METRIZABLE QUOTIENTS OF C_p -SPACES

T. BANAKH, J. KĄKOL AND W. ŚLIWA

ABSTRACT. The famous Rosenthal-Lacey theorem asserts that for each infinite compact set K the Banach space C(K) admits a quotient which is either a copy of c or ℓ_2 . What is the case when the uniform topology of C(K) is replaced by the pointwise topology? Is it true that $C_p(X)$ always has an infinite-dimensional separable (or better metrizable) quotient? In this paper we prove that for a Tychonoff space X the function space $C_p(X)$ has an infinite-dimensional metrizable quotient if X either contains an infinite discrete C^* -embedded subspace or else X has a sequence $(K_n)_{n \in \mathbb{N}}$ of compact subsets such that for every n the space K_n contains two disjoint topological copies of K_{n+1} . Applying the latter result, we show that under \Diamond there exists a zero-dimensional Efimov space K whose function space $C_p(K)$ has an infinite-dimensional metrizable quotient. These two theorems essentially improve earlier results of Kąkol and Sliwa on infinite-dimensional separable quotients of C_p -spaces.

1. INTRODUCTION

Let X be a Tychonoff space. By $C_p(X)$ and $C_c(X)$ we denote the space of real-valued continuous functions on X endowed with the pointwise and the compact-open topology, respectively.

The classic Rosenthal-Lacey theorem, see [21], [15], and [19], asserts that the Banach space C(K) of continuous real-valued maps on an infinite compact space K has a quotient isomorphic to c or ℓ_2 .

This theorem motivates the following natural question (first discussed in [18]):

Problem 1 (Kąkol, Sliwa). Does $C_p(K)$ admit an infinite-dimensional separable quotient for any infinite compact space K?

In particular, does $C_p(\beta\mathbb{N})$ admit an infinite-dimensional separable quotient (shortly SQ)? Our main theorem of [18, Theorem 4] showed that $C_p(K)$ has SQ for any compact space K containing a copy of $\beta\mathbb{N}$. Consequently, this theorem reduces Problem 1 to the case when K is an *Efimov space* (i.e. K is an infinite compact space that contains neither a non-trivial convergent sequence nor a copy of $\beta\mathbb{N}$). Although, it is unknown if Efimov spaces exist in ZFC (see [5], [6], [7], [8], [10], [11], [12], [14]) we showed in [18] that under \Diamond for some Efimov spaces K the function space $C_p(K)$ has SQ.

On the other hand, in [17] it was shown that $C_p(K)$ has an *infinite-dimensional separable* quotient algebra if and only if K contains an infinite countable closed subset. Hence $C_p(\beta \mathbb{N})$ lacks infinite-dimensional separable quotient algebras.

Clearly Problem 1 is motivated by Rosenthal-Lacey theorem, but one can provide more specific motivations. Indeed, although it is unknown whether $C_c(X)$ or $C_p(X)$ always has SQ, some partial results are known: If X is of pointwise countable type, then $C_c(X)$ has a quotient isomorphic to either $\mathbb{R}^{\mathbb{N}}$ or c or ℓ_2 , see [17, Corollary 22]. Also $C_c(X)$ has SQ provided $C_c(X)$

¹⁹⁹¹ Mathematics Subject Classification. 54C35, 54E35.

Key words and phrases. function space, quotient space, Efimov space, metrizable quotient.

is barrelled, [16]. Recall that all first countable spaces and all locally compact spaces are of pointwise countable type, see [9].

In [17, Corollary 11] we proved that for a fixed Tychonoff space X, if $C_p(X)$ has SQ, then also $C_c(X)$ has SQ. Conversely, if $C_c(X)$ has SQ and for every infinite compact $K \subset X$ the space $C_p(K)$ has SQ, then $C_p(X)$ has also SQ. Indeed, two cases are possible.

