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1 Introduction

In this paper, we propose a class of high order semi-Lagrangian discontinuous Galerkin (SLDG)

methods for the two-dimensional (2D) time dependent incompressible Euler equation in the vorticity

stream-function formulation and the guiding center Vlasov model. This is a continuation of our

previous research effort on the development of high order non-splitting SLDG methods for 2D linear

transport equations [4] and the Vlasov-Poisson (VP) system [5].

The 2D time dependent incompressible Euler equations in the vorticity-stream function formu-

lation reads

ωt +∇ · (uω) = 0,

∆Φ = ω, u = (−Φy,Φx),
(1.1)

where u is the velocity field, ω is the vorticity of the fluid, and ψ is the stream-function determined

by Poisson’s equation. The other closely related model concerned in this paper is the guiding

center approximation of the 2D Vlasov model, which describes a highly magnetized plasma in the

transverse plane of a tokamak [23, 10, 13, 30] and is given as follows,

ρt +∇ · (E⊥ρ) = 0, (1.2)

−∆Φ = ρ, E⊥ = (−Φy,Φx), (1.3)

where ρ is the charge density of the plasma and E determined by E = −∇Φ is the electric field.

We denote E = (E1, E2). Despite their different application backgrounds, the above two models

indeed have an equivalent mathematical formulation up to a sign difference in Poisson’s equation.

Many research efforts have been devoted to the development of effective numerical schemes for

solving the two models. In context of the incompressible model in the vorticity stream-function

formulation, we mention the compact finite difference scheme [25], the continuous finite element

method [18], and the DG method [17]. It is worth noting that such a vorticity stream-function

formulation is attractive in both theoretical study as well as numerical scheme development for

incompressible fluid models. One immediate advantage is that the incompressibility of the velocity

field is automatically satisfied without additional divergence cleaning techniques. Meanwhile, this

formulation introduces complication of imposing numerical boundary conditions when the viscosity

terms are present [3, 22, 24, 26]. We do not pursue this direction and assume periodic boundary
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conditions in this paper. In the context of the guiding center model, we mention the SL schemes

[20, 10, 30].

In this paper, we propose a high order, stable and efficient numerical scheme for (1.1) and

(1.2) under the DG framework. DG framework is well-known not only for its high order accu-

racy and ability to resolve fine scale structures, but also for its excellent conservation property,

superior performance in long time wave-like simulations, and convenience for hp-adaptive and par-

allel implementation [9]. However, it is well-known that the DG scheme coupled with an explicit

Runge-Kutta (RK) time integrator suffers from a stringent CFL time step restriction for stability,

despite its many appealing properties such as simplicity for implementation [9, 4]. Such a drawback

becomes more pronounced when the RKDG scheme is applied to (1.1). More specifically, as men-

tioned in [17], the computational cost of the scheme is largely dominated by the Poisson solver, also

see the performance study in Section 3. For the RKDG scheme, excessively small time steps have

to be chosen for stability; consequently a large number of the Poisson solver will be called in time

evolution, leading to immense computational cost. On the other hand, the SL approach is known

to be free of the CFL time step restriction by building in the characteristics tracing mechanism

in scheme formulation. In this paper, we leverage SL approach to alleviate the efficiency issue

associated with the RKDG scheme.

In [4, 5], we formulated a class of high order conservative SLDG schemes for solving 2D transport

problems with application to the VP system. To the authors’ best knowledge, such a method is

the first SLDG scheme in the literature that is high order accurate (up to third order accurate),

unconditionally stable, mass conservative and free of splitting error for 2D transport simulations.

In this work, we consider generalizing the SLDG scheme to solving (1.1) and (1.2). The efficiency of

such a scheme is realized by taking large time step evolution without any stability issue, while the

accuracy is not much compromised. This is very desired when solving (1.1) and (1.2), since a much

smaller number of calls of the Poisson solver are needed compared with the RKDG scheme, resulting

in great computational savings. To accurately trace the characteristics in a non-splitting fashion,

we propose to incorporate a high order two-stage multi-derivative predictor-corrector algorithm

proposed in [28]. We would like to remark that many existing SL methods for solving (1.1) and

(1.2) are based on the dimensional splitting approach [20, 10]. However, unlike the VP system, in

the splitting setting it is not straightforward to enhance the splitting error accuracy beyond first
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order, since the characteristics of the system (1.1) or (1.2) are more sophisticated and thus more

complicated to trace accurately when the transport equation is split. In our earlier work [7], the

integral deferred correction approach is employed to correct splitting errors for a class of high order

splitting SL schemes. However, time step constraint due to numerical stability is introduced which

impedes efficiency of the SL approach. A detailed comparison on the performance of splitting and

non-splitting SL schemes for solving (1.1) and (1.2) will be conducted in our forthcoming paper.

There exist several non-splitting SL schemes in the literature, see [28, 30], but they cannot conserve

the total mass of the system. Another key ingredient of the proposed scheme is a novel adaptive

time-stepping algorithm. By carefully tracking scheme’s ability in preserving areas of upstream

cells, we are able to adaptively adjust time step sizes to ensure uniformly good approximations

to shapes of upstream cells. Numerical evidences in Section 3 show that this adaptive algorithm

is very effective in enhancing robustness of the SLDG scheme and removing spurious oscillation

induced by unphysical distortion of upstream cells.

The rest of this paper is organized as follows. In Section 2, we formulate the SLDG scheme

for solving the guiding center Vlasov model. In particular, three main ingredients consisting of the

SLDG framework, a high order characteristics tracing algorithm, and an adaptive time-stepping

strategy are introduced. In Section 3, a collection of numerical examples are presented, and schemes’

performance under different configurations are evaluated. In Section 4, we conclude the paper with

some remarks on future work.

2 Multi-dimensional SLDG algorithm for the nonlinear guiding
center Vlasov model

In this section, we describe our proposed scheme for the 2D guiding center Vlasov model problem.

Note that a similar algorithm can be formulated for the 2D incompressible Euler model in vorticity

stream-function formulation as well. We start by reviewing the high order truly multi-dimensional

SLDG framework originally proposed in [4] in a linear setting. Then we describe how to incorporate

the high order characteristics tracing scheme proposed in [28] in the same SLDG framework for

the nonlinear model problem. Lastly, we propose an adaptive time-stepping strategy, using relative

deviation of areas of upstream cells as an adaptive indicator, that greatly improve robustness of

the SLDG algorithm in a nonlinear setting.
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2.1 SLDG algorithm framework

We consider the guiding center Vlasov model (1.2) on the 2D domain Ω. We assume a Cartesian

uniform partition of the computational domain Ω = {Aj}Jj=1 (see Figure 2.1) for simplicity. We de-

fine the finite dimensional piecewise polynomial approximation space, V k
h = {vh : vh|Aj ∈ P k(Aj)},

where P k(Aj) denotes the set of polynomials of degree at most of k on element Aj . For illustrative

purposes, we only present the formulation of the second order SLDG scheme with P 1 polynomial

space. The generalization, to a third order SLDG scheme with P 2 polynomial space and quadratic-

curved (QC) quadrilateral approximations to upstream cells, follows a similar procedure discussed

in [4, 5]. The main difference (extra work) involved in a third order SLDG scheme, besides using

P 2 piecewise polynomials as solution and test function spaces, comes from constructing quadratic

curves in approximating sides of upstream cells. Recall that if only regular quadrilaterals are used

to approximate upstream cells, then a second order error would be committed, and such an error

may become dominant in a nonlinear setting. Numerical evidence will be shown later in the next

section in this regard.

