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Abstract In this paper, we study the proximal incremental aggregated gra-
dient(PIAG) algorithm for minimizing the sum of L-smooth nonconvex com-
ponent functions and a proper closed convex function. By exploiting the L-
smooth property and with the help of an error bound condition, we can show
that the PIAG method still enjoys some nice linear convergence properties
even for nonconvex minimization. To illustrate this, we first demonstrate that
the generated sequence globally converges to the stationary point set. Then,
there exists a threshold such that the objective function value sequence and the
iterate point sequence are R-linearly convergent when the stepsize is chosen
below this threshold.

Keywords Linear convergence · Nonconvex · Incremental aggregated
gradient

1 Introduction

A fundamental optimization model emerges in numerous problems including
machine learning, signal processing, image science, communication systems,
and distributed optimization. Typically, the model is to minimize the sum
of N differentiable functions fi which are possibly nonconvex and a convex
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nonsmooth function h:

min
x∈Rd

F (x) :=

N∑

i=1

fi(x) + h(x). (1)

This problem often arises in large-scale, distributed, parallel optimization sub-
fields with large N . Directly computing

∑N

i=1 ∇fi(xk) in the popular forward-
backward splitting (FBS)[6] scheme might be prohibitive for large N . Thereby
a natural method to approximate the gradient of f(x) embedding into FBS
scheme is proposed, named as the proximal incremental aggregated gradient
(PIAG) method. The key idea of PIAG is to construct an “inexact gradi-

ent” gk to substitute the “exact”
∑N

i=1 ∇f(xk). PIAG method is the iterative
procedure of three steps:

gk =

N∑

i=1

∇fi(xk−τ i
k
), (2)

yk = xk − α · gk, (3)

xk+1 = arg min
x∈Rd

{

h(x) +
1

2α
‖x− yk‖

2

}

, (4)

where τ ik are some nonnegative integers representing delayed iterations. In
addition, we assume that τ ik never exceeds a given integer τ ≥ 0. Thereby
the exact gradient ∇fi(xk) is approximated by previous gradient components
∇fi(xk−τ i

k
) no more than τ iterations before. We can rewrite (3) and (4) into

the following subproblem:

xk+1 = arg min
x∈Rd

{

h(x) + 〈gk, x− xk〉 +
1

2α
‖x− xk‖

2

}

. (5)

Note that under the condition of no delays involved, i.e. τ ik ≡ 0, we have
gk =

∑
∇fi(xk), which is exactly the classic FBS scheme.

On one hand, PIAG has been investigated in several works under the con-
vex settings. [14] is the first to establish a global linear convergence rate of
PIAG for strongly convex minimization, which guarantees that PIAG returns
an ε-optimal solution after O(Qτ2 log2(Qτ) log(1/ε)) iterations, where Q is
the condition number. [3] showed a global linear convergence rate in ‖xk−x∗‖
with complexity no more than O(log(1/ε)Qτ2); general distance functions are
also involved in their analysis. Combining [14] and [3], [15] proposed stronger
linear convergence rate that achieving an ε-optimal solution of the function
values requires at most O(Qτ log(1/ε)) iterations. [17] gave the global linear
convergence of PIAG under several strictly weaker assumptions, novel vari-
ants with better convergence rate as well as an improved rate result under
strongly convex condition. [18] proposed an accelerated globally linearly con-
vergent scheme under quadratic growth condition, which combines the heavy
ball method with Nesterov-like acceleration.
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On the other hand, there are a few studies of nonconvex FBS. A non-
convex nonsmooth version of FBS was analyzed in [2], which is involved in
a fundamental approach under the Kurdyka- Lojasiewicz(KL) condition. [5,1]
considers a structured functions of the type L(x, y) = f(x) + Q(x, y) + g(x),
with the case of nonconvex FBS included. Instead of using the KL conditions,
this paper is consistent with a series of studies [8,10,4,13,12] using the proxi-
mal error bound condition, under which the recent work [16] gave local linear
convergence results of an accelerated nonconvex proximal gradient method.
The accelerated algorithm is exploiting historical information in essence, shar-
ing the similar viewpoint with PIAG to an extent. Thus inspired by their work,
we analyze the linear convergence of nonconvex PIAG with the proximal error
bound condition.

