cnµ
1/2
n ) ∈ ℓ1 since

∑
n µn < ∞. Hence, by Lemma 3.2,

∑

n

∣∣∣∣
cnµ

1/2
n

z − tn

∣∣∣∣ .
1

|z|

outside a set of zero density. Thus, the right-hand side of (5.5) is o(|z|−1) as |z| → ∞
outside a set of zero density, a contradiction. �

5.4. Proof of Theorem 2.4. We will prove the equivalent result for the model operator

TG in H(T,A, µ). Let M be TG invariant and let E(M, TG) = Span
{

G
z−λ

: λ ∈ Λ2

}
, where

Λ2 ⊂ Λ = ZG. Then it is not difficult to show that M⊥ ⊃ {kλ : λ ∈ Λ1 = Λ \ Λ2} (see,

e.g., the proof of Lemma 4.2 in [32]). Hence,

Span
{ G

z − λ
: λ ∈ Λ2

}
⊂ M ⊂

(
Span{kλ : λ ∈ Λ1}

)⊥
.

Thus, dimM ⊖ E(M, TG) does not exceed the dimension of the orthogonal complement

to the mixed system K(Λ1,Λ2) = {kλ}λ∈Λ1 ∪
{

G(z)
z−λ

}
λ∈Λ2

. It remains to show that this

dimension admits an estimate depending on N only.

Step 1. Let f(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
∈ H(T,A, µ) be orthogonal to K(Λ1,Λ2) and let

(S1, S2) ∈ S12 be the corresponding entire functions for which (5.2) holds. As in the proof

of Theorem 2.3, multiplying the equations in (5.2) we get (5.3)–(5.4). By (3.2), the right-

hand side in (5.4) is o(1) as |z| → ∞, z /∈ Ω1 for some set Ω1 of zero density. We use the

fact that |G| . |A| outside a set of zero density.

We consider the case N ≥ 1, the case N = 0 is analogous. As in the proof of Theorem

2.1,

G(z) =
A(z)

zN−1

∑

n

anb̄nt
N+1
n νn

z − tn
,

whence, by Lemma 3.2, |G(z)| & |z|−N |A(z)|, z /∈ Ω2, for some Ω2 of zero density. Thus,

|R(z)| = o(|z|N) as |z| → ∞, z /∈ Ω, Ω of zero density. Recall that R is of finite order.

Then, by Theorem 3.4, R is a polynomial of degree at most N − 1.

Step 2. Let f(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
and g(z) = A(z)

∑
n

dnµ
1/2
n

z−tn
be two mutually orthogonal

functions in (K(Λ1,Λ2))
⊥ and let corresponding elements (S1, S2) and (S̃1, S̃2) of S12 satisfy

S1(z)S2(z)

A(z)
=

∑

n

|cn|2
z − tn

+R(z),
S̃1(z)S̃2(z)

A(z)
=

∑

n

|dn|2
z − tn

+ R̃(z),
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S1(z)S̃2(z)

A(z)
=

∑

n

cnd̄n
z − tn

,
S̃1(z)S2(z)

A(z)
=

∑

n

c̄ndn
z − tn

,

i.e. in the “cross-products” S1S̃2 and S̃1S2 there are no polynomial terms. Since f and g

are orthogonal in H(T,A, µ), we have
∑

n cnd̄n = 0. Hence, by Lemma 3.2,

S1(z)S̃2(z)

A(z)
= o

( 1

|z|
)
,

S̃1(z)S2(z)

A(z)
= o

( 1

|z|
)
, |z| → ∞, z /∈ Ω1,

where Ω1 is a set of zero density. On the other hand, by the same Lemma 3.2,
∣∣∣∣
S1(z)S2(z)

A(z)

∣∣∣∣ &
1

|z| ,
∣∣∣∣
S̃1(z)S̃2(z)

A(z)

∣∣∣∣ &
1

|z| , z /∈ Ω2,

for a set Ω2 of zero density. Note that, e.g., S1(z)S2(z)
A(z)

has even a larger estimate from

below if R is a nonzero polynomial. Combined together, these estimates obviously lead to

a contradiction.

Step 3. In what follows we will denote by C the set of all functions of the form
∑

n
dn

z−tn
,

where (dn) ∈ ℓ1.

Assume that dim
(
K(Λ1,Λ2)

)⊥
> (N + 1)2 and choose in

(
K(Λ1,Λ2)

)⊥
an orthogonal

system {fj}mj=1∪{gk}N+1
k=1 where m > N(N +1). Let (Sj

1, S
j
2) and (S̃k

1 , S̃
k
2 ) be the elements

of S12 corresponding to fj and gk, respectively (see Subsection 5.2). If

fj(z) = A(z)
∑

n

cjnµ
1/2
n

z − tn
, gk(z) = A(z)

∑

n

dknµ
1/2
n

z − tn
,

then there exist polynomials Ujk of degree at most N − 1 such that

Sj
1(z)S̃

k
2 (z)

A(z)
=

∑

n

cjnd̄
k
n

z − tn
+ Ujk(z).

Since m > (N + 1)dimPN−1, there exist {αj}mj=1 such that
∑m

j=1 αjUjk ≡ 0 for any

k = 1, . . . N + 1. Put f =
∑m

j=1 αjfj and let (S1, S2) be the corresponding element of S12.

Then we have
S1S̃k

2

A
∈ C for any k. On the other hand, there exist polynomials Vk ∈ PN−1

such that
S̃k
1S2

A
− Vk ∈ C.

Choose {βk}N+1
k=1 such that

∑N+1
k=1 βkVk ≡ 1 and put g =

∑N+1
k=1 βkgk. If we denote by

(S̃1, S̃2) the element of S12 corresponding to g, then we have both S1S̃2

A
∈ C and S̃1S2

A
∈ C,

and, moreover, (f, g) = 0. As we have already seen in Step 2, this leads to a contradiction.

This shows that

dimM⊖E(M, TG) = dim
(
K(Λ1,Λ2)

)⊥ ≤ (N + 1)2.
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Theorem 2.4 is proved. �

5.5. Proof of Theorem 2.5. We will need the following technical lemma.

Lemma 5.1. Let T = {tn} be power separated with power M , i.e., T satisfies (2.4). Let

d
(j)
n , j = 1, . . . 4, be such that d

(1)
n d

(2)
n = d

(3)
n d

(4)
n for any n and, for some N ∈ N0,

∑

n

|d(j)n |
|tn|

< ∞, j = 1, . . . , 4, and
∑

n

|d(j)n |2
|tn|2Nµn

< ∞, j = 1, 3.

Then

f(z) = A(z)

(∑

n

d
(1)
n

z − tn
·
∑

n

d
(2)
n

z − tn
−

∑

n

d
(3)
n

z − tn
·
∑

n

d
(4)
n

z − tn

)

belongs to PM+NH(T,A, µ).

Proof. Using formula (4.2) we can rewrite

∑

n

d
(j)
n

z − tn
= Pj(z) + zM+1

∑

n

p
(j)
n

z − tn
, j = 2, 4,

where Pj is the polynomial of degree at most M and p
(j)
n = d

(j)
n t−M−1

n satisfies∑
n |tn|M |p(j)n | < ∞. By Lemma 4.3,

A(z)P2(z)
∑

n

d
(1)
n

z − tn
, A(z)P4(z)

∑

n

d
(3)
n

z − tn
∈ PM+NH(T,A, µ).

It remains to show that

A(z)

(∑

n

d
(1)
n

z − tn
·
∑

n

p
(2)
n

z − tn
−

∑

n

d
(3)
n

z − tn
·
∑

n

p
(4)
n

z − tn

)
∈ PNH(T,A, µ).