In order to update the solution at time level tn+1 over the cell Aj based on the solution at time

level tn, we employ the weak formulation of characteristic Galerkin method proposed in [14, 4].

Specifically, we consider the following adjoint problem for the time dependent test function ψ

ψt + E2ψx − E1ψy = 0, subject to ψ(t = tn+1) = Ψ(x, y), t ∈ [tn, tn+1], (2.1)

where Ψ ∈ P k(Aj). The scheme formulation takes advantage of the identity

d

dt

∫
Ãj(t)

ρ(x, y, t)ψ(x, y, t)dxdy = 0, (2.2)

where ‹Aj(t) is a dynamic moving cell, emanating from the Eulerian cell Aj at tn+1 backward in

time by following characteristics trajectories. The multi-dimensional SLDG scheme is formulated

as follows: Given the approximate solution ρn ∈ V k
h at time tn, find ρn+1 ∈ V k

h such that ∀Ψ ∈ V k
h ,

we have ∫
Aj

ρn+1Ψ(x, y)dxdy =

∫
A?j

ρnψ(x, y, tn)dxdy, for j = 1, · · · , J, (2.3)

where ψ solves (2.1) and A?j = Ãj(t
n). A?j is called the upstream cell of Aj . In general, A?j is no

longer a rectangle, for example, see a deformed upstream cell bounded by red curves in Figure 2.1.
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The proposed SLDG method in updating the numerical solution from ρn to ρn+1 consists of the

following two main steps:

1. Construct approximated upstream cells by following characteristics. Denote four

vertices of Aj as cq, with the coordinates (xq, yq), q = 1, · · · , 4. We trace characteris-

tics backward in time to tn for four vertices and then obtain c?q with the new coordinates

(x?q , y
?
q ), q = 1, · · · , 4. For example, see c4 and c?4 in Figure 2.1. Then the upstream cell can

be approximated by a quadrilateral determined by four vertices c?q . The new coordinates

(x?q , y
?
q ) of c?q are approximated by numerically solving the characteristics equation (2.1) in

the 2D case, i.e.,
dx(t)
dt = E2,

dy(t)
dt = −E1,

with

{
x(tn+1) = xq,

y(tn+1) = yq,
q = 1, 2, 3, 4, (2.4)

which is a set of final value problems. Note that the above equations are non-trivial to solve

with high order temporal accuracy, since the E depends on the unknown ρ via Poisson’s

equation (1.3) in a global and nonlinear fashion. To circumvent the difficulty, we propose

to combine a high order two-stage multi-derivative prediction-correction strategy for tracing

characteristics as proposed in [28]. Such a strategy is described in the context of the proposed

SLDG scheme in Section 2.2.

2. Update the solution ρn+1 by evaluating the right-hand side of eq. (2.3) for ∀Ψ ∈ V k
h .

We approximate A?j by a quadrilateral in the previous step. The test function ψ at tn can

be approximated by a polynomial via a least squares procedure by tracking point values of ψ

along characteristics. In order to efficiently evaluate the volume integral in the right-hand side

(RHS) of (2.3), it is converted into a set of line integrals by the use of Green’s theorem. Such

an idea is borrowed from CSLAM [16], and further reformulated in [4] for the development of

an SLDG transport scheme. The above-mentioned procedure is briefly described in Section

2.3.

2.2 High order characteristics tracing algorithm

In this subsection, we describe a high order predictor-corrector procedure for locating the feet of

the characteristics of the guiding center Vlasov model. Such an approach is originally proposed in

[19]. It is generalized to the guiding center Vlasov model in [27].
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Aj

c4

A?j

c?4

Al

(a)

A
n,(τ)
j,l

A
n,(τ)
j

Al

(b)

Figure 2.1: Schematic illustration of the SLDG formulation in two dimensions: quadrilateral ap-
proximation to a upstream cell.

We first introduce several shorthand notations. The superscript n denotes the time level, the

superscript (τ) denotes the formal order of approximation for time discretization, and the subscript

q is the index for the vertices of the underlying cell. For example, (x
n,(τ)
q , y

n,(τ)
q ) is the τ -th order

approximation of (x?q , y
?
q ) and A

n,(τ)
j is the quadrilateral determined by the corresponding four

vertices.

We will adopt LDG method [1, 8, 6, 33] to solve Poisson’s equation in each predictor and

corrector step. For example, the electric field E depends on ρ via the Poisson’s equation and the

time derivative of E via another Poisson’s equation (2.12) in the corrector step. Note that the

electric field E is the gradient of potential from the Poisson’s equation. As shown in [1], using

polynomial of degree k, the order of convergence for the electric field E is k. Therefore, if a (k+ 1)-

th order of convergence is desired, an LDG scheme with polynomial of degree k + 1 is needed for

solving the Poisson’s equation.

The numerical solution Eh solved by the LDG method are discontinuous across cell boundaries;

that is, there are several limits of Eh from different directions. For example, Eh(xNEq , yNEq , tn),

Eh(xNWq , yNWq , tn), Eh(xSEq , ySEq , tn), Eh(xSWq , ySWq , tn) are not equal, where the superscripts NE ,

NW , SE , SW are the northeast, northwest, southeast and southwest limits of the corresponding

functions with respect to xq, respectively. In our implementation, we take the average of Eh at cell

vertices

E(xq, yq, t
n) =

Eh(xNEq , yNEq , tn) + Eh(xNWq , yNWq , tn) + Eh(xSEq , ySEq , tn) + Eh(xSWq , ySWq , tn)

4
.
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Next, we present the formulation of a high order predictor-corrector procedure for locating feet

of the characteristics in the guiding center Vlasov model.

First order scheme. We start from a first order scheme for tracing characteristics (2.4). We let

xn,(1)
q = xq − E2(xq, yq, t

n)∆t, yn,(1)
q = yq + E1(xq, yq, t

n)∆t, (2.5)

which leads to a first order approximations to (x?q , v
?
q ). The E depends on ρ at tn via the

Poisson’s equation, which can be numerically solved by the LDG method. Let A
n,(1)
j to be

the quadrilateral formed by the four upstream vertices (x
n,(1)
q , y

n,(1)
q ), q = 1, 2, 3, 4. Then, by

the SLDG formulation (to be described in the next subsection)∫
Aj

ρn+1,(1)Ψ(x, y)dxdy =

∫
A
n,(1)
j

ρnψ(x, y, tn)dxdy, (2.6)

we obtain ρn+1,(1) as a first order approximation in time to ρ at tn+1. Based on ρn+1,(1), we

apply the LDG method to the Poisson’s equation (1.3) again and compute E
n+1,(1)
q , which

approximates E(xq, yq, t
n+1) with first order temporal accuracy.

