
Vortices, Painlevé integrability and
projective geometry

Felipe Contatto
Queens’ College

This dissertation is submitted for the degree of Doctor of Philosophy.

Department of Applied Mathematics and Theoretical Physics

University of Cambridge

Supervisor: Dr. Maciej Dunajski

March 2018

ar
X

iv
:1

80
4.

02
58

5v
1 

 [
m

at
h-

ph
] 

 7
 A

pr
 2

01
8





Vortices, Painlevé integrability and projective geometry

Felipe Contatto

The first half of the thesis concerns Abelian vortices and Yang–Mills
theory. It is proved that the 5 types of vortices recently proposed by
Manton are actually symmetry reductions of (anti-)self-dual Yang–Mills
equations with suitable gauge groups and symmetry groups acting as
isometries in a 4-manifold. As a consequence, the twistor integrability
results of such vortices can be derived. It is presented a natural defini-
tion of their kinetic energy and thus the metric of the moduli space was
calculated by the Samols’ localisation method. Then, a modified ver-
sion of the Abelian–Higgs model is proposed in such a way that sponta-
neous symmetry breaking and the Bogomolny argument still hold. The
Painlevé test, when applied to its soliton equations, reveals a complete
list of its integrable cases. The corresponding solutions are given in
terms of third Painlevé transcendents and can be interpreted as origi-
nal vortices on surfaces with conical singularity.

The last two chapters present the following results in projective dif-
ferential geometry and Hamiltonians of hydrodynamic-type systems. It
is shown that the projective structures defined by the Painlevé equa-
tions are not metrisable unless either the corresponding equations admit
first integrals quadratic in first derivatives or they define projectively
flat structures. The corresponding first integrals can be derived from
Killing vectors associated to the metrics that solve the metrisability
problem. Secondly, it is given a complete set of necessary and sufficient
conditions for an arbitrary affine connection in 2D to admit, locally,
0, 1, 2 or 3 Killing forms. These conditions are tensorial and simpler
than the ones in previous literature. By defining suitable affine con-
nections, it is shown that the problem of existence of Killing forms is
equivalent to the conditions of the existence of Hamiltonian structures
for hydrodynamic-type systems of two components.
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3.3 Painlevé analysis of the PDE . . . . . . . . . . . . . . . 39

3.3.1 Explicit solutions . . . . . . . . . . . . . . . . . . 43
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Chapter 1

Introduction

This thesis approaches two areas related to each other by Painlevé in-
tegrability. The first half deals with Abelian vortices and the second
with differential and projective geometry. Each of the chapters is self-
contained and has its own notation clearly explained. In general, paren-
thesis ( ) and brackets [ ] around tensorial indices mean normalised sym-
metrisation and antisymmetrisation, respectively. The symbol L means
lie derivative, except in section 2.2.1. Equalities expressing definitions
are denoted with ≡. Finally, tensorial indices within an unspecified
coordinate system correspond to the abstract index notation [57].

Abelian vortices are topological solitons in 2 dimensions arising from
the Abelian Higgs model. This is a relativistic U(1)-gauge field theory
with a φ4-potential whose vacuum manifold S1 is given by the Higgs
fields that annihilate the potential, that is to say, satisfying |φ|2 = 1. Its
non-trivial topology provides stability to the vortices. In fact, the topo-
logical charge is interpreted as the winding number of the Higgs field
at infinity or, equivalently, as the number of zeros of the Higgs field,
counting multiplicities. Moreover, since vortices are a result of the Bo-
gomolny argument, they are given as solutions to a system of two first
order equations that also satisfy the Euler–Lagrange equations. In prac-
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tice, vortices are given as solutions to the so called “Taubes equation”
[65] subject to boundary conditions, a single second order equation as
opposed to the two first order ones. The Taubes equation is not easy
to solve and is usually tackled numerically. The first analytic solution
was given by Witten [70] and was interpreted as an SU(2)-instanton
with rotational symmetry. After that, two more explicit solutions were
found by Dunajski [22] involving Painlevé transcendents.

Another four similar types of solitons were proposed by Manton [48]
as a generalisation of the Taubes equation which includes the Popov
vortices [59], a result of the symmetry reduction of anti-self-dual Yang–
Mills (ASDYM) equations with gauge group SU(1, 1) and symmetry
group SU(1, 1) acting as isometries on a 4-manifold. The other three
types are known as Jackiw–Pi, Ambjørn–Olesen and Bradlow vortices.

It is a natural question to ask whether these last three vortices arise
as symmetry reductions of ASDYM equations, like the Taubes and
Popov vortices. In Chapter 2 we give an affirmative answer to this
problem written as Theorem 2.1. In fact, Jackiw–Pi vortices arise as
symmetry reduction of the ASDYM with gauge group SU(1, 1) and
symmetry group being the Euclidean group E(2), Ambjørn–Olesen
vortices come from ASDYM with gauge group SU(1, 1) and symme-
try group SU(2) and finally, Bradlow vortices arise from ASDYM with
gauge group E(2) and symmetry group SU(2). The symmetry groups
are all isometry groups of surfaces of constant curvature. Theorem 2.1
relies on the construction of an ansatz of the gauge field that is equivari-
ant (invariant up to gauge transformations) under the symmetry group.
The procedure for such construction is summarised in Appendix A. The
interpretation of these vortices as instantons allows us to determine, in
Section 2.1.4, on which surfaces they are integrable under the twistor
point of view. In this case, the vortex equations reduce to a Liouville
equation in a similar way as in Witten’s work. In Section 2.1.5, the
notion of superposition of vortices is explained, generalising the super-
position of Taubes vortices originally derived by Baptista [4]. In Section
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2.2, we use the result of Theorem 2.1 to derive a stationary energy func-
tional for these vortices from the non-Abelian pure Yang–Mills energy.
A suitable extension of the 4-dimensional theory to 5 dimensions allows
us to derive a time-dependent theory for the vortices, so that they can
be interpreted as stationary solutions to first order equations that also
solve the dynamical Euler–Lagrange equations. This dynamical the-
ory provides a natural definition of kinetic energy and thus the moduli
space metric can be calculated using Samols’ localisation method [61].

The problem approached in Chapter 3 relates to the other two in-
tegrable Taubes vortices described in [22]. A systematic method in
deriving these vortices is presented by modifying the original Ginzburg–
Landau Lagrangian, which ultimately amounts to allowing the surface’s
metric to depend on the modulus of the Higgs field. This modified
model gives rise to accordingly modified vortex equations whose inte-
grability can be studied by Painlevé analysis. The modified model con-
sidered here is based on the introduction of a power of the modulus of
the Higgs field as a factor of the pure gauge part of the Lagrangian and a
suitable modification of the |φ|4 potential so that the Bogomolny argu-
ment [5] still holds. Under such class of models, all Painlevé-integrable
cases are derived and it is shown that there are three integrable cases
in total, two of them being those originally found in [22]. All of them
can be interpreted as ordinary Taubes vortices on surfaces with conical
singularity.

The second half of the thesis concerns projective geometry. Mainly
two problems were studied in 2 dimensions, the metrisability of pro-
jective structures and the existence of first integrals of the geodesic
equations of a general affine connection. The latter problem is related
to the existence of Hamiltonian formulations of hydrodynamic-type sys-
tems of two components.

It is well known that, given a metric on a manifold, there exist curves,
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called geodesics, such that their length locally minimises the distance
between 2 given points. The metrisability problem consists in studying
the converse. Given a set of curves on a manifold, when is there a
metric whose geodesics are precisely these curves? Here, only the local
problem is considered. The metrisability problem is solved by finding
a non-degenerate solution to the so called metrisability equations [25].
These equations are linear and tensorial for 2-dimensional symmetric
contravariant tensors. If a solution is non-degenerate (interpreting it
as a symmetric matrix), then a metric that solves the problem can be
constructed and such solutions are comprehensive.

In 2 dimensions, the set of curves that can be interpreted as geodesics
of affine connections is given by solutions of second order ODEs poly-
nomial in first derivatives and involving only cubic powers or less, as
explained in Section 4.1. Classic examples of such ODEs are those ad-
mitting the Painlevé property, among which there are the six Painlevé
equations. In Chapter 4, we study the metrisability problem of the pro-
jective structure defined by all Painlevé equations. It turns out that, the
only Painlevé equations that define a metrisable projective structure are
those that either admit a first integral that is quadradic in first deriva-
tives or define a projectively flat structure. As explained in Section
4.3, the only Painlevé equations for which there is a choice of constants
such that this happens are III, V and VI. The corresponding metrics all
admit a Killing vector, which gives rise to a linear first integral to the
parametrised geodesic equations, while the geodesic Hamiltonian gives
rise to a quadratic constant of the geodesic flow. By eliminating the
affine parameter between them or, equivalently, using Theorem 4.3, we
recover the above-mentioned quadratic first integrals of the Painlevé
equations. In Section 4.3.4, we show that the metrics associated to the
metrisable cases of equations III and V are related to each other in the
same way as III can be recovered from V by coalescence.

It is known that the maximal dimension of the solution space of the
metrisability equations in n dimensions is (n+1)(n+2)

2 [25]. It is conjec-
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tured that the maximal dimension of the solution space for degenerate
solutions (imposing the constraint that the determinant of the 2-tensor

is zero) is n(n−1)
2 . For n = 2 dimensions this was proved in Lemma 4.3

of [6]. In Section 4.4 we provide some evidence for this conjecture and
derive some consequences thereof. In Theorem 4.9, this conjecture is
proved under the condition that the kernel of the solution to the metris-
ability equations (which is non-trivial by hypothesis) is fixed. It is also
shown, in the same Section, that this maximal dimension is attained by
a Newtonian projective structure. An intriguing feature of the kernel
of a degenerate solution is presented in Theorem 4.7, where it is proven
that any such kernel defines an integrable distribution and that the
corresponding integral manifolds are totally geodesic, naturally defin-
ing an induced projective structure on them. Equivalently, the image
of any degenerate solution (interpreted as a symmetric matrix) defines
an integrable distribution and spans the integral manifold.