Note that by condition d
(1)
n d

(2)
n = d

(3)
n d

(4)
n the coefficient at (z − tn)

−2 is zero. We have

∑

n

d
(1)
n

z − tn
·
∑

m

p
(2)
m

z − tm
=

d
(1)
n p

(2)
n

(z − tn)2
+
∑

n

(∑

m6=n

p
(2)
m

tn − tm

)
d
(1)
n

z − tn
.

It follows from power separation that |tn−tm| & |tm|−M , n 6= m, and so
∣∣∑

m6=n
p
(2)
m

tn−tm

∣∣ . 1.

Now the inclusion

A(z)
∑

n

(∑

m6=n

p
(2)
m

tn − tm

)
d
(1)
n

z − tn
∈ PNH(T,A, µ)

follows from Lemma 4.3. �
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Proof of Theorem 2.5. By the symmetry, we can prove the spectral synthesis up to a finite

defect for the operator L∗ in place of L. So we interchange the roles of a and b and assume

that L∗ is complete,

∑

n

|an|2
|bn|2|tn|2N

< ∞, |bn|2νn & |tn|−2N−2.

We show that the adjoint model operator T ∗
G in H(T,A, µ) admits spectral synthesis up

to a finite defect. Assume that f(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
∈ H(T,A, µ) is orthogonal to the

mixed system K(Λ1,Λ2) defined by (5.1), and let (S1, S2) ∈ S12 be the corresponding entire

functions for which (5.2) holds. Multiplying the equations in (5.2) we get equality (5.3)

which can be rewritten as follows:

G(z)R(z) = A(z)

(∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (z − tn)

·
∑

n

cnµ
1/2
n

z − tn
− G(z)

A(z)

∑

n

|cn|2
z − tn

)
.

Note that
G(z)

A(z)
= 1 + z

∑

n

anb̄ntnνn
z − tn

,

Put

d(1)n =
G(tn)c̄n

A′(tn)µ
1/2
n

, d(2)n = cnµ
1/2
n , d(3)n = anb̄ntnνn, d(4)n = |cn|2.

Then d
(1)
n , d

(2)
n , d

(3)
n and d

(4)
n satisfy conditions of Lemma 5.1. The fact that∑

n |d
(1)
n |2|tn|−2Nµ−1

n < ∞ follows from (4.3)–(4.4) in the proof of Theorem 2.2, while

it is clear that ∑

n

|d(3)n |2µ−1
n =

∑

n

|an|2νn < ∞.

Now we may write

G(z)R(z) = −A(z)
∑

n

|cn|2
z − tn

+ A(z)

(∑

n

d
(1)
n

z − tn
·
∑

n

d
(2)
n

z − tn
−
∑

n

d
(3)
n

z − tn
·
∑

n

d
(4)
n

z − tn

)
.

By Lemma 4.3, A(z)
∑

n
|cn|2

z−tn
∈ PNH(T,A, µ). Indeed,

∑

n

|cn|4
|tn|2Nµn

=
∑

n

|cn|4
|tn|2N+2|bn|2νn

.
∑

n

|cn|4 < ∞

by (2.5). Hence, by Lemma 5.1, GR ∈ PM+NH(T,A, µ).

Recall that T ∗
G is complete and so there is no nonzero function of the form GU ∈

H(T,A, µ). If R has at least M + N zeros counting multiplicities, then, dividing R by

a polynomial P of degree M + N we have GRP−1 ∈ H(T,A, µ), a contradiction. Thus,

R = PeQ, where P is a polynomial of degree at most M +N −1 and Q is some polynomial
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(recall that R is of finite order). Assume that Q 6= const. Since G ∈ Assoc (T,A, µ), the

function G(z)R(z)−R(w)
z−w

belongs to PM+NH(T,A, µ) and has infinitely many zeros for all

w except at most 1, a contradiction. Thus, we conclude that Q ≡ const and so R is a

polynomial of degree at most M +N − 1.

The rest of the proof is the same as the proof of Theorem 2.4. If we assume that

dim
(
K(Λ1,Λ2)

)⊥
> (M +N +1)2, then there exist two mutually orthogonal functions f, g

in
(
K(Λ1,Λ2)

)⊥
with the properties as in Step 2 of the proof of Theorem 2.4 which again

leads to a contradiction. �

6. Counterexamples

In this section we prove Theorem 2.6. The following observation is trivial, but leads

to a substantial simplification of the construction compared to [6, 10]. It says that it is

sufficient to construct counterexamples on an arbitrarily sparse part of the spectrum.

Lemma 6.1. Let A be a compact normal cyclic operator and let A = A1⊕A2 with respect

to decomposition H = H1 ⊕H2. Let K ∈ N∪ {∞}. Assume that either there exists a rank

one perturbation L1 of A1 such that L1 is complete and dim (E(L∗
1))

⊥ = K, or L1 and L∗
1

are complete, but dimM1⊖E(M1,L1) = K for some L1-invariant subspace M1. Then for

the operator L = L1⊕A2 we have, respectively, that L is complete, but dim (E(L∗))⊥ = K,

or L and L∗ are complete, but dimM⊖E(M,L) = K for some L-invariant subspace M.

Proof. The proof is obvious. Consider, e.g., the statement about synthesis. Assume that

there exists a L1-invariant subspace M1 such that dim (M1 ⊖ E(M1,L1)) = K. Then

M = M1 ⊕ {0} is L-invariant and E(M,L) = E(M1,L1)⊕ {0}. �

It is clear that in Lemma 6.1 L is a rank one perturbation of A. Thus we see that it is

sufficient to construct examples for the restriction of A to any invariant (with respect to

A and A∗) subspace. We will choose H1 = L2(ν1) where ν1 is the restriction of the initial

measure µ to an infinite, but sparse part of the spectrum {sn}. By sparseness we will mean

(Hadamard-type) lacunarity of the inverse spectrum {tn}, tn = s−1
n :

(6.1) inf
n

∣∣∣∣
tn+1

tn

∣∣∣∣ > 1.

In view of Lemma 6.1 in our examples below we can always assume that A is a compact

normal operator with spectrum {sn} such that {tn} is a lacunary sequence.
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6.1. Proof of Theorem 2.6: biorthogonal systems with finite defect. Let N ∈ N.

We will prove the following statement:

Let T = {tn} be a lacunary sequence satisfying (6.1). Then there exists a space

H(T,A, µ) and a function G ∈ Assoc (T,A, µ) \ H(T,A, µ) with simple zeros such that

for Λ = ZG the system {kλ}λ∈Λ is complete in H(T,A, µ), but

dim

(
H(T,A, µ)⊖ Span

{ G

z − λ
: λ ∈ Λ

})
= N.

Thus, the model operator TG is incomplete with defect N , while its biorthogonal is

complete. Then L = T ∗
G , the adjoint to the model operator, will be a rank one perturbation

of a compact normal operator with spectrum {s̄n}, sn = t−1
n , and its adjoint will be

incomplete with defect N .

Let A(z) =
∏(

1 − 1
tn

)
. Put µn = |tn|−2N . Let t̃n = tn + 1

2
, T̃ = {t̃n} and Ã(z) =∏

(1− z/t̃n). Then, by the standard estimates of infinite products with lacunary zeros, for

z ∈ C \ T ,

(6.2)

∣∣∣∣
Ã(z)

A(z)

∣∣∣∣ ≍
∣∣∣∣
dist (z, T̃ )

dist (z, T )

∣∣∣∣,
∣∣∣∣
Ã(tn)

A′(tn)

∣∣∣∣ ≍ 1, tn ∈ T.