Main contribution. In this study, we mainly focus on the convergence analysis
of PIAG for minimizing a class of nonconvex problems, under the proximal
error bound condition. First, we prove the sequence {xk} generated by PIAG
is globally convergent to the stationary point set(Theorem 1(i)) of (1). Then,
when we choose the stepsize α below a certain threshold, the objective function
value sequence is proved to be R-linearly convergent to the function value at
a certain stationary point(Theorem 1(ii)). Finally, with the proved R-linearly
convergent property of function value sequence, we show the iterate sequence
{xk} generated by PIAG R-linearly converges to a certain stationary point.

The rest of the paper is structured as follows. Section 2 introduces notations
and assumptions to be used. Section 3 gives the convergence analysis and
section 4 concludes the paper.

2 Notations & Assumptions

Throughout this paper, d-dimensional Euclidean space is denoted by R
d and

its inner product is represented by 〈·, ·〉. The l2-norm is denoted by ‖ · ‖. For
a nonempty closed set C ⊂ R

d, the distance from x to C is represented by
dist(x, C), where dist(x, C) = infy∈C ‖x−y‖. The domain of an extended-value
function h : Rd → [−∞,+∞] is defined as domh = {x ∈ R

d, h(x) < +∞} and
h is said to be proper if h is never equals −∞ and domh 6= ∅. The gradient
operator of a differentiable function is denoted by ∇. The subdifferential of a
proper lower closed convex function h is defined as

∂h(x) = {v ∈ R
d : h(u) − h(x) − 〈v, u− x〉 ≥ 0, ∀u ∈ R

d}, (6)

where ∂h(x) is always a closed convex set. The proximal operator of a proper
closed function h at y ∈ R

d is defined as

Proxh(y) = arg min
x∈Rd

{

h(x) +
1

2
‖x− y‖2

}

. (7)

The sequence generated by PIAG is denoted by {xk}. x̃ is said to be a sta-
tionary point of (1) if 0 ∈

∑
∇fi(x̃) + ∂h(x̃). The set of all stationary points
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of (1) is denoted by X . We say a sequence {xk} is R-linearly converges to x∗

if lim supk→+∞ ‖xk − x∗‖
1
k < 1. A function f : R

d → R is said to have a
L-Lipschitz continuous gradient or to be L-smooth if

‖∇f(x) −∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ R
d. (8)

For the L-smooth function f , there always exists convex and gradient-Lipschitz
continuous f (j), j = 1, 2 such that f = f (1) − f (2). As illustrated in [16], one
can choose c > L and decompose f in the following form:

f =

(

f +
c‖x‖2

2

)

︸ ︷︷ ︸

f(1)

−
c‖x‖2

2
︸ ︷︷ ︸

f(2)

. (9)

We list assumptions involved in this paper as follows.

A0. The objective function F (x) in (1) is lower bounded.

A1. The decomposition fi = f
(1)
i − f

(2)
i exists for i = 1, · · · , N such that f

(1)
i

is Li-smooth and convex as well as f
(2)
i is li-smooth and convex. Denote

L =
∑N

i=1 Li and l =
∑N

i=1 li. Also assume Li ≥ li and thus fi is Li-
smooth.

A2. The nonsmooth part h : R
d → (−∞,∞] is proper, closed, convex and

suqbdifferentiable everywhere in its effective domain, i.e., ∂h(x) 6= ∅ for all
x ∈ {y ∈ R

d : h(y) < ∞}.
A3. The time-varying delays τ ik are bounded; that is, there exists a nonnegative

integer τ such that ∀k ≥ 1, i ∈ {1, 2, · · · , N}, we have

τ ik ∈ {0, 1, · · · , τ} , (10)

where τ is named as the delay parameter.

The following two assumptions A4 and A5 are standard in the convergence
analysis of several algorithms; see [8,10,4,13,12] and references therein.

A4. (Proximal Error Bound Condition) For any ζ ≥ infx∈Rd F (x), there
exist ǫ > 0 and c0 > 0 such that

dist(x,X ) ≤ c0

∥
∥
∥
∥

Prox 1
L
h

(

x−
1

L
∇f(x)

)

− x

∥
∥
∥
∥
, (11)

whenever ‖Prox 1
L
g(x− 1

L
∇f(x)) − x‖ < ǫ and F (x) ≤ ζ.

A5. There exists δ > 0, such that ‖x− y‖ ≥ δ whenever x, y ∈ X , F (x) 6= F (y).

