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SPECTRAL INDICATOR METHOD FOR A NON-SELFADJOINT

STEKLOV EIGENVALUE PROBLEM ∗

J. LIU † , J. SUN ‡ , AND T. TURNER §

Abstract. We propose an efficient numerical method for a non-selfadjoint Steklov eigenvalue
problem. The Lagrange finite element is used for discretization. The convergence is proved using the
spectral perturbation theory for compact operators. The non-sefadjointness of the problem leads to
non-Hermitian matrix eigenvalue problem. Due to the existence of complex eigenvalues and lack of a
priori spectral information, we propose a modified version of the recently developed spectral indicator
method to compute (complex) eigenvalues in a given region on the complex plane. In particular,
to reduce computational cost, the problem is transformed into a much smaller matrix eigenvalue
problem involving the unknowns only on the boundary of the domain. Numerical examples are
presented to validate the effectiveness of the proposed method.

1. Introduction. Steklov eigenvalue problems arise in mathematical physics
with spectral parameters in the boundary conditions [24]. Applications of Steklov
eigenvalues include surface waves, mechanical oscillators immersed in a viscous fluid,
the vibration modes of a structure in contact with an incompressible fluid, etc [24,
13, 14]. Recently, Steklov eigenvalues have been used in the inverse scattering theory
to reconstruct the index of refraction of an inhomogeneous media [12]. Note that
most Steklov eigenvalue problems considered in the literature are related to partial
differential equations of second order. However, Steklov eigenvalue problems of higher
order were also studied, e.g., the fourth order Steklov eigenvalue problem [2].

In contrast to the theoretical study of the Steklov eigenvalue problem, numeri-
cal methods, in particular, finite element methods have attracted some researchers
rather recently [3, 6, 7, 25, 14, 1, 23, 16, 21]. Various methods have been proposed,
including the isoparametric finite element method [3], the virtual element method
[25], non-conforming finite element methods [16, 21], the spectral-Galerkin method
[2], adaptive methods [6], multilevel methods [32], etc. All of the above works consider
the selfadjoint cases. In this paper, we consider a non-selfadjoint Steklov eigenvalue
problem arising in the study of non-homogeneous absorbing medium in inverse scat-
tering theory [12]. There seems to exist only one paper by Bramble and Osborn [9],
which considered the non-selfadjoint case. However, the second order non-selfadjoint
operator is assumed to be uniformly elliptic and no numerical results were reported
in [9]. In this sense, the current paper is the first paper contains both finite element
theory and numerical examples for a non-selfadjoint Steklov eigenvalue problem, to
the authors’ knowledge. For the general theory and examples of finite element meth-
ods for eigenvalue problems, we refer the readers to the book chapter by Babuška and
Osborn [4], the review paper by Boffi [8], and the recently published book by Sun and
Zhou [31].

There are two major challenges to develop effective finite element methods for
non-selfadjoint eigenvalue problems [26, 4, 31]. The first one is the lack of system-

∗The research of J. Liu was supported in part by Guangdong Natural Science Foundation of China
(2016A030313074). The research of J. Sun was supported in part by NSF Grant DMS-1521555.

†Department of Mathematical Sciences, Jinan University, Guangzhou, 130012, China
(liujuan@jnu.edu.cn).

‡Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931,
U.S.A. (jiguangs@mtu.edu).

§Department of Mathematics and Computer Science, University of Maryland Eastern Shore,
Princess Anne, MD 21853, U.S.A. (tdturner@umes.edu).

1

http://arxiv.org/abs/1804.02582v1


atic tools to prove the convergence of the finite element discretization. In general,
for an eigenvalue problem, the convergence of the finite element method for the as-
sociated source problem needs to be established first, which is not as easy as the
selfadjoint cases. The second one is the lack of effective eigensolvers to compute the
complex eigenvalues when no a priori spectral information is available. Finite element
discretization of non-selfadjoint eigenvalue problems usually leads to non-Hermitian
generalized matrix eigenvalue problems, which are very challenging in numerical linear
algebra [28].

In a recent paper [19], a novel spectral indicator eigenvalue solver RIM (recursive
integral method) is developed for non-Hermitian eigenvalue problems. RIM computes
all eigenvalues in a region on the complex plane C without any a priori spectral
information. Roughly speaking, given a region S ⊂ C whose boundary Γ := ∂S is a
simple closed curve, RIM computes an indicator δS for S using spectral projection
defined by a Cauchy contour integral on Γ. The indicator is used to decide if S
contains eigenvalue(s). In case of positive answers, S is divided into sub-regions and
indicators for these sub-regions are computed. The procedure continues until the size
of the region is smaller than a specified precision d0 (e.g., d0 = 10−9). The centers of
the regions are the approximations of eigenvalues. It is noted that contour integral
is a classical tool in operator theory [22]. It became popular recently to approximate
eigenvalue problems using invariant subspaces [29, 27, 5].