We will also use the following simple observation: if
∑

n |dn| < ∞, then

(6.3)

∣∣∣∣
∑

n

dn
z − tn

∣∣∣∣ = o(1),

∣∣∣∣
∑

n

tndn
z − tn

∣∣∣∣ = o(|z|), |z| → ∞, dist (z, T ) ≥ 1.

In particular, |f(z)| = o(|zA(z)|) for any f ∈ H(T,A, µ) when |z| → ∞, dist (z, T ) ≥ 1.

Let P be a polynomial of degree N such that ZP ⊂ ZÃ. Put G = Ã/P , Λ = ZG.

Step 1: G ∈ Assoc (T,A, µ) \ H(T,A, µ).

We have
|G(tn)|2

|A′(tn)|2µn
=

|Ã(tn)|2
|A′(tn)|2|P (tn)|2µn

≍ 1,

whence G /∈ H(T,A, µ) by Lemma 3.6. On the other hand,
∑

n
|G(tn)|2

|A′(tn)|2|tn|2µn
< ∞. Let us

show that G
z−λ

∈ H(T,A, µ) for any λ ∈ Λ. We need to show that

G(z)

(z − λ)A(z)
=

∑

n

G(tn)

(tn − λ)A′(tn)(z − tn)
.

The following standard argument will be repeated several times in the constructions below.

Put

H(z) =
G(z)

(z − λ)A(z)
−
∑

n

G(tn)

(tn − λ)A′(tn)(z − tn)
.
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The poles cancel and so H is an entire function. We have |G(z)| ≍ |P (z)|−1|A(z)|,
dist (z, T ) ≥ 1. Also, by (6.3), the last series is o(1) when |z| → ∞ and dist (z, T ) ≥ 1.

Hence, |H(z)| → 0, |z| → ∞, and so H ≡ 0. We conclude that G
z−λ

∈ H(T,A, µ).

Step 2: {kλ}λ∈Λ is complete in H(T,A, µ).

Assume that GU ∈ H(T,A, µ) for some entire U . Then, G(z)U(z) = A(z)
∑

n
dnµ

1/2
n

z−t−n
for

some (dn) ∈ ℓ2 and so, by (6.3), |G(z)U(z)/A(z)| = o(|z|) when |z| → ∞, dist (z, T ) ≥ 1.

Also,
∣∣∣∣
G(z)U(z)

A(z)

∣∣∣∣ =
∣∣∣∣
Ã(z)U(z)

A(z)P (z)

∣∣∣∣ ≍
∣∣∣∣
U(z)

P (z)

∣∣∣∣, dist (z, T ) ≥ 1.

We conclude that U is a polynomial.

Since GU ∈ H(T,A, µ) we have

∑

n

|U(tn)|2 ≍
∑

n

|G(tn)U(tn)|2
|A′(tn)|2µn

< ∞,

and so U ≡ 0.

Step 3: dim
{G(z)

z−λ
: λ ∈ Λ

}⊥
= N .

We use parametrization of the orthogonal complement to a system of the form
{

G
z−λ

}
λ∈Λ

introduced in Subsection 4.2. It is parametrized by the space S which consists of entire

functions S such that

(6.4) S(z)G(z) = A(z)
∑

n

c̄nG(tn)

A′(tn)µ
1/2
n (z − tn)

where (cn) ∈ ℓ2. Assume first that S ∈ S. Then it follows from representation (6.4) that

S(z)G(z) = A(z)
∑

n
dn

z−tn
, where

∑
n |tn|−1|dn| < ∞, and so, by (6.3),

∣∣∣∣
S(z)Ã(z)

A(z)P (z)

∣∣∣∣ =
∣∣∣∣
S(z)G(z)

A(z)

∣∣∣∣ = o(|z|), dist (z, T ) ≥ 1.

It follows from the estimates (6.2) that S is a polynomial. Also we have cn = S(tn)µ
1/2
n ,

and so
∑

n |S(tn)|2µn < ∞. Since µn = |tn|−2N we conclude that degree of S does not

exceed N − 1.

Conversely, let S ∈ PN−1 and put cn = S(tn)µ
1/2
n . We need to show that (6.4) holds,

that is, there is the interpolation formula

(6.5)
S(z)G(z)

A(z)
=

∑

n

S(tn)G(tn)

A′(tn)(z − tn)
.
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We argue as in Step 1. The residues at the points tn coincide and so the difference between

the left-hand side and the right-hand side of (6.5) is an entire function. We have
∣∣∣∣
S(z)G(z)

A(z)

∣∣∣∣ .
1

|z| ,
∣∣∣∣
∑

n

S(tn)G(tn)

A′(tn)(z − tn)

∣∣∣∣ = o(1), |z| → ∞, dist (z, T ) ≥ 1,

and so (6.5) holds. Thus, S = PN−1 and dim
{

G
z−λ

: λ ∈ Λ
}⊥

= dimS = N . �

6.2. Proof of Theorem 2.6: biorthogonal systems with infinite defect. As in

Subsection 6.1, for a lacunary sequence T , we construct a measure µ and a function G ∈
Assoc (T,A, µ) \ H(T,A, µ) such that for Λ = ZG the system {kλ}λ∈Λ is complete in

H(T,A, µ), but

dim

(
H(T,A, µ)⊖ Span

{ G

z − λ
: λ ∈ Λ

})
= ∞.

The following lemma from [6] will be crucial here. One can also use a simpler, but less

sharp result of [10, Lemma 7.1]. As usual, for a sequence Γ, we denote by nΓ its counting

function: nΓ(r) = #{γ ∈ Γ : |γ| < r}. For an entire function f we write nf in place of

nZ(f).

Lemma 6.2. ([6, Lemma 9.2]) Let Γ be a lacunary sequence and let f be an entire function

of zero exponential type such that

∫ R

0

nf (r)

r
dr = o

(∫ R

0

nΓ(r)

r
dr

)
, R → ∞.

If {f(γ)}γ∈Γ ∈ ℓ∞, then f is a constant.

Step 1: Construction of G.

Choose an infinite T0 ⊂ T such that nT0 = o(nT\T0
). As in the previous subsection let

T̃ = {t̃n}, t̃n = tn +
1
2
, and let

Ã(z) =
∏

n

(
1− 1

t̃n

)
, U(z) =

∏

tn∈T0

(
1− 1

t̃n

)

Define the measure µ =
∑

n µnδtn by

µn =




1, tn ∈ T0,

|U ′(tn)|−2, tn ∈ T \ T0.
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Finally, put G = Ã/U . Then we have

G(z)

A(z)
=

∑

n

Ã(tn)

A′(tn)U(tn)(z − tn)
,

G(z)

(z − λ)A(z)
=

∑

n

Ã(tn)

A′(tn)U(tn)(tn − λ)(z − tn)
, λ ∈ Λ = ZG.

Convergence of the above series follows from estimate (6.2) and the fact that |U(tn)| & |tn|N
for any N > 0. The interpolation formulas follow by the same arguments as in Subsection

6.1, Step 1. We also have

∑

n

|G(tn)|2
|A′(tn)|2µn

≍
∑

n

1

|U(tn)|2µn
= ∞,

since |U(tn)|2µn = 1, tn ∈ T \ T0. However, for any λ ∈ Λ = ZG,

∑

n

|G(tn)|2
|tn − λ|2|A′(tn)|2µn

≍
∑

tn∈T0

1

|tn − λ|2|U(tn)|2
+

∑

tn∈T\T0

1

|tn − λ|2 < ∞.

Thus, G /∈ H(T,A, µ), but G(z)
z−λ

∈ H(T,A, µ), λ ∈ Λ.

Step 2: {kλ}λ∈Λ is complete in H(T,A, µ).