Chapter 5 concerns the problem of local existence of Killing 1-
forms for a given 2-dimensional affine connection and its relation with
hydrodynamic-type systems of two components. In Theorem 5.1 it
is shown, using Frobenius Theorem, that the necessary and sufficient
conditions for an affine connection to admit a Killing 1-form are the
vanishing of two scalar quantities. The existence of precisely two Killing
forms involves the non-vanishing of the anti-symmetric part of the Ricci
tensor and the vanishing of a 2-tensor and, finally, the existence of three
Killing forms (which is the maximal number) is equivalent to the pro-
jective flatness of the projective structure defined by the connection
along with the symmetry of its Ricci tensor. For special connections,
that is to say with symmetric Ricci tensor, the scalar conditions become
the Liouville invariants ν5 and w1. We are then able to find a geomet-
ric proof of a result of Liouville [41] that says that if ν5 = w1 = 0,
then there exists a change of coordinates such that the ODE associated
to the projective structure does not involve first derivatives (c.f. The-
orem 5.7). The proof is essentially the determination of coordinates
such that the affine connection defined by Thomas symbols is exact.
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As explained in Corollary 5.6, the derivation of the scalar conditions
and the fact that degenerate solutions to the metrisability problem give
rise to Killing forms of special connections, along with the invariants in
[6], gives a complete list of invariants that determine whether a projec-
tive structure is metrisable, without needing to calculate its solutions.
Proposition 5.8 gives the form of all possible connections admitting
exactly two first integrals up to change of coordinates.

Theorem 5.2 relates the existence of Killing forms of particular types
of affine connections to the existence of Hamiltonian structures of hydro-
dynamic-type systems. This relation, along with the scalars and 2-
tensor mentioned in the previous paragraph gives a solution to the prob-
lem of finding necessary and sufficient conditions for a hydrodynamic-
type system of two components to admit 1, 2 or 3 Hamiltonian struc-
tures.

6



Chapter 2

Vortex equations from self-duality

The Abelian Higgs model at critical coupling admits static solutions
modeling vortices which neither attract nor repel each other [46]. The
mathematical content of the model consists of a Hermitian complex
line bundle L over a Riemannian surface (Σ, gΣ), together with a U(1)
connection a and a complex Higgs field φ satisfying the Bogomolny
equations

Dφ = 0, f = ωΣ(1− |φ|2).
Here ωΣ is the Kähler form on Σ, D = ∂ − ia(0,1) is the covariant
∂-operator (the anti-holomorphic part of the covariant derivative D
defined by a), f = da is the Abelian Maxwell field and a(0,1) is the
anti-holomorphic part of a. Setting |φ|2 = exp (h), and solving the first
Bogomolny equation for the one-form a and substituting it into the
second one – as in the end of the proof of Proposition 2.3 – reduces the
second equation to the Taubes equation [65]

4h+ 2(1− eh) = 0, (2.1)

which is valid outside small discs enclosing the logarithmic singularities
of h – the locations of vortices on Σ. Here 4 is the Laplace operator
on (Σ, gΣ).
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In [48] Manton has considered a two-parameter generalisation of the
Taubes equation

4h− 2(C0 − Ceh) = 0. (2.2)

The constants C0 and C can be rescaled to 0, 1 or −1, and Manton
has argued that only five combinations lead to non-singular vortex so-
lutions:

• C = C0 = −1 corresponds to the Taubes equation [65]. The
magnetic field f decays to zero away from vortex center.

• C = C0 = 1 is the Popov equation [58, 59].

• C = 0, C0 = −1 corresponds to the magnetic field with constant
strength equal to 1. In [48] this was called the Bradlow vortex.

• C = 1, C0 = −1 is the Ambjørn–Olesen vortex. The magnetic
field is enhanced away from the position of the vortex [2, 48].

• C = 1, C0 = 0 is the Jackiw–Pi vortex equation, which arises in a
first order Chern–Simons theory [34, 32]. In this case |φ|2 tends to
zero at the position of the vortex and (on non-compact surfaces)
at ∞.

The aim of this chapter is to show (Theorem 2.1 in Section 2.1.3) that
Manton’s equation (2.2) for all values of C0, C arises as the symmetry
reduction of the anti-self-dual Yang–Mills equations (ASDYM) on a
four-manifold M = Σ×N , where N is a surface of constant curvature,
and the symmetry group is the group of local isometries of N . The
value of C0 in (2.2) is determined by the curvature of N (in fact, the
Gauss curvature of N is −C0) and C depends on the choice of the gauge
group GC . We shall demonstrate that N = S2 if C0 = −1, N = H2 if
C0 = 1, and N = R2 if C0 = 0. The gauge group is SU(2) if C = −1,
SU(1, 1) if C = 1 and the Euclidean group E(2) if C = 0. In the
integrable cases the Gaussian curvatures of Σ and N add up to zero. It
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is worth pointing out that similar symmetry reductions were performed
in [50], although not in the context of vortices.

In Section 2.1.5 we shall show how the five vortex equations are
related by a superposition principle which leads to a construction of
vortices with higher vortex numbers.

The four-dimensional perspective allows us to derive a canonical
expression for the resulting energy of vortices. By considering the ki-
netic energy of the dynamical Yang–Mills theory on R×M in Section
2.2.1, we shall derive integral expressions for moduli space metrics cor-
responding to various choices of constants in (2.2). If the gauge group
is non-compact, then the kinetic energy and the resulting moduli space
metric are not positive definite and the moduli space may contain sur-
faces where they identically vanish. In the integrable cases of equation
(2.2), the moduli space metric takes a simple form that generalises the
one for integrable Taubes vortices described in [64]. These integrable
cases correspond to M being Ricci-flat – that is to say, the Gauss curva-
ture of Σ being C0 – in which case the ASDYM equations are integrable
under the twistorial point of view.

2.1 Equivariant anti-self-dual connections and sym-

metry reduction

In this Section we shall formulate the main theorem. Let us first intro-
duce some notation.
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2.1.1 The group GC

The key role will be played by a Lie groupGC ⊂ SL(2,C) which consists
of matrices K such that

K

(
1 0
0 −C

)
K† =

(
1 0
0 −C

)
, where C ∈ R,

or, equivalently,

GC =

{
K =

(
k1 k2

Ck2 k1

)
; k1, k2 ∈ C, and |k1|2 − C|k2|2 = 1

}
.

(2.3)
Therefore G−1 = SU(2), G1 = SU(1, 1) and G0 = E(2) – the Euclidean
group. The generators of the corresponding Lie algebra gC ,

J1 =
1

2

(
0 i

−Ci 0

)
, J2 =

1

2

(
0 −1
−C 0

)
, J3 =

1

2

(
i 0
0 −i

)
,

(2.4)
satisfy commutation relations

[J1, J2] = −CJ3 , [J2, J3] = J1 , [J3, J1] = J2.

The explicit parametrisation of GC as well as the left-invariant one-
forms are constructed in Appendix B.

In what follows, GC0
will denote the Lie group defined in the same

way, but changing C into C0.

2.1.2 The four-manifold

Let M be the Riemannian four-manifold given by the Cartesian product
Σ×N with a product metric

g = gΣ + gN , (2.5)
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where (Σ, gΣ) is the Riemann surface introduced in the beginning of
the chapter, and (N, gN) is a surface of constant Gaussian curvature
−C0. Let w be a local holomorphic coordinate on Σ, and z be a local
holomorphic coordinate on N so that

gΣ = Ωdwdw, and gN =
4dzdz

(1− C0|z|2)2
,

where Ω = Ω(w,w) is the conformal factor on Σ. The Kähler forms ωΣ

on Σ and ωN on N are given by

ωΣ =
i

2
Ωdw ∧ dw, ωN =

2idz ∧ dz
(1− C0|z|2)2

= 2idβ,

where

β =
zdz − zdz

2(1− C0|z|2)
. (2.6)

We shall choose an orientation on M by fixing the volume form volM =
ωΣ ∧ ωN .

2.1.3 Equivariance

Let GC and GC0
be Lie groups corresponding, via (2.3), to two real

constants C and C0. In the theorem below, GC will play a role of a
gauge group – G in Appendix A – and GC0

will be the symmetry group
– S in the same Appendix.

Let E → M be a vector bundle with a connection which, in a local
trivialisation, is represented by a Lie-algebra valued one-form A ∈ gC⊗
Λ1(M). The Lie group GC0

is a subgroup of the conformal group on
(M, g), and acts on M isometrically by

(w, z) 7→
(
w,

k1z + k2

C0k2z + k1

)
, (2.7)

11



where

(
k1 k2

C0k2 k1

)
is supposed to belong to GC0

.

This relation will allow us to relate the holomorphic coordinates z, z
of N to the coordinates of GC0

/U(1) as described in Appendix B (c.f.
equation (B.1)).

We shall impose the symmetry equivariance condition (A.1) on A.
Applied more specifically to our case,

LXA = DW, (2.8)

where X is any vector field on M generating the action (2.7) and DW ≡
dW − [A,W ] is the covariant derivative of a gC-valued function on M .

In the coordinates (w,w, z, z) introduced above we have

A = AΣ+AN , where AΣ = Awdw+Awdw and AN = Azdz+Azdz.