In this paper, we propose a simple finite element method and expand the spectral
indicator method RIM to compute complex Steklov eigenvalues in the region of in-
terest. The contributions of the paper include 1) it provides a finite element analysis
for a non-selfadjoint Steklov eigenvalue problem; 2) it reduces the computation to
the boundary of the domain, i.e., treating a much smaller discrete problem; and 3) it
extends a new eigensolver for the resulting non-Hermitian matrix eigenvalue problem.

The rest of the paper is organized as follows. In Section 2, we introduce the
Steklov eigenvalue problem, its adjoint problems, variational formulations, and prove
the well-posedness. In Section 3, we propose a linear finite element method and
prove the convergence. In Section 4, we extend the new spectral indicator method
for the resulting non-Hermitian matrix eigenvalue problems. In particular, to reduce
computational cost, the problem is transformed into a much smaller matrix eigenvalue
problem involving the unknowns only on the boundary of the domain. Numerical
examples are presented in Section 5. Finally, some conclusions and future works are
discussed in Section 6.

2. A Non-selfadjoint Steklov Eigenvalue Problem. Let Ω ⊂ R2 be a
bounded polygon with Lipshitz boundary ∂Ω. Let ν be the unit outward normal
to ∂Ω. Let k be the wavenumber and n(x) be the index of refraction. We consider
the Steklov eigenvalue problem to find λ ∈ C and a nontrivial function u ∈ H1(Ω)
such that

△u+ k2n(x)u = 0 in Ω, (2.1a)

∂u

∂ν
+ λu = 0 on ∂Ω. (2.1b)

Define

(u, v) =

∫

Ω

uv dx, 〈f, g〉 =
∫

∂Ω

fg ds,
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and the continuous sesquilinear form

a(u, v) := (∇u,∇v)− k2(nu, v) for all u, v ∈ H1(Ω).

The weak formulation for (2.1) is to find (λ, u) ∈ C×H1(Ω) such that

a(u, v) = −λ〈u, v〉 for all v ∈ H1(Ω). (2.2)

The associated source problem is, given g ∈ L2(∂Ω), to find u ∈ H1(Ω) such that

a(u, v) = 〈g, v〉 for all v ∈ H1(Ω). (2.3)

In this paper, we assume that n(x) is a bounded complex valued function given by

n(x) = n1(x) + i
n2(x)

k
,

where i =
√
−1, n1(x) > 0 and n2(x) ≥ 0 are bounded smooth functions.

Define an operator C : H1(Ω) → H1(Ω) which maps u ∈ H1(Ω) to w ∈ H1(Ω)
satisfying

(w, v)H1(Ω) = k2(n(x)u, v) for all v ∈ H1(Ω).

It is clear that the above problem has a unique solution. The regularity result for
elliptic problems implies that w ∈ H2(Ω) if u ∈ H1(Ω) and n(x) ∈ H1(Ω). Hence
C : u → w is an compact operator [11].

It is easy to verify that a(·, ·) satisfies the G̊arding’s inequality [11], i.e., there
exist constants K < ∞ and α0 > 0 such that

Re {a(v, v)} +K‖v‖2L2(Ω) ≥ α0‖v‖2H1(Ω) for all u ∈ H1(Ω). (2.4)

Let K be a positive constant, which is large enough. Define the sesquilinear form
A : H1 ×H1 → C such that

A(u, v) := a(u, v) +K(u, v) = (∇u,∇v)− k2(nu, v) +K(u, v), u, v ∈ H1(Ω). (2.5)

The following lemma shows that A is H1(Ω)-elliptic [18].
Lemma 2.1. For K large enough, the sesquilinear form A is H1(Ω)-elliptic, i.e.,

there exists α0 > 0 such that

|A(v, v)| ≥ α0‖v‖2H1(Ω) for all v ∈ H1(Ω).

Proof. Since n1(x) is bounded, there exist a constant B such that n1(x) < B for
all x ∈ Ω. Using the G̊arding’s inequality (2.4), we have that

|A(v, v)| = |(∇v,∇v)− k2(nv, v) +K(v, v)|
≥ Re

{

(∇v,∇v) − k2(nv, v) +K(v, v)
}

= (∇v,∇v)− k2(n1(x)v, v) +K(v, v)

≥ (∇v,∇v)− k2B(v, v) +K(v, v)

≥ α0‖v‖2H1(Ω),

where α0 = min{1,K − k2B} for K large enough.
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As a consequence, the Fredholm alternative can be used to show the existence of
a unique solution for (2.3). To this end, we need to define the (generalized) Neumann
eigenvalues.

Definition 2.2. The Neumann eigenvalue problem associated with n(x) is to

find k2 ∈ C and a nontrivial u ∈ H1(Ω) such that

△u+ k2n(x)u = 0 in Ω, (2.6a)

∂u

∂ν
= 0 on ∂Ω. (2.6b)

Theorem 2.3. Let g ∈ L2(Ω). Assuming that k2 is not a Neumann eigenvalue

associated with n(x) on Ω, there exists a unique solution u ∈ H1(Ω) to (2.3) such that

‖u‖H1(Ω) ≤ C‖g‖L2(∂Ω). (2.7)

Proof. Since k2 is not a Neumann eigenvalue, then uniqueness holds for (2.3). By
Fredholm Alternative (see e.g., Section 5.3 of [18]), there exists a unique solution u
to (2.3) and the regularity follows readily.