Assume that the system {kλ}λ∈Λ is not complete and so there is an entire function V

such that GV ∈ H(T,A, µ). We have, by (6.3),
∣∣∣∣
V (z)

U(z)

∣∣∣∣ =
∣∣∣∣
G(z)V (z)

Ã(z)

∣∣∣∣ ≍
∣∣∣∣
G(z)V (z)

A(z)

∣∣∣∣ . |z|, dist (z, T ) ≥ 1.

Hence, logMV (r) . logMU(r) (where Mf (r) = max|z|=r |f(z)|) and so, by the classical

Iensen formula, ∫ R

0

nV (r)

r
dr .

∫ R

0

nT0(r)

r
dr.

On the other hand,
∑

n

|V (tn)|2
|U(tn)|2µn

≍
∑

n

|G(tn)V (tn)|2
|A′(tn)|2µn

< ∞,

whence
∑

tn∈T\T0
|V (tn)|2 < ∞. Since nT0 = o(nT\T0), V ≡ 0 by Lemma 6.2.

Step 3: dim
{G(z)

z−λ
: λ ∈ Λ

}⊥
= ∞.

Construct an entire function

S(z) =
∏

tn∈T0

(
1− z

tn + εn

)
,
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where εn 6= 0 are chosen to be so small that
∑

tn∈T0
|S(tn)|2 < ∞. Then, similarly to (6.2),

we have |S(tn)| ≍ |U(tn)|, tn ∈ T \T0. Let P be an arbitrary nonconstant polynomial such

that ZP ⊂ ZS. Then ∑

n

∣∣∣∣
G(tn)S(tn)

A′(tn)P (tn)

∣∣∣∣ < ∞

and
∑

n

∣∣∣∣
S(tn)

P (tn)

∣∣∣∣
2

µn =
∑

tn∈T0

∣∣∣∣
S(tn)

P (tn)

∣∣∣∣
2

+
∑

tn∈T\T0

|S(tn)|2
|P (tn)|2|U(tn)|2

< ∞.

Put cn = S(tn)µ
1/2
n /P (tn). Then, by the argument used in Subsection 6.1, Step 1, we have

the interpolation formula

G(z)S(z)

P (z)A(z)
=

∑

n

G(tn)S(tn)

A′(tn)P (tn)(z − tn)
=

∑

n

G(tn)c̄n

A′(tn)µ
1/2
n (z − tn)

.

Hence, by Subsection 4.2, f(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
is orthogonal to

{G(z)
z−λ

}
λ∈Λ

and S/P

belongs to the corresponding space S. Choose a sequence Pj of polynomials such that Pj is

a polynomials of degree j and ZPj
⊂ ZS. Clearly, the system S/Pj is linearly independent

in S whence dim
{G(z)

z−λ
: λ ∈ Λ

}⊥
= ∞.

6.3. Proof of Theorem 2.6: complete perturbations without synthesis. Let N ∈
N ∪ {∞}. By the results of Subsections 6.1 and 6.2, for any lacunary spectrum, there

is an example of a complete system of reproducing kernels whose biorthogonal system is

incomplete with defect N .

Now let T be lacunary and let T = T1 ∪ T2 so that nT2(r) = o(nT1(r)), r → ∞. Let

A2(z) =
∏

tn∈T2
(1 − z/tn). Assume that we have chosen a measure µ(2) =

∑
tn∈T2

µ
(2)
n δtn

and a function G2 such that

• G2 is a canonical product with lacunary zeros;

• G2 ∈ Assoc (T2, A2, µ
(2)) \ H(T2, A2, µ

(2));

• for Λ2 = ZG2 the system {k(2)
λ }λ∈Λ2 is complete in H(T2, A2, µ

(2));

• dim
(
H(T2, A2, µ

(2))⊖ Span
{G2(z)

z−λ
: λ ∈ Λ2

})
= N.

Here k
(2)
λ denote the reproducing kernel in the space H(T2, A2, µ

(2)). Thus, there exist N

linearly independent functions of the form f(z) = A2(z)
∑

tn∈T2

cn(µ
(2)
n )1/2

z−tn
such that

(6.6) A2(z)
∑

tn∈T2

G2(tn)c̄n

A′
2(tn)(µ

(2)
n )1/2(z − tn)

= G2(z)S2(z)

for some entire function S2.
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Put µn = 1, tn ∈ T1, and µn = µ
(2)
n , tn ∈ T2, and consider the corresponding Cauchy–

de Branges space H(T,A, µ), A = A1A2. Define cn = 0, tn ∈ T1. Then, multiplying the

formula for f and (6.6) by A1, we get

A1(z)f(z) = A1(z)A2(z)
∑

tn∈T

cnµ
1/2
n

z − tn
,

G2(z)A1(z)S2(z) = A1(z)A2(z)
∑

tn∈T

G2(tn)A1(tn)c̄n

(A1A2)′(tn)µ
1/2
n (z − tn)

.

By the discussion in Subsection 5.2, these equations are equivalent to the fact that the

function A1f is orthogonal to the mixed system

(6.7) {kλ}λ∈T1 ∪
{A1(z)G2(z)

z − λ

}

λ∈Λ2

in H(T,A, µ) (here we denote by kλ the reproducing kernel of the space H(T,A, µ). More-

over, if some function g ∈ H(T,A, µ) is orthogonal to the system (6.7), then g(tn) = 0,

tn ∈ T1. Hence, g = A1f where f(z) = A2(z)
∑

tn∈T2

cnµ
1/2
n

z−tn
∈ H(T2, A2, µ

(2)). Writing the

equation for the orthogonality of A1f to
{

A1(z)G2(z)
z−λ

}
λ∈Λ2

, we get (6.6) with some entire S2

and so f is orthogonal to
{G2(z)

z−λ

}
λ∈Λ2

in H(T2, A2, µ
(2)). Thus, the codimension of the sys-

tem (6.7) inH(T,A, µ) equals the codimension of the system
{G2(z)

z−λ

}
λ∈Λ2

inH(T2, A2, µ
(2)),

that is, N .

Let us show that the system {kλ}λ∈T1∪Λ2 is complete in H(T,A, µ). Assume that

A1G2V ∈ H(T,A, µ) for some entire function V . Then there exists a sequence (dn) ∈ ℓ2

such that

A1(z)G2(z)V (z) = A1(z)A2(z)
∑

n

dnµ
1/2
n

z − tn
,

and so dn = 0, tn ∈ T1. Hence,

G2(z)V (z) = A2(z)
∑

tn∈T2

dnµ
1/2
n

z − tn
∈ H(T2, A2, µ

(2)),

a contradiction to completeness of {k(2)
λ }λ∈Λ2 in H(T2, A2, µ

(2)).

It remains to show that the biorthogonal system
{A1(z)G2(z)

z−λ

}
λ∈T1∪Λ2

is complete in

H(T,A, µ). Assume that there exists (cn) ∈ ℓ2 such that the function g(z) = A(z)
∑

n
cnµ

1/2
n

z−tn

is orthogonal to the above system. Then, as in Subsection 4.2, we have, for λ ∈ Λ2,

0 =
(A1G2

z − λ
, g
)
=

∑

n

A1(tn)G2(tn)c̄n

A′(tn)µ
1/2
n (tn − λ)

=
∑

tn∈T2

G2(tn)c̄n

A′
2(tn)µ

1/2
n (tn − λ)

,
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and so there exists an entire function S2 such that

A2(z)
∑

tn∈T2

G2(tn)c̄n

A′
2(tn)µ

1/2
n (z − tn)

= G2(z)S2(z).

On the other hand, if λ = tm ∈ T1, then

0 =
( A1G2

z − tm
, g
)
=

∑

tn∈T2

A1(tn)G2(tn)c̄n

A′(tn)µ
1/2
n (tn − tm)

+
A′

1(tm)G2(tm)c̄m

A′(tm)µ
1/2
m

=
∑

tn∈T2

G2(tn)c̄n

A′
2(tn)µ

1/2
n (tn − tm)

+
G2(tm)c̄m

A2(tm)µ
1/2
m

.