Theorem 2.1. Let A ∈ Λ1(M)⊗ gC be GC0
-equivariant. Then

1. There exists a gauge and a choice of complex structure in M such
that

A =

(
−C0β + i

2a −
i

1−C0zz
φdz

iC
1−C0zz

φdz C0β − i
2a

)
, (2.9)

where β is defined in (2.6), a is a u(1)-valued one-form, and φ is
a complex Higgs field on Σ.

2. The ASDYM equations on (M, g) are

Dφ = 0, f + ωΣ(C0 − C|φ|2) = 0 (2.10)

where f = da. Equivalently, setting |φ|2 = eh,

∆0h− 2Ω(C0 − Ceh) = 0, where ∆0 = 4∂w∂w. (2.11)

12



We shall split the proof of this theorem into two Propositions

Proposition 2.2. Let GC0
be the maximal group of isometries of (N, gN),

where N = R2, S2 or H2. The most general GC0
-equivariant GC-

connection is gauge equivalent to (2.9), up to a choice of complex struc-
ture in M .

and

Proposition 2.3. The ASDYM equations on (2.9) are equivalent to
(2.10) or (2.11).

Proof of Proposition 2.2.

In this proof, we use the coordinates (κ1, κ2, κ3) of GC0
as described

in Appendix B and the technique described in Appendix A.

First, let us introduce gC-valued Higgs fields Φ1, Φ2 and Φ3, that
can be interpreted as the should satisfy the constraint equations (A.2),

[Aw,Φ3] = 0, (2.12)

[Aw,Φ3] = 0 (2.13)

fC0
m3pΦ

s
p + frqsΦmΦq

3 = 0, (2.14)

where Φs
p are the components of the Higgs fields defined by Φm = Φs

mJs
and only depend on (y, y) and Aw and Aw are the Σ-components of
the gauge field and only depend on (w,w). The Φ3 components are
assumed to be constants.

To solve these equations, choose a gauge such that Φ1
3 = Φ2

3 = 0,
we will justify why this is possible below. Then these equations imply(
Φ3

3

)2
= 1, that is to say Φ3

3 = ε, where ε = ±1. Then, if we define
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φ1 ≡ Φ1
1 and φ2 ≡ Φ2

1, we have the following solution

Φ1 = φ1J1 + φ2J2

Φ2 = εφ2J1 − εφ1J2

Φ3 = εJ3.

Let us show that we can indeed always choose Φ3 to be diagonal.
First, if C = −1 then this is always possible because hermitian matri-
ces are diagonalisable by unitary change of bases. If C ≥ 0, begin by
performing a gauge transformation to set Φ1

3 = 0 and Φ2
3 ≥ 0. The so-

lution to the constraint equations will give Φ3
3 = ±

√
1 + C (Φ2

3)
2
. Then

perform a gauge transformation by k1 = − i√
2

√
1 +

√
1 + C (Φ2

3)
2
, k2 =

± Φ2
3

√
2

√
1+
√

1+C(Φ2
3)

2
, where we are using the description of GC as in (2.3).

This transformation will make Φ3 diagonal.

The constraint equations (2.12) and (2.13) mean that Ay and Ay are
gauge potentials with gauge group being the little group of Φ3 = J3,
which is the U(1) generated by J3 itself. Now, the only type of gauge
transformations allowed are those in this U(1) subgroup. The solution
to those equations gives the w-components of the gauge potential Aw =
awJ3, Aw = awJ3, for some functions aw and aw which will transform
as the components of a U(1)-gauge field on Σ.
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With the Higgs fields above, we define a gauge potential on GC0
by

Aκ3 = Φmξmκ3 = −εJ3

Aκ1 = Φmξmκ1 = (φ1 sinκ3 − εφ2 cosκ3)J1 + (φ2 sinκ3 + εφ1 cosκ3)J2

Aκ2 = Φmξmκ2 =
[
1/
√
−C0 sin(

√
−C0κ1) cosκ3φ1+

+ε/
√
−C0 sin(

√
−C0κ1) sinκ3φ2

]
J1+

+
[
1/
√
−C0 sin(

√
−C0κ1) cosκ3φ2−

−ε/
√
−C0 sin(

√
−C0κ1) sinκ3φ1

]
J2 + ε cos(

√
−C0κ1)J3.

In these expressions, we can set Aκ3 = 0 and κ3 = 0 by performing a
gauge transformation gAµg

−1 + ∂µgg
−1 with g = diag(e

iε
2 κ3, e−

iε
2 κ3). We

thus recover a gauge field defined now on the quotient GC0
/U(1),

Aκ1 = −εφ2J1 + εφ1J2

Aκ2 =
1√
−C0

sin(
√
−C0κ1)φ1J1 +

1√
−C0

sin(
√
−C0κ1)φ2J2+

+ ε cos(
√
−C0κ1)J3.

A direct calculation shows that this gauge potential is indeed GC0
-

equivariant. Indeed, it satisfies LηiAµ = DµWi, i = 1, 2, 3 where the
ηi’s are left-invariant vector fields on GC0

defined in Appendix B and

W1 = −ε
√
−C0

sin(
√
−C0κ1)

cosκ2J
C
3 ,

W2 = −ε
√
−C0

sin(
√
−C0κ1)

sinκ2J
C
3 ,

W3 = 0.

In order to obtain a neater final expression, perform another gauge
transformation by diag(e−

i
2εκ2, e

i
2εκ2) and change into z-coordinates to
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find the GC0
-equivariant GC-gauge potential (2.9) on M , where φ =

φ2 − iφ1 is a U(1)-Higgs field and we have chosen ε = 1.

If we had chosen ε = −1, then the resulting form of A would be

A =

(
C0β + i

2a −
i

1−C0zz
φdz

iC
1−C0zz

φdz −C0β − i
2a

)
,

which is equal to (2.9) up to a change z ↔ z, w ↔ w, which corresponds
to a change in the complex structure. Here, as before, β is defined in
(2.6).

2

Proof of Proposition 2.3. Let (w, z) be holomorphic coordinates on
M . The basis of self-dual two forms is spanned by

<(dw ∧ dz), =(dw ∧ dz), ωN + ωΣ.

The ASDYM equations (ωN + ωΣ) ∧ F = 0, and dw ∧ dz ∧ F = 0 take
the form

Fwz = 0, Fwz = 0, Ω−1Fww +
(1− C0|z|2)2

4
Fzz = 0. (2.15)

The components of the gauge field Fµν = ∂µAν − ∂νAµ − [Aµ, Aν] are
given by

Fzz =
−C0 + Cφφ

(1− C0zz)2
σ3 , Fww =

i

2
fww σ3 ,

Fzw =
i

1− C0zz
Dwφσ+ , Fzw = − i

1− C0zz
Dwφσ− ,

Fzw = − i

1− C0zz
Dyφσ− , Fzw =

i

1− C0zz
Dwφσ+ ,
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where φ = φ2 − iφ1, fww = ∂waw − ∂waw, D is the covariant derivative
with respect to the U(1)-connection a and

σ3 =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
C 0

)
.

Set
Dφ = dφ− iaφ, Dφ = dφ+ iaφ

and

D = dw ⊗ (∂w − iaw), D = dw ⊗ (∂w − iaw), so that D = D +D.

The ASDYM equations (2.15) yield vortex-type equations

Dwφ = ∂wφ− iawφ = 0, (2.16)

i

2
fww +

Ω

4
(−C0 + Cφφ) = 0. (2.17)

This system of non-linear PDEs can be reduced to a single second
order equation for one scalar function. In fact, solve the first equation
(2.16) for aw so that aw = −i∂w ln(φ) and, using the reality of a, aw =
i∂w ln(φ). Using these expressions for the components of a, calculate
the Abelian Maxwell field fww and the second equation (2.17) yields
(2.11).

2

2.1.4 Integrable cases

Following the integrability dogma [50, 21, 7], a symmetry reduction of
ASDYM is integrable if the ASDYM equations are defined on a back-
ground (M, g) with anti-self-dual Weyl curvature. Computing the Weyl
tensor of (2.5) shows that conformal anti-self-duality is equivalent to
the vanishing of the scalar curvature of g. Thus in the integrable cases
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the Riemann surface (Σ, gΣ) on which the vortex equations are defined
must have constant Gaussian curvature equal to minus the Gaussian
curvature of (N, gN), i.e. locally,

gΣ =
4dwdw

(1 + C0|w|2)2
, g =

4dwdw

(1 + C0|w|2)2
+

4dzdz

(1− C0|z|2)2
. (2.18)

The local solutions of integrable vortex equations are given explicitly,
in a suitable gauge, by [48]

φ =
1 + C0|w|2

1 + C|s(w)|2
ds

dw
, (2.19)

where s = s(w) is a holomorphic map from Σ to a surface of curvature
C. The vortices are located at zeros of φ, which are the zeros of ds/dw
and the poles1 of s of order at least 2.

The integrable cases on simply-connected Riemann surfaces under
the anti-self-duality framework are the following:

• The Taubes vortex (C = C0 = −1) is integrable on H2, in which
case it is a symmetry reduction of ASDYM on H2 × S2. In this
case, s is a Blaschke function

s(w) =
(w − c0) . . . (w − cN)

(w − c0) . . . (w − cN)
,

where |ck| < 0. This is the original integrable reduction of Witten
[70].

• The Popov vortex (C = C0 = 1) is integrable on S2, in which
case it is a symmetry reduction from S2 × H2. In this case, s :
CP1 → CP1 is a rational function p(w)/q(w), where p and q are
polynomials of the same degree with no common root.

• The Bradlow vortex (C = 0, C0 = −1) is integrable on H2, in
which case it is a symmetry reduction from H2 × S2.