Second order scheme. A second order scheme can be built upon the first order one. First, let

xn,(2)
q = xq −

1

2

(
E
n+1,(1)
2,q + E2(xn,(1)

q , yn,(1)
q , tn)

)
∆t,

yn,(2)
q = yq +

1

2

(
E
n+1,(1)
1,q + E1(xn,(1)

q , yn,(1)
q , tn)

)
∆t,

(2.7)

which gives a second order approximation to (x?q , y
?
q ). Then the second order approximation

solution ρn+1,(2) is obtained from the SLDG formulation∫
Aj

ρn+1,(2)Ψ(x, y)dxdy =

∫
A
n,(2)
j

ρnψ(x, y, tn)dxdy. (2.8)

Based on ρn+1,(2), we are able to compute E
n+1,(2)
q from Poisson’s equation, which approxi-

mates E(xq, yq, t
n+1) with second order temporal accuracy.

Third order scheme. A third order scheme can be designed based on the above second order

approximation. Let

xn,(3)
q = xq − En+1,(2)

2,q ∆t+
∆t2

2

Å
2

3
(
d

dt
E2(xq, yq, t

n+1))(2) +
1

3

d

dt
E2(xn,(2)

q , yn,(2)
q , tn)

ã
, (2.9)

yn,(3)
q = yq + E

n+1,(2)
1,q ∆t− ∆t2

2

Å
2

3
(
d

dt
E1(xq, yq, t

n+1))(2) +
1

3

d

dt
E1(xn,(2)

q , yn,(2)
q , tn)

ã
,

(2.10)
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where d
dt is the material derivative along the characteristic curve, i.e.,

d

dt
Es =

∂Es
∂t

+
∂Es
∂x

E2 −
∂Es
∂y

E1, s = 1, 2. (2.11)

Note that on the RHS of the equation (2.11), the partial derivatives are not explicitly given.

The spatial derivative terms ∂Es
∂x ,

∂Es
∂y , s = 1, 2 can be approximated by high order DG

spatial approximations, while the time derivative term ∂Es
∂t can be approximated by utilizing

the Vlasov equation (in a Lax-Wendroff spirit in transforming time derivatives into spatial

derivatives). In particular, taking partial time derivative of the 2D Poisson’s equation gives

∆Φt = (E2ρ)x − (E1ρ)y. (2.12)

After obtaining E by solving the original Poisson’s equation (1.3), the RHS of (2.12) can

be constructed by the DG aproximation. Then we can solve (2.12) by LDG method to get

∂E
∂t = −((Φt)x, (Φt)y). It can be checked by a local truncation error analysis that (x

n,(3)
q , y

n,(3)
q )

is a third order approximation to (x?q , y
?
q ) [27]. Consequently, the third order approximation

solution ρn+1,(3) is updated from the SLDG formulation∫
Aj

ρn+1,(3)Ψ(x, y)dxdy =

∫
A
n,(3)
j

ρnψ(x, y, tn)dxdy. (2.13)

2.3 A two-dimensional SLDG method with quadrilateral upstream cells.

Below, we present the procedure in evaluating the integral
∫
A?j
ρnψ(x, y, tn)dxdy with a quadri-

lateral upstream cell A?j . In the algorithm design, we have to pay attention to the following two

observations, see [4].

• Ψ = ψ(x, y, tn+1) is chosen to be polynomial basis functions on V k
h , while, in general ψ(x, y, tn)

is no longer a polynomial. A polynomial function constructed by a least squares procedure is

used to approximate ψ(x, y, tn).

• Over the upstream cell A?j (or its approximation A
n,(τ)
j ), ρn(x, y, tn) is discontinuous across

Eulerian cell boundaries, see the background Eulerian grid lines in Figure 2.1. To properly

evaluate the volume integral, one has to perform the evaluation in a sub-area by sub-area

manner. Meanwhile, direct evaluation of volume integrals over these irregular-shape sub-areas

is very involved in implementation. The proposed strategy is to convert each volume integral

into line integrals using Green’s Theorem [4].
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Based on these observations, the proposed algorithm consists of two main components. One is the

search algorithm that finds the boundaries for each sub-area, i.e. the overlapping region between the

upstream cell and background Eulerian cells. The other is the use of Green’s theorem that enables

us to convert the volume integral to line integrals based on the result of the search algorithm.

Below we describe the detailed procedure in evaluating the volume integral over an approximation

of upstream cell A
n,(τ)
j for the SLDG scheme with P 1 polynomial space. Note that the superscript

(τ) is for the order of temporal approximation in the previous subsection.

(1) Least squares approximation of test function ψ(x, y, tn). Based on the fact that the

solution of the adjoint problem (2.1) stays unchanged along characteristics, we have

ψ(xn,(τ)
q , yn,(τ)

q , tn) = Ψ(xq, yq), q = 1, 2, · · · , 4.

Thus, we can reconstruct a unique linear function ψ?(x, y) by a least squares strategy that

approximates ψ(x, y, tn) on A
n,(τ)
j .

(2) Evaluation of the volume integral. Denote A
n,(τ)
j,l as a non-empty overlapping region

between the upstream cell A
n,(τ)
j and the background Eulerian cell Al, i.e., A

n,(τ)
j,l = A

n,(τ)
j ∩Al,

see Figure 2.1 (b). Then the volume integral, e.g. RHS of eq. (2.6) with τ = 1, becomes∫
A
n,(τ)
j

ρ(x, y, tn)ψ(x, y, tn)dxdy ≈
∑

l∈εn,(τ)
j

∫
A
n,(τ)
j,l

ρ(x, y, tn)ψ?(x, y)dxdy, (2.14)

where ε
n,(τ)
j = {l|An,(τ)

j,l 6= ∅} and ψ?(x, y) is obtained from the previous step. Note that the

integrands on the RHS of (2.14) are piecewise polynomials. By introducing two auxiliary

function P (x, y) and Q(x, y) such that

−∂P
∂y

+
∂Q

∂x
= ρ(x, y, tn)ψ?(x, y),

the area integral
∫
A
n,(τ)
j,l

ρ(x, y, tn)ψ?(x, y)dxdy can be converted into line integrals via Green’s

theorem, i.e., ∫
A
n,(τ)
j,l

ρ(x, y, tn)ψ?(x, y)dxdy =

∮
∂A

n,(τ)
j,l

Pdx+Qdy, (2.15)

see Figure 2.1 (b). Note that the choices of P and Q are not unique, but the value of the line

integrals is independent of the choices. In the implementation, we follow the same procedure
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in Section 2.1.2 of [16] when choosing P and Q. In summary, combining (2.14) and (2.15),

we have the following∫
A
n,(τ)
j

ρ(x, y, tn)ψ(x, y, tn)dxdy =
∑

l∈εn,(τ)
j

∫
A
n,(τ)
j,l

ρ(x, y, tn)ψ?(x, y)dxdy

=
∑

l∈εn,(τ)
j

∮
∂A

n,(τ)
j,l

Pdx+Qdy

=
No∑
q=1

∫
Lq

[Pdx+Qdy] +
Ni∑
q=1

∫
Sq

[Pdx+Qdy]. (2.16)