Consequently, one can define an operator, which is in fact the Neumann-to-
Dirichlet mapping, T : L2(∂Ω) → L2(∂Ω) [12]

Tg = u|∂Ω. (2.8)

The mapping T is compact since Tg ∈ H1/2(∂Ω) and H1/2(∂Ω) is compactly embed-
ded in L2(∂Ω). Denote an eigenpair of T by (µ, g) such that

Tg = µg.

It is clear that µ and λ are related

λ = −1/µ.

We shall also need the adjoint operator T ∗ of T for the proof of convergence
of the finite element method later. Consider the adjoint problem for (2.3). Given
g ∈ L2(∂Ω), find v ∈ H1(Ω) such that

a(u, v) = 〈u, g〉 for all u ∈ H1(Ω). (2.9)

Then (2.9) has a unique solution v. The solution operator for (2.9) is the adjoint
operator T ∗g : L2(∂Ω) → L2(∂Ω) such that T ∗g = v|∂Ω.

3. Finite Element Approximation. In this section, we present a finite ele-
ment approximation Th for T . Let Th be a regular triangular mesh for Ω with mesh
size h. Let Vh ⊂ H1(Ω) be the Lagrange finite element space associated with Th and
V B
h := Vh|∂Ω be the restriction of Vh on ∂Ω. It is clear that V B

h ⊂ L2(∂Ω). The finite
element formulation for the Steklov eigenvalue problem is to find (λh, uh) ∈ C × Vh

such that

(∇uh,∇vh)− k2(nuh, vh) = −λh〈uh, vh〉 for all vh ∈ Vh. (3.1)
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For the convergence of eigenvalues, we first study the source problem. Given
g ∈ L2(∂Ω), let gh be the projection of g onto V B

h . The discrete problem is to find
uh ∈ Vh such that

(∇uh,∇vh)− k2(nuh, vh) = 〈gh, vh〉 for all vh ∈ Vh. (3.2)

In the rest of this section, we assume that u ∈ H2(Ω) and the same regularity holds
for the solution of the adjoint problem. This is the case when Ω is convex. In general,
when Ω is non-convex, u does not belong to H2(Ω). We refer the readers to [17] for
further discussions on the regularity of u, which is out the scope of the current paper.

We have the following estimate for (3.2) (see Theorem 5.7.6 of [11]).
Theorem 3.1. Let u be the solution to (2.3). Assume that k is not a Neumann

eigenvalue. There exists a unique solution uh to (3.2) such that, for h small enough,

‖u− uh‖H1(Ω) ≤ C inf
v∈Vh

‖u− v‖H1(Ω) (3.3)

and

‖u− uh‖L2(Ω) ≤ Ch‖u− uh‖H1(Ω). (3.4)

Proof. For the finite dimensional problem (3.2), existence of a solution can be
established using uniqueness. Assuming that there exists a nontrivial solution uh

to (3.2) for gh = 0. For the continuous problem, g = 0 implies that the solution
u = 0. Then (3.6) asserts that uh = 0. Thus the uniqueness holds, which implies the
existence of the solution uh as well.

Using (2.3) and (3.2), one has the Galerkin orthogonality

a(u− uh, vh) = 0 for all vh ∈ Vh.

The G̊arding’s inequality (2.4) implies that

α0‖u− uh‖2H1(Ω) ≤ |a(u− uh, u− uh) +K(u− uh, u− uh)|
= |a(u− uh, u− vh) +K‖u− uh‖2L2(Ω)|
≤ C‖u− uh‖H1(Ω)‖u− vh‖H1(Ω) +K‖u− uh‖2L2(Ω).

Assume that the estimate (3.4) holds, i.e.,

‖u− uh‖L2(Ω) ≤ C1h‖u− uh‖H1(Ω) (3.5)

for some constant C1 > 0. One has that

α0‖u− uh‖2H1(Ω) ≤ C‖u− uh‖H1(Ω)‖u− vh‖H1(Ω) +KC1h
2‖u− uh‖2H1(Ω). (3.6)

Then for h small enough, we obtain

‖u− uh‖H1(Ω) ≤ C inf
v∈Vh

‖u− vh‖H1(Ω) for all vh ∈ Vh.

The rest of the proof is devoted to verify (3.4). Let w be the solution to the
adjoint problem

a(v, w) = (u− uh, v) for all v ∈ V.
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Then, for any wh ∈ Vh,

(u− uh, u− uh) = a(u − uh, w)

= a(u − uh, w − wh)

≤ C‖u− uh‖H1(Ω)‖w − wh‖H1(Ω)

≤ Ch‖u− uh‖H1(Ω)|w|H2(Ω)

≤ Ch‖u− uh‖H1(Ω)‖u− uh‖L2(Ω),

where we have used the regularity of the solution for the adjoint problem. Conse-
quently,

‖u− uh‖L2(Ω) ≤ Ch‖u− uh‖H1(Ω).