- (1) Every compact subset of X is finite. Then $C_p(X) = C_c(X)$ is barrelled and [16] applies to get that $C_p(X)$ has SQ.
- (2) X contains an infinite compact subset K. Then $C_p(K)$ has SQ (by assumption). Since the restriction map $f \to f|K, f \in C(X)$ is a continuous open surjection from $C_p(X)$ onto $C_p(K)$, the desired conclusion holds.

Let X be a Tychonoff space. First observe that each metrizable quotient of $C_p(X)$ is separable. Indeed, this follows from the separability of metizable spaces of countable cellularity and the fact that $C_p(X)$ has countable cellularity, being a dense subspace of \mathbb{R}^X , see [2].

Although Problem 1 is still left open, but being motivated by the above mentioned partial results one can formulate the following much stronger version of thi question.

Problem 2. For which Tychonoff spaces X the function space $C_p(X)$ admits a metrizable infinite-dimensional quotient?

This problem has a simple solution for Tychonoff spaces which are not pseudocompact. We recall that a Tychonoff space X is *pseudocompact* if each continuous real-valued function on X is bounded.

Proposition 1. For a Tychonoff space X the following conditions are equivalent:

- (1) X is not pseudocompact;
- (2) $C_{p}(X)$ has a subspace, isomorphic to $\mathbb{R}^{\mathbb{N}}$;
- (3) $C_p(X)$ has a quotient space, isomorphic to $\mathbb{R}^{\mathbb{N}}$;
- (4) $C_p(X)$ admits a linear continuous map onto $\mathbb{R}^{\mathbb{N}}$.

Proof. The implication $(1) \Rightarrow (2)$ is proved in Theorem 14 of [17] and $(2) \Rightarrow (3)$ follows from the complementability of $\mathbb{R}^{\mathbb{N}}$ in any locally convex space containing it, see [20, Corollary 2.6.5]. The implication $(3) \Rightarrow (4)$ is trivial. To see that $(4) \Rightarrow (1)$, observe that for a pseudocompact space X the function space $C_p(X)$ is σ -bounded, which means that it can be written as the countable union $C_p(X) = \bigcup_{n=1}^{\infty} \{f \in C_p(X) : \sup_{x \in X} |f(x)| \leq n\}$ of bounded subsets. Then the image of $C_p(X)$ under any linear continuous operator also is σ -bounded. On the other hand, the Baire Theorem ensures that the space $\mathbb{R}^{\mathbb{N}}$ is not σ -bounded. \Box

The main results of paper are the following two theorems giving two partial answers to Problem 2.

Theorem 1. If a pseudocompact Tychonoff space X contains an infinite discrete C^* -embedded subspace D, then the function space $C_p(X)$ has an infinite-dimensional metrizable quotient. More pricesely, for any sequence $(F_n)_{n=1}^{\infty}$ of non-empty, finite and pairwise disjoint subsets of D with $\lim_n |F_n| = \infty$ and the linear subspace

$$Z = \bigcap_{n=1}^{\infty} \{ f \in C_p(X) : \sum_{x \in F_n} f(x) = 0 \}$$

the quotient space $C_p(X)/Z$ is isomorphic to the subspace $\ell_{\infty} = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : \sup_n |x_n| < \infty\}$ of $\mathbb{R}^{\mathbb{N}}$. A subspace A of a topological space X is called C^* -embedded if each bounded continuous function $f: A \to \mathbb{R}$ has a continuous extension $\bar{f}: X \to \mathbb{R}$.

If a Tychonoff space X is compact, then X contains an infinite discrete C^* -embedded subspace if and only if X contains a copy of $\beta \mathbb{N}$. On the other hand, the space ω_1 is pseudocompact noncompact which does not contain C^* -embedded infinite discrete subspaces. Moreover, the space $\Lambda := \beta \mathbb{R} \setminus (\beta \mathbb{N} \setminus \mathbb{N})$ discussed in [13, 6P, p.97] is pseudocompact, noncompact and contains \mathbb{N} as a closed discrete C^* -embedded set.

Corollary 1. For any infinite discrete space D the space $C_p(\beta D)$ has a quotient space, isomorphic to the subspace ℓ_{∞} of $\mathbb{R}^{\mathbb{N}}$.