1Notice that |φ|2 is invariant under s 7→ 1/s.
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• The Ambjørn–Olesen vortex (C = 1, C0 = −1) is integrable on
H2, in which case it is a symmetry reduction from H2 × S2.

• The Jackiw–Pi vortex (C = 1, C0 = 0) is integrable on R2, in
which case it is a symmetry reduction from R2 × R2.

In each case the symmetry group is GC0
and the gauge group is GC .

These integrable cases of (2.2) do not exhaust the list of all integrable
vortices: there are other integrable cases related to the sinh-Gordon and
the Tzitzeica equations [22, 10, 9].

2.1.5 Superposition of vortices

Given a solution to the vortex equation (2.2) define the vortex number
to be

N =
1

2π

∫
Σ

f. (2.20)

This is an integer equal to the first Chern number of the vortex line
bundle L→ Σ, and we shall assume that this integer is non-negative.

Let us now explain why there exist only five vortex equations among
the nine possible combinations of values of C and C0. Equation (2.16)
implies that the vortex number N coincides with the number of zeros
of φ counted with multiplicities [46]. Since φ is holomorphic, N is
necessarily non-negative. Since N is proportional to the magnetic flux,
the magnetic field B ≡ −2ifww/Ω cannot be negative everywhere on Σ,
but (2.17) implies that this is only possible for the choice of constants

(C,C0) = (−1,−1), (0,−1), (1,−1), (1, 0), (1, 1), (0, 0),

where the last possibility means that the magnetic field is null every-
where away from the zero of the Higgs field and (2.2) is the Laplace

19



equation. We shall call this the Laplace vortex.

The resulting six equations are not disconnected from one another.
We shall show that it is possible to construct higher order vortex solu-
tions of one type by superposing two other types of vortices. Let h be
a vortex solution on Σ with vortex number N satisfying

∆0h+ 2Ω(−C0 + C1e
h) = 0 (2.21)

away from the vortex locations, so that |φ|2 = eh has N isolated zeros,
counting multiplicities. We say that this vortex is of type (C1, C0).

Consider a metric on Σ

g̃Σ = ehgΣ

which has conical singularities at zeros of |φ|2. Let h̃ be a vortex solution
with vortex number Ñ on (Σ, g̃Σ) satisfying

∆0h̃+ 2ehΩ(−C1 + Ceh̃) = 0, (2.22)

so that |φ|2 = eh̃ has Ñ zeros. We shall say that this vortex is of type
(C,C1) with a rescaled metric. Adding both PDEs (2.21) and (2.22),
we find that

∆0(h+ h̃) + 2Ω(−C0 + Ceh+h̃) = 0

and that eh+h̃ has N+Ñ zeros. Therefore the superposition of a vortex
of type (C,C1) with a rescaled metric on a vortex of type (C1, C0) gives
rise to a vortex of type (C,C0) with vortex number being the sum of
the first two vortex numbers, N + Ñ. In the case C = C0 = −1 this is
the Baptista superposition rule [4].

Taking into account the six possible vortex equations, we make a list
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of all possible superpositions

Taubes + Taubes = Taubes

Bradlow + Taubes = Bradlow

Laplace + Bradlow = Bradlow

Ambjørn–Olesen + Taubes = Ambjørn–Olesen

Jackiw–Pi + Bradlow = Ambjørn–Olesen

Popov + Ambjørn–Olesen = Ambjørn–Olesen

Popov + Jackiw-Pi = Jackiw–Pi

Jackiw–Pi + Laplace = Jackiw–Pi

Popov + Popov = Popov,

where the non-commutative summation + means that the first vortex
(of type (C,C1) with a rescaled metric) is superposed on the second
one (of type (C1, C0)) to result in the vortex on the right hand side of
the equality (of type (C,C0)) with higher vortex number.

2.2 Energy and moduli space metric

The energy functional E of pure Yang–Mills theory on M can be re-
duced to the energy function of an Abelian-Higgs model on Σ using the
ansatz (2.9). This can be done by direct calculation,

E = − 1

8π2

∫
M

Tr(F ∧ ?gF )

=
1

4π2

∫
N

ωN

∫
Σ

[
1

4

(
B2 + (C0 − Cφφ)2

)
− C

Ω

(
|Dφ|2 +

∣∣Dφ∣∣2)]ωΣ

where
B = −2ifww/Ω

is the magnetic field on Σ. This expression for the energy is proportional
to the one given in [48].
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If we assume that N is compact2 then the first integral is the area
of N given by

AreaN =

∫
N

ωN =


4π
−C0

, if C0 < 0

4π, if C0 = 0
4π
C0

(g− 1) if C0 > 0,

where g is the genus of N and we normalised the area of the torus
(C0 = 0) to 4π. Thus the energy can be written, using the Bogomolny
argument along with [Dw, Dw]φ = −ifwwφ and the integration by parts
(with an additional boundary condition Dφ = 0 if Σ is not compact)
as

E =
AreaN
16π2

∫
Σ

[(
B + C0 − C|φ|2

)2 − 8C

Ω

∣∣Dφ∣∣2]ωΣ − C0
AreaN

4π
N,

where N is the vortex number defined by (2.20). If the vortex equations
(2.16) and (2.17) are satisfied, then the energy is proportional to the
vortex number, characterising a non-interacting theory, and this value
is the global minimum of E if C ≤ 0. However, equation (2.16) cannot
be naturally derived from this argument if C = 0. In fact the theory
corresponding to this energy functional does not involve any Higgs field
in this case even though the symmetry reduction of ASDYM necessar-
ily gives rise to a holomorphic Higgs field satisfying (2.16). This is a
counter-example to the principle of symmetric criticality, proved under
certain conditions in [56].

If N is not compact we can still make sense of energy density (or
energy per unit of area of N).

Originally, E is the energy functional of pure Yang–Mills theory in

2Notice that this is already the case if C0 = −1, as N = S2. Otherwise we assume that the
corresponding surfaces are quotiented out by a discrete subgroup of GC0

. If C0 = 0, N is a two-
torus T2 (R2 quotiented out by a lattice) and if C0 = 1 N is a compact Riemann surface of genus
g > 1 (H2 quotiented out by a Fuchsian group). The ansatz (2.9) must then admit this further
discrete symmetry.
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four dimensions, which under the ASDYM condition is

E =
1

8π2

∫
M

Tr (F ∧ F ) ≡ k,

where k is the instanton number. Comparing both expressions for the
energy, we derive a relation between the vortex and instanton numbers,

k = −C0
AreaN

4π
N = (1− g)N, g = 0, 1, 2, . . . .

2.2.1 Dynamical theory

Yang–Mills instantons on M can be regarded as static solitons on R×M
with a product metric −dt2 +g. Implementing the symmetry reduction
of Theorem 2.1, but from five dimensions, leads to vortices on Σ inter-
preted as stationary solitons in a dynamical theory on R×Σ. We shall
use this approach to find the kinetic term in the total energy functional
on R×Σ, and use it to read-off the metric on the moduli space of static
vortices. Let F be a gC-valued Yang–Mills field on R×M . The action
functional of pure YM theory with t-dependence is

S = − 1

8π2

∫
R×M

Tr(F ∧ ?5F) =

∫
R
Ldt,

where L is defined by the second equality and involves the integral on
M alone. Under the symmetry reduction of Theorem 2.1, L becomes a
Lagrangian on R× Σ,

L = −AreaN
4π2

∫
Σ

(1

4
(B2 + (C0 − Cφφ)2)− C

Ω
(DwφDwφ+DwφDwφ)−

− 1

Ω
f0wf0w +

C

2
|D0φ|2

)
ωΣ.
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The Euler–Lagrange equations, resulting from calculating the variation
with respect to φ, aw and a0, are, respectively,

DwDwφ+DwDwφ−
Ω

2
D0D0φ+

Ω

2
(−C0 + Cφφ)φ = 0, (2.23)

−2∂w

(
1

Ω
fww

)
+ ∂0f0w − iC(Dwφφ−Dwφφ) = 0, (2.24)

∂wf0w + ∂wf0w +
iCΩ

2

(
φD0φ− φD0φ

)
= 0. (2.25)

The equations resulting from varying φ and aw are the complex conju-
gate of equations (2.23) and (2.24), respectively. The third equation is
usually referred to as Gauss’ law.

This system of second order dynamical equations is satisfied by static
solutions to the first order vortex equations (2.16–2.17) in the temporal
gauge a0 = 0. In fact, Gauss’ law (2.25) is automatically satisfied. To
see that (2.23) is satisfied, use (the complex conjugate of) (2.16) to
write DwDwφ = [Dw, Dw]φ = ifwwφ and eliminate fww with (2.17).
Finally, equation (2.24) is satisfied upon eliminating fww in the same
way and using ∂w

(
φφ
)

= (Dwφ)φ+ φDwφ = φDwφ.

The kinetic energy T can be read off from L. In the temporal gauge
when a0 = 0 it takes the form

T =
AreaN

8π2

∫
Σ

[
2

Ω
ȧwȧw − Cφ̇φ̇

]
ωΣ, (2.26)

where the dots denote t-derivatives. This generalises the known kinetic
energy for the Taubes vortex (C,C0 < 0) [64].

