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Abstract

In this paper, we consider a Finsler sphere (M,F ) = (Sn, F ) with the dimension
n > 1 and the flag curvature K ≡ 1. The action of the connected isometry group
G = Io(M,F ) on M , together with the action of T = S1 shifting the parameter
t ∈ R/Z of the closed curve c(t), define an action of Ĝ = G × T on the free loop
space λM ofM . In particular, for each closed geodesic, we have a Ĝ-orbit of closed
geodesics. We assume the Finsler sphere (M,F ) described above has only finite
orbits of prime closed geodesics. Our main theorem claims, if the subgroup H of
all isometries preserving each close geodesic has a dimension m, then there exists
m geometrically distinct orbits Bi of prime closed geodesics, such that for each i,
the union Bi of geodesics in Bi is a totally geodesic sub-manifold in (M,F ) with
a non-trivial Ho-action. This theorem generalizes and slightly refines the one in a
previous work, which only discussed the case of finite prime closed geodesics. At
the end, we show that, assuming certain generic conditions, the Katok metrics,
i.e. the Randers metrics on spheres with K ≡ 1, provide examples with the sharp
estimate for our main theorem.

Mathematics Subject Classification (2000): 22E46, 53C22, 53C60.
Key words: Katok metric, Randers sphere, constant flag curvature, orbit of

closed geodesics, totally geodesic sub-manifold, fixed point set.

1 Introduction

In the recent work [6] of R. L. Bryant, P. Foulon, S. Ivanov, V. S. Matveev and W. Ziller,
the authors classified Finsler spheres with constant flag curvature K ≡ 1 according to
the behavior of geodesics. The Katok metric [14] provides the most important key
model for their classification. The celebrated Anosov Conjecture [1], claiming the
minimal number of prime closed geodesics on a Finsler sphere (Sn, F ) is 2[n+1

2 ], was
based on the discovery of Katok metrics with only finite prime closed geodesics. There
are many works using Morse theory and index theory to study the closed geodesics
and Anosov Conjecture in Finsler geometry, assuming a pinch condition for the flag
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curvature, non-degenerating property for all closed geodesics, or using the speciality of
low dimensions. See for example [7][11][12][13][15][18][19]. From the geometrical point
of view, it was much later that people noticed that Katok metrics are Randers metrics
on spheres with constant flag curvature [16]. D. Bao, C. Robles and Z. Shen provided
a complete classification for all Randers metrics with constant flag curvature[9]. The
classification for the non-Randers case is still widely open. R. L. Bryant provided many
important examples of Finsler spheres with K ≡ 1 [2][3][4].

However, one of the most important technique in [6] is from Lie theory. The authors
considered the antipodal map ψ for a Finsler sphere with K ≡ 1 (see [6][17] or Section
2 for its definition). It is a Clifford Wolf translation in the center of the isometry group
I(M,F ). When ψ has an infinite order, after taking closure, it can be used to generate
a closed Abelian subgroup of isometries with a positive dimension.

For nonzero Killing vector fields on a Finsler sphere with K ≡ 1, we have the fol-
lowing totally geodesic technique. The common zero point set of Killing vector fields,
or more generally the fixed point set of isometries, provide closed totally geodesic sub-
manifolds. In particular, when the dimension of such a sub-manifold is one, it is a
reversible geodesic, and when the dimension is even bigger, it is a Finsler sphere inher-
iting the curvature property and geodesic property from the ambient space. We can use
this key observation to set up an inductive argument, when studying the geodesics on
(Sn, F ) with n > 2 and K ≡ 1, and generalizing some results in [6] to high dimensions.

For example, in [20], we have proved the following lower bound estimate for the
number of reversible prime closed geodesics in Finsler spheres with constant flag cur-
vature.

Theorem 1.1 Let (M,F ) = (Sn, F ) with n > 1 be a Finsler sphere with K ≡ 1 and
only finite prime closed geodesics. Then the number of geometrically distinct reversible
closed geodesics is at least dim I(M,F ).

Recall that a geodesic c(t) with constant speed is called reversible if c(−t) also
provides a geodesic with constant speed after a re-parametrization by the new arc
length. Two geodesics are geometrically distinct iff they are different subsets.

The assumption of only finite prime closed geodesics imposes a strong restriction
on Io(M,F ), which can only be a torus. A lot of important examples are excluded,
for example, the standard unit spheres and the homogeneous non-Riemannian Randers
spheres with K ≡ 1. So if we want more possibility for Io(M,F ), the geodesic condition
could be replaced by the assumption that there exist only finite orbits of prime closed
geodesics, or Assumption (F) for simplicity. See Section 3 for its precise definition and
detailed discussion.

The main purpose of this paper is to prove the following theorem.

Theorem 1.2 Let (M,F ) = (Sn, F ) be a Finsler sphere satisfying n > 1, K ≡ 1
and Assumption (F). Denote H the subgroup of G = Io(M,F ) preserving each closed
geodesics, Ho its identity component and m = dimH. Then there exist at least m
geometrically distinct orbits Bi’s of prime closed geodesics such that each union Bi of
geodesics in Bi is a totally geodesic sub-manifold in M with a non-trivial Ho-action.
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When (M,F ) has only finite prime closed geodesics, then Assumption (F) is satis-
fied, Ho = G = Io(M,F ), and each orbit of closed geodesics consists of only one closed
geodesic. So Theorem 1.2 generalizes Theorem 1.1. It even slightly refines Theorem 1.1
by claiming the totally geodesic Bi’s found have non-trivial Ho-actions. So if the com-
mon zero point of Ho has a positive dimension, it provides one more totally geodesic
Bi, which is either a reversible closed geodesic which length is a rational multiple of π,
or isometric to a standard unit sphere.

