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Abstract

We give a new proof of the discretized ring theorem for sets of real numbers. As a special
case, we show that if A ⊂ R is a (δ, 1/2)1-set in the sense of Katz and Tao, then either A+ A

or A.A must have measure at least |A|1−
1
68 .

1 Introduction

A (δ, σ)1-set is a discretized analog of a σ-dimensional subset of R. More precisely, for δ > 0 we
say that a set A ⊂ R is δ-discretized if it is a union of closed intervals of length δ. We say that
a δ-discretized set A ⊂ [1, 2] is a (δ, σ)1-set if |A| ≈ δ1−σ and if it satisfies the non-concentration
condition |A ∩ I| / |I|σ|A| for all intervals I.

In [10], Katz and Tao conjectured that a (δ, 1/2)1 set cannot be approximately closed under both
addition and multiplication. Specifically, they conjectured that there exists an absolute constant
c > 0 so that if A ⊂ [1, 2] is a (δ, 1/2)1-set, then

|A+A|+ |A.A| ' δ−c|A|. (1)

This conjecture was proved by Bourgain [1], who established (1) whenever A is a (δ, σ)1 set,
0 < σ < 1. In [1], the constant c = c(σ) > 0 is not explicitly computed, but an examination of
[1] suggests that the constant is very small. Subsequent work by Bourgain-Gamburd and Bourgain
[4, 2], and work in progress by Lindenstrauss-Varjú and Bateman-Lie proved variants of (1) where
the set A satisfies weaker non-concentration conditions.

In this paper, we obtain a short new proof of (1) that establishes an explicit value of c.

Theorem 1.1. Let 0 < σ < 1. Let A ⊂ [1, 2] be a δ-discretized set of measure δ1−σ. Suppose that
for all intervals I, we have the non-concentration estimate

|A ∩ I| ≤ C|I|σ|A|. (2)

Then for every c < σ(1−σ)
4(7+3σ) , we have

|A+A|+ |A.A| & C−O(1)δ−c|A|. (3)
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In [1, Section 4], Bourgain proved that Theorem 1.1 (with any value c > 0) establishes the Erdős-
Volkmann ring conjecture [7]: there does not exist a measurable subring of the reals of Hausdorff
dimension strictly between 0 and 1. This was first proved by Edgar and Miller in [6].

Remark 1.2. In [4], Bourgain and Gamburd established a variant of Theorem 1.1 where the non-
concentration hypothesis (2) was replaced by the weaker requirement

|A ∩ I| ≤ C|I|τ |A| (4)

for some τ > 0 (in particular, τ may be smaller than σ). They obtained their result by reducing
the general case τ > 0 to the special case τ = σ, and then applying the previously established
discretized sum-product theorem from [1]. A similar reduction can be used to obtain a variant of
Theorem 1.1 where A satisfies the weaker non-concentration hypothesis (4). When this is done, the
constant c in (3) will depend on both σ and τ .

Our proof of Theorem 1.1 uses many of the ideas from Garaev’s sum-product theorem in Fp

from [8]. In [8], Garaev proved that if A ⊂ Fp with |A| < p7/13(log p)−4/13, then |A+A|+ |A.A| &
|A|15/14/(log |A|)2/7. By refining Garaev’s arguments, the exponent of 15/14 was improved to 14/13
by Shen and the second author [9]; to 13/12 by Bourgain and Garaev [3]; and to 12/11 by Rudnev
[13].

Glossing over several technical details, Garaev’s proof proceeds as follows. Either A−A
A−A = Fp, or

there is an element x ∈ A−A
A−A so that x+1 6∈ A−A

A−A . If the former occurs, then Plünnecke’s inequality
(discussed further in Section 3 below) implies that |A + A| + |A.A| must be large. In our proof,
we will call this situation the “dense case.” If the latter occurs, then we can write x = a−b

c−d , where

a, b, c, d ∈ A. Since x + 1 6∈ A−A
A−A , we have |A + (x + 1)A| = |A|2, and this in turn implies that

|(a − b)A + (c − d)A + (c − d)A| ≥ |A|2. Plünnecke’s inequality now implies that |A + A| + |A.A|
must be large. In our proof, we will call this situation the “gap case.”