Theorem 1 and Proposition 1 yield immediately

Corollary 2. For any Tychonoff space X containing a C^* -embedded infinite discrete subspace, the function space $C_p(X)$ has an infinite-dimensional metrizable quotient, isomorphic to $\mathbb{R}^{\mathbb{N}}$ or ℓ_{∞} .

Besides the subspace ℓ_{∞} of $\mathbb{R}^{\mathbb{N}}$, the following corollary of Theorem 1 involves also the subspace $c_0 := \{(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \lim_{n \to \infty} x_n = 0\}$ of $\mathbb{R}^{\mathbb{N}}$.

Corollary 3. If a compact Hausdorff space X is not Efimov, then its function space $C_p(X)$ has a quotient space, isomorphic to the subspaces ℓ_{∞} or c_0 in $\mathbb{R}^{\mathbb{N}}$.

Proof. The space X, being non-Efimov, contains either an infinite converging sequence or a copy of $\beta \mathbb{N}$. In the latter case X contains an infinite discrete C^* -embedded subspace and Theorem 1 implies that $C_p(X)$ has a quotient space, isomorphic to $\ell_{\infty} \subset \mathbb{R}^{\mathbb{N}}$. If X contains a sequence $(x_n)_{n \in \mathbb{N}}$ of pairwise distinct points that converges to a point $x \in X$, then for the compact subset $K := \{x\} \cup \{x_n\}_{n \in \mathbb{N}}$ of X the function space $C_p(K)$ is isomorphic to $c_0 \subset \mathbb{R}^{\mathbb{N}}$ and is complemented in $C_p(X)$, see [1, Theorem 1, p.130, Proposition 2, p.128].

We prove also the following theorem which will be applied for Example 1 below.

Theorem 2. For a Tychonoff space X the space $C_p(X)$ has a metrizable infinite-dimensional quotient if there exists a sequence $(K_n)_{n \in \omega}$ of non-empty compact subsets of X such that for every $n \in \omega$ the compact set K_n contains two disjoint topological copies of K_{n+1} .

We do not know if in Theorem 2 the obtained quotient is isomorphic to ℓ_{∞} or c_0 . Example 1 below provides an Efimov space K (under \Diamond) for which Theorem 2 applies.

Example 1. Under \Diamond there exists a Efimov space K whose function space $C_p(K)$ has a metrizable infinite-dimensional quotient.

Proof. De la Vega [4, Theorem 3.22] (we refer also to [3]) constructed under \diamond a compact zero-dimensional hereditary separable space K (hence not containing a copy of $\beta \mathbb{N}$) such that:

- (i) K does not contain non-trivial convergent sequences.
- (ii) K has a base of clopen pairwise hemeomorphic sets.

It is easy to see that K admits a sequence (K_n) of infinite compact subsets such that each K_n contains two disjoint subsets homeomorphic to K_{n+1} ; therefore by Theorem 2 the space $C_p(K)$ has the desired property.

As the space K from Example 1 does not contain $\beta \mathbb{N}$, the assumption of Theorem 1 is not satisfied. Note that in [18, Example 17] we provided (again under \Diamond) an example of an Efimov space K for which Theorem 2 cannot be applied.

2. Proof of Theorem 1

Let D be an infinite discrete C^{*}-embedded subspace of a pseudocompact Tychonoff space X. Choose any sequence $(F_n)_{n\in\mathbb{N}}$ of non-empty, finite and pairwise disjoint subsets of D with $\lim_{n\to\infty} |F_n| = \infty$.

For every $n \in \mathbb{N}$ consider the probability measure $\mu_n = \frac{1}{|F_n|} \sum_{x \in F_n} \delta_x$, where δ_x is the Dirac measure concentrated at x.

The pseudocompactness of the space X guarantees that the linear continuous operator

$$T: C_p(X) \to \ell_\infty \subset \mathbb{R}^{\mathbb{N}}, \ T: f \mapsto (\mu_n(f))_{n \in \mathbb{N}}$$

is well-defined.