This paper is organized as following. In Section 2, we recall some fundamental
geometric properties of Finsler spheres with K ≡ 1, discussing their antipodal maps
and totally geodesic sub-manifolds. In Section 3, we define Assumption (F), i.e. the as-
sumption of only finite prime closed geodesics. In Section 4, we introduce the subgroup
H of isometries which preserves each closed geodesics. In Section 5, we prove Theorem
1.2 by induction. In Section 6, we discuss the Katok metrics, and show that in some
cases they provides examples for Theorem 1.2, for which the estimate in Theorem 1.2
is sharp.

Acknowledgement. The author would like to thank sincerely Chern Institute of
Mathematics, Nankai University, and Shaoqiang Deng for the hospitality during the
preparation for this paper. The author also thanks Yuri G. Nikonorov and Huagui
Duan for helpful discussions.

2 Preliminaries: from antipodal map to Killing vector
field

Let (M,F ) = (Sn, F ) be a Finsler sphere satisfying the dimension n > 1 and the flag
curvature K ≡ 1. Denote G = Io(M,F ) the connected isometry group, i.e. the identity
component of the isometry group I(M,F ) of (M,F ).

We briefly recall the definition of the exponential map [5] and the antipodal map ψ
[6] [17] for (M,F ).

For any x ∈ M and nonzero y ∈ TxM , the exponential map Expx : TxM → M is
defined by Expx(y) = c(1) where c(t) is the constant speed geodesic with c(0) = x and
ċ(0) = y. When y = 0 ∈ TxM , we define Expx(0) = x. Notice that Expx is C1 at y = 0
and C∞ elsewhere.

The discussion for the Jacobi fields and conjugation points when K ≡ 1 indicates
Expx maps the sphere

SF
o (π) = {y ∈ TxM |F (y) = π} ⊂ TxM

to a single point x∗ ∈M . The map from x to x∗ is an isometry of (M,F ) in the center
of I(M,F ) [6]. Further more, it is easy to see that ψ is a Clifford Wolf translation
for the (possibly non-reversible) distance dF (·, ·) defined by the Finsler metric F . We
will call it the antipodal map and always denote it as ψ. It is a generalization for the
antipodal map for standard unit spheres but may not be an involution any more.

The above description immediately proves that any connected and simply connected
Finsler manifold (M,F ) with dimM > 1 and K ≡ 1 is homeomorphic to a sphere. A
more careful discussion with the local charts shows that the homeomorphism in this
statement can be refined to be a diffeomorphism, and the argument is valid not only
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for M , but also any closed connected totally geodesic sub-manifold N with dimN > 1,
i.e. we have the following lemma (Lemma 3.2 in [20]).

Lemma 2.1 Let (M,F ) be a connected and simply connected Finsler manifold with
K ≡ 1 and N a closed connected totally geodesic sub-manifold with dimN > 1. Then
both M and N are diffeomorphic to standard spheres, and N is an imbedded sub-
manifold in M .

The fixed point set for a family of isometries in I(M,F ) is a closed, possibly dis-
connected, totally geodesic sub-manifold. We have the following lemma (Lemma 3.5 in
[20]), indicating the connectedness of N , when its dimension is positive.

Lemma 2.2 Let (M,F ) = (Sn, F ) be a Finsler sphere with n > 1 and K ≡ 1, and N
the fixed point set of a family of isometries of (M,F ). Then N must satisfy one of the
following

(1) N is a two-points ψ-orbit, i.e. N = {x′, x′′} with dF (x
′, x′′) = dF (x

′′, x′) = π.

(2) N is a reversible closed geodesic.

(3) (N,F |N ) is a Finsler sphere with dimN > 1 and K ≡ 1.

The space of Killing vector fields can be viewed as the Lie algebra of I(M,F ). So
the common zero set of a family of Killing vector fields on (M,F ) is a special case of
fixed point sets for isometries.

In later discussions, we will need the following two lemmas for Killing vector fields.

Lemma 2.3 Assume that X is a Killing vector field of the Finsler space (M,F ), f(·) =
F (X(·)) and f(x) > 0 at x ∈M . Then the integration curve of X passing x is a geodesic
iff x is a critical point of f(·).

This is a direct corollary of Lemma 3.1 in [10].

Lemma 2.4 Assume that c = c(t) is a geodesic of positive constant speed on the Finsler
space (M,F ). Then restricted c(t), any Killing vector field X of (M,F ) satisfies

〈X(c(t)), ċ(t)〉Fċ(t) ≡ const, (2.1)

where 〈u, v〉Fy = giju
ivj for u, v, y ∈ TxM and y 6= 0 is the inner product defined by the

fundamental tensor.