Note that in the above computation, we have organized the liner integrals into two categories:

along outer line segments (see Figure 2.2 (b)) and along inner line segments (see Figure 2.2

(c)). Line segments can be uniquely determined by two end points, which are intersection

points of the four sides of the upstream cell with grid lines. We compute all intersection

points and connect them in a counterclockwise orientation to obtain outer line segments,

denoted as Lq, q = 1, · · · , No, see Figure 2.2 (b). The line segments that are aligned with

grid lines and enclosed by A
n,(τ)
j are defined as inner line segments, see Figure 2.2 (c). Note

that there are two orientations along each inner segment, but the corresponding line integrals

have to be evaluated in their own sub-area, given that fn is discontinuous across a inner line

segment. For instance, −−→s1c1 belongs to the left background cell and −−→c1s1 belongs to the right

background cell.

A
n,(τ)
j

(a)

Lq

(b)

s1

s2

s3

s4

c1
Sq

(c)

Figure 2.2: Schematic illustration of the search algorithm.
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2.4 The adaptive time-stepping algorithm

The proposed SLDG method can be proved to be stable and accurate under large time-stepping

size for a linear transport problem with constant coefficients [21]. However, in a nonlinear setting,

in particular with a very large time-stepping size, the upstream cells could be greatly distorted, and

the corresponding quadrilaterals or even quadratic-curved quadrilaterals may not be adequate to

approximate actual shapes of upstream cells. Consequently, numerical oscillations will be generated,

e.g. see Figure 3.10 for the vortex patch problem in the next section.

Due to the divergence-free constraint on the electric field of the guiding center Vlasov model,

the areas of upstream cells should be preserved, i.e., area(Aj) = area(A?j ) in Figure 2.1. If, at the

discrete level, the areas of upstream cells are preserved, the local maximum principle in terms of cell

averages will be maintained; if the upstream cells are too distorted, e.g. quadrilateral shapes cannot

offer adequate approximations (the area of a numerical upstream cell greatly deviates from the

actual area), unphysical numerical oscillations may appear. In this section, we propose to measure

the L∞ norm of relative deviation of the area for upstream cells and use it as an indicator to

adaptively select appropriate time-stepping sizes, thus to improve robustness of the SLDG scheme

in a nonlinear setting. Below, we first summarize the coupling between the SLDG framework

with a third order characteristics tracing algorithm in the Main Algorithm, followed by a detailed

description of the Adaptive Time-Stepping Algorithm.

Main Algorithm

0. Initially, choose a parameter CFLmax and let irefine = 0.

1. The first order prediction:

1.1 Solve the electric field E by the LDG method, based on the solution ρn.

1.2 Trace the characteristics (2.4) for a time step ∆t by the first order scheme (2.5) and

construct approximate upstream cells A
n,(1)
j . Perform the “Adaptive Time-Stepping

Algorithm”.

1.3 Evolve the solution ρn by using SLDG to get ρn+1,(1).

2. The second order prediction:

12



2.1 Solve the electric field E by the LDG method, based on the solution ρn+1,(1).

2.2 Trace the characteristics (2.4) for a time step ∆t by the second order scheme (2.7) and

construct approximate upstream cells A
n,(2)
j . Perform the “Adaptive Time-Stepping

Algorithm”.

2.3 Evolve the solution ρn+1,(1) by using SLDG to get ρn+1,(2).

3. The third order correction:

3.1 Solve the electric field E by the LDG method, based on the solution ρn+1,(2).

3.2 Trace the characteristics (2.4) for a time step ∆t by the second order scheme (2.9)-(2.10)

and construct approximate upstream cells A
n,(3)
j . Perform the “Adaptive Time-Stepping

Algorithm”.

3.3 Evolve the solution ρn+1,(2) by using SLDG to get ρn+1.

Adaptive Time-Stepping Algorithm

• Compute θ = maxj
area
Ä
A
n,(τ)
j

ä
−area(Aj)

area(Aj)
.

Let δM and δm be prescribed thresholds for decreasing and increasing CFL number.
In our simulations, δM = 1% and δm = 0.3%.

if θ > δM , then we let CFL = 2
3CFL, irefine = 1 and go back to Step 1.2.

else if θ < δm, irefine = 0, and CFL 6= CFLmax, then CFL =
min{3

2CFL,CFLmax} go back to Step 1.2.

else Continue to the next step.

end if

3 Numerical Results

In this section, for the 2D incompressible Euler equation in vorticity stream-function formulation

(1.1) and the guiding center Vlasov model (1.2), we examine the performance of the proposed SLDG

method with second/third order temporal accuracy, denoted by SLDG+time2/3, with quadrilateral

or quadratic-curved (QC) quadrilateral approximation to upstream cells (using the notation without

or with -QC), with P k local discontinuous Galerkin method (using the notation +P k LDG), without

or with the WENO limiter [32] (using the notation without or with +WL). In all our numerical

tests, we let the time step size

∆t =
CFL

a/∆x+ b/∆y
,
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in which CFL is specified for different runs. For the incompressible Euler equation, a = max(|u|), b =

max(|v|). For the guiding center Vlasov model, a = max(|E2|), b = max(|E1|). For example, P 2

SLDG-QC+P 3 LDG+time3+WL-CFL3 refers to the SLDG scheme with P 2 polynomial space, with

quadratic-curved quadrilateral approximation to upstream cells, with P 3 LDG scheme in solving

Poisson’s equation, using the third order scheme in characteristics tracing, with the WENO limiter

and CFL = 3. We also apply the proposed SLDG method with the adaptive time-stepping strategy

to improve the robustness and efficiency of the method.

For both models, besides mass conservation, the following physical quantities remain constant

over time

1. Mass: ∫
Ω
ωdxdy, (Euler),

∫
Ω
ρdxdy, (Vlasov).

2. Energy:

‖u‖2L2 =

∫
Ω

u · udxdy, (Euler), ‖E‖2L2 =

∫
Ω

E ·Edxdy, (Vlasov).

3. Enstrophy:

‖ω‖2L2 =

∫
Ω
ω2dxdy, (Euler), ‖ρ‖2L2 =

∫
Ω
ρ2dxdy, (Vlasov).