As a result, problem (3.2) defines a discrete operator Th : L2(∂Ω) → V B
h such

that

Thg = uh|V B

h

. (3.7)

The following theorem shows that Th converges to T in norm in L2(∂Ω).
Theorem 3.2. Assume that g ∈ H1/2(∂Ω) ⊂ L2(∂Ω). Let T and Th be defined

as in (2.8) and (3.7) using linear Lagrange element, respectively. Then

‖T − Th‖L2(∂Ω),L2(∂Ω) ≤ Ch3/2. (3.8)

Proof. Using the approximation property of the linear Lagrange finite element
(see Eqn. (3.9) of [31]), for u ∈ H2(Ω), one has that

inf
v∈Vh

‖u− v‖H1(Ω) ≤ Ch‖u‖H2(Ω) ≤ Ch‖g‖L2(∂Ω). (3.9)

Therefore, by Theorem 3.1,

‖u− uh‖L2(Ω) ≤ Ch2‖g‖L2(∂Ω).

One has that

‖(T − Th)g‖L2(∂Ω) = ‖(u− uh)|∂Ω‖L2(∂Ω)

≤ C‖u− uh‖1/2L2(Ω)‖u− uh‖1/2H1(Ω)

≤ Ch3/2‖g‖L2(∂Ω),

where we have applied Theorem 3.1 and the trace theorem (Theorem 1.6.6 in [11]).
Hence (3.8) follows immediately and the proof is complete.

Similarly, the discrete problem for the adjoint problem (2.9) can be defined as
follows. Given g ∈ L2(∂Ω), find vh ∈ H1(Ω) such that

(∇uh,∇vh)− k2(nuh, vh) = 〈uh, g〉 for all uh ∈ Vh. (3.10)

Then all results in this section also hold for the adjoint problem (2.9). In particular,
one has that discrete adjoint operator T ∗

h : L2(∂Ω) → V B
h such that Thgh = vh|V B

h

where vh the solution of (3.10) and

‖T ∗ − T ∗
h‖L2(∂Ω),L2(∂Ω) ≤ Ch3/2. (3.11)
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The rest of the section is devoted to the finite element spectral approximation
of Steklov eigenvalues based on the theory in [26]. We shall need some preliminaries
on the spectral theory of compact operators (see, e.g., [22]). Let T : X → X be a
compact operator on a complex Hilbert space X . Let z ∈ C. The resolvent operator
of T is defined as

Rz(T ) = (z − T )−1. (3.12)

The resolvent set of T is

ρ(T ) = {z ∈ C : (z − T )−1 exists and is bounded}. (3.13)

The spectrum of T is σ(T ) = C \ ρ(T ).
Since T is compact, each µ ∈ σ(T ) is an isolated eigenvalue of T and the gener-

alized eigenspace associated with µ is finite dimensional. Furthermore, there exists a
smallest positive integer α such that

N ((µ− T )α) = N
(

(µ− T )α+1
)

,

where N denotes the null space. The integer m = dimN ((µ− T )α) is called the
algebraic multiplicity of µ. The functions in N ((µ− T )α) are called the generalized
eigenfunctions of T corresponding to µ. Note that the geometric multiplicity of µ is
defined as dimN (µ− T ).

Let Γ be a simple closed curve on the complex plane C lying in ρ(T ), which
contains an eigenvalue µ and no other eigenvalues. Let the algebraic multiplicity of µ
be m. The spectral projection is defined by

E(µ) :=
1

2πi

∫

Γ

Rz(T )dz.

It is well-known that E is a projection onto the space spanned by the generalized
eigenfunctions φj , j = 1, . . . ,m associated with µ, i.e., the range of E, R(E), coincides
wth N ((µ− T )α).

Since Th converges to T in norm as h → 0, Γ ⊂ ρ(Th) for h small enough. In
addition, there exists m eigenvalues µ1

h, . . . , µ
m
h of Th inside Γ such that

lim
h→0

µj
h = µj for j = 1, . . . ,m.

The spectral projection

Eh(µ) :=
1

2πi

∫

Γ

Rz(Th)dz

converges to E pointwise and dimR(Eh) = dimR(E).
If µ is an eigenvalue of T , then µ is an eigenvalue of T ∗. Let φ1, . . . , φm be a basis

for R(E) and φ∗
1, . . . , φ

∗
m be the dual basis to φ1, . . . , φm (see Section 1.1 of [31]). The

following lemma (Theorem 3 of [26]) will be used to prove the convergence of Steklov
eigenvalues.