We conclude that
G2(tm)c̄m

A2(tm)µ
1/2
m

=
G2(tm)S2(tm)

A2(tm)
, tm ∈ T1,

and so S2(tm) = c̄m (recall that µm = 1).

By estimates (6.3), |G2(z)S2(z)/A2(z)| . |z|, dist (z, T2) ≥ 1. Since G2 is lacunary

product we conclude that logMS2(r) . logMA2(r), whence
∫ R

0

nS2(r)

r
dr .

∫ R

0

nT2(r)

r
dr.

At the same time nT2(r) = o(nT1(r)), r → ∞, and {S2(tn)}tn∈T1 ∈ ℓ2. Hence, by Lemma

6.2, S2 ≡ 0 and so the system
{A1(z)G2(z)

z−λ

}
λ∈T1∪Λ2

is complete. This completes the proof of

Theorem 2.6. �

7. Proof of ordering theorems

7.1. Nearly invariant and division-invariant subspaces. Let H be a reproducing

kernel Hilbert space of functions analytic in some domain D. A closed subspace H0 of H
is said to be nearly invariant if there is w0 ∈ D such that f(z)

z−w0
∈ H0 whenever f ∈ H0

and f(w0) = 0. This notion goes back to the work of Hitt [22] and Sarason [37]. Usually

it is assumed that w0 = 0. It is known that nearly invariance is equivalent to a stronger

division invariance property. Denote by Z(H0) the set of common zeros for H0, that is,

the set of w ∈ D such that f(w) = 0 for any f ∈ H0. Then the division invariance means

that for any w ∈ D \ Z(H0),

f ∈ H0, f(w) = 0 =⇒ f(z)

z − w
∈ H0.

In the context of Hardy spaces in general domains the equivalence of nearly invariance and

division invariance is shown in [2, Proposition 5.1]; a similar argument works for general

spaces of analytic functions.
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Proposition 7.1. Let H0 be a nearly invariant subspace of some reproducing kernel Hilbert

space H of functions analytic in some domain D. Then, for any w ∈ D \ Z(H0) and any

f ∈ H0 such that f(w) = 0, we have
f(z)
z−w

∈ H0.

Proof. We show that the set of w in D\Z(H0) satisfying the conclusions of the proposition

is both open and closed in D \ Z(H0).

First of all note that, for any w ∈ D \ Z(H0), the operator f 7→ f(z)
z−w

is bounded from

the subspace {f ∈ H : f(w) = 0} to H by the Closed Graph Theorem. Let f(w) = 0 and

write f(z)
z−w

= gw + hw, where gw ∈ H0, hw ⊥ H0. Fix some function f0 ∈ H0 such that

f0(w0) = 1. Then, by a simple computation,

f − f(w0)f0
z − w0

= gw + hw + (w0 − w)

(
gw − gw(w0)f0

z − w0

+
hw − hw(w0)f0

z − w0

)
∈ H0.

Since gw and gw−gw(w0)f0
z−w0

are in H0, we conclude that

hw = (w − w0)PH⊥
0

(
hw − hw(w0)f0

z − w0

)
,

where PH⊥
0
denotes the orthogonal projection. This is impossible when w is sufficiently

close to w0 unless hw = 0, since
∥∥hw−hw(w0)f0

z−w0

∥∥ ≤ C‖hw‖ for some constant C independent

on w. We used the fact that H is a reproducing kernel Hilbert space to estimate hw(w0)

by ‖hw‖. Thus, we have seen that if we can divide in H0 by z −w0 then we can divide by

z − w with w close to w0.

Let us show that the set of w satisfying the conclusion of the proposition is closed. Let

w ∈ D \Z(H0) and assume that wn → w is a sequence such that one can divide by z−wn

in H0. Fix some function g ∈ H0 such that g(w) 6= 0. We may assume that g(wn) 6= 0 for

all n. Then all operators Twn, where

Twf =
f − f(w)

g(w)
g

z − w
,

are bounded. An easy computation leads to a resolvent-type identity

Twn − Tw = (wn − w)TwnTw.

Therefore ‖Twn‖ ≤ ‖Tw‖ + |wn − w| · ‖Twn‖ · ‖Tw‖, whence supn ‖Twn‖ < ∞. It follows

that ‖Twn − Tw‖ → 0, n → ∞. Since Twnf ∈ H0 for any f ∈ H0, we conclude that

TwH0 ⊂ H0. �
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7.2. Reduction to an ordering theorems for nearly invariant subspaces. We show

that Theorems 2.7 and 2.8 are equivalent to an ordering theorem for nearly invariant

subspaces. Let L = A + a ⊗ b be a rank one perturbation of a compact normal operator

with simple spectrum {sn}. Passing to the model operator TG in the Cauchy–de Branges

space H(T,A, µ), T = {tn} = {sn}−1, the problem becomes equivalent to the following.

Let M be an invariant subspace of TG. Put Λ = ZG and let Λ2 be the set of those λ ∈ Λ

for which G
z−λ

∈ M. Then

(7.1) Span
{ G

z − λ
: λ ∈ Λ2

}
⊂ M ⊂

(
Span{kλ : λ ∈ Λ1}

)⊥
,

where Λ1 = Λ \ Λ2. Since G
z−λ

∈ M if and only if λ ∈ Λ2, we conclude that the set of

common zeros Z(M) coincides with Λ1.

Recall that G(0) = 1 and so 0 /∈ Λ. Since M is TG-invariant, we have, in particular,

F ∈ M, F (0) = 0 =⇒ F (z)

z
∈ M,

that is, M is nearly invariant and, hence, division-invariant by Lemma 7.1.

Now Theorems 2.7 and 2.8 follow from the following ordering theorem.

Theorem 7.2. Let H = H(T,A, µ) be a de Branges–Cauchy space and assume that one

of the folowing conditions holds :

(i) T ⊂ R and |tn| → ∞ as |n| → ∞;

(ii) T satisfies one of the conditions Z, Π or Aγ.

Let G ∈ Assoc (T,A, µ) and Λ = ZG. Assume that {kλ}λ∈Λ is a complete and minimal

system of reproducing kernels in H and let Λ = Λ1 ∪ Λ2, Λ1 ∩ Λ2 = ∅. Then the set of all

nearly invariant subspaces M satisfying (7.1) is totally ordered by inclusion.

The proof of this theorem is based on the ideas of L. de Branges and is very similar

to the proof of [14, Theorem 35] or [1, Theorems 1.3, 1.4]. However, our hypothesis is

somewhat different and we cannot just refer to the above results. Therefore, and in order

to make the exposition more self-contained, we present below the proof of Theorem 7.2.

7.3. Preliminaries on the Smirnov class and Krein’s theorem. Here we will use

some basic notions of Hardy spaces theory and Nevanlinna inner-outer factorization (see,

e.g., [24]). Recall that a function f analytic in C+ is said to be of bounded type in C+, if

f = g/h for some functions g, h analytic and bounded in C+. If, moreover, h can be taken

to be outer, we say that f belongs to the Smirnov class in C+.
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Assume now that T ⊂ C− and consider a discrete Cauchy transform

(7.2) f(z) =
∑

n

cn
tn − z

,
∑

n

|cn|
|tn|

< ∞.

Then f is in the Smirnov class in C+. This follows from the fact that Im f > 0 in C+ if

cn > 0. Any function with positive imaginary part belongs to the Smirnov class, as well as

a sum of two Smirnov class functions.