When mimicking Garaev’s argument for discretized subsets of R, we run into several issues.
First, if A ⊂ [1, 2] is a δ-discretized set, then the “denominators” in the set A−A

A−A might be very

small. Rather than considering the entire set A−A
A−A , we pick a cutoff and look at quotients where

the denominator is not too small. Several steps in the argument have to be tuned or adjusted to
take account of the size of the denominator.

If the set of quotients is sufficiently dense, then we proceed as in the “dense case” of Garaev’s
argument. Otherwise, there is a fairly large gap in our set of quotients. Suppose that we had an
element x in our set of quotients and x + 1 was in the middle of the fairly large gap. Then we
could adapt Garaev’s argument from the “gap case” described above. Unfortunately, there is no
guarantee that this will happen. Instead, we show that if our set of quotients has a fairly large gap,
we can find a x in our set of quotients so that either x/2 or (x+ 1)/2 is in the middle of the large
gap, and we can use this element in the same way that Garaev uses x+ 1.

1.1 Notation

If X ⊂ R and t > 0, we will write Et(X) to denote the t-covering number of X , that is, the
cardinality of the smallest covering of X by intervals of length t. We will write Nt(X) to denote the
closed t neighborhood of X , and we will write Xt to denote Nt(X)∩ tZ; this is the discretization of
X at scale t. We say a set X ⊂ R is t-separated if every pair of points in X have distance at least
t. In particular, the set Xt is always t-separated.
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With this terminology, we will state an equivalent formulation of Theorem 1.1 that will be
slightly easier to work with

Theorem 1.1′. Let 0 < σ < 1. Let A ⊂ [1, 2] be a δ-separated set of cardinality δ−σ. Suppose that
for all intervals Iof length at least δ, we have the non-concentration estimate

#(A ∩ I) ≤ C|I|σ(#A). (5)

Then for every c < σ(1−σ)
4(7+3σ) , we have

Eδ(A+A) + Eδ(A.A) & C−O(1)δ−c(#A). (6)

1.2 Thanks

The authors would like to thank Brendan Murphy, Victor Lie, and Jianan Li for comments and
corrections to a previous draft of this manuscript. The authors would also like to thank the
anonymous referees for corrections and suggestions.

2 Preprocessing of δ-separated sets with good additive prop-

erties.

In this section, we deal with the following technical problem. Let X ⊂ [1, 2] be a δ-separated set.
We will be in the situation where X has good additive properties at scale δ namely,

Eδ(X +X) ≤ K(#X).

We would like to know that in absolute terms, the set X has the same additive properties at each
scale t > δ, that is

Et(X +X) ≤ KEt(X).

This is not necessarily true about X but is true about a fairly large subset. The following lemma,
which is closely related to Lemma 5.2 from [5] will make this statement precise.

Lemma 2.1. Let X ⊂ [1, 2] be a δ-separated subset and suppose #X = δ−σ for some 0 < σ < 1.
Suppose that

Eδ(X +X) ≤ K(#X).

Then for every ǫ > 0, there is a subset X̃ ⊂ X with

#X̃ & δǫ(#X),

so that
Et(X̃ + X̃) . δ−10ǫKEt(X̃) for all δ < t < 1, (7)

with the implicit constants depending on σ and ǫ.

Proof. We will pick j, a large natural number depending only on σ and ǫ. Without loss of generality,
we may assume that δ = 2−mj for m a natural number. Indeed, reducing to this case will only
affect our constants by factor of 2O(j); since j depends only on σ and ǫ, this is acceptable.
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We will subdivide the interval [1, 2] into the 2j-adic intervals. That is, for each natural number
0 ≤ l ≤ m, we let

Dl([1, 2]) = {[1 + k2−lj, 1 + (k + 1)2−lj] : 0 ≤ k ≤ 2lj − 1}.

The collection of intervals

D =
m⋃

l=0

Dl([1, 2])

is a tree with m+1 levels under containment. We will find our subset X̃ by following an algorithm
that goes up the tree. We let Xl be the set of intervals in Dl([1, 2]) which contain a point of X . We
now will pick subsets Zl of each Xl, starting with Zm = Xm.