Proof. Whenever the value of X is linearly independent of ċ(t), we can prove (2.1) by
choosing a special local chart, such that c = c(t) can be presented as x1 = t and xi = 0
for i > 1, and X = ∂x2 . Because X is Killing vector field, F (x, y) is independent of
x2. The condition that c = c(t) is a geodesic implies that for the coefficients Gi of the
geodesic spray, we have

Gi(c(t), ċ(t)) =
1

4
gil([F 2]xmyly

m − [F 2]xl)

=
1

4
gil([F 2]x1yl − [F 2]xl) = 0.
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In particular, on the geodesic c = c(t), we have

〈X(c(t)), ċ(t)〉Fċ(t) =
1

2
[F 2]x1y2 =

1

2
[F 2]x2 = 0,

which proves the lemma in this case.
When X is tangent to c = c(t) for t in an interval I, we can easily get (2.1) for

t ∈ I.
Summarizing this two cases and using the continuity, we have proved (2.1) along

the whole geodesic c = c(t).

3 Orbit of closed geodesics and Assumption (F)

Now we define Assumption (F), i.e. the condition that (M,F ) has only finite orbits of
prime closed geodesics. In later discussion, we will always assume it to be satisfied by
(M,F ) unless otherwise specified.

The free loop space ΛM of all piecewise smooth path c = c(t) with t ∈ R/Z
(sometimes we will simply denote it as c or γ) admits the natural actions of Ĝ = G×T
such that

((g, t′) · c)(t) = g · c(t+ t′), ∀t.
So for each closed geodesic γ of constant speed, we have an Ĝ-orbit Ĝ · γ of closed
geodesics with the same speed. The geodesic c(t) (with t ∈ R/Z) is prime, i.e.

min{t|t > 0 and c(t) = c(0)} = 1,

iff all the closed geodesics in Ĝ · c are prime.

Definition 3.1 We say (M,F ) has only finite orbits of prime closed geodesics, or
simply it satisfies Assumption (F), if all the prime closed geodesics of positive constant
speed can be listed as a finite set of Ĝ-orbits, Bi = Ĝ · γi, 1 ≤ i ≤ k.

In Definition 3.1, we can equivalently list all the closed geodesics of constant speed
c(t) with t ∈ R/Z as Bj

i = Ĝ · γji , 1 ≤ i ≤ k, j ∈ N. The orbit Bi in Definition 3.1

coincides with B1
i , for each i. The closed geodesics γji is the one which rotates j-times

along the prime closed geodesic γi in Definition 3.1, i.e. if γi is presented as ci = ci(t),
then γji is ci,j(t) = ci(jt).

We denote Bi the union of the geodesics in Bi or Bj
i for any j ∈ N. Then we call Bj

i

and Bj′

i′ geometrically distinct (or geometrically the same), if Bi and Bi′ are different
subsets (or the same subsets, respectively) of M .

The Assumption (F) for the ambient space can be inherited by some totally geodesic
sub-manifolds, i.e. we have the following lemma.

Lemma 3.2 Let (M,F ) be any closed compact Finsler manifold satisfying Assumption
(F), φα with α ∈ A a family of isometries in the center of I(M,F ), and N the fixed
point set for all φα’s. Then each orbit of prime closed geodesic for (N,F |N ) is also
an orbit of prime closed geodesic for (M,F ). In particular, (N,F |N ) also satisfies
Assumption (F).
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Proof. The fixed point set N for the isometries φα with α ∈ A is a closed (possibly
disconnected) totally geodesic sub-manifold of (M,F ). Because each φα commutes with
all isometries of (M,F ), the fixed point set N for all φα’s is preserved by the action of
G = Io(M,F ). The restriction of G-action to N defines isometries in G′ = Io(N,F |N ).
Denote Ĝ′ = G′ × T . Then for each prime closed geodesic γ in N , Assumption (F)
implies that Ĝ′ · γ is a disjoint finite union of Ĝ-orbits. Both Ĝ′-orbits and Ĝ′-orbits
are compact and connected, so we get Ĝ′ · γ = Ĝ · γ, which proves the first claim. The
second claim follows immediately.

The effect of Assumption (F) can be seen from the behavior of the antipodal map
ψ. For example, when ψ has a finite order k, i.e. there exists a positive integer k, such
that

ψk = id, and ψi 6= id when 1 ≤ i < k,

we have the following lemma.

Lemma 3.3 Let (M,F ) = (Sn, F ) be a Finsler sphere satisfying n > 1, K ≡ 1 and
Assumption (F). Assume that the antipodal map ψ has a finite order k, then F must
be the Riemannian metric for a standard unit sphere.

Proof. Because ψ is a Clifford Wolf translation, and it has a finite order k, each
geodesic of (M,F ) is closed, and each prime closed geodesic admits a suitable multiple
such that the length of the resulting closed geodesic is kπ. By Assumption (F), the
subset B ⊂ ΛM of all closed geodesics with the length kπ can be listed as the disjoint
union of Bni

i = Ĝ · γni

i , 1 ≤ i ≤ k, where each γi is a prime closed geodesic. Obviously
B is connected and each Bni

i is compact, so we must have k = 1.
Then we prove (M,F ) is G-homogeneous. Assume conversely that it is not, we

consider a unit speed geodesic c(t), and the G-orbit N passing c(0), such that

〈ċ(0), Tc(0)N〉Fċ(0) = 0. (3.2)

Then by Lemma 2.4, for any Killing vector field X ∈ g, we have

〈ċ(t),X(c(t))〉Fċ(t) ≡ 0,

i.e. c(t) meets each G-orbit orthogonally in the sense of (3.2). This property is preserved
by Ĝ-actions. So its Ĝ-orbit can not exhaust all the geodesics, for example, those
which does not satisfy (3.2). This is a contradiction to our previous observation that
(M,F ) can only have one orbit of prime closed geodesics, and it proves that (M,F ) is
homogeneous Finsler sphere.