For simplicity, we further denote f =
∑N

i=1 fi, l̄ = l(τ+1)
2 , L̄ = L(τ+1)

2 and

∆k =
∑k−1

j=k−τ ‖xj+1 − xj‖2. Without any loss of generality, let x−k = x0 for
k ≥ 1.
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3 Convergence Analysis

First, we give a sufficient descent property of PIAG for nonconvex minimiza-
tion.

Lemma 1 With the assumptions A1-A3, the following statements for the
problem (1) hold:

(i) For any x ∈ domF , we have the descent lemma that

F (xk+1) ≤ F (x) +

(

l̄ +
1

2α

)

‖x− xk‖
2 −

1

2α
‖x− xk+1‖

2

+

(

L̄−
1

2α

)

‖xk+1 − xk‖
2 + (l̄ + L̄)∆k, k ≥ 0. (12)

(ii) Consequently, we have the sufficient descent property that

F (xk+1) ≤ F (xk) +

(

L̄−
1

α

)

‖xk+1 − xk‖
2 + (l̄ + L̄)∆k, k ≥ 0. (13)

Proof. By the convexity of f
(1)
i and the li-smoothness of f

(2)
i , we have

f
(1)
i (x) + 〈∇f

(1)
i (x), y − x〉 ≤ f

(1)
i (y), (14a)

f
(2)
i (y) ≤ f

(2)
i (x) + 〈∇f

(2)
i (x),y − x〉 +

li
2
‖y − x‖2. (14b)

Adding up (14a) and (14b), using fi = f
(1)
i − f

(2)
i , we obtain

fi(x) + 〈∇fi(x), y − x〉 ≤ fi(y) +
li
2
‖y − x‖2. (15)

Due to the Li-smoothness of fi and the inequality (15), we have

fi(xk+1) ≤ fi(xx−τ i
k
) + 〈∇fi(xk−τ i

k
), xk+1 − xk−τ i

k
〉 +

Li

2
‖xk+1 − xk−τ i

k
‖22

≤ fi(x) + 〈∇fi(xk−τ i
k
), xk+1 − x〉 +

li
2
‖x− xk−τ i

k
‖22 +

Li

2
‖xk+1 − xk−τ i

k
‖22.

(16)

Using the convexity of ‖ · ‖2, we derive that

N∑

i=1

li
2
‖x− xk−τ i

k
‖2 =

N∑

i=1

li
2
‖(x− xk) + (xk − xk−1) + · · · + (xk−τ i

k
+1 − xk−τ i

k
)‖2

≤
N∑

i=1

li(τ + 1)

2



‖x− xk‖
2 +

k−1∑

j=k−τ

‖xj+1 − xj‖
2





= l̄‖x− xk‖
2 + l̄∆k. (17)
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Similarly,

N∑

i=1

Li

2
‖xk+1 − xk−τ i

k
‖2 ≤ L̄‖xk+1 − xk‖

2 + L̄∆k. (18)

With (17) and (18), the sum of (16) from i = 1 to N becomes

f(xk+1) ≤f(x) + 〈gk, xk+1 − x〉 + l̄‖x− xk‖
2

+ L̄‖xk+1 − xk‖
2 + l̄∆k + L̄∆k (19)

where gk =
∑N

i=1 ∇f(xk−τ i
k
). From the 1

α
−strongly convexity of subproblem

(5), we have

〈gk, xk+1 − x〉 ≤h(x) − h(xk+1) +
1

2α
‖x− xk‖

2

−
1

2α
‖xk+1 − x‖2 −

1

2α
‖xk+1 − xk‖

2. (20)

Plugging (20) into (19), we obtain

F (xk+1) ≤ F (x) +

(

l̄ +
1

2α

)

‖x− xk‖
2 −

1

2α
‖x− xk+1‖

2

+

(

L̄−
1

2α

)

‖xk+1 − xk‖
2 + (l̄ + L̄)∆k. (21)

Then the statement (i) holds. The statement (ii) follows from statement (i) by
setting x = xk. ⊓⊔

Through the sufficient descent property of nonconvex PIAG, we give the
following lemma to illustrate that for a fixed positive integer M , the sequence
{xk} satisfies

lim
k→∞

‖xk+M − xk‖ = lim
k→∞

j=k+M
∑

j=k

‖xj+1 − xj‖ → 0. (22)

Lemma 2 Assume A0-A3 hold. If stepsize α < 1
L̄+τ(l̄+L̄)

, then the following

statements hold:

(i) F (xk) is bounded;
(ii)