In the usual Abelian Higgs model in the critical coupling (yielding
Taubes vortices), there is a moduli space MN of static N vortex so-
lutions. All these solutions have the same potential energy, so there
are no static forces. The moduli space acquires a metric from the ki-
netic energy of the theory, and the geodesics of this metric model slow
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motion of N-vortices. There are several ways to obtain the metric for
both flat and curved backgrounds [46, 16]. One way to proceed for the
integrable vortices is to assume that the vortex positions depend on
time, and substitute the explicit solution (2.19) into the kinetic energy
(2.26). This, when quotiented out by the gauge equivalence (which is
equivalent to imposing Gauss’ law [46]), gives a quadratic form onMN .
In case of Taubes vortices the resulting metric is positive definite, but
we see that (2.26) is not positive definite if C > 0, which is the case for
Jackiw–Pi, Popov and Ambjørn–Olesen vortices.

Samols derived a localised expression for the metric of the moduli
space of Taubes vortices [61] (see also [64] and [38] for the metric of
moduli space of hyperbolic vortices), where the moduli are the vortex
positions (or zeros of the Higgs field). The moduli space metric of
Taubes vortices with simple zeros {W1, . . . ,WN} is, from (2.26),

AreaN
8π

N∑
i,j=1

(Ω(Wk)δij + 2∂Wi
bj) dWidW j,

where bj = ∂w(h−2 log |w−Wj|)|w=Wj ,w=W j
and Ω(Wi) means that the

conformal factor Ω is being evaluated at the point (w,w) = (Wi,W i).

A similar calculation as the one performed by Samols (cf. also [46])
adapted to vortices defined by (2.2) gives the following result for the
metric on the moduli subspace associated to the simple zeros of the
Higgs field

AreaN
8π

N∑
i,j=1

(−C0Ω(Wk)δij + 2∂Wi
bj) dWidW j, (2.27)

where the constant C0 appears because the calculation involves the use
of equation (2.2).

In the integrable case, the background metric is locally given by gΣ

in (2.18) and the Higgs field is (2.19) in a particular gauge. As above,
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we assume that |φ| admits only simple zeros and that each of them is as
zero of ds/dw and not a pole, which is always the case up to performing
the transformation s 7→ 1/s (which leaves |φ| invariant). In this case,
bj can be calculated directly and is given by

bj = C0
Wj

1 + C0 |Wj|2
+

3

2
βj,

where βj = s
(j)
3

s
(j)
2

and s
(j)
k = k!

dks

dwk

∣∣
w=Wj

, k = 0, 1, 2, 3, . . . , that is to say,

the s
(j)
k ’s are defined by

s(w) = s
(j)
0 + s

(j)
2 (w −Wj)

2 + s
(j)
3 (w −Wj)

3 + · · · ,

where the linear term is absent because we assumed that Wj is a simple

zero of
ds

dw
.

Now, the moduli space metric (2.27) of simple vortices can be cal-
culated and is given by

3AreaN
16π

N∑
i,j=1

∂βj
∂Wi

dWidW j. (2.28)

This is in agreement with the formula derived for integrable Taubes
vortices in [64]. In particular, (2.28) tells us that the metric is zero
when s depends only holomorphically on the vortex positions, which
is the case for some Popov and Jackiw–Pi vortices. In fact, this is
what happens for the N = 2 Popov vortex on Σ = S2 corresponding
to s = (w −W1)

2/(w −W2)
2, and to the N = 1 Jackiw–Pi vortex on

Σ = R2 corresponding to s = (w −W1)
2.
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Chapter 3

Integrable Abelian vortex-like
solitons

The existence and analyticity properties of Abelian vortices on the
plane were largely studied in particular in [35, 65]. Generalised vor-
tices were proposed by Lohe [43], whose model admits other types of
potentials at the expense of minimal coupling between the Higgs and
gauge fields. In fact, Lohe’s model modifies the kinetic term of the
Higgs field as well as the potential in such a way that the Bogomolny
argument still holds. The existence of generalised vortices under an
analytical point of view was established in [44].

Integrability of the Abelian-Higgs model is well known on a hyper-
bolic background where the general solution can be explicitly described
in terms of holomorphic maps [70, 64, 49, 45] (see also the previous
chapter). Moreover, Painlevé analysis shows that these are the only
cases in which vortices are integrable in the Painlevé sense [62]. How-
ever two more isolated integrable cases of Abelian vortices were found
by allowing the background metric to depend on the Higgs field, allow-
ing the Bogomolny equations to be written as sinh-Gordon and Tzitze-
ica equations [22], albeit they do not arise from a variational principle
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approach from the Ginzburg–Landau model.

In this chapter we present another modified version of the Abelian-
Higgs model by coupling the Yang–Mills term of the Lagrangian with
the Higgs field through a continuous function denoted by G(|φ|). Un-
der mild conditions on G and upon a suitable modification of the po-
tential energy, the model admits vortex-like topological solitons from
the Bogomolny argument. A choice of coupling function of the form
G(|φ|) = |φ|q+1, where q ∈ R, will give rise to a model that includes
the usual Abelian-Higgs vortices as a particular case (q = −1), but
admits further Painlevé-integrable cases, including those described in
[22], providing a variational approach to them. We determine all the
possible values of q and all possible background metrics yielding inte-
grable models using the Painlevé test. The main result is that the only
integrable cases with relevance to vortex theory, both for the ODE and
for the PDE, correspond to q = −1

3 , 0,
1
3 on a flat surface and q = −1

on a hyberbolic surface.

An ODE has the Painlevé property if its general solution does not
possess movable critical points. Critical points are singularities around
which a function displays multivaluedness. This definition is motivated
by the possibility of defining meromorphic functions from ODE’s on the
complex plane (c.f. [14] for a short survey on the subject). Non-linear
second order ODE’s of the form y′′ = R(x, y, y′), where R(x, y, y′) is a
rational function of (y, y′) with coefficients analytic in x, that possess
the Painlevé property were classified [55, 54, 29, 33] and there are 50
of them up to the change of variables

y 7→ a(x) + b(x)y

c(x) + d(x)y
,

for analytic functions a, b, c, d. This transformation preserves the Painle-
vé property. Among these 50 equations, 44 of them admit general so-
lutions given by classical functions while the other 6 are the Painlevé
equations. The Painlevé test is a technique to find necessary conditions
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for an ODE to have the Painlevé property and will be described, in our
case, in the following sections.

In section 3.1 we present the modified Ginzburg–Landau Lagrangian
and the corresponding Bogomolny equations, which can actually be
reduced to a single PDE that will be referred to as the modified Taubes
equation. On surfaces of revolution, this equation admits a symmetry
reduction to an ODE by rotational symmetry around the origin. On a
surface of revolution, if the PDE passes the Painlevé test then so does
the reduced ODE, but nothing guarantees that the converse is true.
Thus we perform a separate analysis of the reduced ODE in section 3.2
and of the PDE in Section 3.3. It turns out that the analysis of the
ODE does not reveal any more integrable cases than that of the PDE.

Within the class of models considered, there can only be integrable
cases on a hyperbolic background with Gauss curvature −1/2 and on
a flat surface. On a hyperbolic surface, the only integrable case cor-
responds to q = −1, which is the usual Abelian-Higgs model. The
converse was already known [62]. On a flat background, there are three
integrable models, corresponding to q = 1/3, q = 0 and q = −1/3.
The first two values are equivalent to the isolated integrable vortices
of [22] while q = −1/3 gives rise to a new solution and completes the
list of integrable models under the class we consider. The Bogomolny
equation for this case can be written as the Tzitzeica equation. In
order to write explicit soliton solutions with finite energy, some bound-
ary conditions apply. It is not obvious how to apply these boundary
conditions to solutions of the Tzitzeica equation, but if we restrict to
rotationally symmetric solutions and reduce the Tzitzeica PDE to a
Painlevé III ODE, whose solutions are well known in the asymptotics
[36], we can impose the right boundary conditions by fixing some pa-
rameters of the third Painlevé transcendents. Besides its integrability
features, these solutions can be interpreted [22] as usual Abelian-Higgs
vortices on backgrounds with conical and curvature singularities at the
origin. It is worth noticing that even though our model includes the
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usual Abelian-Higgs model, there are other types of similar integrable
vortex equations on different backgrounds [59, 47, 48] that it does not
cover.

3.1 Modified Abelian-Higgs model

We start with the Ginzburg–Landau theory with a modified Lagrangian
on a smooth manifold R×Σ with Lorentzian metric ds2 = dt2−Ω(dx2+
dy2),

L =

∫ (
−G(|φ|)2

4
FµνF

µν +
1

2
DµφD

µφ− V (|φ|)
)

Ω d2x, (3.1)

where G is a continuous function of |φ| on its domain of definition, Dµ =
∂µ−iaµ is the covariant derivative, Fµν = ∂µaν−∂νaµ is the curvature 2-
form of the U(1)-connection a and Ω = Ω(x, y) is the conformal factor
of the metric on Σ. The space indices will be denoted by i, j, k . . .

and range from 1 to 2 as (x1, x2) = (x, y). We will also use complex
coordinates z = x + iy and polar coordinates z = reiθ, whenever it is
convenient.

If the potential is V (|φ|) = 1
8G(|φ|)2

(
1− |φ|2

)2
, which differs from

the Ginzburg–Landau φ4 theory by the factor G(|φ|)2 in the denomi-
nator and spontaneously breaks symmetry, then the usual Bogomolny
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argument can be applied. In fact, the modified energy functional is

E =
1

2

∫ (
G(|φ|)2

Ω2
B2 +DiφD

iφ+
1

4G(|φ|)2

(
1− |φ|2

)2
)

Ωd2x

=
1

2

∫ [
G(|φ|)2

Ω

(
B − Ω

2G(|φ|)2
(1− |φ|2)

)2

+ |Dz̄φ|2 +B−

−i
(
∂1(φ̄D2φ)− ∂2(φ̄D1φ)

)]
d2x

=
1

2

∫ [
G(|φ|)2

Ω

(
B − Ω

2G(|φ|)2
(1− |φ|2)

)2

+ |Dz̄φ|2
]
d2x+ πN,

(3.2)

where B denotes the component F12 and N ≡ 1
2π

∫
ΣB is supposed to be

positive, as the case N < 0 is analogous. We have used the boundary
conditions |φ| → 1 and Diφ → 0 as z approaches the boundary of Σ
in the last equality. We assume that all terms in the energy functional
are integrable so that it is well defined, which is true for the integrable
cases analysed here.