Finally, we prove (M,F ) is a standard unit sphere. Because (M,F ) is a homoge-
neous Finsler space, it has at least one homogeneous geodesic c(t) = exp(tX) · o, in
which o ∈ M and X ∈ g = Lie(G) [21]. Our previous observation that all geodesics
belong to a single Ĝ-orbit implies all geodesics are homogeneous. So for any x ∈M and
any two F -unit tangent vectors y1 and y2 in TxM , we have two unit speed geodesics
c1(t) and c2(t) such that c1(0) = c2(0) = x and ċi(0) = yi. Both geodesics belong to
the same Ĝ-orbit, so we can find g1 ∈ G such that (g1 · c1)(t) ≡ c2(t+ t0) for some fixed
t0. Because the geodesic c2(t) is homogeneous, we can find another g2 ∈ G such that
(g2 · c2)(t) = c2(t− t0). Then we have

(g2g1 · c1)(t) = (g2 · c2)(t+ t0) = c2(t), ∀t.

6



So the isotropy action for (M,F ) is transitive at each point. The only homogeneous
spheres satisfying this property are Riemannian spheres of constant curvature.

This ends the proof of the lemma.
Using Lemma 3.2 and Lemma 3.3, we can generalize Lemma 3.6 in [20] to the

following.

Lemma 3.4 Let (M,F ) = (Sn, F ) be a Finsler sphere satisfying n > 1, K ≡ 1 and
Assumption (F). Then the union N of all the finite orbits of ψ in M must be one of
the following:

(1) A two-points ψ-orbit.

(2) A closed reversible geodesic which length is rational multiple of π.

(3) A Riemannian sphere of constant curvature isometrically imbedded in (M,F ) as
a totally geodesic sub-manifold. In this case we have k = 2.

Proof. By the same argument as in the proof of Lemma 3.6 in [20], we can proof N is
the fixed point set of ψk for some integer k, hence it is totally geodesic in (M,F ). When
dimN = 0 or 1, we get the cases (1) and (2) respectively. The difference appears when
dimN > 1, which may happen with the finite orbit of prime closed geodesics condition.
When dimN > 1, by Lemma 2.2, (N,F |N ) is a Finsler sphere satisfying K ≡ 1. By
Lemma 3.2, (N,F |N ) also satisfies Assumption (F). Then Lemma 3.3 provides the case
(2) in the lemma.

The cases (2) and (3) cover all the possibilities for the Ĝ-orbit of a prime closed
geodesic γ such that the length of γ is a rational multiple of π.

Next, we consider the Ĝ-orbit of a prime closed geodesic γ such that the length of
γ is an irrational multiple of π.

When the length of γ is an irrational multiple of π, any ψ-orbit in γ is dense.
Following this observation, we can easily prove the following lemma.

Lemma 3.5 Let (M,F ) = (Sn, F ) be a Finsler sphere satisfying n > 1, K ≡ 1 and As-
sumption (F). Then two geometrically distinct closed geodesics can intersect iff they are
intersecting geodesics in the totally geodesic sub-manifold in (M,F ) which is isometric
to a unit sphere, i.e. the case (3) in Lemma 3.4.

Proof. Lemma 3.4 indicates that any two geometrically distinct closed geodesics γ1
and γ2 must satisfy one of the following. Either both lengths are 2π or one of them,
for example γ1, has a length which is an irrational multiple of π. In the first case, they
are contained in a totally geodesic sub-manifold of (M,F ) which is isometric to a unit
sphere. In the second case, the intersection of the two geodesics contains a ψ-orbit,
which is dense in γ1. Both geodesics are closed, so does their intersection. So as subsets
ofM , we have γ1 ⊂ γ2 and furthermore the equality must happen because γ2 is a closed
connected curve. This is the contradiction ending the proof of the lemma.

Using above lemmas, we can provide more explicit description for the orbits of prime
closed geodesics by the following lemma.

Lemma 3.6 Assume (M,F ) = (Sn, F ) is a Finsler sphere satisfying n > 1, K ≡ 1,
Assumption (F), and that it is not the standard unit sphere. Then we have the following:
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(1) There exists closed geodesics which lengths are irrational multiples of π.

(2) For the orbit of prime closed geodesics Bi = Ĝ · γi such that the length of γi is
an irrational multiple of π, the corresponding Bi is an orbit for the action of
G = Io(M,F ).

(3) Two different orbits of prime closed geodesics, Bi and Bj , are geometrically distinct
iff Bi and Bj do not intersect.

(4) Two different orbits of prime closed geodesics Bi and Bj are geometrically the same
iff we can find γi ∈ Bi and γj ∈ Bj such that γi and γj are the same curve with
different directions.