Lemma 3.3. Let µ be an eigenvalue of T with algebraic multiplicity m. Let

µ1
h, . . . , µ

m
h be the m eigenvalues of Th converge to µ and define

µ̂h =
1

m

m
∑

j=1

µj
h.
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Then there exists a constant C such that

|µ− µ̂h| ≤
1

m

m
∑

j=1

|〈(T − Th)φj , φ
∗
j 〉|+ C‖(T − Th)|R(E)‖ ‖(T ∗ − T ∗

h )|R(E∗)‖, (3.14)

where R(E∗) = span{φ∗
1, . . . , φ

∗
m}.

Using the convergence results of the finite element method for the source problem
and the above lemma, we have the following theorem.

Theorem 3.4. Let µ be an eigenvalue of T with multiplicity m and µj
h, j =

1, . . . ,m be the m eigenvalues of Th approximating µ. Then there exists a constant

C, independent of h, such that

|µ− µ̂h| ≤ Ch2, where µ̂h =
1

m

m
∑

j=1

µj
h.

Proof. Let uj and uh,j be the solutions of (2.3) and (3.2) with right hand side
being φj , respectively. Let u

∗
j and u∗

h,j be the solution of the adjoint problem (2.9) and
the corresponding finite element solution with right hand side being φ∗

j , respectively.
In view of Theorem 3.2 and (3.11), we only need to estimate the first term of (3.14).

|〈(T − Th)φj , φ
∗
j 〉| = |〈φj , (T

∗ − T ∗
h )φ

∗
j 〉|

= |a(uj , u
∗
j − u∗

h,h)|
= |a(uh − uh,j, u

∗
j − u∗

h,j)|
≤ C‖uh − uh,j‖H1(Ω)‖u∗

j − u∗
h,j)‖H1(Ω)

≤ Ch2.

As a consequence, we have the following convergence result on the Steklov eigen-
values.

Theorem 3.5. Let λ be a Steklov eigenvalue with multiplicity m and λj
h, j =

1, . . . ,m be the m discrete eigenvalues of (3.1) approximating λ. Then there exists a

constant C, independent of h, such that

|λ− λ̂h| ≤ Ch2, where λ̂h =
1

m

m
∑

j=1

λj
h.

4. Spectral Indicator Method. When n(x) is complex, the Steklov eigenvalue
problem is non-selfadjoint. The above finite element method leads to a non-Hermitian
matrix eigenvalue problem. Due to the lack of a priori spectral information, classical
methods do not work effectively. To this end, we extend the spectral indicator method
RIM, which was proposed recently in [19] (see also [20]) for the non-selfadjoint trans-
mission eigenvalue problem [15, 30], to compute (complex) Steklov eigenvalues in a
given region on the complex plane C.

The matrix form for (3.1) is given by

(G− k2Mn)u = −λM∂Ωu, (4.1)

where G is the stiffness matrix, Mn is the mass matrix, M∂Ω is the mass matrix on ∂Ω.
The standard way is to approximate λ′s by solving the generalized matrix eigenvalue
problem (4.1).

8



We first introduce RIM proposed in [19] for the generalized eigenvalue problem

Ax = λBx, (4.2)

where A = (G− k2Mn) and B = −M∂Ω.
Let S ⊂ C be a simply connect domain and Γ = ∂S. The problem of interest is to

compute all eigenvalues of (4.2) in S. Let g be a random vector. From the previous
section, the spectral projection of g is defined as

Eg =
1

2πi

∫

Γ

Rz(A,B)gdz =
1

2πi

∫

Γ

(A− zB)−1
gdz,

The idea behind RIM is very simple. The spectral projection Eg can be used to
to decide if there exist eigenvalues in S or not. If there are no eigenvalues inside Γ,
|Eg| = 0. Otherwise, if there exist m eigenvalues λj , j = 1, . . . ,m, |Eg| 6= 0.

Without loss of generality, let S be a square. Eg can be approximated using a
quadrature

Eg ≈ 1

2πi

W
∑

j=1

ωjxj , (4.3)

where ωj ’s are quadrature weights and xj ’s are the solutions of the linear systems

(A− zjB)xj = g, j = 1, . . . ,W. (4.4)

Recall that if there is no eigenvalue inside Γ, then Eg = 0 for all g ∈ Cn. Hence |Eg|
can be used as an indicator of S. However, in practice, it is difficult to distinguish
between |Eg| 6= 0 and |Eg| = 0. The solution in [19] is to normalize Eg and project
it again. The indicator δS is set to be

δS :=

∣

∣

∣

∣

E

(

Eg

|Eg|

)
∣

∣

∣

∣

. (4.5)

Since we use numerical quadratures, δS ≈ 1 if there exist eigenvalues in S. In this case,
S is divided into sub-regions and indicators for these sub-regions are computed. The
procedure continues until the size of the region is smaller than a specified precision
d0 (e.g., d0 = 10−9). Then the centers of the regions are the approximations of
eigenvalues.

