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BRAUER GROUP OF THE MODULI SPACES OF STABLE VECTOR

BUNDLES OF FIXED DETERMINANT OVER A SMOOTH CURVE

INDRANIL BISWAS AND TATHAGATA SENGUPTA

Abstract. Let X be an irreducible smooth projective curve, defined over an algebraically
closed field k, of genus at least three and L a line bundle on X . Let MX(r, L) be the moduli
space of stable vector bundles on X of rank r and determinant L with r ≥ 2. We prove
that the Brauer group Br(MX(r, L)) is cyclic of order g.c.d.(r, degree(L)). We also prove
that Br(MX(r, L)) is generated by the class of the projective bundle obtained by restricting
the universal projective bundle. These results were proved earlier in [BBGN] under the
assumption that k = C.

1. Introduction

LetX be a compact connected Riemann surface of genus g, with g ≥ 3. Fix a holomorphic

line bundle L over X and also fix an integer r ≥ 2. Let MX(r, L) denote the moduli space of

stable vector bundles on X of rank r and determinant L, which is a smooth quasiprojective

complex variety of dimension (r2 − 1)(g − 1). There is a Poincaré vector bundle over X ×

MX(r, L) if and only if r and degree(L) are coprime [Ra]. When r and degree(L) are

coprime, any two Poincaré vector bundle over X ×MX(r, L) differ by tensoring with a line

bundle pulled back from MX(r, L). Hence the projectivized Poincaré bundle in unique.

Even when r and degree(L) are not coprime, there is a unique projective Poincaré bundle

over X ×MX(r, L), although it is not a projectivization of a vector bundle.

In [BBGN] it was proved that the Brauer group ofMX(r, L) is cyclic of order g.c.d.(r, degree(L)).

As mentioned above, there is a universal projective bundle P on X × MX(r, L). Fixing a

point x ∈ X , let Px be the projective bundle on MX(r, L) obtained by restricting P to

{x} × MX(r, L). In [BBGN] it was also shown that the Brauer group Br(MX(r, L)) is

generated by the class of Px.

Our aim here is to prove these results for all algebraically closed fields; see Theorem 2.3.

The computation in [BBGN] crucially uses the calculation of the Picard group ofMX(r, L).

It may be mentioned that the assumption in [DN] that the characteristic of the base field

is zero is used in the computation of the Picard group of the moduli space MX(r, L). In

particular, the Reynolds’ operators, which play a crucial role in the computation, are valid

only in characteristic zero. A recent theorem of Hoffmann shows that the Picard group of

the moduli space does not depend on the base field [Hof]. The proof of Theorem 2.3 follows

the strategy of [BBGN]; some details not given in [BBGN] are given here.
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2 I. BISWAS AND T. SENGUPTA

2. Universal projective bundle and Brauer group

Let k be an algebraically closed field. Let X be an irreducible smooth projective curve,

defined over k, of genus g, with g ≥ 3. Fix an integer r ≥ 2 and also fix a line bundle L

over X . The degree of L will be denoted by d. Let MX(r, d) be the moduli space of stable

vector bundles on X of rank r and degree d. Consider the morphism

φ : MX(r, d) −→ Picd(X) , E 7−→
∧r

E .

Let

MX = MX(r, L) := φ−1(L)

be the fiber of φ over the point L ∈ Picd(X). This moduli spaceMX is canonically identified

with the following two moduli spaces:

(1) moduli space of pairs of the form (E, ξ), where E is a stable vector bundle over X

of rank r, and ξ :
∧r E −→ L is an isomorphism, and

(2) the moduli space of stable vector bundles E on X of rank r such that
∧r E is

isomorphic to L

(see [Hof, p. 1308, Proposition 2.1]).

It is known that there is a universal projective bundle

P −→ X ×MX (2.1)

([Ra], [Ne]). This follows from the construction of the moduli space and the fact that the

global automorphisms of a stable vector bundle are nonzero constant scalar multiplications;

this projective bundle P is described in the proof of Proposition 2.1. Fix a closed point

x ∈ X . Let

Px := P|{x}×MX

f
−→ MX (2.2)

be the restriction of P to {x} ×MX .