Proof. By Lemma 3.3 and the assumption that (M,F ) is not the standard unit
sphere, the antipodal map ψ generates an infinite subgroup in I(M,F ), which closure
is a subgroup in the center of I(M,F ), corresponding to an Abelian subalgebra c′ ⊂ c(g)
with dim c′ > 0. We can find a nonzero Killing vector field X from c′ which generates
an S1. Obviously, X is tangent to each closed geodesic. The restriction of X to each
closed geodesic which length is a rational multiple of π is zero.

To prove (1), we only need to consider a maximum point x of f(·) = F (X(·)). By
Lemma 2.3, the integration curve γ of X passing x is a geodesic, restricted to which
X is nonzero. Because X generates an S1, γ is closed. So it is a closed geodesic which
length is an irrational multiple of π.

To prove (2), we consider a prime closed geodesic γi which length is an irrational
multiple of π. Because the restriction of X to γi is a nonzero tangent vector field, γi is
a homogeneous geodesic. In its Ĝ = G × T -orbit, The T -action on γi can be replaced
by the actions of exp(tX) ∈ G. So the union Bi for the geodesics in Bi is a G-orbit.

The statements (3) and (4) follows immediately Lemma 3.5.
Finally, we end this section with the following corollary.

Corollary 3.7 Assume (M,F ) = (Sn, F ) is a homogeneous Finsler sphere satisfying
n > 1, K ≡ 1 and Assumption (F). Then all closed geodesics are reversible. Further-
more, one of the following two cases must happen:

(1) (M,F ) is a standard unit sphere. It has exactly one orbit of prime closed geodesics
and all geodesics are closed.

(2) The dimension n of (M,F ) is odd. There exists exactly two orbits of prime closed
geodesics Ĝ · γ1 and Ĝ · γ2, in which γ1 and γ2 are the same curve with different
directions.

Almost all the statement follows immediately Lemma 3.6. For the case (2) in
Corollary 3.7, the dimension n of (M,F ) is odd because G = Io(M,F ) acts transitively
and effectively on M and it has a center of positive dimension. Until now, the only
know examples for this case are non-Riemannian Randers spheres (S2n′−1, F ) in which
n′ > 1, and F is defined by the navigation datum (h,W ), where h is the standard unit
sphere metric, and W is Killing vector field such that its length function is constantly
an irrational number.
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4 Isometries preserving each closed geodesic

Assume (M,F ) = (Sn, F ) is a Finsler sphere satisfying n > 1, K ≡ 1, and Assumption
(F). Let ψ be its antipodal map. By Lemma 3.3, the case that ψ has a finite order is
easy, so in the following discussion we assume that ψ has an infinite order.

Denote H the subgroup of G = I(M,F ) which preserves each closed geodesic, Ho

its identity component, and h its Lie algebra. The group H is intersection of

Gγ = {g ∈ G|(g · γ)(t) ≡ γ(t+ t0) for some t0}

for all closed geodesics γ. Each Gγ is a closed subgroup of G. Then so does H.
It should be remarked that the claim that Gγ is a closed subgroup of G is an easy

fact in this case because γ is closed. In the recent work [8], it has been proved that Gγ

is still a Lie group when γ is not closed.
Obviously the antipodal map ψ belongs to H. Because ψ has an infinite order, then

after taking closure, it generates an Abelian subgroup of positive dimension, i.e. we
have dimH > 0. The following lemma claims that Ho commutes with all the G-actions.

Lemma 4.1 The subgroup Ho is a closed subgroup in the center of G = Io(M,F ).

Proof. The previous observations have already proved that Ho is a closed subgroup
of G. Because G is a compact Lie group, to prove this lemma we only need to prove
h = Lie(G) is an Abelian ideal of g.

The Lie algebra h = Lie(H) consists of all the Killing vector fields X which is
tangent to each closed geodesic. Because the action of G permutes the closed geodesics
in each orbit of prime closed geodesics, any Killing vector field of the form Ad(g)X
for g ∈ G and X ∈ h is also tangent to each closed geodesic. So conjugations of G
preserves h, i.e. h is an ideal of g.

Then we prove h is Abelian by contradiction. Assume conversely that h is not
Abelian, then we can find a nonzero vector X from the compact semi-simple Lie algebra
[h, h] which generates an S1-subgroup. The Killing vector field on (M,F ) induced by
X has trivial restriction on each closed geodesic. By Lemma 2.3, the integration curve
of X passing the maximum point of f(·) = F (X(·)) is a closed geodesic. This is a
contradiction which ends the proof of this lemma.

A direct consequence of Lemma 4.1 is the following lemma.

Lemma 4.2 For any Killing vector field X ∈ h and any orbit Bi of the prime closed
geodesic c = c(t), their exists a constant ρX,i ∈ R such that

X|c(t) ≡ ρX,iċ(t), ∀c ∈ Bi. (4.3)

In particular, if a Killing vector field X ∈ h vanishes at some point x ∈ Bi, iff
ρX,i = 0, i.e. X vanishes identically on Bi.

The last ingredient for the proof of Theorem 1.2 is the following lemma.

Lemma 4.3 Let (M,F ) = (Sn, F ) be a Finsler sphere satisfying n > 1, K ≡ 1 and
Assumption (F). Then we have the following:
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(1) For any nonzero Killing vector field X ∈ h which generates an S1, there exists
some orbit Bi of prime closed geodesics, such that ρX,i > 0.

(2) Any Killing vector field X ∈ h vanishing on all closed geodesics must be a zero
vector field.