Tracking relative deviations of these quantities numerically provides a good measurement of the

quality of numerical schemes. For our numerical tests shown below, all SLDG schemes can conserve

total mass up to the round-off error: O(10−13) as expected; while we keep track of energy and en-

strophy over time to compare performances of SLDG schemes in various settings. Furthermore, due

to the incompressibility constraint of u (Euler) or E (Vlasov), the area of an upstream cell should

be preserved. We also track relative deviations of areas of upstream cells, to better understand

how we approximate shapes of upstream cells. In our adaptive time-stepping strategy, we use the

relative deviation of areas of upstream cells as a metric to determine if time-stepping size should be

increased, reduced or kept the same. In our simulations, we use the threshold of 0.3% for increasing

time-stepping sizes; and the threshold of 1% for reducing time-stepping sizes.

Below we present four benchmark examples to assess and compare performances of SLDG

schemes with various configurations. Comparisons are made in terms of numerical errors for smooth

problems, CPU time, ability to resolve solution structures, robustness, and performance in con-

serving physical invariants. Based on all data we collected, P 2 SLDG-QC, using P 3 or P 2 LDG
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solver for Poisson’s equation, coupled with the third order characteristics tracing scheme and the

adaptive time-stepping strategy is considered to be an optimal configuration that well balances its

performance in effectiveness, efficiency and robustness. The choice of using P 3 or P 2 LDG solver

for Poisson’s equation is a trade-off between accuracy (effectiveness in resolving solutions) and CPU

cost. Instead of drawing a definite conclusion, we refer to the efficiency comparison presented in

Figure 3.3 for a smooth test, in Figures 3.5 for performance in resolving solution structures, as well

as in Figures 3.8-3.9 in conserving physical invariants. Finally, we would like to remark that the

CFL constraint for a Runge-Kutta DG method is known to be 1
2k+1 where k is the degree of poly-

nomial space. That is CFL ≤ 1/3 for P 1 and CFL ≤ 1/5 for P 2. By using the SLDG algorithm,

while maintaining good resolution of solution structures and preservation of invariants, we are able

to take CFL as large as 3 (9 times as large for P 1 and 15 times as large for P 2), leading to huge

computational savings. Note that the dominant CPU cost per time step is the LDG solver for the

Poisson equation (as shown in Table 3.3), the extra CPU cost from SLDG method in characteristics

tracing and in evaluation of line integrals, compared with that from a Runge-Kutta DG method,

will not play a significant role.

Example 3.1. (Accuracy and convergence test). Consider the incompressible Euler equation (1.1)

on the domain [0, 2π]× [0, 2π] with the initial condition

ω(x, y, 0) = −2 sin(x) sin(y) (3.1)

and periodic boundary conditions. The exact solution stays stationary as ω(x, y, t) = −2 sin(x) sin(y).

We test the spatial convergence, temporal convergence and CPU cost of the proposed SLDG meth-

ods for solving (1.1) up to time T = 1.

First, we test the spatial convergence of the proposed SLDG schemes and summarize results

in Table 3.1, 3.2, and 3.3 for P 1 SLDG scheme, P 2 SLDG scheme and P 2 SLDG-QC scheme

respectively. The schemes are coupled with LDG schemes of different orders for solving Poisson’s

equation and characteristics tracing schemes of different orders. We let CFL = 1, for which the

spatial error still dominates. Expected orders of convergence are observed for all these different

settings. The data reported in Tables 3.1, 3.2, and 3.3 are organized into a CPU time versus error

log-log plot in Figure 3.3 to benchmark performances of SLDG schemes with various configurations.

We demonstrate the temporal order of convergence in Table 3.4 by varying CFL numbers. Based

15



on all data collected, we make the following observations.

1. For a P k k = 1, 2 SLDG(-QC) scheme, in order to attain kth order accuracy, an LDG scheme

with P k+1 solution space for Poisson’s equation is needed. In Table 3.1, we observe that P 1

SLDG with P 1 LDG is only first order accurate in L∞ error and P 1 SLDG with P 2 LDG

is second order accurate in L∞ error. Both L1 and L∞ errors become smaller when a P 2

LDG scheme is used. Note that the velocity (in Euler) or the electric field (in Vlasov) is

the gradient of the potential function solved from Poisson’s equation; by taking one order of

spatial derivative, the order of convergence becomes one order less [1]. Similarly, in Table

3.3 for P 2 SLDG-QC scheme, we observe that P 2 SLDG-QC with P 2 LDG displays a second

order spatial convergence, while P 2 SLDG-QC with P 3 LDG is third order accurate.

2. For a P 2 SLDG scheme (without QC), the spatial convergence is of second order due to

the error in approximating upstream cells. We test the schemes with the P 2 and P 3 LDG

schemes, and with the second and third order characteristics tracing schemes (time2 and

time3, respectively) and report results in Table 3.2. We also provide the CPU cost and

errors associated with each configuration in the table, while plotting CPU time versus error

in Figure 3.3. For this example, it seems that a P 2 LDG is more cost effective, when coupled

with the P 2 SLDG scheme for the transport equation.

3. LDG Poisson solver dominates the CPU cost of the simulation. CPU time for simulations

with various configurations is collected. In particular, the ratio of CPU(LDG)/CPU(SLDG)

is reported in Table 3.3 for P 2 SLDG-QC schemes. It is observed that the LDG Poisson solver

dominates the CPU cost. Base on such observation, we suggest to use P 2 SLDG-QC (rather

than the P 2 SLDG scheme) for better computational performance. Data points reported in

Figure 3.3 support the same conclusion that P 2 SLDG-QC is more cost effective than P 2

SLDG. We report the CPU time versus error study in Figure 3.3. It is observed that the

configuration of P 2 SLDG-QC with P 3 LDG and third order characteristics tracing scheme

is the most efficient, once the error tolerance is below certain threshold.

4. Temporal convergence is observed for CFL ranging from 1 to 6. Table 3.4 summarizes the

errors and the corresponding temporal convergence rates for P 2 SLDG-QC+P 3 LDG with

first, second and third order characteristic tracing schemes and with CFL ranging from 1
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to 6. To make the temporal error dominant, we use a spatial mesh of 100 × 100 elements.

Expected orders of convergence are observed. Higher order characteristics tracing schemes

offer not only better convergence rates (only slightly better rate when comparing second and

third order schemes), but also smaller errors. Notice that the third order characteristics

tracing scheme would cost about 2.5 times as much CPU time as the second order one, if

other settings are the same. Note that, for the second and third order characteristics tracing

schemes, the LDG solver (the subroutine with dominant CPU cost) will be called two and

five times, respectively. For example, compare the CPU cost of P 2 SLDG+ P 2 LDG+time2

and P 2 SLDG+ P 2 LDG+time3; and the CPU cost of P 2 SLDG+ P 3 LDG+time2 and P 2

SLDG+ P 3 LDG+time3 in Table 3.2.