Thus the modified Bogomolny equations are

Dz̄φ ≡ ∂z̄φ− iaz̄φ = 0 (3.3)

B =
Ω

2G(|φ|)2
(1− |φ|2). (3.4)

Eliminating az̄ in the second equation using the first one, remembering
that az̄ = az, gives the modified Taubes equation,

∆0h+
Ω

G(eh/2)2

(
1− eh

)
= 0, (3.5)

where h = ln |φ|2 and ∆0 = ∂2
x + ∂2

y is the Laplacian operator. Solving
(3.5) and imposing the boundary conditions above gives rise to vortex-
like topological solitons on the surface Σ defined by constant time slices
with metric

g = Ω(dr2 + r2dθ2),
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and Gauss curvature given by

KΣ = − 1

2Ω
∆0 ln Ω.

Notice that equation (3.5) should be modified in case φ has zeros, as
this implies the presence of logarithmic singularities for h and the term
∆0h would generate delta functions. In fact, the usual Taubes equation
(G = 1) is often corrected with delta function sources added by hand to
take these singularities into account [46], which may occur at a general
point and are the coordinates of the moduli space of vortices. This
means that these log-singularities are movable in general and we will
bypass them in our Painlevé analysis using an exponential change of
variables χ = eh in the following sections.

From now on, as explained in the beginning of the chapter, we will
assume that G(eh/2)2 = e(q+1)h/2, for a general q ∈ R and, in the next
sections, study the integrability features of equation (3.5). With this
choice, we are going to impose another two conditions to the Higgs
field. First, we require that the Higgs field is non-vanishing except on
a finite number l of distinct points z1, . . . , zl and secondly that in a
neighbourhood of each point zi, there exists ni ∈ N∗ such that

φ = (z − zi)niψi(z, z̄), (3.6)

where ψi is a nowhere vanishing continuous function on the neighbour-
hood that is differentiable everywhere except possibly at zi.

These conditions are the most natural ones to impose when seeking
a generalisation of the Abelian Higgs model. In fact, they are immedi-
ately satisfied for the Abelian Higgs model, which can be proved from
the existence of smooth solutions to the Bogomolny equations [35];
however, smoothness is an excessively strong condition to impose on
the solutions of (3.3-3.4) in general. We will justify these conditions in
Section 3.2 in order to rule out solutions on smooth surfaces that do
not have a similar behaviour as Abelian vortices (c.f. (3.10-3.12)).
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To begin with, we will suppose that Σ is a surface of revolution so
that the conformal factor is only a function of the radial coordinate,
Ω = Ω(r), as well as the modulus of the Higgs field, i.e., h = h(r). This
reduces (3.5) to an ODE, that will be analysed in section 3.2. Then, in
section 3.3, we perform the analysis of the PDE (3.5) in general.

3.2 Painlevé analysis of the ODE

We apply Painlevé analysis [1] to seek choices of Ω such that equation
(3.5) for G(eh/2)2 = e(q+1)h/2 is integrable, assuming cylindrical symme-
try, that is to say Ω = Ω(r) and h = h(r). Because of the logarithmic
divergence of h where the Higgs field vanishes, we look instead at the
equation for χ = eh, for which the ODE reduced from (3.5) is

χ′′ − χ′2

χ
+

1

r
χ′ +

Ω(r)

χ(q−1)/2
(1− χ) = 0. (3.7)

In practise, the aim of the analysis is to determine in which cases
the general solutions of the ODE can be locally written in the form
χ = (r−r0)

p
∑∞

j=0 χj(r−r0)
j, where χj are constants, χ0 6= 0, r0 > 0 is

arbitrary and p is assumed to be an integer, a hypothesis that will be
justified in the next section. The arbitrary constant r0 represents the
position of a movable singularity (either of χ or 1/χ), that we expect
not to be critical (or multivalued) for the Painlevé property to hold.
We suppose that r0 6= 0 in order to avoid the coordinate singularity at
r = 0 of (3.7). We look for the dominant behaviour by substituting
χ ∼ χ0 (r − r0)

p in (3.7). We have to study it differently according to p
is positive or negative. In what follows, Ω(r0) will need to be expanded
in powers of r0 up to the relevant order.

We start by supposing that p > 0. Balancing of the dominant terms
(1st, 2nd and 4th) requires p = 4

1+q > 0 and χ
2/p
0 = Ω(r0)

p . Since we are
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dealing with a second order ODE, its general solution should involve
two constants of integration. One of them is the arbitrary constant r0

itself, the other one will be a χs, for some s ≥ 0. The order p + s
in which this second constant appears is called the order of resonance
(or the Fuchs index). Upon substituting the above series in (3.7) and
balancing all the powers of r − r0, the constants χj should in principle
be determined in terms of r0 and χs. Notice that the constant χ0

was fixed above in terms of r0, so we can already tell that s > 0.
Moreover, χs will be a free parameter if and only if the leading order
in which it appears in the expansion of (3.7) involves χj algebraically
for some j > s, so that χj can be determined in terms of r0 and χs,
for any value of χs. This leading order will necessarily come from the
dominant terms (1st, 2nd and 4th) of (3.7). Therefore, we look for the
order of the resonance as follows. Keep just these dominant terms and

substitute χ =
(

Ω(r0)
p

)p/2
(r−r0)

p+χs(r−r0)
p+s. Expand the resulting

expression in powers of r − r0, keeping only the leading order of terms
involving χs, which will clearly be linear in χs (because s > 0):

(r − r0)
p+s−2(s2 − s− 2)χs,

whose vanishing implies s = −1 or s = 2. The second, positive root
indicates a resonance at order p + 2 of the expansion in r − r0, which
means that χ2 can only appear in the coefficient of order (r− r0)

p+1 or
higher in the expansion of (3.7) when χ is replaced by the power series.
But at these orders the coefficients χj≥3 are present and thus χ2 is not
fixed.

We are interested in analysing the order of resonance, as this will pro-

vide constraints on the geometry of Σ. Thus, we write χ =
(

Ω(r0)
p

)p/2
(r−

r0)
p +χ1(r− r0)

p+1 +χ2(r− r0)
p+2, substitute it in (3.7) and divide by
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(r − r0)
p to get

(r − r0)
p

(
−2(p− 1)p−

p
2Ω(r0)

p/2χ1 − Ω(r0)
p−1Ω′(r0)

r − r0
− p1−pΩ(r0)

p

(r − r0)2

)
+

+
1

r − r0

(
p1−p2Ω(r0)

p
2−1Ω′(r0) +

p1−p2Ω(r0)
p/2

r0
− 2χ1

)
+

+ (p− 2)Ω(r0)
−1Ω′(r0)χ1 +

p+ 1

r0
χ1 − 2(p− 1)pp/2−1Ω(r0)

−p/2χ2
1+

+
p−p/2+1

2
Ω(r0)

p/2−1Ω′′(r0)−
p−p/2+1

r2
0

Ω(r0)
p/2 = 0, (3.8)

up to order of a positive power of r − r0.

Equating the coefficient of each order to zero, we find conditions on
Ω′′(r0) and χ1. As mentioned above, had we written χ as an infinite
series χ =

∑
n≥0 χn(r − r0)

p+n, we would have been able to calculate
recursively χn (n ≥ 3) in terms of r0 and χ2.

If p ≥ 2, we calculate χ1 from the term of order (r− r0)
−1 and then

the term of order (r−r0)
0 gives the following equation for the conformal

factor
∆0 ln Ω(r0) = 0,

which has to be valid for any r0, yielding a differential equation whose
solution is Ω(r) = c1r

c2, for some constants c1 > 0 and c2 > −2, thus
the surface Σ is locally flat. We require that c2 > −2 since the origin
r = 0 would be at infinite distance from any other point otherwise.

In fact, by performing the change of radial variable R =
2
√
c1

c2+2r
c2+2

2 ,

the metric becomes dR2 +
(
c2+2

2

)2
R2dθ2 so that we can set Ω = 1 in

(3.7) at the expense of introducing a deficit in the angular variable θ,
characterising a conical singularity at the origin. We suppose that the
background is a smooth manifold and therefore we do not take into
account these singularities and suppose c2 = 0.

If p = 2, the term of order (r − r0)
p−2 in (3.8) contributes. Thus,
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the vanishing of (3.8) at orders (r − r0)
−1 and (r − r0)

0 implies χ1 =
1
2

(
Ω′(r0) + Ω(r0)

r0

)
and

∆0 ln Ω(r0) = Ω(r0). (3.9)

This equation means that Σ has constant Gauss curvature −1/2. This
is not surprising as for p = 2, q = 1, and thus equation (3.5) is the usual
Taubes equation, up to replacing h by −h, whose Painlevé integrability
was studied in [62]. Solutions to the modified Taubes equation in this
case would involve a Blaschke product but from condition (3.6) the
magnetic field B would not be integrable due to divergences where the
Higgs field vanishes and thus we would not be able to define a magnetic
flux and the energy would be infinite. Let us however point out that,
choosing the solution to (3.9) to be Ω(r) = 4

(1−r2)2 , this case admits the
following solutions for the squared modulus of the Higgs field

χ =
4r2(ln r)2

(1− r2)2
, (3.10)

χ =
(rc+1 − r−c+1)2

c2(1− r2)2
, 0 < c < 1, (3.11)

χ =
4r2 sin2(c ln r)

c2(1− r2)2
, c > 0, (3.12)

which are not analogous to Abelian vortices on smooth surfaces and
can be ruled out by the conditions imposed in the end of Section 3.1.
These solutions were obtained from results of [60] (c.f. also section 5
of [10]).