(3) The common zero set of all Killing vector fields in h must be the fixed point set
of ψk for some integer k. To be more precise, it is empty, a two-points ψ-orbit,
some Bi which is a reversible closed geodesic which lengths for both directions are
rational multiples of π, or a totally geodesic sub-manifold isometric to a standard
unit sphere.

Proof. (1) We consider the maximum point x for the function f(·) = F (X(·)). By
Lemma 2.3, the integration curve of X passing x provide a prime closed geodesic γ, for
which we have X(c(t)) ≡ ρX,γ ċ(t) with ρX,γ > 0.

(2) We assume conversely that there exists a non zero Killing vector field on (M,F )
such that it vanishes on all closed geodesics. Let k be the space of all such Killing
vector fields. It is a subalgebra of h corresponding to a sub-torus in Ho. We can find
a nonzero Killing vector field X from k which generates an S1. The argument for (1)
indicates X is not vanishing on some closed geodesic, which is the contradiction.

(3) Let N be the fixed point set of Ho, and assume N is not empty. By Lemma 2.2,
N must be a two-points ψ-orbit, a reversible closed geodesic, or a Finsler sphere with
dimN > 1, K ≡ 1 isometrically imbedded in (M,F ).

Obviously the action of ψ preserves N , i.e. N consists of ψ-orbits. Because H is
compact, H/Ho is finite. We also have ψ ∈ H, and thus each ψ-orbit in N is finite. So
when dimN = 1, the lengths of N for both directions are rational multiples of π.

When dimN > 1, we see (N,F |N ) satisfies Assumption (F) by Lemma 3.2. Then
Lemma 3.3 tells us that (N,F |N ) is a standard unit sphere.

5 Proof of Theorem 1.2

Now we are ready to prove Theorem 1.2, which applies a similar inductive argument
as that for Theorem 1.2 in [20].

When ψ has a finite order, then by Lemma 3.3, (M,F ) is the standard unit sphere.
Obviously Theorem 1.2 is valid in this case. So in the following discussion, we assume
ψ has an infinite order, and thus we have m = dimH > 0.

We will prove Theorem 1.2 by an induction for n = dimM .
When n = 2 and the antipodal map ψ has an infinite order, Ho coincides with

G = Io(M,F ) = S1. In [6], it has been proved that geometrically there exists exactly
one reversible closed geodesic γ with a non-trivial Ho-action. So Theorem 1.2 is valid
in this case, and the estimate is sharp.

Now we assume Theorem 1.2 is valid when n < l with l > 3 (the inductive assump-
tion) and we will prove the theorem when n = l.

Firstly, we prove
Claim 1: When dimH = 1, there exists at least one totally geodesic Bi with a

non-trivial Ho-action.
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Let X be any nonzero Killing vector field from h = Lie(H). We list all the Ĝ-orbits
of prime closed geodesics as Bi with 1 ≤ i ≤ k, such that when 1 ≤ i ≤ k′ the coefficient
ρX,i in (4.3) is positive. Notice that by Lemma 4.3 (1), we have k′ > 0.

If the antipodal map ψ is not contained in Ho, we can find an isometry of (M,F )
which is of the form φ = ψ exp(t′X) such that its fixed point set contains B1. By
Lemma 2.2 (or see Lemma 3.5 in [20]), the fixed point set N of φ is a closed connected
totally geodesic sub-manifold. It must have a positive co-dimension in M because
φ /∈ Ho. When dimN = 1, it is a reversible closed geodesic. When dimN > 1, by
Lemma 3.2 and the totally geodesic property, (N,F |N ) is a Finsler sphere satisfying
K ≡ 1 and Assumption (F). Using the inductive assumption, we can find some orbit of
prime closed geodesic, Bi = Ĝ′ · γi = Ĝ · γi, where Ĝ′ = G′ × T and G′ = Io(N,F |N ),
such that the corresponding B′

i, is totally geodesic in (N,F |N ) as well as in (M,F ).
The Ho-action on Bi is non-trivial because

exp(t′X)|Bi
= ψ−1φ|Bi

= ψ−1|Bi
,

and ψ has no fixed point on any closed geodesic.
To summarize, this proves Claim 1 when ψ /∈ Ho.
To continue the proof of Claim 1, we may assume ψ ∈ Ho. In this case, we can

prove the zero set of X is empty as following. Assume conversely that the zero set of
X is not empty, by Lemma 4.3, it is a two-points ψ-orbit, a reversible closed geodesic,
or a connected totally geodesic standard unit sphere. For each possibility, ψ can not be
generated by X, which is a contradiction to the assumption ψ ∈ Ho. This fact implies
that f(·) = F (X(·)) is a smooth function on M . By Lemma 2.3, the critical point set
of f(·) consists of exactly all Bi’s with 1 ≤ i ≤ k′. Meanwhile, we see the Ho-action on
each closed geodesic is non-trivial.

We take a prime closed geodesic ci(t) with t ∈ R/Z from Bi for 1 ≤ i ≤ k′, then
X|ci = ρX,iċi with ρX,i > 0. Because Ho = S1, we can find some t′ > 0 such that
exp(t′X) = id, then we have

ni = t′ρX,i ∈ N, ∀1 ≤ i ≤ k′.

We may re-order these ci’s such that

n1 ≤ n2 ≤ · · · ≤ nk′ .