∑∞

k=0 ‖xk+1 − xk‖2 < +∞.
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Proof. From Lemma 1(ii), for arbitrary positive integers k1 < k2, summing up
(13) from k = k1 to k2 − 1 yields

F (xk2 ) ≤ F (xk1 ) +

(

L̄−
1

α

) k2−1∑

k=k1

‖xk+1 − xk‖
2 + (l̄ + L̄)

k2−1∑

k=k1

∆k

≤ F (xk1 ) +

(

L̄−
1

α

) k2−1∑

k=k1

‖xk+1 − xk‖
2 + τ(l̄ + L̄)

k2−1∑

k=k1−τ

‖xk+1 − xk‖
2

≤ F (xk1 ) +
(
L̄ + τ(l̄ + L̄)

)
k2−1∑

k=k1−τ

‖xk+1 − xk‖
2 −

1

α

k2−1∑

k=k1

‖xk+1 − xk‖
2.

(23)

Setting k1 = 0 and k2 = K + 1, we obtain

F (xK+1) ≤ F (x0) +

(

L̄−
1

α
+ τ(l̄ + L̄)

) K∑

k=0

‖xk+1 − xk‖
2, (24)

which indicates that F (xk) is bounded from above if α < 1
L̄+τ(l̄+L̄)

. With A0

that inf F > −∞ holds, (24) implies

K∑

k=0

‖xk+1 − xk‖
2 ≤

F (x0) − F (xK+1)
1
α
− τ(l̄ + L̄) − L̄

. (25)

The inequality holds as K → ∞. Thus statement (ii) is proved. ⊓⊔

Lemma 3 Assume that A0-A3 hold and α < 1
L̄+τ(l̄+L̄)

. Then, any accumula-

tion point of {xk} is a stationary point of F .

Proof. Let x̄ be an accumulation point. Then there exists a subsequence {xki
}

such that limi→∞ xki
= x̄. Using the first-order optimality condition of sub-

problem (5), we have

−
1

α
(xki+1 − xki

) ∈
N∑

j=1

∇fj(xki−τ
j

ki

) + ∂h(xki+1). (26)

Invoking Lemma 2(ii), for an arbitrary fixed integer I ∈ {0, 1, · · · , τ}, we have

lim
i→+∞

xki−I = lim
i→+∞

xki+1 = x̄, (27)

which implies limi→+∞ x
ki−τ

j

ki

= x̄ since 0 ≤ τ jki
≤ τ for any j ∈ {1, 2, · · · , N}.

Consequently, due to continuity of ∇f and closedness of ∂h, (26) implies 0 ∈
∇f(x̄) + ∂h(x̄). ⊓⊔
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Lemma 4 Assume that A0-A3 hold and α < 1
L̄+τ(l̄+L̄)

. Let Ω be the set

of accumulation points of the sequence {xk} generated by PIAG. Then ζ =
limk→∞F (xk) exists and F ≡ ζ on Ω.

Proof. The fact that F (xk) is bounded has been shown in Lemma 2(i). Thus
if the limit of F (xk) does not exist, then there are two subsequences {xs1

i
}

and {xs2
i
} of {xk} such that F (xs1

i
) → F1 and F (xs2

i
) → F2. Without loss of

generality, suppose F1 > F2.
First, due to Lemma 2(ii), there exists a sufficiently large positive integer

K such that

(
L̄ + τ(l̄ + L̄)

)
∞∑

j=K−τ

‖xj+1 − xj‖
2 <

F1 − F2

3
. (28)

Second, from (23) we can find two sufficiently large subscript indexes S1 ∈
{s1i } and S2 ∈ {s2i } such that S1 > S2 > K and satisfy

F (xS1) − F (xS2) ≤
(
L̄ + τ(l̄ + L̄)

)
S1−1∑

j=S2−τ

‖xj+1 − xj‖
2

<
F1 − F2

3
, (29)

F1 − F (xS1) <
F1 − F2

3
, (30)

F (xS2) − F2 <
F1 − F2

3
. (31)

The sum of (29),(30) and (31) derives the contradiction F1 − F2 < F1 − F2.
Thus limF (xk) must exist. Denote the limit by ζ.