We claim that the operator T is open. Given a neighborhood $U \subset C_p(X)$ of zero, we need to check that T(U) is a neighborhood of zero in ℓ_{∞} . We can assume that U is of the basic form

$$U := \{ f \in C_p(X) : \max_{x \in E} |f(x)| < \varepsilon \}$$

for some finite set $E \subset X$ and some $\varepsilon > 0$.

Choose a number $m \in \mathbb{N}$ such that $\inf_{k>m} |F_k| \ge 2(|E|+1)$. We claim that T(U) contains the open neighborhood

$$V := \{ (y_k)_{k=1}^\infty \in \ell_\infty : \max_{k \le m} |x_k| < \varepsilon \}$$

of zero in $\ell_{\infty} \subset \mathbb{R}^{\mathbb{N}}$.

Fix any sequence $(y_k)_{k=1}^{\infty} \in V$. Choose any partition \mathcal{P} of the set $D \setminus \bigcup_{k=1}^{m} F_k$ into $|\mathcal{P}| = |E| + 1$ pairwise disjoint sets such that for every $P \in \mathcal{P}$ and k > m the intersection $P \cap F_k$ has cardinality

$$|P \cap F_k| \ge \frac{|F_k|}{|E|+1} - 1 \ge 1.$$

Since the discrete subspace D is C^* -embedded in X, the sets in the partition \mathcal{P} have pairwise disjoint closures in X. Taking into account that $|\mathcal{P}| > |E|$, we can find a set $P \in \mathcal{P}$ whose closure \overline{P} is disjoint with E.

Consider the function $f: S \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} y_k & \text{if } x \in F_k \text{ for some } k \le m; \\ y_k \cdot \frac{|F_k|}{|F_k \cap P|} & \text{if } x \in P \cap F_k \text{ for some } k > m; \\ 0 & \text{otherwise.} \end{cases}$$

The function f is bounded because $\sup_{k \in \mathbb{N}} |y_k| < \infty$ and

$$\sup_{k>m} \frac{|F_k|}{|F_k \cap P|} \le \sup_{k>m} \frac{|F_k|}{\frac{|F_k|}{|E|+1} - 1} = \sup_{k>m} \frac{1}{\frac{1}{|E|+1} - \frac{1}{|F_k|}} \le \frac{1}{\frac{1}{|E|+1} - \frac{1}{2(|E|+1)}} = 2(|E|+1) < \infty.$$

As the space D is discrete and C^* -embedded into X, the bounded function f has a continuous extension $\overline{f} : X \to \mathbb{R}$. Since the space X is Tychonoff, there exists a continuous function $\lambda : X \to [0,1]$ such that $\lambda(\overline{D}) = \{1\}$ and $\lambda(x) = 0$ for all $x \in E \setminus \overline{D}$. Replacing \overline{f} by the product $\overline{f} \cdot \lambda$, we can assume that $\overline{f}(x) = 0$ for all $x \in E \cap \overline{D}$. We claim that $\overline{f} \in U$.

Given any $x \in E$ we should prove that $|\bar{f}(x)| < \varepsilon$. This is clear if $x \notin \bar{D}$. If $x \in F_k$ for some $k \leq m$, then $|\bar{f}(x)| = |y_k| < \varepsilon$ as $y \in V$. If $x \in \bar{D} \setminus \bigcup_{k=1}^m F_k$, then $x \in \bar{Q}$ for some set $Q \in \mathcal{P} \setminus \{P\}$. The definition of the function f ensures that $f|Q \equiv 0$ and then $|f(x)| = 0 < \varepsilon$. This completes the proof of the inclusion $\overline{f} \in U$.