Table 3.1: Example 3.1 the incompressible Euler equations. Errors, orders and CPU times (sec)
of P 1 SLDG+P k LDG+time2, k = 1, 2. T = 1. CFL = 1.

Mesh L1 error Order L2 error Order L∞ error Order CPU (sec)

P 1 SLDG+P 1 LDG+time2
202 1.62E-02 2.34E-02 1.32E-01 0.06
402 4.35E-03 1.90 7.21E-03 1.70 6.75E-02 0.96 0.82
602 2.00E-03 1.91 3.55E-03 1.74 5.00E-02 0.74 3.68
802 1.15E-03 1.93 2.13E-03 1.79 3.81E-02 0.95 13.85
1002 7.41E-04 1.96 1.41E-03 1.83 3.08E-02 0.96 33.87

P 1 SLDG+P 2 LDG+time2
202 1.17E-02 1.57E-02 8.55E-02 0.21
402 2.94E-03 1.99 4.00E-03 1.97 2.48E-02 1.78 2.47
602 1.31E-03 1.99 1.79E-03 1.98 1.16E-02 1.87 12.68
802 7.45E-04 1.97 1.02E-03 1.96 6.71E-03 1.91 49.12
1002 4.75E-04 2.02 6.49E-04 2.01 4.34E-03 1.95 131.11

Example 3.2. (Kelvin-Helmholtz instability problem). This example is the 2D guiding center

model problem with the initial condition

ρ0(x, y) = sin(y) + 0.015 cos(kx) (3.2)

and periodic boundary conditions on the domain [0, 4π]× [0, 2π]. We let k = 0.5, which will create

a Kelvin-Helmholtz instability.

We test our schemes in various settings. No WENO limiter is used. Several representative

figures are shown in Figure 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9.
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Table 3.2: Example 3.1 the incompressible Euler equations. Errors, orders and CPU times (sec)
of P 2 SLDG+P k LDG with different order temporal accuracy, k = 2, 3. T = 1. CFL = 1.

Mesh L1 error Order L2 error Order L∞ error Order CPU

P 2 SLDG+P 2 LDG+time2
202 9.36E-03 1.34E-02 1.06E-01 0.22
402 2.23E-03 2.07 3.30E-03 2.03 3.06E-02 1.80 2.46
602 9.49E-04 2.10 1.42E-03 2.08 1.39E-02 1.94 12.66
802 5.63E-04 1.81 8.46E-04 1.79 8.31E-03 1.79 46.28
1002 3.52E-04 2.11 5.30E-04 2.09 5.38E-03 1.95 127.00

P 2 SLDG+P 3 LDG+time2
202 6.36E-03 9.00E-03 5.58E-02 0.55
402 1.33E-03 2.26 1.94E-03 2.22 1.43E-02 1.96 6.68
602 5.74E-04 2.07 8.19E-04 2.12 6.46E-03 1.97 47.53
802 3.23E-04 2.00 4.74E-04 1.90 3.72E-03 1.92 147.69
1002 1.96E-04 2.24 2.86E-04 2.27 2.40E-03 1.97 379.80

P 2 SLDG+P 2 LDG+time3
202 5.94E-03 8.55E-03 6.53E-02 0.65
402 1.24E-03 2.26 1.82E-03 2.23 1.50E-02 2.12 7.34
602 5.30E-04 2.10 7.62E-04 2.15 6.31E-03 2.13 37.41
802 3.03E-04 1.95 4.40E-04 1.91 3.49E-03 2.06 130.08
1002 1.82E-04 2.28 2.65E-04 2.28 2.21E-03 2.04 343.46

P 2 SLDG+P 3 LDG+time3
202 5.94E-03 8.35E-03 4.77E-02 1.59
402 1.29E-03 2.20 1.88E-03 2.15 1.02E-02 2.23 20.25
602 5.65E-04 2.04 8.06E-04 2.09 4.22E-03 2.16 131.56
802 3.19E-04 1.99 4.69E-04 1.88 2.46E-03 1.87 427.40
1002 1.93E-04 2.24 2.83E-04 2.26 1.53E-03 2.14 1000.31

Table 3.3: Example 3.1 the incompressible Euler equations. Errors, orders and CPU times (sec)
of P 2 SLDG-QC+P k LDG+time3, k = 2, 3. T = 1. CFL = 1.

Mesh L1 error Order L2 error Order L∞ error Order CPU CPU(LDG)
CPU(SLDG)

P 2 SLDG-QC+P 2 LDG+time3
202 4.10E-03 6.32E-03 7.94E-02 0.68 0.45/0.10
402 6.07E-04 2.76 9.80E-04 2.69 1.76E-02 2.17 7.43 5.96/0.75
602 2.26E-04 2.43 3.65E-04 2.43 7.54E-03 2.10 38.82 33.72/2.74
802 1.19E-04 2.23 1.92E-04 2.25 4.15E-03 2.08 139.64 128.30/5.93
1002 7.37E-05 2.15 1.20E-04 2.11 2.63E-03 2.05 384.87 362.40/12.28

P 2 SLDG-QC+P 3 LDG+time3
202 2.19E-03 2.82E-03 1.36E-02 1.63 1.29/0.11
402 2.71E-04 3.01 3.56E-04 2.99 1.93E-03 2.81 17.63 15.41/0.82
602 8.00E-05 3.01 1.04E-04 3.02 5.33E-04 3.18 113.77 106.31/2.86
802 3.37E-05 3.01 4.44E-05 2.97 2.28E-04 2.96 338.95 322.37/6.45
1002 1.71E-05 3.05 2.24E-05 3.08 1.14E-04 3.09 1003.01 971.15/12.88
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Figure 3.3: Example 3.1. L1 error versus CPU time (s) in log-log plot. The data points are all
from Table 3.1-3.3.

1. Compare performances of a third order P 2 SLDG-QC scheme and a second order P 1 SLDG

scheme. In Figure 3.4, we plot the contour of the solution computed by P 1 SLDG with the

mesh of 100 × 100 elements as well as the refined mesh of 200 × 200 elements; we also plot

the contour of the solution computed by P 2 SLDG-QC with the mesh of 100× 100 elements.

By carefully comparing these results, we observe that the third order scheme offers better

resolution; and its solution is consistent with that from a second order scheme with the refined

mesh (200× 200). In Figure 3.7, we compare these solutions via their 1D cuts along the line

y = π. It is observed that the second order solution with the 200×200 mesh is more consistent

with that of the third order solution with the 100× 100 mesh.