In particular, a discrete Cauchy transform with real poles is a function of Smirnov class

both in the upper half-plane C+ and in the lower half-plane C−. Therefore, in the case

T ⊂ R, the function f/A is of Smirnov class in C
+ and C

− for any f ∈ H(T,A, µ) and,

thus, zeros of f satisfy the Blaschke condition in C+ and C−.

A classical result by M.G. Krein says that if f is an entire function which is in the

Smirnov class both in C+ and in C−, then f is of zero exponential type. For different

approaches to this result see [21, Part II, Chapter 1], [28, Lecture 16] or [14].

In what follows we will need the following (very standard) observation that the generating

function of a complete and minimal system must have a maximal growth with respect to

order 1.

Lemma 7.3. Let H = H(T,A, µ) be a de Branges–Cauchy space such that T ⊂ {−r ≤
Im z ≤ r} and either r = 0 (i.e., T ⊂ R) or r > 0 and T has finite convergence exponent.

Let G ∈ Assoc (T,A, µ) and Λ = ZG. Assume that the system {kλ}λ∈Λ is complete and

minimal in H. Then the inner-outer factorizations for G/A in C+ + ir and C− − ir are,

respectively, G/A = OB and G/A = ÕB̃, where O, Õ are the corresponding outer functions

and B, B̃ are some Blaschke products.

Proof. We prove the factorization in C
+ + ir, the case of C− − ir is analogous. Since

G
z−λ

∈ H for any λ ∈ Λ, we conclude that G
A(z−λ)

is a discrete Cauchy transform of the form

(7.2) and so is in the Smirnov class in C+. Hence, G/A = OBeiaz with a ≥ 0 (since G/A

is meromorphic in C, the singular inner factor reduces to eiaz). Assume that a > 0. Put

(7.3) H(z) =
G(z)(e−iaz/2 − 1)

zA(z)
−

∑

n

G(tn)(e
−iatn/2 − 1)

tnA′(tn)(z − tn)
.

Since G ∈ Assoc (T,A, µ) and the sequence {e−iatn/2} is bounded, the above Cauchy trans-

form converges absolutely. The residues at tn coincide and so H is an entire function.

Consider first the case r = 0. Then G/A is in the Smirnov class in C+ and C−. Moreover,

since a > 0, the function Ge−iaz/2/A = OBeiaz/2 also is in the Smirnov class in C+ and

C−. Since the discrete Cauchy transform in (7.3) also is in the Smirnov class in C+ and in

C−, we conclude that H is of zero exponential type by Krein’s theorem.
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Recall that any Smirnov class function u in C+ satisfies

(7.4) log+ |u(reiθ)| = o(r), r → ∞,

for any fixed θ ∈ (0, π) (as usual, log+ t = max(log t, 0)). Hence, Ge−iaz/2/A tends to zero

along the imaginary axis when y → ±∞. Thus, |H(iy)| → 0, |y| → ±∞, and we conclude

that H ≡ 0. Now we have

G(z)(e−iaz/2 − 1)

z
= A(z)

∑

n

G(tn)(e
−iatn/2 − 1)

tnA′(tn)(z − tn)
,

whence G(e−iaz/2−1)
z

∈ H, a contradiction to the fact that the system {kλ}λ∈Λ is complete

in H.

If r > 0, we argue similarly to show that Ge−iaz/2/A (and, hence, H) is of Smirnov class

in C+ + ir and C− − ir. Since we also know that A is of finite order, we conclude by

Lemma 3.5 that H is of finite order. Combining this with (7.4) we see that H is of zero

exponential type by the standard Phragmén–Lindelöf principle and, hence, H ≡ 0. The

end of the proof is the same as for r = 0. �

7.4. Proof of Theorem 7.2. In what follows we put

ν =
∑

n

δtn
|A′(tn)|2µn

.

By Lemma 3.6, the embedding H(T,A, µ) into L2(ν) is isometric and so we can compute

the norm and inner product in H(T,A, µ) as the integral with respect to ν.

Assume that M1 and M2 are two subspaces satisfying (7.1) and neither M1 ⊂ M2

nor M2 ⊂ M1. Choose nonzero functions F1, F2 ∈ H such that F1 ⊥ M2 but F1 is not

orthogonal to M1, while F2 ⊥ M1 but F2 is not orthogonal to M2.

We fix two functions G1 and G2 such that G = G1G2, Λ1 = ZG1 , Λ2 = ZG2. Note that

if M satisfies (7.1), then any function in M is of the form G1F for some entire F .

Now let G1F ∈ M1 and G1H ∈ M2. Define two functions

f(w) =

〈
G1

F − F (w)
H(w)

H

z − w
, F1

〉

H(T,A,µ)

=

∫
G1(z)

F (z)− F (w)
H(w)

H(z)

z − w
F1(z)dν(z),

h(w) =

〈
G1

H − H(w)
F (w)

F

z − w
, F2

〉

H(T,A,µ)

=

∫
G1(z)

H(z)− H(w)
F (w)

F (z)

z − w
F2(z)dν(z).

The functions f and h are well-defined and analytic on the sets {w : H(w) 6= 0} and

{w : F (w) 6= 0}, respectively.
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Step 1: f and h are entire functions, f does not depend on the choice of H and h does

not depend on the choice of F .

Let f̃ be a function associated in a similar way to another function G1H̃ ∈ M2,

f̃(w) =

∫
G1(z)

F (z)− F (w)

H̃(w)
H̃(z)

z − w
F1(z)dν(z).

Then, for F̃ (w) 6= 0 and H̃(w) 6= 0, we have

f̃(w)− f(w) =
F (w)

H(w)H̃(w)

∫
G1(z)

H̃(w)H(z)−H(w)H̃(z)

z − w
F1(z)dν(z) = 0,

since

(7.5) G1
H̃(w)H −H(w)H̃

z − w
∈ M2.

This inclusion is obvious when w /∈ Λ1 since M2 is division-invariant; since the norm in

H(T,A, µ) coincides with the norm in L2(ν), by continuity we obtain the inclusion (7.5)

for w ∈ Λ1 as well.

For any w we can choose H such that H(w) 6= 0 and so we can extend f analytically to

any point w. Thus, f and h are entire functions.

Step 2: f and h are of zero exponential type.

Case T ⊂ R. We have

f(w) =

∫
G1(z)

F (z)F1(z)

z − w
dν(z)− F (w)

H(w)

∫
G1(z)

H(z)F1(z)

z − w
dν(z).

Since G1F,G1H ∈ H(T,A, µ) and the points tn are real, the functions G1F/A and G1H/A

are in the Smirnov class in C+ and C− by discussion in Subsection 7.3. The function f

does not depend on the choice of H , and we can take H = G2

z−λ
for some λ ∈ Λ1. Then, by

Lemma 7.3, G1H/A has no exponential factor in its canonical factorization in C+ and we

conclude that F/H = u/B for some Smirnov class function u and some Blaschke product

B in C+. The discrete Cauchy transforms
∫

G1(z)F (z)F1(z)

z − w
dν(z),

∫
G1(z)H(z)F1(z)

z − w
dν(z),

are also in Smirnov class in C
+ (as functions of w), and so f is in the Smirnov class in C

+.

Similarly, f is in the Smirnov class in C−. By Krein’s theorem f is of zero exponential

type.

Case Π. We assume without loss of generality that T ⊂ {−r ≤ Im z ≤ r}. Similarly to

the above case we have that f is of the Smirnov class in C+ + ir and C− − ir. By the
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hypothesis T has a finite convergence exponent and so A has finite order. By Lemma 3.5

the functions G1F , G1H ,

A(w)

∫
G1(z)F (z)F1(z)

z − w
dν(z), A(w)

∫
G1(z)H(z)F1(z)

z − w
dν(z),

are all of finite order, whence f is of finite order. Since any function u in the Smirnov class

in C+ satisfies log+ |u(reiθ)| = o(r), r → ∞, for any θ ∈ (0, π), the standard Phragmén–

Lindelöf principle implies that f is of zero exponential type.