If Ω = ∅, the result is trivially true. Otherwise, ∀x̂ ∈ Ω, suppose a subse-
quence xki

→ x̂. Due to the lower semi-continuity of F , we have

F (x̂) ≤ lim inf F (xki
) = ζ. (32)

On the other hand, since xki+1 is the minimizer of

h(x) + 〈gki
, x− xki

〉 +
1

2α
‖x− xki

‖2, (33)

we have

f(xki+1) + h(xki+1) + 〈gki
, xki+1 − x̂〉 +

1

2α
‖xki+1 − xki

‖2 (34)

≤f(xki+1) + h(x̂) +
1

2α
‖x̂− xki

‖2. (35)

Letting i → ∞, we obtain

lim supF (xki
) ≤ F (x̂). (36)

Along with (32), the equality F (x̂) ≡ ζ holds for all x̂ ∈ Ω. ⊓⊔
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Furthermore, if we assume F is level bounded, since we already know F (xk)
is upper bounded from Lemma 2, then the sequence {xk} is also bounded which
impliesΩ 6= ∅ in l emma 3 implies that .

The stepsize α is required to be small in previous lemmas but is undeter-
mined for now. We might require a sufficiently small α in PIAG to guarantee
convergence. The A4 for a fixed stepsize α = 1

L
seems inadequate for later

proof. Therefore, we need a variant of A4 with stepsizes smaller than 1
L

. To
make the fact explicit, we display the result in the following two lemmas.

Lemma 5 [7, lemma 2] Suppose that function h : Rd → R satisfies A2 and
f : R

d → R is differentiable on R
d. Then, ∀x ∈ domh and real numbers

t ≥ t′ > 0, we have

1

t
‖Proxth(x− t∇f(x)) − x‖ ≤

1

t′
‖Proxth(x− t′∇f(x)) − x‖. (37)

Lemma 6 If A4 holds with ǫ > 0, c0 > 0 and ζ ≥ infx∈Rd F (x), then

dist(x,X ) ≤
c0
αL

‖Proxαh (x− α∇f(x)) − x‖ , (38)

whenever 0 < α ≤ 1
L
, ‖Proxαh(x− α∇f(x)) − x‖ < αLǫ and F (x) ≤ ζ.

Proof. For α ∈ (0, 1
L

], if x satisfies ‖Proxαh(x − α∇f(x)) − x‖ < αLǫ and
F (x) ≤ ζ, invoking Lemma 5, then we have

‖Prox 1
L
h(x−

1

L
∇f(x)) − x‖ ≤

1

αL
‖Proxαh(x− α∇f(x)) − x‖ < ǫ. (39)

Thus A4 gives

dist(x,X ) ≤ c0

∥
∥
∥
∥

Prox 1
L
h

(

x−
1

L
∇f(x)

)

− x

∥
∥
∥
∥

(40)

≤
c0
αL

‖Proxαh (x− α∇f(x)) − x‖ , (41)

which is just (38). ⊓⊔
Before proposing the final results, we need the following key lemma for

revealing the linear convergence.

Lemma 7 [3] Assume that the non-negative sequences {Vk} and {ωk} satisfy
the following inequality:

Vk+1 ≤ aVk − bωk + c

k∑

j=k−k0

ωj , (42)

for some real numbers a ∈ (0, 1) and b, c ≥ 0, and some positive integer k0.
Also Assume that ωk = 0 for k < 0, and that the following holds:

c

1 − a

1 − ak0+1

ak0
≤ b. (43)

Then, Vk ≤ akV0 for all k ≥ 0.
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Theorem 1 For arbitrary sequence {xk} generated by PIAG, with the as-
sumption A0-A5, for all sufficiently small stepsize α ≥ 0, the following state-
ments hold:

(i) dist(xk,X ) → 0;
(ii) F (xk) is R-linearly convergent.

Proof. We derive that

‖Proxαh(xk − α∇f(xk)) − xk‖

≤‖Proxαh(xk − α∇f(xk)) − Proxαh(xk − αgk)‖ + ‖Proxαh(xk − αgk) − xk‖

≤α
∑

‖∇fi(xk) −∇fi(xk−τ i
k
)‖ + ‖xk+1 − xk‖

≤α
∑

Li‖xk − xk−τ i
k
‖ + ‖xk+1 − xk‖

≤

√
√
√
√(αL + 1)

(

α

N∑

i=1

Li‖xk − xk−τ i
k
‖2 + ‖xk+1 − xk‖2

)

≤

√
√
√
√
√(aL + 1)



ατL

k−1∑

j=k−τ

‖xj+1 − xj‖2 + ‖xk+1 − xk‖2



 (44)