2. P 2 SLDG-QC+P 3 LDG with adaptive CFL versus that with fixed CFL = 3. We perform

the simulation with adaptive CFL, and set the initial CFL to be 3. As the solution evolves,

the CFL will be dynamically adjusted according to the adaptive time-stepping algorithm

we proposed. In particular, if the L∞ norm of relative deviation of areas of upstream cells

exceeds a threshold (1%), or is below another threshold (0.3%), the time-stepping size will be

19



Table 3.4: The incompressible Euler equations (1.1) on the domain [0, 2π]× [0, 2π] with the initial
condition ω(x, y, 0) = −2 sin(x) sin(y). Periodic boundary conditions in two directions. Temporal
order of convergence of P 2 SLDG-QC with the mesh of 100× 100. T = 1. The time-stepping size
for P k SLDG-(QC) is ∆t = CFL

max(|u|)
∆x

+
max(|v|)

∆y

.

CFL L1 error Order L2 error Order L∞ error Order

P 2 SLDG-QC+P 3 LDG+time1
1 1.34E-02 1.87E-02 6.55E-02
2 2.73E-02 1.02 3.82E-02 1.03 1.37E-01 1.07
3 4.06E-02 0.98 5.74E-02 1.01 2.10E-01 1.06
4 5.59E-02 1.11 7.99E-02 1.15 3.00E-01 1.23
5 6.79E-02 0.87 9.77E-02 0.90 3.72E-01 0.97
6 8.18E-02 1.02 1.19E-01 1.06 4.60E-01 1.16

P 2 SLDG-QC+P 3 LDG+time2
1 3.27E-05 4.27E-05 5.96E-04
2 1.41E-04 2.11 1.87E-04 2.13 9.46E-04 0.67
3 3.72E-04 2.39 5.29E-04 2.56 2.38E-03 2.27
4 7.89E-04 2.62 1.20E-03 2.84 5.26E-03 2.76
5 1.40E-03 2.56 2.18E-03 2.69 9.65E-03 2.72
6 2.32E-03 2.78 3.70E-03 2.90 1.66E-02 2.96

P 2 SLDG-QC+P 3 LDG+time3
1 1.71E-05 2.24E-05 1.14E-04
2 2.63E-05 0.62 3.35E-05 0.58 2.04E-04 0.84
3 6.06E-05 2.06 8.45E-05 2.28 5.58E-04 2.48
4 1.21E-04 2.41 1.70E-04 2.42 1.01E-03 2.06
5 2.05E-04 2.36 2.78E-04 2.22 1.11E-03 0.44
6 3.50E-04 2.93 4.72E-04 2.91 1.59E-03 1.95

reduced or increased. The CFL history of the P 2 SLDG-QC+P 3 LDG+time3 with adaptive

CFL is shown in Figure 3.6. Figure 3.5 displays the contour plot of the solution with adaptive

CFL; while Figure 3.7 (b) shows the 1D cut of the solutions of P 2 SLDG-QC and P 3 LDG

with fixed CFL = 3 and with adaptive CFL. The solution with CFL = 1 is plotted in the

same figure, as a reference solution. The scheme with adaptive CFL is observed to be able

to capture the solution well.

3. SLDG-QC scheme with adaptive CFL: comparison for using P 2 or P 3 LDG scheme for Pois-

son’s equation. We find comparable performance of the adaptive schemes using P 2 and P 3

LDG solving Poisson’s equation in resolving solution structures in Figure 3.5 and in preserv-

ing upstream cell areas as well as physical invariants in Figure 3.8-3.9. The scheme with P 3

performs only slightly better in preserving physical invariants; however, the CPU cost of the

scheme with the P 3 LDG is twice as much as that of the same scheme but with P 2 LDG, see
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Table 3.3. Note that for the previous smooth example, as shown in Figure 3.3, when the error

is below certain threshold, P 3 LDG scheme is doing slightly better; when the error is above

that threshold (in other words, the solution has not been well-resolved), a P 2 LDG Poisson

solver may better balance efficiency and effectiveness.

4. Time histories of L∞ norm of relative deviation of areas of upstream cells are shown in

Figure 3.8. On its subplot (a), we compare the performance of schemes with fixed CFL =

1, CFL = 3 and adaptive CFL with initial CFL = 3. It is observed that the relative

deviation for the adaptive CFL is well controlled within bounds as expected. We compare

schemes with P 2 and P 3 LDG solvers and observe that the scheme with P 3 LDG performs

better in controlling relative deviation of upstream cell areas. On its subplot (b), we observe

that quadratic-curved approximations to sides of upstream cells are crucial in preserving

upstream cell areas. The scheme performs much better than the counterpart without the

QC approximation. In fact, for this example, perhaps because the numerical mesh does not

fully resolve the solution structures (thus some numerical oscillations appear), the P 1 SLDG

scheme is performing better than the P 2 SLDG scheme in preserving upstream cell areas;

while the P 2 SLDG-QC scheme performs the best.

5. Time histories of relative deviation of energy and enstrophy are plotted in Figure 3.9. The

performance of the SLDG schemes in preserving the invariants is comparable. We remark

that, the proposed conservative SLDG schemes are able to better preserve energy than the

non-conservative SLWENO scheme [28]. We also note that, in many situations, higher order

schemes preserve better these invariants; yet there are some exceptions which are subject to

further investigation.

Example 3.3. (The vortex patch problem) We solve the model problem (1.1) in the domain [0, 2π]×

[0, 2π] with the initial condition

ω(x, y, 0) =


−1, if (x, y) ∈

î
π
2 ,

3π
2

ó
×
î
π
4 ,

3π
4

ó
,

1, if (x, y) ∈
î
π
2 ,

3π
2

ó
×
î

5π
4 ,

7π
4

ó
,

0, otherwise,

(3.3)

and periodic boundary conditions.

When the proposed SLDG method with a large CFL number, i.e. CFL = 3, is applied,

numerical oscillations are present. For example, in the left panel of Figure 3.10, we observe that
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Figure 3.4: Contour plots of the numerical solutions for the Kelvin-Helmholtz instability at T = 40.
The mesh of 100× 100 is used, unless otherwise specified.

Figure 3.5: Contour plots for the Kelvin-Helmholtz instability at T = 40. Schemes with adaptive
CFL. P 2 LDG (left) and P 3 LDG (right) are used. The mesh is 100× 100.

Figure 3.6: The CFL history of P 2 SLDG-QC+P 3 LDG+time3 with adaptive CFL for the Kelvin-
Helmholtz instability. The mesh is 100× 100.
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(a) P 2 SLDG-QC versus P 1 SLDG (b) P 2 SLDG-QC+P 3 LDG, adaptive CFL versus non-
adaptive CFL

Figure 3.7: 1D cuts of the solutions at y = π for the Kelvin-Helmholtz instability at T = 40. The
mesh of 100× 100 is used unless otherwise specified.