Case Z or Aγ. Here we can refer to [1, Theorem 1.4, Corollary 3.1]: If T satisfies Z or Aγ

and an entire function f satisfies f = u1 + u2
u3

u4
where uj are discrete Cauchy transforms

with poles in T , then f is of zero exponential type.

Similarly, h is of zero exponential type.

Step 3: Either f or h is identically zero.

Given w such that F (w) 6= 0, H(w) 6= 0, we have

(7.6)

|f(w)| ≤
∣∣∣∣
∫

G1(z)F (z)F1(z)

z − w
dν(z)

∣∣∣∣ +
∣∣∣∣
F (w)

H(w)

∣∣∣∣ ·
∣∣∣∣
∫

G1(z)H(z)F1(z)

z − w
dν(z)

∣∣∣∣,

|h(w)| ≤
∣∣∣∣
∫

G1(z)H(z)F2(z)

z − w
dν(z)

∣∣∣∣ +
∣∣∣∣
H(w)

F (w)

∣∣∣∣ ·
∣∣∣∣
∫

G1(z)F (z)F2(z)

z − w
dν(z)

∣∣∣∣.

If T ⊂ R, then by a rough estimate of the Cauchy transforms, we have

|f(w)| . 1

|Imw|

(
1 +

∣∣∣∣
F (w)

H(w)

∣∣∣∣
)
, |h(w)| . 1

|Imw|

(
1 +

∣∣∣∣
H(w)

F (w)

∣∣∣∣
)
.

From this we conclude that

min
(
|f(w)|, |h(w)|

)
.

1

|Imw| .

Applying a well-known and deep result by de Branges [14, Lemma 8], we conclude that

either f or h is zero.

In the cases Z, Π or Aγ we argue as in the proof of [1, Theorem 1.3]. To estimate the

Cauchy trnsforms in (7.6) we use Lemma 3.5: there exists M > 0 and a set E ⊂ (0,∞) of

zero linear density such that

|f(w)| . |w|M
(
1 +

∣∣∣∣
F (w)

H(w)

∣∣∣∣
)
, |h(w)| . |w|M

(
1 +

∣∣∣∣
H(w)

F (w)

∣∣∣∣
)
, |w| /∈ E.

We conclude that

min
(
|f(w)|, |h(w)|

)
. |w|M , |w| /∈ E.
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Since E has zero linear density, we can choose a sequence Rj → ∞ such that Rj /∈ E

and Rj+1/Rj ≤ 2. Applying the maximum principle to the annuli Rj ≤ |z| ≤ Rj+1, we

conclude that

min
(
|f(w)|, |h(w)|

)
. |w|M , |w| ≥ 1.

Since both f and h are of zero exponential type, a small variation of [14, Lemma 8] gives

that either f or h is a polynomial.

Assume that f is a nonzero polynomial. Now we define a line Γ which is separated

from T (at infinity). If T ⊂ {−r ≤ Im z ≤ r}, put Γ = iR. If T is contained in some

angle of the size πγ, γ < 1 (say, {0 ≤ arg z ≤ πγ}), put Γ = {ρei(πγ+δ) : ρ ∈ R}, where
0 < δ < π(1− γ). In each of these cases, by Lemma 3.3, we have

(7.7)

∣∣∣∣
∫

G1(z)F (z)F1(z)

z − w
dν(z)

∣∣∣∣ +
∣∣∣∣
∫

G1(z)H(z)F1(z)

z − w
dν(z)

∣∣∣∣ = O
( 1

|w|
)
,

when |w| → ∞, w ∈ Γ. Hence, from (7.6), |F (w)/H(w)| → ∞ as |w| → ∞, w ∈ Γ, and so

|h(w)| ≤
∣∣∣∣
∫

G1(z)H(z)F2(z)

z − w
dν(z)

∣∣∣∣

+

∣∣∣∣
H(w)

F (w)

∣∣∣∣ ·
∣∣∣∣
∫

G1(z)F (z)F2(z)

z − w
dν(z)

∣∣∣∣ = O
( 1

|w|
)
, w ∈ Γ.

Using the fact that h is of zero exponential type, we conclude that h ≡ 0.

In the case Z we have no information about location of the points tn. However, by

Lemma 3.2, there exists a set Ω of zero area density such that (7.7) holds when w /∈ Ω.

Hence, |F (w)/H(w)| → ∞ as |w| → ∞, w /∈ Ω, and so

|h(w)| ≤
∣∣∣∣
∫

G1(z)H(z)F2(z)

z − w
dν(z)

∣∣∣∣

+

∣∣∣∣
H(w)

F (w)

∣∣∣∣ ·
∣∣∣∣
∫

G1(z)F (z)F2(z)

z − w
dν(z)

∣∣∣∣ = O
( 1

|w|
)
, w /∈ Ω ∪ Ω̃,

where Ω̃ is another set of zero area density (here we again applied Lemma 3.2). Thus, h

tends to zero outside a set of zero density and so h ≡ 0 by Theorem 3.4.

Step 4: End of the proof.

Without loss of generality, let f ≡ 0. Then

(7.8)
F (w)

H(w)

∫
G1(z)H(z)F1(z)

z − w
dν(z) =

∫
G1(z)F (z)F1(z)

z − w
dν(z)

for any G1F ∈ M1, G1H ∈ M2.
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Recall that F1 is not orthogonal to M1 and so we can choose G1F ∈ M1 such that

〈G1F, F1〉H(T,A,µ) =
∫
G1FF 1dν 6= 0. Assume first that T ⊂ {−r ≤ Im z ≤ r} or T

satisfies Aγ and let Γ be the line constructed in Step 3. We now compare the asymptotics

of the right-hand side and on the left-hand side of (7.8) on Γ. By Lemma 3.3, we have

(7.9)

∣∣∣∣
∫

G1(z)F (z)F1(z)

z − w
dν(z)

∣∣∣∣ &
1

|w| ,

when |w| → ∞, w ∈ Γ. Since G1H ⊥ F1 for any G1H ∈ M2, we have (again by Lemma

3.3)

(7.10)

∣∣∣∣
∫

G1(z)H(z)F1(z)

z − w
dν(z)

∣∣∣∣ = o
( 1

|w|
)
,

when |w| → ∞, w ∈ Γ. We conclude that |F (w)/H(w)| → ∞ when |w| → ∞, w ∈ Γ.

Applying this fact and Lemma 3.3 to h we conclude from (7.6) that |h(w)| → 0 when

|w| → ∞, w ∈ Γ. Since h is of zero exponential type, we have h ≡ 0.

Thus, we have

(7.11)
H(w)

F (w)

∫
G1(z)F (z)F2(z)

z − w
dν(z) =

∫
G1(z)H(z)F2(z)

z − w
dν(z)

and we may repeat the above argument. Choose G1H ∈ M2 such that 〈G1H,F2〉H(T,A,µ) =∫
G1HF 2dν 6= 0. Then, by Lemma 3.3, the modulus of the right-hand side in (7.11) is

& |w|−1, while the left-hand side is o(|w|−1) when |w| → ∞, w ∈ Γ. This contradiction

proves Theorem 7.2 in the cases when T ⊂ {−r ≤ Im z ≤ r} (in particular, T ⊂ R) or T

satisfies Aγ.