According to (4.5), δS = 1 if there exists at least one eigenvalue in S and δS = 0
if there is no eigenvalue in S. Since only ”yes” (δS = 1) or ”no” (δS = 0) is needed in
the algorithm and quadrature is used to evaluate Eg, it is natural to use a threshold
δ0 to distiguish ”yes” and ”no”. Let g be a random vector and δ0, 0 < δ0 < 1, be a
threshold value. The following is the basic algorithm for RIM.

RIM(A,B, S, d0, δ0, g)
Input: matrices A,B, region S, precision d0, threshold δ0, random vector g.
Output: generalized eigenvalue(s) λ inside S

1. Compute δS using (4.5), (4.3) and (4.4).
2. Decide if S contains eigenvalue(s).

– If δS < δ0, then exit.
– Otherwise, compute the size h(S) of S.

- If h(S) > d0,

9



partition S into subregions Sj , j = 1, . . . J .
for j = 1 : J

RIM(A,B, Sj , d0, δ0, g).
end

- If h(S) ≤ d0,
set λ to be the center of S.
output λ and exit.

The computational cost of RIM mainly comes from solving the linear system
(4.4) at each quadrature point. Note that these matrices are N × N , where N is
the number of vertices of the triangular mesh if linear Lagrange element is used.
Furthermore, for robustness, the strategy of RIM in [19] selects a small threshold
δ0 = 0.1, i.e., S contains eigenvalue(s) whenever δS > δ0. This choice of threshold for
selecting a region systematically leans towards further investigation of regions that
may potentially contain eigenvalues. Such a strategy leads to more linear systems.

To employ RIM in a more efficient way for Steklov eigenvalues, we consider
an alternative matrix eigenvalue problem of a much smaller size by using a matrix
version of Th directly. This is possible due to the fact that the eigenvalues appear
in the boundary condition such that one can rewrite the system as an eigenvalue
problem involving degrees of freedom only related to the boundary of the domain.
Consequently, the size of the problem is reduced significantly.

From the finite element approximation, Th : V B
h → V B

h has the following matrix
form, which is also denoted by Th,

Th := Ih(G− k2Mn)
−1M∂Ω,

where Ih corresponds the restriction of a function in Vh onto V B
h . Th is an M ×M

matrix where M is the number of vertices on ∂Ω. Clearly, M ≪ N and one only
needs to consider a much smaller eigenvalue problem than (4.1)

Thu = µu. (4.6)

In this case, for the spectral projection Eg, the linear systems are of size M

(T − zjI)xj = g, j = 1, . . . ,W. (4.7)

The following is the modified version of RIM designed for the Steklov eigenvalue
problem using (4.6), denoted by S-RIM.

S-RIM(Th, S, d0, δ0, g)
Input: matrix Th, region S, precision d0, threshold δ0, random vector g.
Output: eigenvalue(s) µ inside S

1. Compute δS using (4.5), (4.3), (4.7).
2. Decide if S contains eigenvalue(s).

– If δS < δ0, then exit.
– Otherwise, compute the size h(S) of S.

- If h(S) > d0,
partition S into subregions Sj , j = 1, . . . J .
for j = 1 : J

S-RIM(Th, Sj , d0, δ0, g).
end

- If h(S) ≤ d0,
set µ to be the center of S.
output µ and exit.
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5. Numerical Examples. We present some numerical results in this section.
For all examples, we choose k = 1. Consider three domains: Ω1 is the unit disk, Ω2

is the square whose vertices are

(0,−1), (1, 0), (0, 1), (−1, 0),

and Ω3 is an L-shaped domain given by

(−0.9, 1.1)× (−1.1, 0.9) \ [0.1, 1.1]× [−1.1,−0.1].

For the disk with radius R and constant index of refraction n, separation of
variables in polar coordinates can be used to obtain exact Steklov eigenvalues. Since
u is the solution of the Helmholtz equation (2.1a), it has the expansion

u(r, θ) =
+∞
∑

m=−∞
amJ|m|(k

√
nr)eimθ, r < R, θ ∈ (0, 2π], (5.1)

where m’s are integers and J|m| denotes the Bessel function of order |m|. By the
boundary condition (2.1b), the coefficients am satisfy

+∞
∑

m=−∞
am

(

k
√
nJ ′

|m|(k
√
nR) + λJ|m|(k

√
nR)

)

eimθ = 0,

i.e.,

am

(

k
√
nJ ′

|m|(k
√
nR) + λJ|m|(k

√
nR)

)

= 0, m = −∞, . . . ,∞. (5.2)

If λ is a Steklov eigenvalue, there exists at least one m such that am 6= 0. Then from
(5.2), λ must satisfy

k
√
nJ ′

m(k
√
nR) + λJm(k

√
nR) = 0, for some m ≥ 0.

Therefore, the Steklov eigenvalues are given by

λ = −k
√
nJ ′

m(k
√
nR)

Jm(k
√
nR)

, for some m ≥ 0.