Next we observe that once Zl+1 has been chosen we have that

#Zl+1 =
∑

I∈Xl

#{J ∈ Zl+1 : J ⊂ I}.

We know that each positive summand is between 1 and 2j. Thus

#Zl+1 =

j
∑

k=1

∑

I∈Xl

2k−1≤#{J∈Zl+1:J⊂I}<2k

#{J ∈ Zl+1 : J ⊂ I}.

We pick the value of k contributing most to the sum and let

Zl = {I ∈ Xl : 2
k−1 ≤ #{J ∈ Zl+1 : J ⊂ I} < 2k}.

What we have basically done is found a large piece of X which is an essentially uniform tree.
We keep track of our losses. We let X̃l be the set of x ∈ X so that x is in an interval of Zk for each
k > l. We have that

#X̃l ≥
1

(2j)m−l
(#X).

We observe that by making j large enough, we have ensured that (2j)m ≤ 2jmǫ = δ−ǫ. Because a
fortiori, we also have 2m ≤ δ−ǫ, we know that each interval in Zl contains at least δ

2ǫ #X
#Zl

elements

of X (recall that these intervals have length 2−lj). Thus each interval in Zl + Zl of length 2−lj+1

contains at least δ2ǫ #X
#Zl

elements of X +X which are δ-separated. Thus we must have

#(Zl + Zl) . δ−10ǫK(#Zl),

because otherwise Eδ(X +X) & δ−8ǫK(#X), a contradiction. We let

X̃ =
⋂

X̃l,

and the lemma is proved.
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3 Plünnecke’s inequality and its implications

In this section we will begin the proof of Theorem 1.1′. Let A ⊂ [1, 2] be a δ-separated set of

cardinality δ−σ that satisfies (5). Fix a number c < σ(1−σ)
4(7+3σ) , and let ǫ > 0 be a small constant to

be chosen later. In the arguments below, we will see terms of the form δO(ǫ). The implicit constant
will depend only on σ.

Apply Lemma 2.1 to A with ǫ as above to obtain a set A′ that satisfies (7). Define K by

K =
Eδ(A′ +A′) + Eδ(A′.A′)

(#A′)
.

Then we have that Eδ(A
′ +A′)+ Eδ(A

′.A′) ≤ K(#A′); our goal will be to obtain a lower bound for
K. Because #(A′) & δO(ǫ)#A, and, of course,

A′ +A′ ⊂ A+A,

and
A′.A′ ⊂ A.A,

an appropriate lower bound on K implies inequality (6).
Our next task is to find a large subset A1 ⊂ A′ that has small expansion (in the δ-covering sense)

under certain types of repeated addition and multiplication. Our main tool will be Plünnecke’s
inequality:

Proposition 3.1 (Plünnecke). Let G be an Abelian group and let X,Y1, . . . , Yk be subsets of G.
Suppose that #(X + Yi) ≤ Ki(#X) for each i = 1, . . . , k. Then there exists a subset X ′ ⊂ X so
that

#(X ′ + Y1 + . . .+ Yk) ≤
(
Πk

i=1Ki

)
(#X ′).

An inequality of this form was first proved by Plünnecke [12]. The current formulation is due
to Ruzsa [14]. More recently, Petridis [11] obtained a short and elementary proof of Plünnecke’s
inequality.

Observe that if X,Y1, . . . , Yk are subsets of G with #(X + Yi) ≤ Ki(#X) for each i = 1, . . . , k,
then wheneverX0 ⊂ X with #X0 ≥ (#X)/2, we have #(X0+Yi) ≤ 2Ki(#X0) for each i = 1, . . . , k.
By repeatedly applying this observation to the set X0 = X\X ′ that is “left over” after applying
Proposition 3.1, we can obtain the following slight strengthening of Plünnecke’s inequality:

Corollary 3.2. Let G be an Abelian group and let X,Y1, . . . , Yk be subsets of G. Suppose that
#(X+Yi) ≤ Ki(#X) for each i = 1, . . . , k. Then there exists a subset X ′ ⊂ X with #X ′ ≥ (#X)/2
so that

#(X ′ + Y1 + . . .+ Yk) .
(
Πk

i=1Ki

)
(#X ′).