There are two possibilities, all ni’s are not all the same, or all ni’s are all the same.
Assume all ni’s are not all the same, i.e. n1 < nk′. The fixed point set N of the

isometry φ = exp((t′/nk′)X) ∈ Ho contains Bk′ but not B1. It is either a reversible
closed geodesic, or a Finsler sphere satisfying 1 < dimN < dimM , K ≡ 1 and As-
sumption (F). Applying the inductive assumption and Lemma 3.2, we can find a totally
geodesic Bi for (N,F |N ), as well as for (M,F ).

Assume all ni’s are all the same, then all ρX,i’s are all the same as well. We may
choose a suitable t′ such that ni = 1 for 1 ≤ i ≤ k′. There exists t′′ ∈ (0, 1) such that
ψ(ci(0)) = ci(t

′′), i.e. dF (ci(0), ci(t
′′)) = π, for 1 ≤ i ≤ k′. Then we have

F (X|c1) = F (X|c2) = · · · = F (X|c
k′
).
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The function f(·) = F (X(·)) takes the same value on its critical point set, so it is a
constant function. By Lemma 2.3, all integration curves of X are closed geodesics,
which belongs to one Ĝ-orbit. By Corollary 3.7, (M,F ) is a non-Riemannian homoge-
neous Finsler sphere with K ≡ 1 and exactly two Ĝ-orbits of prime closed geodesics,
B1 = Ĝ · γ1 and B2 = Ĝ · γ2 such that γ1 and γ2 are the same curve with different
directions.

This ends the proof of Claim 1, i.e. Theorem 1.2 is valid when m = dimH = 1.
Next we prove Theorem 1.2 assuming m = dimH > 1. We claim
Claim 2: There exists at least m− 1 geometrically distinct orbits Bi such that the

each Bi is a totally geodesic sub-manifold with a non-trivial Ho-action.
Let Bi with 1 ≤ i ≤ k′ be all the geometrically distinct Ĝ-orbits of prime closed

geodesics such that the Ho-action on each Bi is not trivial. Let hi be the co-dimension
one subalgebra of h which restriction to Bi is zero. By Lemma 4.3, the intersection
∩k′

i=1hi = 0, from which we see that m ≤ k′. We may re-order the orbits Bi’s such
that ∩m

i=1hi = 0. Take a nonzero Killing vector field X ∈ ∩m−1
i=1 hi. Then the zero set

N of X is a closed connected totally geodesic submanifold in M , containing Bi for
1 ≤ i ≤ m− 1 but not Bm. Let H ′ be the subgroup of Io(N,F |N ) preserving all closed
geodesics in N , and h′ its Lie algebra. The restriction from M to N defines a linear
map from h to h′ which kernel is spanned by X, so dimH ′ ≥ m− 1.

If dimN = 1, then m = 2, Ho has no fixed point, and N itself provides the totally
geodesic Bi wanted by Claim 2.

If dimN > 1, we can use the inductive assumption to find m − 1 geometrically
distinct orbits Bi of prime closed geodesics for (N,F |N ), as well as for (M,F ) by
Lemma 3.2, such that the corresponding Bi’s are totally geodesic sub-manifolds, with
non-trivial H ′

o-actions. Claim 2 is proved when each of these Bi’s also has a non-trivial
Ho-action.

But it is possible that there is some Bi in N on which the H ′
o-action is non-trivial

but theHo-action is trivial. If it happens, this Bi is unique, and we must have dimH ′ >
m − 1. So in this case, we can use the inductive assumption to find m geometrically
distinct orbits of prime closed geodesics. At least m− 1 geometrically distinct totally
geodesic Bi’s in N have non-trivial Ho-actions.

This proves Claim 2.
To finish the proof of Theorem 1.2 when n = k, We only need to find one more

totally geodesic Bi with a non-trivial Ho-action.
We may re-order the orbits Bi’s such that the first m − 1 ones are those provided

by Claim 2, and ∩m
i=1hi = 0. The nonzero Killing vector field X from ∩m−1

i=1 hi vanishes
on Bi with 1 ≤ i ≤ m − 1, but not on Bm. We can find an isometry of the form
φ = ψ exp(t′X) such that it fixes each point of Bm. On the other hand, the fixed point
set N of φ does not contain each Bi for 1 ≤ i ≤ m− 1.

The Ho-action on each closed geodesic in N is non-trivial. Assume conversely that
there is a closed geodesic in N with a trivial Ho-action. Then the restriction of ψ to
this geodesic coincides with that of φ, fixing each point of this geodesic. This is not
true because ψ has no fixed points.

If dimN = 1 it is a reversible closed geodesic, which is the extra Bi we want. If
dimN > 1 it is a Finsler sphere satisfying K ≡ 1 and Assumption (F), isometrically
imbedded in (M,F ) as a totally geodesic sub-manifold. In this situation we use the
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inductive assumption one more time, which provides one more totally geodesic Bi.
Summarizing above discussion, we have proved Theorem 1.2 when n = l.
This ends the proof of Theorem 1.2 by induction.

6 The example from Katok metrics

We conclude this paper by the examples from Katok metrics for which the estimate in
Theorem 1.2 is sharp.

Let (M,h) = (Sn, h) be a standard unit sphere with n > 1, W a Killing vector field
on (M,h) such that h(W,W ) < 1 everywhere.