For any quasiprojective variety Y defined over the field k, the Brauer group Br(Y ) of Y

is defined to be the Morita equivalence classes of Azumaya algebras over the variety Y . It is

known that this Brauer group Br(Y ) coincides with the equivalence classes of all principal

PGLk–bundles over Y , where two principal PGLk–bundles P and Q are identified if there

are two vector bundles V1 and V2 over Y satisfying the condition that the two principal

PGLk–bundles P ⊗ P(V1) and Q ⊗ P(V2) are isomorphic. The addition of two projective

bundles P and Q in the Brauer group Br(Y ) is defined to be the equivalence class of the

projective bundle P ⊗Q. The inverse of a projective bundle P in Br(Y ) is the equivalence

class of the dual projective bundle P ∗. (See [Gr1], [Gr2], [Gr3], [Mi], [Ga] for properties

of Brauer groups.) The cohomological Brauer group Br′(Y ) of the variety Y is the torsion

part of the étale cohomology group H2
et(Y, Gm). There is a natural injective homomorphism

Br(Y ) −→ Br′(Y ) which is in fact an isomorphism by a theorem of Gabber [dJ], [Hoo].

Proposition 2.1. The Brauer group Br(MX) is generated by the class cl(Px) ∈ Br(MX)

of the projective bundle Px defined in (2.2).
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Proof. Given any line bundle L0 on X , the morphism

MX = MX(r, L) −→ MX(r, L⊗ Lr
0) , E 7−→ E ⊗ L0

is an isomorphism. The natural isomorphism of P(E ⊗ L0) with P(E) produces an isomor-

phism between the universal projective bundles over X×MX(r, L) and X×MX(r, L⊗Lr
0).

Therefore, after tensoring with a line bundle L0 of sufficiently large degree, we may assume

that
d

r
> 2g − 1 .

Let MX denote the moduli space of semistable vector bundles E on X of rank r with∧r E = L.

The cotangent bundle of X will be denoted by KX . For any vector bundle E ∈ MX and

any point y ∈ X ,

H1(Y, E ⊗OX(−y)) = H0(Y, E∗ ⊗KX ⊗OX(y))
∗ = 0

because degree(E∗ ⊗KX ⊗ OX(y)) < 0 and E∗ ⊗KX ⊗ OX(y) is semistable. So from the

long exact sequence of cohomologies associated to the short exact sequence

0 −→ E ⊗OX(−y) −→ E −→ Ey −→ 0

it follows that the evaluation homomorphism H0(X, E) −→ Ey is surjective; hence E is

generated by its global sections.

Take any E ∈ MX . Since the vector bundle E is generated by its global sections, there

is a short exact sequence

0 −→ O
⊕(r−1)
X −→ E −→

∧r

E = L −→ 0 . (2.3)

This short exact sequence does not split because E is semistable and degree(L) > 0. All

such nontrivial extensions are parameterized by

P(H1(X,Hom(L,O
⊕(r−1)
X ))∗) = P((H1(X,L∗)∗ ⊗k k

⊕(r−1)) = P((H1(X,L∗)⊕(r−1))∗) .

The standard action of GL(r − 1, k) on k⊕(r−1) produces an action of GL(r − 1, k) on the

projective space P((H1(X,L∗)⊕(r−1))∗). The moduli space MX is the geometric invariant

theoretic quotient

P((H1(X,L∗)r−1)∗)//GL(r − 1, k) = P((H1(X,L∗)r−1)∗)//PGL(r − 1, k) = MX

(see [Ne], [DN]).