The definition of the function f ensures that $\mu_k(\bar{f}) = \mu_k(f) = y_k$ for all $k \in \mathbb{N}$. So, $(y_k)_{k=1}^{\infty} = T(f) \in T(U)$ and $V \subset T(U)$. This completes the proof of the openness of the operator $T : C_p(X) \to \ell_{\infty} \subset \mathbb{R}^{\mathbb{N}}$. Since the kernel of the open operator T equals to

$$Z = \bigcap_{n=1}^{\infty} \{ f \in C_p(X) : \mu_n(f) = 0 \},\$$

the quotient space $C_p(X)/Z$ is isomorphic to the subspace $T(X) = \ell_{\infty}$ of $\mathbb{R}^{\mathbb{N}}$.

3. Proof of Theorem 2

Let X be a Tychonoff space and $(K_n)_{n \in \omega}$ be a sequence of compact subsets of X such that for every $n \in \omega$ there are two embeddings

$$\ddot{e}_{n,0}, \ddot{e}_{n,1}: K_{n+1} \to K_n$$

such that $\ddot{e}_{n,0}(K_{n+1}) \cap \ddot{e}_{n,1}(K_{n+1}) = \emptyset$. Replacing the sequence $(K_n)_{n \in \omega}$ by the sequence $(K_{2n})_{n \in \omega}$, if necessary, we can assume that for any $n \in \omega$ the set $K_n \setminus (\ddot{e}_{n,0}(K_{n+1}) \cup \ddot{e}_{n,1}(K_{n+1}))$ is not empty and hence contains a point \dot{x}_n .

Let $2^{\leq n} := \bigcup_{k \leq n} 2^k$ and $2^{\leq n} := \bigcup_{k \leq n} 2^k$ for $n \in \omega$, where 2^k is the family of all binary sequences of length k, that is

For a binary sequence $s = (s_0, \ldots, s_{n-1}) \in 2^n$ by |s| we denote the length n of the sequence s; for $s = \emptyset \in 2^0$ we put |s| = 0.

Let $\hat{s}i = (i)$ if $s = \emptyset \in 2^0$, $i \in \{0, 1\}$, and $\hat{s}i = (s_0, \dots, s_{n-1}, i)$ if $s = (s_0, \dots, s_{n-1}) \in 2^n$, $1 \le n < \omega$, $i \in \{0, 1\}$. Similarly we define $\hat{s}p \in 2^{|s|+|p|}$ for all $s, p \in 2^{<\omega}$.

Consider the family of embeddings

$$\left(e_s: K_{|s|} \to X\right)_{s \in 2^{<\omega}}$$

defined by the recursive formula: $e_{\emptyset}: K_0 \to X$ is the identity embedding of K_0 into X and

$$e_{si} = e_s \circ \ddot{e}_{|s|,i}$$
 for $s \in 2^{<\omega}$ and $i \in \{0,1\}$.

For every $s \in 2^{<\omega}$, let $K_s := e_s(K_{|s|})$ and $x_s := e_s(\dot{x}_{|s|}) \in K_s$. If $n \in \omega, i \in \{0, 1\}, s \in 2^n$ and $t = s\hat{i} \in 2^{n+1}$, then $K_t \subset K_s$; indeed,

$$K_t = K_{\hat{s}i} = e_{\hat{s}i}(K_{n+1}) = e_s(\ddot{e}_{n,i}(K_{n+1})) \subset e_s(K_n) = K_s.$$

If $n \in \omega$ and $s, t \in 2^n$ with $s \neq t$, then $K_s \cap K_t = \emptyset$. Indeed, for n = 0 it is obvious. Assume that it is true for some $n \in \omega$. Let $s, t \in 2^n$ and $i, j \in \{0, 1\}$ with $s i \neq t j$. If $s \neq t$, then

$$K_{\hat{s}i} \cap K_{ti} \subset K_s \cap K_t = \emptyset.$$

If s = t, then $i \neq j$, so $K_{s\hat{i}} \cap K_{t\hat{j}} = K_{s\hat{i}} \cap K_{s\hat{j}} = e_s(\ddot{e}_{n,i}(K_{n+1})) \cap e_s(\ddot{e}_{n,j}(K_{n+1})) = \emptyset$ since e_s is injective and $\ddot{e}_{n,i}(K_{n+1}) \cap \ddot{e}_{n,j}(K_{n+1}) = \emptyset$. Thus for all $u, v \in 2^{n+1}$ with $u \neq v$ we have $K_u \cap K_v = \emptyset$.