In addition, we require

α < min

(
1

L̄ + τ(l̄ + L̄)
,

1

L

)

. (45)

With Lemma 2(ii), the inequality (44) implies

‖Proxαh(xk − α∇f(xk)) − xk‖ → 0. (46)

In addition to (46), Lemma 4 implies that F (xk) is bounded, so we can con-
clude there exists a large enough positive number Kα relevant to α such that
the inequality (38) could apply whenever k > Kα. Therefore for each k > Kα,
using Assumption A4 and inequality (44) we have

dist(xk,X )2 ≤
( c0
αL

)2

(aL + 1)



ατL

k−1∑

j=k−τ

‖xj+1 − xj‖
2 + ‖xk+1 − xk‖

2



 ,

which readily leads to dist(xk,X ) → 0. Thus the statement (i) is proved.
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Setting x = x̄k in (16), where x̄k represents a projection of xk onto X then
we obtain

F (xk+1) ≤ F (x̄k) +

(
l(τ + 1)

2
+

1

2α

)

dist(xk,X )2 +

(
L(τ + 1)

2
−

1

2α

)

‖xk+1 − xk‖
2

+
(l + L)(τ + 1)

2

k−1∑

j=k−τ

‖xj+1 − xj‖
2

≤ F (x̄k) +

(
L(τ + 1)

2
−

1

2α
+

(
l(τ + 1)

2
+

1

2α

)( c0
αL

)2

(αL + 1)

)

‖xk+1 − xk‖
2

+

[
(l + L)(τ + 1)

2
+

(
l(τ + 1)

2
+

1

2α

)( c0
αL

)2

(αL + 1)ατL

] k−1∑

j=k−τ

‖xj+1 − xj‖
2

(47)

Since ‖xk − xk+1‖ → 0 and dist(xk,X ) → 0, nothing that

‖x̄k − x̄k+1‖ ≤ dist(xk,X ) + ‖xk − xk+1‖ + dist(xk+1,X ), (48)

we have ‖x̄k − x̄k+1‖ → 0. With A5, F (x̄k) ≡ ζ holds for some constant ζ for
all sufficiently large k. Without loss of generality, we suppose F (x̄k) = ζ for
k ≥ Kα. Relax α to 1

L
and rewrite (13) to (49), α2×(47) to (50) in a simplified

way as follow:

F (xk+1) ≤ F (xk) +

(

C1 −
1

α

)

‖xk+1 − xk‖
2 + C2

k−1∑

j=k−τ

‖xj+1 − xj‖
2, (49)

α2F (xk+1) ≤ α2ζ + (C3 +
c20
L2

1

2α
)‖xk+1 − xk‖

2 + C4

k−1∑

j=k−τ

‖xj+1 − xj‖
2,

(50)

where constants Ci are independent with α. Denote H(xk) := F (xk) − ζ.

Therefore, (49) + L2

c20
(50) leads to

(

1 +
L2

c20
α2

)

H(xk+1) ≤ H(xk) +

(

C5 −
1

2α

)

‖xk+1 − xk‖
2 + C6

k−1∑

j=k−τ

‖xj+1 − xj‖
2.

Actually, from the inequality above, one can directly conclude that for all
sufficiently small α, Lemma 7 could always be employed to obtain the linear
convergence of H(xk) → 0. The remaining trivial piece is to give an explicit
range of α. All constants are listed as follows (a verifying Walfram Mathemat-
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ica script is available online https://www.deepinfar.cn/piag):

C1 =
L(τ + 1)

2
, C2 =

(l + L)(τ + 1)

2
,

C3 =
c20(2l(τ + 1) + L) + Lτ

2L2
,

C4 =
(l + L)(1 + τ) + 2τ(l + L + lτ)c20

2L2
,

C5 = l + L + lτ +
Lτ

2
+

Lτ

2c20
,

C6 =
1

2

(
(τ + 1)(l + L)

c20
+ 2lτ2 + 3lτ + l + 3Lτ + L

)

.