The tautological line bundle OP((H1(X,L∗)r−1)∗)(1) on P((H1(X,L∗)r−1)∗) will be denoted

by L0. Let

p1 : X×P((H1(X,L∗)r−1)∗) −→ X , p2 : X×P((H1(X,L∗)r−1)∗) −→ P((H1(X,L∗)r−1)∗)

be the natural projections. There is a universal extension over X × P((H1(X,L∗)r−1)∗)

0 −→ (p∗1O
r−1
X )⊗ p∗2L0 −→ E −→ p∗1L −→ 0 . (2.4)
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Let U ⊂ P((H1(X,L∗)r−1)∗) be the subset defined by all points t ∈ P((H1(X,L∗)r−1)∗)

such that the vector bundle E|X×{t} is stable. This subset U is nonempty Zariski open. Let

θ : U −→ U//PGL(r − 1, k) = MX (2.5)

be the quotient map. Consider the action of PGL(r−1, k) on X×P((H1(X,L∗)r−1)∗) given

by the trivial action on X and the above action of P((H1(X,L∗)r−1)∗). This action lifts to an

action of PGL(r − 1, k) on P(E). The corresponding geometric invariant theoretic quotient

P := (P(E)|X×U)//PGL(r − 1, k)

is the universal projective bundle on X ×MX (see (2.1)).

Consider the map

F := IdX × f : X × Px −→ X ×MX , (2.6)

where f is the projection in (2.2). We will construct a vector bundle

V −→ X ×Px

with the property that P(V) = F ∗P.

Let Ex := E|{x}×U −→ U be the vector bundle obtained by restricting E in (2.4) to

{x} × U . Let

Q := P(Ex)
β′

−→ U

be the corresponding projective bundle. Define

β := IdX × β ′ : X ×Q −→ X × U ,

and consider the pulled back vector bundle

Ẽ := (β∗E)⊗ (q∗2OQ(−1)) −→ X ×Q ,

where q2 : X ×Q −→ Q is the natural projection, and

OQ(1) −→ P(Ex) = Q

is the tautological line bundle. For the natural action of GL(r − 1, k) on Ẽ , the center Gm

of GL(r− 1, k) acts trivially on Ẽ . Consequently, the geometric invariant theoretic quotient

V := Ẽ//GL(r − 1, k)−→X × (Q//GL(r − 1, k)) = X × Px

is a vector bundle. It is straight-forward to check that

• P(V) = F ∗P, where F is the map in (2.6), and

• for each point y ∈ Px, the vector bundle V|X×{y} on X lies in the isomorphism class

of vector bundles associated to the point f(y) ∈ MX , where f is defined in (2.2).

Let B : X×Px −→ Px be the natural projection. Consider the direct imageB∗V −→ Px.

Let Z ⊂ Px be a nonempty Zariski open subset such that the restriction (B∗V)|Z is a trivial

vector bundle. Fix a trivialization of (B∗V)|Z . Take a point y0 ∈ Z and choose r−1 linearly

independent sections

s1, · · · , sr−1 ∈ H0(X × {y0}, V|X×{y0})

such that the coherent subsheaf of V|X×{y0} generated by s1, · · · , sr−1 is a subbundle of

V|X×{y0} of rank r − 1; we note that from (2.3) it follows immediately that such r − 1
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linearly independent sections exist. Extend each si to a section s̃i of V|X×Z using the above

trivialization of (B∗V)|Z . There is a Zariski open subset Z ′ ⊂ Z containing y0 such that the

coherent subsheaf of V|X×Z generated by s̃1, · · · , s̃r−1 is a subbundle of V|X×Z′ of rank r−1.

Note that this subbundle over X ×Z ′ is trivial and a trivialization is given by the images of

s̃1, · · · , s̃r−1. Therefore, on X × Z ′, we have a short exact sequence of vector bundles

0 −→ O
⊕(r−1)
X×Z′ −→ V|X×Z′ −→ L′ −→ 0 ,

where L′ is a line bundle on X × Z ′. Considering the top exterior products it follows that

for each point y ∈ Z ′, the restriction L′|X×{y} is isomorphic to the line bundle L. Now from

the seesaw theorem (see [Mu, p. 51, Corollary 6]) it follows that there is a line bundle L′′

on Z ′ such that the line bundle L′ ⊗ B∗L′′ on X × Z ′ is isomorphic to the pullback of L to

X ×Z ′. We may trivialize L′′ over suitable nonempty Zariski open subsets of Z ′. Therefore,

it follows that there is a nonempty Zariski open subset

ι : W →֒ Z ′ ⊂ Px (2.7)

such that the restriction L′|X×W is isomorphic to the pullback of L to X ×W.