Then the navigation process defines a Randers metric

F (y) =

√

λh(y, y) + h(W,y)2

λ
− h(W,y)

λ

on M , in which λ = 1− h(W,W ) is positive everywhere.
By the work of D. Bao, C. Robles and Z. Shen [9], this construction provides all the

Randers spheres with K ≡ 1. The behavior of the geodesics on (M,F ) is determined
by the choice of W .

We can find suitable coordinates x = (x0, z1, . . . , zk) for x ∈ Rn+1, where

x0 = (x0,1, . . . , x0,n0
) ∈ Rn0 and zi = (zi,1, . . . , zi,ni

) ∈ Cni ,

satisfy the following:

(A1) We permit n0 = 0 and in this case x0 is always 0. All other ni’s are positive.

(A2) (M,h) is naturally identified as the unit sphere Sn(1) defined by

|x0|2 + |z1|2 + · · ·+ |z|2 = 1

in Rn+1 = Rn0 ⊕ Cn1 ⊕ · · · ⊕Cnk with the standard product Euclidean metric.

(A3) W can be presented as

W (x0, z0, . . . , zk) = (0,
√
−1λ1z1, . . . ,

√
−1λkzk), (6.4)

such that 0 < λ1 < λ2 < . . . < λk < 1.

We further require one of the following is satisfied:

(A4) All λi’s are irrational numbers. For any 1 ≤ i < j ≤ k, 1, λi and λj are linearly
independent over Q.

(A5) All λi’s are irrational numbers except one, n0=0 and ni = 1 if λi ∈ Q. If λi and
λj are irrational numbers, 1, λi and λj are linearly independent.

Then we have
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Lemma 6.1 For the Randers sphere (M,F ) described above, satisfying (A1)-(A3) and
one of (A4) and (A5), any closed geodesic on (M,F ) must be contained in

z1 = · · · = zk = 0

or
x0 = 0 and zj = 0 when j 6= i,

for some i, 1 ≤ i ≤ k.

Proof. Using (6.4), we can present the antipodal map as

ψ(x0, z1, . . . , zk) = (x0,−e
√
−1πλ1z1, . . . ,−e

√
−1πλkzk).

It is easy to check that finite ψ-orbits only appear in the situation that only x0 is
nonzero or only zi with λi ∈ Q is nonzero.

Let x = (x0, z1, . . . , zk) be a point on the closed geodesic γ. We only need to prove
that only one of x0 and zi’s can be nonzero. Assume conversely this is not true. Then
the length of γ can not be a rational multiple of π (i.e. consists of finite ψ-orbits), so
the ψ-orbit of x is a dense subset in γ. There are three cases we need to consider.

In the first case, λi and λj are irrational numbers, zi 6= 0, and zj 6= 0. Then the
condition that 1, λi and λj are linearly independent implies that the projection to the
zi- and zj-factors maps the closed curve γ onto a two dimensional torus, which is a
contradiction.

In the second case, λi is rational, λj is not, zi 6= 0 and zj 6= 0. Then the projection
to the zi-factor maps γ to a finite set with at least two points. This is impossible
because γ is connected.

In the third case, x0 6= 0 and zi 6= 0. Then the projection to the x0-factor maps γ
to two points. This is impossible for the same reason as the previous case.

To summarize, we have found contradiction for all the cases, and finished the proof
of this lemma.

Using Lemma 6.1, we can provides examples of Katok metrics such that the esti-
mates in Theorem 1.2 is sharp.

Theorem 6.2 Let F be the Randers metrics on Sn with n > 1 satisfying (A1)-(A3)
and one of (A4) and (A5), then it has only finite orbits of prime closed geodesics.
Denote H the subgroup of isometries preserving each closed geodesic, Ho its identity
component, and m = dimH. Then there exist exactly m geometrically distinct Bi, such
that the corresponding Bi’s are totally geodesic with non-trivial Ho-actions.

The proof is a case-by-case discussion. For each case, it is not hard to calculate
G = Io(M,F ), Ho and all the orbits of prime closed geodesics.

For example, when n0 > 2 and all γi’s are irrational numbers,

G = SO(n0)× U(n1)× · · · × U(nk), and

H = U(n1)× · · · × U(nk),

so we have dimH = k.
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When 1 ≤ i ≤ k,

Bi = {x = (x0, z1, . . . , zk) ∈M with x0 = 0 and zj = 0 when j 6= i}

is a homogeneous Randers sphere with exactly two orbits of prime closed geodesics. It
is isometrically imbedded in (M,F ) as a totally geodesic submanifold, because it is the
fixed point set of the subgroup of G with the U(ni)-factor removed. They provide all
the different totally geodesic Bi’s with nontrivial Ho-actions.

There exists one more totally geodesic Bk+1 with a trivial Ho-action, i.e.

Bk+1 = {x = (x0, z1, . . . , zk) ∈M with z1 = · · · = zk = 0}.

It is a standard unit sphere with only one orbit of closed geodesics.
By Lemma 6.1, no other closed geodesics can be found.
Summarizing all these observations, we see that this Randers sphere (M,F ) satisfies

all the requirements in Theorem 1.2, and the estimate in Theorem 1.2 for the number
of totally geodesic Bi’s is sharp.

The discussion for other cases is similar, so we skip the details.
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