The proof for the case Z is similar but instead of asymptotics along a line we consider

the asymptotics outside a set of zero density. Let F be chosen as above. By Lemma 3.2,

we have (7.9) and (7.10) when |w| → ∞, w /∈ Ω, for some set Ω of zero density. Applying

this fact and Lemma 3.2 to h we conclude that |h(w)| → 0 outside a set of zero density

and so h ≡ 0 by Theorem 3.4. Then we obtain (7.11) and, repeating the argument once

again, find that the modulus of the right-hand side in (7.11) is & |w|−1, while the left-hand

side is o(|w|−1) when |w| → ∞ outside a set of zero density. Case Z of Theorem 7.2 is also

proved. �

8. Volterra rank one perturbations

In this section we discuss the following problem: for which compact normal operators A
there exists a rank one perturbation L which is a Volterra operator ? In the case when A is
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a compact selfadjoint operator this question was answered in [9] in terms of the so-called

Krein class of entire functions.

Recall that an entire function F is said to be in the Krein class if

• F is real on R and has simple real zeros tn (we assume for simplicity that tn 6= 0);

• for some integer k ≥ 0, we have
∑

n

1

|tn|k+1|F ′(tn)|
< ∞;

• there exists a polynomial R such that

(8.1)
1

F (z)
= R(z) +

∑

n

1

F ′(tn)
·
(

1

z − tn
+

1

tn
+ · · ·+ zk−1

tkn

)
.

This class was introduced by M.G. Krein who showed that in this case F is necessarily of

the Cartwright class and, in particular, of exponential type (see [26, Theorem 5] or [28,

Lecture 16]). Indeed, F is of bounded type in C+ and C−, whence (by yet another result

of Krein, see Subsection 7.3) F is of exponential type. Some further refinements of this

result are due to A.G. Bakan and V.B. Sherstyukov (see, e.g., [38] and references therein).

One can extend the definition of the Krein class to the case when T = {tn} ⊂ C no longer

is assumed to be real. If F satisfies all other conditions above, we say that F belongs to

the generalized Krein class. However, one cannot extend Krein’s theorem to this situation:

a function in the generalized Krein class can have arbitrarily large order. Indeed, for a

Krein class function F one can write (8.1) with zm in place of z, where m ∈ N. Then,

expanding (zm − tn)
−1 as a sum of simple fractions one can show that F̃ (z) = F (zm) is in

the generalized Krein class.

In what follows we will say that an entire function F with simple zeros in the set

T = {tn} ⊂ C \ {0} belongs to the (generalized) Krein class K1 if

(8.2)
1

F (z)
=

1

F (0)
+
∑

n

1

F ′(tn)

(
1

z − tn
+

1

tn

)
,

∑

n

1

|tn|2|F ′(tn)|
< ∞.

Then the main result of [9] can be stated as follows:

Theorem 8.1. ([9]) Let A be a compact selfadjoint operator with simple spectrum {sn},
sn 6= 0, and let tn = s−1

n . Then the following are equivalent :

(i) There exists a rank one perturbation L of A which is a Volterra operator ;

(ii) There exists a function F ∈ K1 such that the zero set of F coincides with {tn}.

In the case when A satisfies condition (i) above, we say that the spectrum {sn} (or {tn})
is removable. An unexpected (and rather counterintuitive) consequence of Theorem 8.1 is

that adding a finite number of points to the spectrum helps it to become removable, while

deleting a finite number of points from a removable spectrum may make it nonremovable.
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A similar description of spectra removable by a rank one perturbation holds true for

compact normal operators.

Theorem 8.2. Let A be a compact normal operator with simple spectrum {sn}, sn 6= 0,

and let tn = s−1
n . Then the following are equivalent :

(i) There exists a rank one perturbation L of A which is a Volterra operator ;

(ii) There exist a Cauchy–de Branges space H(T,A, µ), T = {tn}, and an entire function

G ∈ Assoc (T,A, µ) which does not vanish in C;

(iii) There exists an entire function A ∈ K1 such that the ZA = T .

Proof. (i)=⇒(ii): Assume that L is a Volterra perturbation. By the functional model of

Theorem 2.9 there exist a Cauchy–de Branges space H(T,A, µ) and an entire function

G ∈ Assoc (T,A, µ), G(0) = 1, such that L is unitarily equivalent to TG. Since TG is a

Volterra operator, we conclude that G 6= 0 (otherwise, any λ ∈ ZG is an eigenvalue for

TG).

(ii)=⇒(iii): Let G be a nonvanishing function in Assoc (T,A, µ). Then G = eH for

some entire function H . It is clear that e−HH(T,A, µ) = H(T, e−HA, µ) and 1 = e−HG ∈
Assoc (T, e−HA, µ). Therefore, changing A we may assume that 1 ∈ Assoc (T,A, µ).

Now let g(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
be an arbitrary function in H(T,A, µ) such that g(0) = 1.

Then 1−g(z)
z

∈ H(T,A, µ) and so

1 = A(z)

(∑

n

cnµ
1/2
n

z − tn
+ z

∑

n

dnµ
1/2
n

z − tn

)

for some (dn) ∈ ℓ2. We conclude that

1

A(z)
= −

∑

n

cnµ
1/2
n

tn
+
∑

n

(cn + dntn)µ
1/2
n

(
1

z − tn
+

1

tn

)
.

It follows that A′(tn)
−1 = (cn + dntn)µ

1/2
n and so A satisfies (8.2). Thus, A ∈ K1.

(iii)=⇒(i): Let A satisfy (8.2). Similarly to the above computations, one can show

that 1−g(z)
z

∈ H(T,A, µ) for any g ∈ H(T,A, µ) such that g(0) = 1. Thus, G ≡ 1 ∈
Assoc (T,A, µ). By Theorem 2.9 there exists a rank one perturbation L which is unitarily

equivalent to TG. Since G 6= 0, TG obviously is a Volterra operator. �

Remark 8.3. In view of the role of the Krein class in the description of removable spectra,

it is a natural problem to extend Krein’s theorem to generalized Krein class imposing some

conditions on T . V.B. Sherstykov [38] showed that the conclusion of Krein’s theorem
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(i.e., F is of exponential type) remains true if F is of finite order, satisfies (8.1) and T is

contained in some strip. Recently it was shown in [1] that if T is contained in some angle

of size πγ, γ ∈ (0, 1) and F is a function of order strictly less than 1/γ satisfying (8.1),

then F is of zero exponential type. Moreover, this growth restriction is sharp: for any

γ ∈ (0, 1) there exists F in the generalized Krein class with zeros in an angle of size πγ

and of order exactly 1/γ.

Example 8.4. It is clear that the class K1 is stable under multiplication by polynomials.

Thus, adding a finite set to T does not change the property to be removable by a rank one

perturbation. However, deleting a finite number of points may turn a removable spectrum

into a nonremovable one. Thus, removable spectra have a certain rigidity.

Let us give some concrete examples (the first two appeared in [9]):

(i) Let T =
{
π
(
n + 1

2

)}
n∈Z

and A(z) = cosπz. Then A ∈ K1 and T is removable.

However, T \ {tn} is nonremovable for any tn ∈ T , since for F (z) = A(z)/(z − tn) one has

|F ′(tm)| ≍ |tm|−1, m 6= n, and the series
∑

m6=n |F ′(tm)|−1t−2
m diverges.

(ii) Let T =
{
π
(
n+ 1

2

)2}
n∈N0

and A(z) = cosπ
√
z. Then T is removable, but it becomes

nonremovable after deleting any of its elements.

(iii) Let A(z) = cos(πzk), k ∈ N. Then it is not difficult to show that A ∈ K1 and so its

zero set T =
{∣∣n+ 1

2

∣∣1/keπij/k
}
n∈N0,0≤j≤2k−1

is removable. However, T \{tn} is nonremovable

for any tn ∈ T .
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