If $n \in \omega, i \in \{0, 1\}$ and $t \in 2^n$, then

$$x_t = e_t(\dot{x}_n) \in e_t(K_n \setminus \ddot{e}_{n,i}(K_{n+1})) = e_t(K_n) \setminus e_t(\ddot{e}_{n,i}(K_{n+1})) = K_t \setminus e_{t\hat{i}}(K_{n+1}) = K_t \setminus K_{t\hat{i}}.$$

It follows that $x_t \notin K_s$ if $t, s \in 2^{<\omega}$ with $|t| < |s|$.

If
$$s, t, p \in 2^{<\omega}$$
 with $|s| = |t|$, then $e_s^{-1} \circ e_{s\hat{p}} = e_t^{-1} \circ e_{t\hat{p}}$ and
 $e_s^{-1}(x_{s\hat{p}}) = e_s^{-1}(e_{s\hat{p}}(\dot{x}_{|s|+|p|})) = e_t^{-1}(e_{t\hat{p}}(\dot{x}_{|t|+|p|})) = e_t^{-1}(x_{t\hat{p}})$

For every $n \in \omega$ let

$$\mu_n = 2^{-n} \sum_{s \in 2^n} \delta_{x_s}$$

be the uniformly distributed probability measure with the finite support $\{x_s : s \in 2^n\}$. Let

$$Z = \bigcap_{n \in \omega} \{ f \in C_p(X) : \mu_n(f) = 0 \}$$

The set $\{\mu_n : n \in \omega\}$ is linearly independent in the dual of the space $C_p(X)$, since $x_s \neq x_t$ for $s, t \in 2^{<\omega}$ with $s \neq t$. Thus the quotient space $C_p(X)/Z$ is infinite-dimensional.

We prove that this quotient space is metrizable.

Let $X_0 = \{x_s : s \in 2^{<\omega}\}$ and $K'_n = \bigcup_{s \in 2^n} K_s$ for $n \in \omega$. Clearly, (K'_n) is a decreasing sequence of compact subsets of K_0 and $X_0 \setminus K'_n \subset \{x_s : s \in 2^{<n}\}$ for any $n \in \omega$. The subset

$$K = X_0 \cup \bigcap_{n \in \omega} K'_n$$

of X is compact. Indeed, $\overline{X_0} = \overline{(X_0 \setminus K'_n)} \cup \overline{(X_0 \cap K'_n)} \subset X_0 \cup K'_n$ for any $n \in \omega$, so $\overline{X_0} \subset X_0 \cup \bigcap_{n \in \omega} K'_n$. Thus

$$\overline{K} = \overline{X_0} \cup \bigcap_{n \in \omega} K'_n = X_0 \cup \bigcap_{n \in \omega} K'_n = K \subset K_0,$$

so K is compact.

Consider the quotient map $q: C_p(X) \to C_p(X)/Z$. For every $n \in \omega$ consider the open neighborhood

$$V_n := \{ f \in C_p(X) : |f(x_s)| < 2^{-n} \text{ for each } s \in 2^{< n} \}$$

of zero in $C_p(X)$. We claim that $(q(V_n))_{n\in\omega}$ is a neighborhood basis at zero in the quotient space $C_p(X)/Z$.

Given any neighborhood $U \subset C_p(X)$ of zero, we need to find $n \in \omega$ such that $V_n + Z \subset U + Z$. Without loss of generality we can assume that U is of basic form

$$U = \{ f \in C_p(X) : \max_{x \in E} |f(x)| < \varepsilon \}$$

for some $\varepsilon > 0$ and some finite set $E \subset X$. Choose $n \in \omega$ so large that

- (1) $2^{-n} < \varepsilon;$
- (2) $2^{1-n}|E| < 1;$
- (3) $E \cap X_0 \subset \{x_s\}_{s \in 2^{< n}};$

We claim that $V_n \subset U + Z$. Given any function $f \in V_n$, we should write it as $f = u + \zeta$ where $u \in U$ and $\zeta \in Z$.