With consistent notations in Lemma 7, let Vk =
(

1 + L2

c20
α2
)

H(xk), a =
(

1 + L2

c20
α2
)−1

, b = 1
2α − C5, k0 = τ and c = C6. Note α ≤ 1

L
, then a ≥

(

1 + 1
c20

)−1

and the left side of (43) is bounded by

c

1 − a

1 − ak0+1

ak0
= c

k0∑

j=0

a−j ≤ C6(1 + τ(1 +
1

c20
)τ ) , C7, (51)

which implies that when α ≤ 1
2C5+2C7

, we have

c

1 − a

1 − ak0+1

ak0
≤ C7 ≤

1

2α
− C5 = b. (52)

The inequality (43) in Lemma 7 holds. Thus let

α = C8 = min

(
1

L̄ + τ(l̄ + L̄)
,

1

2C5 + 2C7
,

1

L

)

(53)

and we have

F (xk) − ζ ≤

(

1 +
L2

c20

1

C2
8

)Kα−k

(F (xKα
) − ζ) , k ≥ Kα (54)

⊓⊔
Moreover, we claim that the path of {xk} has finite length and {xk} R-

linearly converges to some stationary point x̃. First, we prove the following
lemma.

Lemma 8 Let {ak}, {bk} be positive sequences where bk = b0q
k for a real

number q ∈ (0, 1). If the inequality

ak ≤ bk +
c

τ
(ak−1 + ak−2 + · · · + ak−τ ) (55)

holds for k ≥ τ where τ is a given positive integer and 0 < c < 1, then {ak}
is R-linearly convergent to zero.
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Proof. We consider a characteristic polynomial

P (x) = xτ −
c

τ
xτ−1 −

c

τ
xτ−2 − · · · −

c

τ
. (56)

Since P (c) ≤ 0 and P (1) = 1−c > 0, letting a root of P (x) in [c, 1) be denoted
by p, then we have the following inequalities,

ak ≤ bk +
c

τ
(ak−1 + ak−2 + · · · + ak−τ ) ,

pak−1 ≤ pbk−1 +
c

τ
(pak−2 + pak−3 + · · · + pak−τ−1) ,

p2ak−2 ≤ p2bk−2 +
c

τ

(
p2ak−3 + p2ak−4 + · · · + p2ak−τ−2

)
,

· · ·

pk−τaτ ≤ pk−τ bτ +
c

τ

(
pk−τaτ−1 + pk−τaτ−2 + · · · + pk−τa0

)
.

Adding them up, with proper relaxing, we have

ak ≤
k∑

i=0

pk−ibi + cpk−2τ+1
τ−1∑

i=0

ai (57)

= b0p
k

k∑

i=0

(
q

p

)i

+ cpk−2τ+1
τ−1∑

i=0

ai. (58)

Perform limit superior on both sides, we have

lim sup
k→+∞

|ak|
1
k ≤ max(p, q) < 1. (59)

Thus {ak} is R-linearly convergent to 0. ⊓⊔

Theorem 2 Suppose conditions of Theorem 1 are satisfied. Then we have

(i)
∑∞

i=0 ‖xi+1 − xi‖ < +∞,
(ii) {xk} is R-linearly convergent.

Proof. Rewrite the inequality (49) as

‖xk+1 − xk‖
2 ≤

C2
1
α
− C1

(F (xk) − F (xk+1)) +
C2

1
α
− C1

k−1∑

j=k−τ

‖xj+1 − xj‖
2.

(60)

Since the first term of the right sides is proved to be R-linearly convergent and
the coefficient of the second term satisfies

C2

1
α
− C1

=
C2

2C5 + 2C7 − C1
<

C2

2C5 + 2τC6 − C1
<

1

τ
, (61)
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thus Lemma 8 implies that ‖xk+1 − xk‖ ≤ r0 · rk for some 0 < r < 1, r0 > 0,
which illustrates the statement (i). Consequently {xk} is a Cauchy sequence
and then it converges to a point x̃ ∈ X . Finally we have

‖xk − x̃‖ ≤
∞∑

j=k

‖xj − xj+1‖ ≤
r0 · rk

1 − r
, (62)

which implies that xk R-linearly converges to x̃. ⊓⊔

4 Conclusion

In this paper, we analyze the convergence of PIAG for nonconvex minimiza-
tion. First of all, we give the sufficient descent property of PIAG in nonconvex
cases. Under the proximal error bound condition, we prove that the gener-
ated sequence {xk} is convergent to the stationary point set. Then, we show
{F (xk)} is R-linearly convergent and that {xk} R-linearly converges to a sta-
tionary point when the stepsize α is under some positive constant. Finally, we
note that even with the delay parameter τ vanishing, our theoretical conver-
gence rate is far from being tight, which deserves further study.
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