We will also need Ruzsa’s triangle inequality:

Proposition 3.3 (Ruzsa triangle inequality). Let G be an Abelian group and let X,Y, Z ⊂ G be
finite subsets. Then

#(X − Z) ≤
#(X − Y ) #(Y − Z)

#Y
.

Proof. Let s = x− z ∈ X −Z. Then there are at least #Y distinct representations of s as a sum of
an element of X − Y with an element of Y − Z. Namely, s = (x− y) + (y − z) for each y ∈ Y .

5



If X ⊂ [1, 2] is a set, we will call a set X ′ a δ-refinement of X if X ′ ⊂ X , and Eδ(X ′) ≥ Eδ(X)/2.
We shall extend Proposition 3.1, Corollary 3.2 and Proposition 3.3 to the δ-covering setting, by
replacing any set X by Xδ and observing that #Xδ ∼ Eδ(X).

Corollary 3.4. Let X,Y1, . . . , Yk be subsets of R. Suppose that Eδ(X + Yi) ≤ KiEδ(X) for each
i = 1, . . . , k. Then there is a δ-refinement X ′ of X so that

Eδ(X
′ + Y1 + Y2 + . . .+ Yk) .

(
Πk

i=1Ki

)
Eδ(X

′).

In particular,
Eδ(Y1 + Y2 + . . .+ Yk) .

(
Πk

i=1Ki

)
Eδ(X).

To obtain Corollary 3.4, replace each of the sets X,Y1, . . . , Yk by Xδ, (Y1)δ, . . . , (Yk)δ. Observe that
for any subset Z of Xδ, we have

#
(
Z + (Y1)δ + . . .+ (Yk)δ

)
∼ Eδ(Z + Y1 + . . .+ Yk),

with the implicit constant depending on k. Apply Corollary 3.2 to the finite sets Xδ, (Y1)δ, . . . ,
(Yk)δ, and let R be the resulting refinement of Xδ. Finally, take X ′ to be the set Nδ(R) ∩X .

In the same way, we obtain the following δ-covering version of the triangle inequality.

Proposition 3.5. Let X,Y, Z be subsets of R. Then

Eδ(X − Z) .
Eδ(X − Y ) Eδ(Y − Z)

Eδ(Y )
.

We are now ready to proceed. Observe that for any x ∈ A′, we have that

#
(
(xA′)δ

)
∼ Eδ(xA

′).

First, by Cauchy-Schwarz, the condition Eδ(A′.A′) ≤ K(#A′) implies that

∑

x,y∈A′

#
(
(xA′)δ ∩ (yA′)δ

)
& (#A′)3K−1.

Select an element b ∈ A′ so that

∑

x∈A′

#
(
(xA′)δ ∩ (bA′)δ

)
& (#A′)2K−1. (8)

By dyadic pigeonholing, we can select a set Ā ⊂ A′ and a number K−1 ≤ ρ ≤ 1 with #Ā &
(logK)ρ(#A′) & | log δ|−1ρ(#A′) so that

#
(
(aA′)δ ∩ (bA′)δ

)
∼ (#A′)K−1ρ−1 for each a ∈ Ā.

At the end of our argument, we will see that the worst-case occurs when ρ = 1. Thus a casual
reader may safely set ρ = 1. We will consider the δ-covering number Eδ(aA′ ± bA′) when a ∈ Ā.
Let X = (aA′)δ ∩ (bA′)δ, so #X ≥ K−1ρ−1(#A′). We have

Eδ(X + aA′) . K(#A′) ≤ K2ρ(#X),

Eδ(X + bA′) . K(#A′) ≤ K2ρ(#X).
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By Corollary 3.4, we obtain

Eδ
(
aA′ + bA′

)
. K4ρ2(#X) . K3ρ(#A′). (9)

By Proposition 3.5, substituting aA′ for X , bA′ for Z and −X for Y , we obtain

Eδ
(
aA′ − bA′

)
. K4ρ2(#X) . K3ρ(#A′). (10)

Combining the results (9) and (10), we obtain

Eδ
(
aA′ ± bA′

)
. K4ρ2(#X) . K3ρ(#A′). (11)

So far elements of Ā have good properties for multiplying A′ and adding such dilates, but
we would like to take advantage as well of the additive properties of Ā. To wit, we have that
Ā+ Ā ⊂ A′ +A′ so that

Eδ(Ā+ Ā) ≤ Eδ(A
′ +A′) ≤ K(#A′) ≤ K| log δ|ρ−1(#Ā).