Consider the set $S = \{s \in 2^n : E \cap K_s \neq \emptyset\}$. The condition (2) ensures that $|S| \leq |E| \leq 2^{n-1}$. So, we can find an injective map $\xi : S \to 2^n \setminus S$. Now define the function $\zeta_0 : K \to \mathbb{R}$ by the formula

$$\zeta_0(x) = \begin{cases} f(x) & x \in K_s \cap K \text{ for some } s \in S; \\ -f \circ e_s \circ e_{\xi(s)}^{-1}(x) & \text{if } x \in K_{\xi(s)} \cap K \text{ for some } s \in S; \\ 0 & \text{otherwise.} \end{cases}$$

The function ζ_0 is continuous. Indeed, let $B_s = \{x_s\}$ for $s \in 2^{<n}$ and $B_s = K_s \cap K$ for $s \in 2^n$. Then $K = \bigcup_{s \in 2^{\leq n}} B_s$ and the sets $B_s, s \in 2^{\leq n}$, are compact and pairwise disjoint, so they are open and closed subsets of K. Since $\zeta_0 | B_s$ is continuous for any $s \in 2^{\leq n}$, then ζ_0 is continuous. As K is compact and E is finite, there exists $\zeta \in C_p(X)$ with $\zeta | K = \zeta_0$ and $\zeta(x) = f(x)$ for all $x \in E \setminus K$.

We prove that $\zeta \in Z$.

Let $m \in \omega$. If m < n and $t \in 2^m$, then $\zeta(x_t) = 0$, so $\mu_m(\zeta) = 0$ for m < n. If $m \ge n$, then

$$\sum_{t \in 2^m} \zeta(x_t) = \sum_{p \in 2^{m-n}} \sum_{s \in 2^n} \zeta(x_{\hat{s}p}) = \sum_{p \in 2^{m-n}} \left(\sum_{s \in S} \zeta(x_{\hat{s}p}) + \sum_{s \in S} \zeta(x_{\xi(s)p}) \right) =$$

$$= \sum_{p \in 2^{m-n}} \left(\sum_{s \in S} f(x_{\hat{s}p}) - \sum_{s \in S} f\left(e_s(e_{\xi(s)}^{-1}(x_{\xi(s)p}))\right) \right) =$$

$$= \sum_{p \in 2^{m-n}} \left(\sum_{s \in S} f(x_{\hat{s}p}) - \sum_{s \in S} f\left(e_s(e_s^{-1}(x_{\hat{s}p})))\right) \right) =$$

$$= \sum_{p \in 2^{m-n}} \left(\sum_{s \in S} f(x_{\hat{s}p}) - \sum_{s \in S} f(x_{\hat{s}p}) \right) = 0,$$

so $\mu_m(\zeta) = 0$ for $m \ge n$. Thus $\zeta \in \mathbb{Z}$.

Finally we prove that $f - \zeta \in U$. For $x \in E \setminus K$ we have $|f(x) - \zeta(x)| = 0 < \varepsilon$. Let $x \in E \cap K$. Then $x = x_t$ for some $t \in 2^{\leq n}$ or $x \in K_s$ for some $s \in S$. In the first case we have

$$|f(x) - \zeta(x)| = |f(x) - 0| < 2^{-n} < \varepsilon;$$

in the second case we get

$$|f(x) - \zeta(x)| = |f(x) - f(x)| = 0 < \varepsilon.$$

Thus $|f(x) - \zeta(x)| < \varepsilon$ for any $x \in E$, so $f - \zeta \in U$.

We have shown that the quotient space $C_p(X)/Z$ is infinite-dimensional and metrizable.