If p = 1 then all the terms in (3.8) contribute and we find that the
conformal factor should satisfy the following differential equation

Ω′′(r0)−
Ω′(r0)

2

Ω(r0)
+

Ω′(r0)

r0
− Ω′(r0)

√
Ω(r0)−

2Ω(r0)
3/2

r0
= 0, (3.13)

which can be rewritten in terms of F (r) =
√

Ω(r) as

F ′′(r)− F ′(r)2

F (r)
+
F ′(r)

r
− F (r)2

r
− F (r)F ′(r) = 0. (3.14)
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Its general solution is

F (r) =
C1

r

(C2r)
C1

1− (C2r)C1
, (3.15)

where C1 and C2 are arbitrary positive constants, so that the origin
r = 0 is at finite distance from any other point. Under the change of
variables R = (C2r)

C1/2, equation (3.7) becomes

d2χ

dR2
− 1

χ

(
dχ

dR

)
+

1

R

dχ

dR
+

4R2

(1−R2)2

1

χ
(1− χ) = 0, (3.16)

where we assume that 0 ≤ R < 1. A one parameter family of solutions
to this equation was given in [62] (c.f. equations (2.15–2.16) of this
reference). It satisfies the necessary conditions for Painlevé property
established so far, but its analysis is not finished yet. To complete the
Painlevé test we follow the usual procedure. Expand χ = χ0(R−R0)+
χ1(R−R0)

2 +χ2(R−R0)
3 + · · · , substitute it in (3.16) and expand the

left hand side in powers of R−R0. The vanishing of the leading order
implies

χ0 = ± 2R0

1−R2
0

,

where 0 ≤ R0 < 1. The case in which we choose the + sign was already
analysed above and led us to equation (3.13). Now, if we choose the −
sign, the vanishing of the new leading term implies

χ1 = −3
1 +R2

0

(1−R2
0)2
.

With these choices of χ0 and χ1, the left hand side of (3.16) becomes

− 16R0

(1−R2
0)3

(R−R0) +O
(
(R−R0)

2
)
,

whose first term cannot be eliminated by any choice of χi. This means
that the expansion of χ should involve logarithmic terms of the form
ln(R−R0). Therefore, equation (3.16) does not pass the Painlevé test.
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Another solution to (3.14) can be obtained by taking the limit C1 → 0
in (3.15) and then equation (3.7) becomes

d2χ

dR2
− 1

χ

(
dχ

dR

)
+

1

R

dχ

dR
+

R2

(lnR)2

1

χ
(1− χ) = 0, R = C2r,

which also fails the Painlevé test, as a similar calculation shows.

In the case p < 0, a similar procedure will lead to the condition
p = − 4

1−q . The conditions for Painlevé integrability can be derived from
the case p > 0 above. In fact, under the change of variables χ 7→ 1/χ in
equation (3.7), q is changed into −q or, writing this equation in terms

of p using q = 4−|p|
p , p is changed into −p. Therefore, the conditions

for Painlevé integrability in the cases p = −1, p = −2 and p ≤ −3 are
the same as in the cases p = 1, p = 2 and p ≥ 3, respectively. Namely,
for p = −1, there are no integrable soliton solutions, for p = −2,
Σ must be a hyperbolic space with constant curvature −1/2 and for
p < −2, Σ must be flat up to conical singularities. Even though from
the integrability point of view cases p = −2 (or q = −1) and p = 2
(or q = 1) are the same, for p = −2 we obtain the ordinary Taubes
equations of the Abelian Higgs model, which admits soliton solutions
satisfying our conditions as opposed to the case p = 2.

To complete the integrability analysis we need to have a closer look
in the range |p| ≥ 3, in which case −1/3 ≤ q ≤ 1/3. This is because
for this range of q, we can find a p1 > 0 and a p2 < 0 such that
q = 1

pi
(4− |pi|) , i = 1, 2. But for Painlevé integrability to take place,

the integrability conditions should hold for all possible choices of leading
order p. Therefore, we have to solve

1

p1
(4− p1) = q =

1

p2
(4 + p2) ,

for integers p1 > 0 and p2 < 0. There are exactly three solutions to this
equation: (p1, p2) = (6,−3), (4,−4) and (3,−6), yielding q = −1

3 , 0
and 1

3 , respectively. Since the cases q = 1/3 and q = 0 lead to the
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models studied in [22], we will present the explicit vortex solutions to
the case q = −1/3 in Section 3.3.1 (c.f. equation (3.22)), after the
Painlevé analysis of the PDE.

3.3 Painlevé analysis of the PDE

We will find all possible choices of G(eh/2)2 = e(q+1)h/2 and of back-
ground metric Ω such that equation (3.5) admits the Painlevé prop-
erty, now without imposing any symmetry to the PDE. We will do the
analysis using the method proposed by Weiss, Tabor and Carnevale
[69], which is the analogue Painlevé test for PDEs. As in the previous
section, in order to avoid the logarithmic singularities in the analysis
we look instead at the equation for χ = eh,

∆0χ−
1

χ
|∇χ|2 +

Ω(x, y)

χ(q−1)/2
(1− χ) = 0, (3.17)

where∇χ = (∂xχ, ∂yχ) is the gradient vector of χ and |∇χ|2 = (∂xχ)2+
(∂yχ)2 is its Euclidean norm.

We look for the dominant behaviour by setting

χ ∼ χ0(x, y)ϕ(x, y)p,

where χ0 is a non-zero function to be determined and p is an integer,
as justified below. Keeping the lowest order terms in ϕ, we find

χ
(1−q)/2
0 Ω (1− χ0 ϕ

p)ϕp(1−q)/2 − p χ0 |∇ϕ|2 ϕp−2 = 0. (3.18)

We then need to separate the analysis into two different cases, p > 0
and p < 0.

If p > 0 then the term in ϕp in the parenthesis of (3.18) is of higher
order and can be neglected at this stage. Then we equate the powers
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of ϕ for the remaining two terms, p(1 − q)/2 = p − 2 which gives a
relation between q and p, which will be convenient to be solved for q:

q =
4− p
p

.

We solve (3.18) for χ0 to find

χ0 =

(
Ω

p|∇ϕ|2

)p/2
.

Anticipating from the ODE analysis above that there will be a reso-
nance at second order, we expand χ as χ = ϕp(χ0 +χ1ϕ+χ2ϕ

2 + · · · ),
substitute it in (3.17), divide by ϕp and expand the whole expression
in powers of ϕ up to the first two lowest orders, which are ϕ−1 and ϕ0,
keeping (if necessary) the terms of order ϕp−2 and ϕp−1. The terms of
order ϕp−2 and ϕp−1 are

− p1−pΩp|∇ϕ|2−2pϕp−2 (3.19)

and

− 2(p− 1)

(
Ω

p

)p/2
|∇ϕ|2−pχ1ϕ

p−1, (3.20)

respectively, which arise from the very last term in (3.17).

These terms will not contribute to the analysis if p > 2. Therefore,
we will separate the analysis into the cases p = 1, p = 2 and p ≥ 3.

If p = 1, then the vanishing of the term of order ϕ−1, which involves
(3.19), gives rise to an algebraic equation for χ1 whose solution is

χ1 =

√
Ω(x, y)

2|∇ϕ|3
(

∆0ϕ−
√

Ω(x, y)|∇ϕ|
)
.

Then the term of order ϕ0 will not depend on χ2, manifesting the
resonance at this order predicted above. Instead, this term is a fairly
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big expression involving ϕ and Ω (and their partial derivatives up to
second order) that should vanish for any small function ϕ. Making the
choices ϕ = ±εx, ϕ = ±εy and ϕ = εxy, where ε is a small positive
constant, we get differential equations for Ω that can only be solved by
Ω = 0. This case is thus not interesting for our purposes.

If p = 2 then q = 1 and a change of variables of the form χ 7→ χ−1

will put (3.17) in the form of the usual Taubes equation, whose Painlevé
analysis requires Σ to be a hyperbolic space of curvature −1/2 [62]. As
for the ODE in the previous section, condition (3.6) implies that the
divergence of the magnetic field (3.4) at each zero of the Higgs field
would make the magnetic flux infinite, and thus no solution would fit
our requirements.

If p ≥ 3 then the lowest order term is(
Ω

p|∇ϕ|2

)p/2 [
p∆0ϕ− 2

( p
Ω

)p/2
|∇ϕ|p+2χ1

]
1

ϕ
.

The term in brackets should vanish, resulting in an equation for χ1

which can be solved by

χ1 =
p2

2Ω

(
Ω

p|∇ϕ|2

)(p+2)/2

∆0ϕ.

This choice of χ1 annihilates the term of order ϕ−1 and we are left with
the term of order ϕ0 which is

−p
2

∆0 ln Ω

(
Ω

p|∇ϕ|2

)p/2
.