However, we might have liked to have estimates on Et(Ā+ Ā) for t > δ. To fulfill our desires, we

apply Lemma 2.1 to Ā with ǫ as above to obtain a set A1 = ˜̄A. We immediately obtain the estimate

Et(A1 +A1) ≤ K| log δ|ρ−1δ−O(ǫ)Et(A1) for all δ < t < 1.

In the next two lemmas, we will obtain estimates for the cardinality of various sums involving
A1 and A′. These lemmas constitute an ingredient of our argument that does not occur in Garaev’s
finite field argument. We lose some resolution when we multiply A′ by a number much smaller than 1
and then calculate δ-covering number, but we win some of this back by considering nonconcentration
for A′.

Lemma 3.6. Let d1 = a1 − b1, d2 = a2 − b2, with a1, a2, b1, b2 ∈ A1. Then

Eδ(d1A
′ + d2A

′) . Cδ−ǫK12ρ4 max(|d1|, |d2|)
σ(#A′). (12)

Proof. By Corollary 3.4 and (11), there is a refinement A′′ of A′ so that

Eδ(bA
′′ + d1A

′ + d2A
′) ≤ Eδ(bA

′′ + a1A
′ − b1A

′ + a2A
′ − b2A

′) . K12ρ4(#A′), (13)

where b ∈ A′ is the element satisfying (8).
Next, observe that d1A

′ + d2A
′ is contained in an interval of length d . max(|d1|, |d2|). Thus

Eδ(d1A
′ + d2A

′) .
(
Ed(bA

′′)
)−1

Eδ(bA
′′ + d1A

′ + d2A
′) .

(
Ed(bA

′′)
)−1

K12ρ4(#A′).

Since #A′′ ∼ #A′ and A′ satisfies the non-concentration estimate #(A′ ∩ I) . Cδ−ǫdσ(#A′)
for each interval I of length d, following from the comparison of the size of A′ to that of A and the
non-concentration estimate for A given in (5), we must have that

Ed(bA
′′) &

#A′′

Cδ−ǫdσ(#A′)
= C−1δǫd−σ.

This completes the proof of the lemma.
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Lemma 3.7. Let d1 = a1 − b1, d2 = a2 − b2, with a1, a2, b1, b2 ∈ A1. Then for each k ≥ 2, there
is a set A2 ⊂ A1 with #A2 ≥ (#A1)/4 so that

Eδ
(
d1A2 + d2A2 + . . .+ d2A2

︸ ︷︷ ︸

k times

)
. Cδ−O(ǫ)| log δ|O(1)K11+kρ5−k max(|d1|, |d2|)

σ(#A′). (14)

The implicit constant in the | log δ|O(1) and δ−O(ǫ) terms depend on k.

Proof. As in the proof of Lemma 3.6, select a refinement A′′ of A′ so that Eδ(bA
′′ + d1A

′ + d2A
′) .

K12ρ4(#A′). This implies that

Eδ(bA
′′ + d1A1 + d2A1) . δ−O(ǫ)K12ρ3(#A1).

We have that

Eδ(d2A1 + d2A1) = E δ
d2

(A1 +A1) ≤ Kδ−O(ǫ)ρ−1| log δ| Eδ(d2A1),

and thus by Corollary 3.4, there is a refinement A′
1 of A1 so that the k-fold sum

Eδ(d2A
′
1 + . . .+ d2A

′
1) ≤ Kk−1δ−O(ǫ))ρ1−k| log δ|k−1Eδ(d2A

′
1).

Apply Corollary 3.4 with X = d2A
′
1, Y1 = d2A

′
1 + . . . + d2A

′
1 (this is a (k − 1)-fold sum), and

Y2 = bA′′ + d1A1. We conclude that there is a refinement A2 of A′
1 so that

Eδ(bA
′′ + d1A2 + d2A2 + . . .+ d2A2) . (K12ρ3)δ−O(ǫ)(Kk−1ρ1−k| log δ|k−1)(#A1)

= K11+kρ4−kδ−O(ǫ)| log δ|k−1(#A1).