On the other hand, it is clear that all λm = −k
√
nJ′

m
(k

√
nR)

Jm(k
√
nR)

, m = 0, 1, 2, · · · , are
Steklov eigenvalues since Jm(k

√
nr)eimθ are non-trivial solutions of the Steklov eigen-

value problem.
From the above discussion, for the unit disk, Stekloff eigenvalues are given by

λm = −k
√
n
J ′
m(k

√
n)

Jm(k
√
n)

, m = 0, 1, 2, . . . . (5.3)

In Fig. 5.1, we show λm against the index of refraction n for m = 0, 1, 2. Using (5.3),
when n = 4 the 6 largest Steklov eigenvalues are

λ1 = 5.151841, λ2,3 = 0.223578, λ4,5 = −1.269100, λ6 = −2.472703 (5.4)

and when n = 4 + 4i the 4 complex Steklov eigenvalues with largest imaginary parts
are

λ1 =
−0.320506
+3.124689i

, λ2,3 =
−0.136861
+1.396737i

, λ4 =
−1.353076
+0.791723i

. (5.5)
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Fig. 5.1. λm v.s. n for m = 0, 1, 2.

5.1. Selfadjoint Cases. When the index of refraction n(x) is real, the problem
is selfadjoint and all Steklov eigenvalues are real. We compute the six largest Steklov
eigenvalues for n(x) = 4 on a series of uniformly refined meshes for each domain. The
results are shown in Tables 5.1, 5.2, and 5.3. The mesh sizes are denoted by h. The
values are consistent with those in [12].

h 1st 2nd 3rd 4th 5th 6th

0.2341 5.016606 0.206380 0.205917 -1.294039 -1.294339 -2.561531
0.1208 5.116979 0.219175 0.219048 -1.275370 -1.275440 -2.494866
0.0613 5.143045 0.222469 0.222436 -1.270670 -1.270687 -2.478245
0.0309 5.149636 0.223301 0.223292 -1.269493 -1.269497 -2.474088
0.0155 5.151289 0.223509 0.223507 -1.269198 -1.269199 -2.473049

Table 5.1

The largest six Steklov eigenvalues for the circle n(x) = 4.

Note that for the unit disk, the first 3 eigenvalues are given by (5.3) for m =
0, 1, 2. The values of the columns 2, 3, 4 in Table 5.1 approximate the intersections
of λm,m = 0, 1, 2 and n = 4 in Fig. 5.1.

h 1st 2nd 3rd 4th 5th 6th

0.2441 2.191504 -0.220113 -0.220397 -0.929022 -2.856629 -2.970847
0.1220 2.199625 -0.214254 -0.214327 -0.913327 -2.791699 -2.819631
0.0610 2.201774 -0.212756 -0.212774 -0.909377 -2.774697 -2.781648
0.0305 2.202323 -0.212378 -0.212383 -0.908387 -2.770389 -2.772125
0.0153 2.202461 -0.212284 -0.212285 -0.908139 -2.769308 -2.769742

Table 5.2

The largest six Steklov eigenvalues for the square n(x) = 4.
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h 1st 2nd 3rd 4th 5th 6th

0.2383 2.507719 0.840066 0.117326 -1.103880 -1.112608 -1.464999
0.1192 2.526360 0.851538 0.122637 -1.090066 -1.096900 -1.429175
0.0596 2.531439 0.855499 0.124041 -1.086500 -1.092730 -1.420001
0.0298 2.532762 0.856926 0.124402 -1.085600 -1.091620 -1.417681
0.0149 2.533099 0.857457 0.124494 -1.085374 -1.091319 -1.417098

Table 5.3

The largest six Steklov eigenvalues for the L-shaped domain n(x) = 4.

In Fig. 5.2, we show the convergence rates of Steklov eigenvalues of three do-
mains. Since we use the linear Lagrange finite element, the second order convergence
is achieved for the unit circle and the square. For the L-shaped domain, which is
non-convex, the convergence rate of the second Steklov eigenvalue is lower than 2,
while the other 5 eigenvalues have second order convergence.
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Fig. 5.2. Convergence rates of Steklov eigenvalues n(x) = 4. Top Left: the unit circle. Top
Right: the square. Bottom Left: the L-shaped domain.

Note that the convergence rate of the eigenvalues relates to the regularity of
the associated eigenfunctions. The result in Fig. 5.2 implies that the eigenfunction
associated with the second eigenvalues does not belong to H2(Ω).

5.2. Non-selfadjoint Cases. When n(x) is complex, the solution operator is
non-selfadjoint. Consequently, we end up with non-Hermitian matrix eigenvalue prob-
lem. Computation of complex eigenvalues of non-Hermitian matrices are challenging,
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Fig. 5.3. Left: Steklov eigenvalues for the unit disk on the complex plane n(x) = 4+4i. Right:
the region explored by S-RIM.

in particular, when there is no a priori spectral information on the number and dis-
tribution of eigenvalues. To this end, we use the new spectral indicator method
introduced in the previous section to compute Steklov eigenvalues. For all examples,
we take n(x) = 4 + 4i.