Consequently, there is a morphism

ϕ : W −→ U ⊂ P((H1(X,L∗)r−1)∗)

such that the following diagram is commutative

W
ϕ

−→ Uyι
yθ

Px
f

−→ MX

(2.8)

where θ, ι and f are the morphisms in (2.5), (2.7) and (2.2) respectively.

The codimension of the complement

P((H1(X,L∗)r−1)∗) \ U ⊂ P((H1(X,L∗)r−1)∗)

is at least two. To prove this, note that Pic(U) = Z [DN, p. 89, Proposition 7.13] (here

we need the assumption that g ≥ 3); this immediately implies that the codimension of

the complement U c is at least two. Since the Brauer group of a projective space is zero, in

view of this codimension estimate, it follows from the “Cohomological purity” [Mi, p. 241,

Theorem VI.5.1] (it also follows from [Gr1, p. 292–293]) that

Br(U) = 0 . (2.9)

From the commutativity of (2.8) we conclude that the pullback homomorphism

ι∗ ◦ f ∗ = (f ◦ ι)∗ : Br(MX) −→ Br(W)

coincides with the homomorphism ϕ∗ ◦ θ∗ : Br(MX) −→ Br(W). On the other hand, from

(2.9) we know that ϕ∗ ◦ θ∗ = 0. Hence

ι∗ ◦ f ∗ = 0 .
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On the other hand, the homomorphism

ι∗ : Br(Px) −→ Br(W)

is injective because W is a Zariski open dense subset of Px (see [Mi, p. 142, Theorem 2.5]).

Consequently,

f ∗ : Br(MX) −→ Br(Px)

is the zero homomorphism. On the other hand, the kernel of the above homomorphism f ∗ is

generated by the class of Px [Ga, p. 193, Theorem 2]. Therefore, we conclude that Br(MX)

is generated by the class of Px. This completes the proof. �

We will denote the integer g.c.d.(r, d) by δ.

Lemma 2.2. The order of the Brauer class cl(Px) ∈ Br(MX) is δ.

Proof. Let M̃X = M̃X(r, L) be the moduli stack of pairs of the form (E, ξ), where E is

a stable vector bundle over X of rank r and ξ :
∧r E −→ L is an isomorphism. Let µr

denote the kernel of the homomorphism

Gm −→ Gm , z 7−→ zr .

The natural morphism

γ : M̃X −→ MX

makes M̃X a µr–gerbe over MX . Let

c0 ∈ H2(MX , µr)

be the class of this µr–gerbe. The Brauer class

cl(Px) ∈ Br(MX) = H2(MX , Gm)

coincides with the image of c0 under the homomorphism

η : H2(MX , µr) −→ H2(MX , Gm)

given by the inclusion of µr in Gm.

There is a short exact sequence

0 −→ Pic(MX)
γ∗

−→ Pic(M̃X)
ν

−→ Hom(µr, Gm) = Z/rZ
α

−→ Br(MX) (2.10)

[BH, p. 232, Lemma 4.4], where ν sends a line bundle on the µr–gerbe M̃X to the weight

associated to the action of µr on it. The image

α(1) ∈ Br(MX) = H2(MX , Gm)

coincides with the image of the class of the µr–gerbe M̃X under the above homomorphism

η. From this it follows that

α(1) = cl(Px) (2.11)

because cl(Px) also coincides with the image of the class of the µr–gerbe M̃X under the

above homomorphism η.
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From [Hof, p. 1311, Lemma 3.6], [Hof, p. 1311, Lemma 3.3] and [Hof, p. 1310, Theorem

3.1] it follows that

Z/image(ν) = Z/δZ ,

where ν is the homomorphism in (2.10). Therefore, from (2.10) we conclude that the order

of α(1) ∈ Br(MX) is δ. Now the lemma follows from (2.11). �

Combining Proposition 2.1 and Lemma 2.2 we have:

Theorem 2.3. The Brauer group Br(MX) is cyclic of order δ = g.c.d.(r, d). The group

Br(MX) is generated by the class cl(Px) ∈ Br(MX) of the projective bundle Px defined in

(2.2).
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