We now proceed as in the proof of Lemma 3.6. Observe that d1A2 + d2A2 + . . . + d2A is contained
in an interval of length d . (k + 1)max(|d1|, |d2|). Thus

Eδ(d1A2 + d2A2 + . . .+ d2A2) .
(
Ed(bA

′′)
)−1

Eδ(bA
′′ + d1A2 + d2A2 + . . .+ d2A2)

.
(
Ed(bA

′′)
)−1

K11+kρ4−kδ−O(ǫ)| log δ|O(1)(#A1).

Since #A′′ ∼ #A′ and A′ satisfies the non-concentration estimate #(A′ ∩ I) ≤ Cδ−ǫdσ(#A′)

for each interval I of length d, we must have that Ed(bA′′) & #A′′

Cδ−ǫdσ(#A′) = C−1δǫd−σ. Since

#A′ ≥ δǫ#A1, we have

Eδ(d1A2 + d2A2 + . . .+ d2A2) . Cδ−O(ǫ)| log δ|O(1)dσK11+kρ4−k(#A′).

4 The structure of A−A
A−A: dense versus gap cases

Let A1 be the set constructed in the previous section, and let γ ∈ (0, 1/2) be a parameter we will
specify later. Consider the set

B =
{a1 − a2
a3 − a4

: ai ∈ A1, |a3 − a4| > δγ
}

.

Since A1 ⊂ [1, 2], we have that B ⊂ [−δ−γ , δ−γ ]. We also have 0, 1 ∈ B. Choose a positive integer
m so that 2−m ∼ δ1−2γ . Define s = 2−m.
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Lemma 4.1. At least one of the following two things must happen.

(A): There exists a point b ∈ B ∩ [0, 1] with

max
(

dist(b/2, B), dist
(b+ 1

2
, B

))

≥ s.

(B): Es(B ∩ [0, 1]) & s−1.

Proof. Suppose that Item (A) does not occur. Let b̃ ∈ B2s and let b ∈ B be the corresponding
point with |b− b̃| ≤ 2s. Then there is an element b′ ∈ B with |b′ − b/2| < s, and thus

|b′ − b̃/2| ≤ |b′ − b/2|+ |b/2− b̃/2| < s+ s = 2s,

so b̃/2 ∈ B2s.
Similarly, there is an element b′′ ∈ B with |b′′ − b+1

2 | < s, and thus

∣
∣
∣b′′ −

b̃+ 1

2

∣
∣
∣ ≤

∣
∣
∣b′′ −

b+ 1

2

∣
∣
∣+

∣
∣
∣
b+ 1

2
−

b̃+ 1

2

∣
∣
∣ < s+ s = 2s,

so b̃+1
2 ∈ B2s.
We will now prove by induction that for each n = 1, . . . ,m − 1, every dyadic rational of the

form p/2n ∈ [0, 1] is contained in B2s. Indeed, if n = 0 then the result holds since 0, 1 ∈ B
implies that 0, 1 ∈ B2s. Now suppose the result has been proved for some value of n ≤ m − 2,
and let p/2n+1 ∈ [0, 1]. If p < 2n, then by the induction hypothesis p/2n ∈ B2s, and thus
1
2p/2

n = p/2n+1 ∈ B2s. If p ≥ 2n, then by the induction hypothesis, (p− 2n)/2n = p/2n− 1 ∈ B2s,

and thus p/2n+1 = p/2n−1
2 + 1

2 ∈ B2s. This completes the induction. We conclude that Item (B)
holds.

We say we are in the gap case if Item (A) holds and in the dense case if Item (B) holds. Note
that these are not mutually exclusive.