The left picture of Fig. 5.3 shows the distribution of Steklov eigenvalues for the
unit disk on the complex plane. These are eigenvalues computed using Matlab ‘eig’
for the non-Hermitian matrix (2097× 2097) resulting from the finite element method.
The mesh size is h ≈ 0.0613. Note that ‘eig’ is a direct eigensolver and not suitable for
larger matrices. Since we are interested in eigenvalues close to the origin, we choose
the search region S on the complex plane to be the square [−3, 0.5] × [0, 3.5]. The
right picture of Fig. 5.3 shows how S-RIM explores S and finds the eigenvalues inside
S.

The computed complex eigenvalues for the three domains are shown in Tables
5.4, 5.5, and 5.6, respectively. We arrange the eigenvalues according to the decreasing
order of their imaginary parts. Again, these values are consistent with the values given
in [12], which are reconstructed by some inverse algorithm using scattering data.

h 1st 2nd 3rd 4th

0.2341
−0.298121
+3.131620i

−0.134181
+1.375387i

−0.133990
+1.374565i

−1.371155
+0.786327i

0.1208
−0.314981
+3.126494i

−0.136106
+1.391267i

−0.136049
+1.391044i

−1.357526
+0.790318i

0.0613
−0.319127
+3.125146i

−0.136650
+1.395302i

−0.136666
+1.395359i

−1.354126
+0.79135i

0.0310
−0.320161
+3.124804i

−0.136812
+1.396392i

−0.136808
+1.396378i

−1.353338
+0.791628i

0.0155
−0.320420
+3.124718i

−0.136849
+1.396651i

−0.136848
+1.396647i

−1.353145
+0.791701i

Table 5.4

Eigenvalues for the circle n(x) = 4 + 4i.

In Fig. 5.4, we show the convergence rates of complex Steklov eigenvalues. The
second order convergence is achieved for the unit circle and square. Similar to real
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h 1st 2nd 3rd 4th

0.2441
0.698699
+2.495471i

−0.344215
+0.843688i

−0.344302
+0.843436i

−0.968470
+0.538448i

0.1220
0.689736
+2.495375i

−0.343337
+0.848883i

−0.343320
+0.848942i

−0.954693
+0.539666i

0.0610
0.687363
+2.495317i

−0.343117
+0.850277i

−0.343114
+0.850292i

−0.951256
+0.539987i

0.0305
0.686756
+2.495300i

−0.343064
+0.850629i

−0.343063
+0.850632i

−0.950397
+0.540069i

0.0151
0.686603
+2.495295i

−0.343051
+0.850718i

−0.343051
+0.850717i

−0.950182
+0.540090i

Table 5.5

Eigenvalues for the square n(x) = 4 + 4i.

h 1st 2nd 3rd 4th

0.2383
0.548195
+2.892865i

0.392629
+1.445484i

−0.077110
+1.035407i

−1.157394
+0.529887i

0.1192
0.523142
+2.885329i

0.394633
+1.454461i

−0.077154
+1.040772i

−1.146157
+0.529839i

0.0596
0.516546
+2.883129i

0.395906
+1.457375i

−0.07717
+1.042191i

−1.143291
+0.529817i

0.0298
0.514857
+2.882533i

0.396543
+1.458387i

−0.077178
+1.042555i

−1.142571
+0.529812i

0.0149
0.514430
+2.882377i

0.396829
+1.458755i

−0.077177
+1.042647i

−1.142391
+0.529811i

Table 5.6

Eigenvalues for the L-shaped domain n(x) = 4 + 4i.

n(x), the second eigenvalue of the L-shaped domain has lower convergence rate indi-
cating that the associated eigenfunction has lower regularity.

6. Conclusions and Future Works. In this paper, we study the computation
of a non-selfadjoint Steklov eigenvalue problem arising from the inverse scattering
theory. To the authors’ knowledge, this is the first numerical paper containing both
theory and numerical examples. An early paper by Bramble and Osborn considered a
similar but different non-selfadjoint Steklov eigenvalue problem [9]. The second order
non-selfadjoint operator is assumed to be uniformly elliptic and no numerical results
were reported therein.

The contribution of the paper is as follows. The convergence of Lagrange finite
elements is proved using the spectral perturbation theory for compact operators. Due
to the fact that the problem is non-selfadjoint and no a priori spectral information is
available, the recently developed spectral indicator method RIM is considered for the
resulting non-Hermitian matrix eigenvalue problems. To improve efficiency, we derive
an equivalent but much smaller matrix eigenvalue problem involving only boundary
unknowns. Then a modified version of RIM is developed to compute (complex)
eigenvalues.

Non-selfadjoint Steklov eigenvalue problems have many important applications.
Numerical computation of these problems is challenging. The problem considered
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Fig. 5.4. Convergence rates of Steklov eigenvalues (n(x) = 4 + 4i). Top Left: the unit circle.
Top Right: the square. Bottom Left: the L-shaped domain.

in this paper is related to the Helmholtz equation. Similar problems exist for the
Maxwell equation and elasticity equation. In future, we plan to extend the theory
and algorithm here to these problems.
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