References

- [1] A. V. Arhangel'skii, General Topology III, Encyclopedia of Mathematical Sciences, 51, Springer, 1995.
- [2] A. V. Arhangel'skii, *Topological function spaces*, Math. Appl. 78, Kluwer Academic Publishers, Dordrecht, 1992.
- [3] De la R. Vega, Basic homogeneity properties in the class of zero-dimensional compact spaces, Topology Appl. 155 (2008), 225–232.
- [4] De la R. Vega, *Homogeneity properties on compact spaces*, Dissertaiones (2005) University of Wisconsin-Madison.
- [5] A. Dow, Efimov spaces and the splitting number, Topology Proc. 29 (2005), 105-113.
- [6] A. Dow, Compact sets without converging sequences in the random real model, Acta Math. Univ. Comenianae **76** (2007), 161-171
- [7] A. Dow, S. Shelah, An Efimov space from Martins Axiom, Houston J. Math. 39 (2013), 1423-1435.
- [8] B. Efimov, Subspaces of dyadic bicompacta, Doklady Akademiia Nauk USSR 185 (1969), 987990 (Russian);
 English transl., Soviet Mathematics. Doklady 10 (1969), 453456.
- [9] R. Engelking, General topology, Berlin 1989.
- [10] V.V. Fedorcuk, A bicompactum whose infinite closed subsets are all n-dimensional, Mathematics of the USSR. Sbornik 25 (1976), 37–57.
- [11] V.V. Fedorcuk, Completely closed mappings, and the consistency of certain general topology theorems with the axioms of set theory, Mathematics of the USSR. Sbornik **28** (1976), 3-33.

- [12] S. Geschke, The coinitialities of Efimov spaces, Set Theory and its Applications, Babinkostova et al., Editors, Contemporary Mathematics 533 (2011), 259–265.
- [13] L. Gillman, M. Jerison, Rings of Continuous Functions, Graduate Texts in Mathematics, Springer 1976.
- [14] P. Hart, Efimov's problem, Problems in Topology II Edited by E. Pearl, Pages (2007), 171–177.
- [15] W. B. Johnson, H. P. Rosenthal, On weak*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1975), 166–168.
- [16] J. Kąkol, S. A. Saxon and A. Tood, Barrelled spaces with(out) separable quotients, Bull. Aust. Math. Soc. 90 (2014), 295–303.
- [17] J. Kąkol, S. A. Saxon, Separable quotients in $C_c(X)$, $C_p(X)$ and their duals, Proc. Amer. Math. Soc. 145 (2017), 3829–3841.
- [18] J. Kąkol, W. Śliwa, Efimov spaces and the separable quotient problem for spaces $C_p(K)$, J. Math. Anal. App., 457, (2018), 104-113.
- [19] E. Lacey, Separable quotients of Banach spaces, An. Acad. Brasil. Ciènc. 44 (1972), 185–189.
- [20] P. Pérez Carreras, J. Bonet, Barrelled Locally Convex Spaces, North-Holland Mathematics Studies 131, North-Holland, Amsterdam, 1987.
- [21] H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L_p(\mu)$ to $L_r(\nu)$, J. Funct. Anal. 4 (1969), 176-214.

FACULTY OF MECHANICS AND MATHEMATICS, IVAN FRANKO NATIONAL UNIVERSITY OF LVIV, UNI-VERSYTETSKA ST. 1, LVIV 79000, UKRAINE 2, AND INSTITUTE OF MATHEMATICS, JAN KOCHANOWSKI UNIVERSITY IN KIELCE, UL. SWIĘTOKRZYSKA 15, 25-406 KIELCE, POLAND

E-mail address: t.o.banakh@gmail.com

FACULTY OF MATHEMATICS AND INFORMATICS. A. MICKIEWICZ UNIVERSITY 61-614 POZNAŃ, AND INSTITUTE OF MATHEMATICS CZECH ACADEMY OF SCIENCES, PRAGUE *E-mail address*: kakol@amu.edu.pl

FACULTY OF MATHEMATICS AND NATURAL SCIENCES, UNIVERSITY OF RZESZÓW 35-310 RZESZÓW, POLAND

E-mail address: sliwa@amu.edu.pl; wsliwa@ur.edu.pl