5 The dense case

By pigeonholing, we can select b1, b2, b3, b4 ∈ A1 with |b3 − b4| > δγ and |b1 − b2| ≤ |b3 − b4| so that

#
{

(a1, ..., a4) ∈ A4
1 :

∣
∣
∣
a1 − a2
a3 − a4

−
b1 − b2
b3 − b4

∣
∣
∣ < δ1−2γ , |a3 − a4| > δγ

}

. (#A1)
4δ1−2γ . (15)

By Lemma 3.6, we have

Eδ
(
(b1 − b2)A1 + (b3 − b4)A1

)
≤ Eδ

(
(b1 − b2)A

′ + (b3 − b4)A
′
)
. Cδ−ǫK12ρ4|b3 − b4|

σ(#A′). (16)

We will now establish a lower bound on Eδ
(
(b1 − b2)A1 +(b3− b4)A1

)
. Define Q ⊂ A4

1 to be the
set of quadruples obeying

(b3 − b4)a1 + (b1 − b2)a4 = (b3 − b4)a2 + (b1 − b2)a3 +O(δ). (17)
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Cauchy-Schwarz gives Eδ
(
(b1 − b2)A1 + (b3 − b4)A1

)
& (#A1)

4/(#Q), so our goal is now to find an
upper bound for Q. Note that (17) implies that

a1 +
b1 − b2
b3 − b4

a4 = a2 +
b1 − b2
b3 − b4

a3 +O(δ|b3 − b4|
−1),

which implies that

∣
∣
∣
∣

a1 − a2
a3 − a4

−
b1 − b2
b3 − b4

∣
∣
∣
∣
. δ|b3 − b4|

−1|a2 − a4|
−1. (18)

We first consider quadruples (a1, ..., a4) ∈ Q where |a3 − a4| ≥ δγ . For each such quadruple,
(18) implies that

∣
∣
∣
∣

a1 − a2
a3 − a4

−
b1 − b2
b3 − b4

∣
∣
∣
∣
. δ1−2γ .

Comparing with (15), we see that the number of such quadruples is. (#A1)
4δ1−2γ . (#A1)

3δ(1−σ)−2γ−O(ǫ).
Thus if at least half the quadruples from Q are of this form, then

Eδ
(
(b1 − b2)A1 + (b3 − b4)A1

)
& (#A1)δ

2γ+σ−1+O(ǫ) & ρ| log δ|−1δ2γ+σ−1(#A′).

By (16), we conclude that if at least half the quadruples from Q are of this form, then

K & (C| log δ|)−O(1)ρ−1/4δ
2γ+σ−1

12 +O(ǫ) & (C| log δ|)−O(1)δ
2γ+σ−1

12 +O(ǫ). (19)

On the other hand, we consider quadruples (a1, ..., a4) ∈ Q where |a3 − a4| ≤ δγ . We begin
by choosing elements a1, a4 ∈ A1. By our non-concentration hypothesis (2) and the requirement
|a3 − a4| ≤ δγ , the number of admissible a3 is at most Cδγσ(#A). Next, a2 must lie in an interval
of length ≤ δ|b3 − b4|−1. By our non-concentration hypothesis, the number of admissible a2 is at
most Cδσ(#A)|b3 − b4|−σ = C|b3 − b4|−σ. Thus the set of quadruples of this type has size at most
(
#A1

)2(
Cδγσ(#A)

)(
C|b3 − b4|−σ

)
. Thus if at least half the quadruples from Q are of this form,

then

Eδ
(
(b1 − b2)A1 + (b3 − b4)A1

)
&

(#A1)
4

(
#A1

)2(
Cδγσ(#A)

)(
C|b3 − b4|−σ

)

& C−O(1)ρ2| log δ|−1δ−γσ+O(ǫ)|b3 − b4|
σ(#A′).

By (16), we conclude that if at least half the quadruples from Q are of this form, then

K & (C| log δ|)−O(1)ρ−1/6δ
−γσ
12 +O(ǫ) & (C| log δ|)−O(1)δ

−γσ
12 +O(ǫ). (20)

If we are in the dense case, then

K & δO(ǫ)(C| log δ|)−O(1) min
(
δ

2γ+σ−1
12 , δ

−γσ
12

)
. (21)
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6 The gap case

In this section, we will suppose that we are in the gap case. This means that there exists b =
b1−b2
b3−b4

∈ B ∩ [0, 1] so that either (A.1): b/2 is at least s-separated from B or (A.2): b+1
2 is at least

s-separated from B (recall s ∼ δ1−2γ). The reader should recall that by the definition of B, we
have that |b3 − b4| ≥ δγ . In Case (A.1), write b/2 = e1/e2, while in Case (A.2), write b+1

2 as e1/e2.
In Case (A.1) we can write e1 = d1, e2 = d2 + d2, where d1, d2 ∈ A1 − A1. In Case (A.2) we can
write e1 = d1 + d2, e2 = d2 + d2, where d1, d2 ∈ A1 −A1.