(a) P 2 SLDG-QC (b) P k SLDG-(QC) with CFL = 1

Figure 3.8: Time evolution of the relative deviation of area for the proposed SLDG schemes for the
Kelvin-Helmholtz instability. The mesh of 100× 100 is used.

the numerical solution computed by P 2 SLDG-QC+P 3 LDG+time3-CFL3 without the WENO

limiter exhibits unphysical oscillatory behavior. When the WENO limiter is applied, numerical

oscillations disappear, see the right panel of Figure 3.10.

When the SLDG scheme with adaptive CFLs is used, the initial CFL = 3 is automatically

reduced to CFL = 2 at the beginning of the simulation due to the adaptive mechanism, see the
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(a) P 2 SLDG-QC (b) P k SLDG-(QC) with CFL = 1

(c) P 2 SLDG-QC (d) P k SLDG-(QC) with CFL = 1

Figure 3.9: Time evolution of the relative deviation of energy and enstrophy for the proposed SLDG
methods for the Kelvin-Helmholtz instability. The mesh of 100× 100 is used.

right panel in Figure 3.11. With adaptive CFL, it is observed that the scheme performs well in

capturing solution structures without producing oscillations, even though no limiter is used. Extra

robustness is observed from the adaptive time-stepping strategy. One intuitive explanation of the

effect of “controlling oscillations” by the adaptive CFL strategy is the following: without adaptive

CFL, if a relatively large CFL is used, numerical approximations to the shapes of upstream cells

(and their areas) may not be accurate enough. Recall that when the areas of upstream cells are

preserved, the maximum principle can be preserved (at least in terms of cell averages), oscillations

can be avoided. When upstream cells are extremely distorted due to the large CFL used, and then
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relative deviation of areas is likely to become larger. Consequently, cell averages of the solution

may go out of bounds and become oscillatory. If no remedy is used, numerical approximations to

upstream cells could become more distorted, leading to more pronounced unphysical oscillations.

As has been done before, we track the time history of the L∞ norm of relative deviation of

areas of upstream cells, energy and enstrophy of various SLDG schemes in Figure 3.12 and Figure

3.13. The observation is similar to the previous example.

Figure 3.10: Contour plots of the numerical solutions for P 2 SLDG-QC+P 3 LDG+time3 with
(right) or without (left) WENO limiter for the vortex patch test. The mesh of 100 × 100 is used.
30 equally spaced contours from −1.1 to 1.1.

Example 3.4. (The shear flow problem) For this double shear layer problem [2, 31], we solve the

model problem (1.1) in the domain [0, 2π] × [0, 2π], with periodic boundary conditions and the

initial condition given by

ω(x, y, 0) =

δ cos(x)− 1
ρsech

2
(
y−π/2
ρ

)
, if y ≤ π,

δ cos(x) + 1
ρsech

2
(

3π/2−y
ρ

)
, if y > π,

(3.4)

where δ = 0.05 and ρ = π/15.

As time evolves, the solution quickly develops into roll-ups with smaller and smaller spatial

scales. On any fixed grid, the full resolution will be lost eventually. This problem has been tested by

the high order Eulerian finite difference ENO/WENO method in [11, 15], the high order SLWENO

scheme in [20], the DG method in [17, 31, 33] and the spectral element method in [12, 29]. We solve

this problem up to T = 8 by using the SLDG method with the mesh of 100× 100 elements. Figure

3.14 presents the solution for the shear flow test at T = 8 solved by P 2 SLDG+P 3 LDG+time3
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Figure 3.11: Left: The contour plot of the numerical solution for the vortex patch test solved
by P 2 SLDG-QC+P 3 LDG+time3 with adaptive CFL; right: time history of CFL. The mesh of
100× 100 and the initial CFL is 3. 30 equally spaced contours from −1.1 to 1.1.

(a) P 2 SLDG-QC (b) P k SLDG-(QC) with CFL = 1

Figure 3.12: Time evolution of the relative deviation of upstream areas for the proposed SLDG
methods for the vortex patch test. The mesh of 100× 100 is used.

with CFL = 1 without the WENO limiter (left) and with the WENO limiter (right). Numerical

oscillations are observed (upper mid and lower right regions of the plot) for the scheme without

the WENO limiter. Once the robust WENO limiter is applied, numerical oscillations disappear. In

Figure 3.15, we show the contour plot of the solution computed by P 2 SLDG-QC+P 3 LDG+time3

with adaptive CFL (left) as well as the CFL history over time (right). No limiter is used, yet no
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(a) P 2 SLDG-QC (b) P k SLDG-(QC) with CFL = 1

(c) P 2 SLDG-QC (d) P k SLDG-(QC) with CFL = 1

Figure 3.13: Time evolution of the relative deviation of energy and enstrophy for the proposed
SLDG methods for the vortex patch test. The mesh of 100× 100 is used.

oscillation is observed. Such results suggest that the adaptive CFL time-stepping method improves

the robustness of the SLDG schemes. The conclusion we draw in this example is similar to that in

the vortex patch example.

We further compare the L∞ norm of relative deviation of upstream cell areas, as well as energy

and enstrophy in Figure 3.16 and Figure 3.17, respectively. We compare the performance of the

scheme with adaptive CFL without the WENO limiter, with that from the SLDG schemes with a

fixed CFL and with or without the WENO limiter. It is observed that the scheme without WENO

limiter performs better than that with the WENO limiter (even with smaller CFL number) in
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preserving the invariants. Such a phenomenon can be explained by the fact that, when the solution

is under-resolved, the WENO limiter is often turned on. By using lower order polynomials in the

approximation space, larger deviations may be induced.

Figure 3.14: Contour plots of the numerical solutions for the shear flow test at T = 8 solved by
the methods without WENO limiter (left) and with WENO limiter (right). The mesh of 100× 100
and CFL = 1.

Figure 3.15: Left: The contour plot of the numerical solution for the shear flow test solved by P 2

SLDG-QC+P 3 LDG+time3 with adaptive CFL; right: time history of CFL. The mesh of 100×100
and the initial CFL is 3.
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(a) P 2 SLDG-QC (b) P k SLDG-(QC) with CFL = 1

Figure 3.16: Time evolution of the relative deviation of areas of upstream cells for the proposed
SLDG scheme for the shear flow test. The mesh is 100× 100.

4 Conclusion

In this paper, we proposed a high order conservative semi-Lagrangian discontinuous Galerkin

(SLDG) method for solving two-dimensional incompressible Euler equations and the guiding center

Vlasov model without operator splitting. The three key ingredients include a high order conserva-

tive SLDG transport scheme as the backbone of the algorithm, a high order characteristics tracing

technique, and an adaptive time-stepping strategy to further enhance the robustness and effective-

ness of the scheme. As the main advantage, the scheme is able to take large time step evolution,

and at the same time be high order accurate in both space and time and mass conservative. The

performance of the scheme in terms of order accuracy in space and time, CPU cost as well as

the ability to preserve important physical invariants was benchmarked though extensive numerical

experiments. We only consider periodic boundary condition in this paper. The extension to general

boundary conditions is subject to our future work.
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