We will prove a lower bound on Eδ(e1A1 + e2A1). Define Q ⊂ A4
1 to be the set of quadruples

obeying

e2a1 + e1a4 = e2a2 + e1a3 +O(δ). (22)

Cauchy-Schwarz gives Eδ(e1A1 + e2A1) & (#A1)
4/(#Q), so our goal is now to find an upper

bound for Q. Note that (22) implies that

a1 +
e1
e2

a4 = a2 +
e1
e2

a3 +O
(
δ|e2|

−1
)
, (23)

which implies that

∣
∣
∣
∣

a1 − a2
a3 − a4

−
e1
e2

∣
∣
∣
∣
. δ|e2|

−1|a2 − a4|
−1. (24)

We first consider quadruples (a1, ..., a4) ∈ Q where |a3 − a4| ≥ δγ . For each such quadruple,
(24) implies that

∣
∣
∣
∣

a1 − a2
a3 − a4

−
e1
e2

∣
∣
∣
∣
. δ1−2γ .

Now since we are in the gap case, e1/e2 is at least s ∼ δ1−2γ separated from B. But since
|a3 − a4| ≥ δγ , a1−a2

a3−a4
∈ B. This shows that there are no quadruples in Q with |a3 − a4| ≥ δγ .

We conclude that every quadruple in Q has |a3 − a4| ≤ δγ . Select elements a1, a4 ∈ A1. By
the non-concentration hypothesis (2), the set of admissible a3 has size at most Cδγσ(#A). Finally,
a2 must lie in an interval of length δ|e2|−1; again by the non-concentration hypothesis, the set of
admissible a2 has size at most C(δ/|e2|)σ(#A′) = C|e2|−σ. All together, we have

|Q| . CO(1)(#A1)
2(#A′)δγσ|e2|

−σ.

This gives us the lower bound

Eδ(e1A1 + e2A1) & C−O(1)ρ2δO(ǫ)| log δ|−2δ−γσ|e2|
σ(#A′). (25)

Note that nothing in the argument obtaining this lower bound would change if we replaced A1

by a refinement of A1. We conclude that

Eδ(e1A2 + e2A2) & C−O(1)ρ2δO(ǫ)| log δ|−2δ−γσ|e2|
σ(#A′) (26)

whenever A2 is a refinement of A1. Applying Lemma 3.7 with d1 = b1− b2, d2 = b3 − b4, and k = 2
(in Case (A.1)) and k = 3 (in Case (A.2), which is worse), we obtain the bound

Eδ(e1A2 + e2A2) . Cδ−O(ǫ)| log δ|O(1)K14ρ2|e2|
σ(#A′). (27)

11



Combining (25) and (27), we have

C−O(1)ρ2δO(ǫ)| log δ|−1δ−γσ|e2|
σ(#A′) . Cδ−O(ǫ)| log δ|O(1)K14ρ2|e2|

σ(#A′),

and thus

K & δO(ǫ)(C| log δ|)−O(1)δ
−γσ
14 . (28)

By Lemma 4.1, at least one of (21) or (28) must hold. Selecting γ = 7(1−σ)
2(7+3σ) , we conclude that

K & δO(ǫ)(C| log δ|)O(1)δ−
σ(1−σ)
4(7+3σ) .

Since
Eδ(A

′ +A′) + Eδ(A
′.A′) ≤ Eδ(A+A) + Eδ(A.A),

we conclude that

Eδ(A+A) + Eδ(A.A) & δO(ǫ)(C| log δ|)O(1)δ−
σ(1−σ)
4(7+3σ) (#A).

Thus if ǫ > 0 is selected sufficiently small (depending only on c and σ), then (6) holds.
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