We notice that it does not involve χ2, indicating the resonance antici-
pated earlier. The conformal factor Ω should then satisfy ∆0 ln Ω = 0.
In other terms, the metric should be flat, up to possible conical sin-
gularities. Thus, we can choose local coordinates to set Ω = 1 under
smoothness assumptions.
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As for the ODE, the conditions for Painlevé integrability in the cases
p = −1, p = −2 and p ≤ −3 are the same as for p = 1, p = 2 and
p ≥ 3, respectively, as we can go from p to −p by changing χ into χ−1.
Therefore, the integrable cases for the PDE correspond to the same as
for the ODE, that is to say either Σ is a hyperbolic surface of curvature
−1/2 and |q| = 1 or Σ is flat and |q| = 1/3. Notice however that for
p = 1 (or q = 1) we did not have a soliton solution but for p = −1 (or
q = −1) we find exactly the usual Abelian Higgs model on hyperbolic
surfaces, whose solutions are well understood.

Here it is worth pausing to explain why we require p to be an inte-
ger. If p is not an integer then the PDE does not admit the Painlevé
property, however it may be transformed into one having this property
under a change of variables replacing χ by some power of χ, which
might reveal further integrability properties. However, once we substi-
tute the series expansion χ = ϕp

∑
k≥0 χkϕ

k in (3.17) and divide the
left hand side by ϕp, the resulting expression takes the form

(power series in ϕ)− Ωϕp−2

(∑
k≥0

χkϕ
k

)2p−1p

= 0,

and for the second term to vanish for p non-integer while χ0 6= 0 we
would require that Ω = 0, which is not our interest.

We have done the Painlevé analysis by expanding the χ in power
series of ϕ. We could have also used the “reduced ansatz” proposed
by M. Kruskal and explained in [69] which consists in supposing that
∂xϕ 6= 0 and expanding χ in power series of x − ψ(y), where ψ is a
function such that ϕ(ψ(y), y) = 0 that exists by the implicit function
theorem. Even though this ansatz is clearly analogous to the Painlevé
analysis for ODEs and can simplify calculations considerably, in our
case we would have needed to expand Ω(x, y) in power series of x−ψ(y)
with respect to the first variable and thus we decided not to use it.
Anyway, similar calculations with this ansatz yield the same results.
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3.3.1 Explicit solutions

For Ω = 1 and q = 0, (3.17) becomes the sinh-Gordon equation ∆0
h
2 =

sinh h
2 while for q = ±1

3 , it becomes the Tzitzeica equation [51, 52, 27]

∆0u+
1

3

(
e−2u − eu

)
= 0, (3.21)

where u = qh. These equations were studied in the context of Abelian
vortices in [22], where the cases considered correspond to q = 1

3 and
q = 0 in our language. However, the analysis presented here points to
a new solution in the case q = −1

3 and completes the list of integrable
cases under the class of models considered. We will focus on the details
of this new solution, bearing in mind that they are analogous for the
other two cases.

We still need to apply the boundary conditions so that we can cal-
culate physical quantities such as the energy, magnetic flux and vor-
tex strength. We thus have to know the behaviour of the asymp-
totics of the solutions to (3.21). If we apply the cylindrical sym-
metry reduction u = u(r), supposing that u is only a function of
the radial coordinate, (3.21) reduces to a Painlevé III equation with
choice of parameters (1, 0, 0,−1) under the change of variables u(r) =

lnw(r)− 1
2 ln r + 1

4 ln 27
4 , r = 3

√
3

2 ρ2/3:

d2w

dρ2
=

1

w

(
dw

dρ

)2

− 1

ρ

dw

dρ
+
w2

ρ
− 1

w
.

The behaviour of its solutions in the asymptotics were studied in [36].
We thus apply this reduction and equation (18) in [36] with g1 = g2 = 0,
g3 = 1, τ = r2

12 and s = 1 + 2 cos
[
π
9 (6− 2N)

]
to find

h = −3u ∼r→0 −3 ln

2α

9
(N − 3)212

N
3

r−
2N
3(

1− α12
1
3 (N−3)r−

2
3 (N−3)

)2

 ,
(3.22)
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where

α = 3
2
3 (N−3) Γ

(
1
3

(
2 + N

3

))
Γ
(

1
3

(
1 + 2N

3

))
Γ
(

1
3

(
4− N

3

))
Γ
(

1
3

(
5− 2N

3

))
and N is the topological charge (or vortex number), which is allowed
to take values N = 1 and N = 2.

The results below fig. 1 in the same reference gives the behaviour
at r →∞,

h = −3u ∼r→∞ −
3
√

3

π

{
1 + 2 cos

[π
9

(6− 2N)
]}

K0(r), (3.23)

where K0(r) ∼r→∞
√

π
2re
−r is the modified Bessel function of second

kind. The strength of the vortex can be read off from the coefficient
before the Bessel function K0 and takes approximate values 2.23 and
4.19 for N = 1 and 2, respectively. For comparison, these values are
approximately 1.80 and 1.45 for the models with q = 0 and q = 1/3,
respectively, for which only N = 1 vortex solutions are allowed [22].

Figure 3.1: Square of the modulus of the Higgs field |φ|2 (left plot) and the magnetic
field B (right plot) as functions of r for vortex number N = 1 (dashed lines) and
N = 2 (full lines) for solution (3.22 –3.23).

44



In figure 3.1 we plot the magnitude of the Higgs field square |φ|2 and the
magnetic field B as functions of r associated to this solution for both
vortex numbers. We notice, using equation (3.22), that the magnetic
field blows up at the origin as B ∼ r−2N/3 and would not be integrable
for N ≥ 3. This restricts N to be 1 or 2, as mentioned above, in
order to obtain a finite magnetic flux. In fact, a direct calculation
shows that

∫
ΣB = 2πN (c.f. also equation (3.2)). It can be done by

using equations (3.4) and (3.5) along with rotational symmetry to write

B = − 1

2r

d

dr

(
r
dh

dr

)
, then

1

2π

∫
Σ

B =
1

2π

∫ 2π

0

∫ ∞
0

− 1

2r

d

dr

(
r
dh

dr

)
rdrdθ = −1

2

[
r
dh

dr

]∞
r=0

= N,

where we have used the asymptotic expressions (3.22) and (3.23) in the
last equality.

The magnetic field for the models corresponding to q = 0 and q =
1/3 present a similar behaviour. At the origin they diverge as B ∼ r−1

and B ∼ r−4/3, respectively, while they monotonically tend to zero at
infinity. Both give the same magnetic flux 2π corresponding to N = 1
vortex solutions.
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Chapter 4

Metrisability of Painlevé equations
and degenerate solutions

In chapter 3, the Painlevé test was presented as a means to find neces-
sary conditions for a differential equation to admit the Painlevé prop-
erty. We also mentioned that there exists a classification of second order
ODE’s admiting this property. These equations define 2-dimensional
projective structures whose metrisability can be analysed. The local
metrisability problem in 2D was solved in [6]. It turns out that such
projective structures are metisable if and only if their corresponding
ODE’s admit a first integral quadratic in y′. In particular, we con-
clude that the real solutions y(x) of the Painlevé transcendents can-
not be geodesic curves of a metric, except for the special case for
PVI

(
0, 0, 0, 1

2

)
, which admits the so called “Picard solutions” in terms

of the Weierstrass ℘ function and for which the projective structure
is flat. Moreover, the metrics associated to the metrisable projective
structures all admit a Killing vector, allowing us to recover the known
quadratic first integrals, providing a geometrical interpretation to them.

In the second part of this chapter, we consider a problem raised
in [23], where it is shown that the Egorov and Newtonian projective

47



structures in 3 dimensions are not metrisable and admit a degenerate
solution space of the metrisability equations of dimension at most 3.
We prove that in n dimensions the solutions of rank k < n for a given
kernel form a vector space of dimension at most k(k+1)

2 (c.f. Theorem
4.9) and that this bound is attained.

4.1 Metrisability of projective structures

Consider the set of affine torsion-free connections on an n-dimensional
simply-connected smooth orientable manifold M . We define the fol-
lowing equivalence relation: two connections Γ and Γ̂ are projectively
equivalent if they share the same unparametrised geodesics. We will
also write ∇ and ∇̂, referring to their covariant derivatives.

Definition 4.1. A projective structure [Γ] is the class of torsion-free
connections that are projectively equivalent to Γ. We could also denote
[Γ] by its corresponding covariant derivative [∇].

There is an algebraic formulation of this equivalence relation given
by

Proposition 4.1. Two torsion free connections Γ and Γ̂ are projectively
equivalent if and only if there exists a one form Υa such that

Γ̂abc = Γabc + Υbδ
a
c + Υcδ

a
b . (4.1)

Proof. Let V a be a vector field tangent to a geodesic of the connection
Γ. It means that there exists a function v such that

V a∇aV
b = vV b. (4.2)

We would like to characterise all possible Γ̂ such that

V a∇̂aV
b = v̂V b, (4.3)
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for a function v̂.

Subtract (4.3) and (4.2) to find

V aV cΓ̃bac ∝ V b, (4.4)

where Γ̃bac = Γ̂bac − Γbac. Equation (4.4) should be satisfied for any
geodesic and thus for any vector field V a.

On the other hand,

V aV cΓ̃[b
acV

d] = 0, ∀V a (4.5)

if and only if
Γ̃bac = Υaδ

b
c + Υcδ

b
a (4.6)

for some 1-form Υa. In fact, this can be easily seen by applying (4.5)
with particular choices of V a to find restrictions on Γbac.

Therefore, (4.6) is equivalent to (4.4), and the proof is complete.

Even though we will work out projectively invariant results, there
is a natural choice of representative in each projective class as we now
describe.

Since the manifold is orientable by hypothesis, there exists a nowhere
vanishing volume form εab···d, which is obviously unique up to a scale.
Given a projective class [Γ], we can choose a representative ∇ or, in
other words, a 1-form Υa, making the volume form parallel, namely

∇aεbc···d = 0. (4.7)

In fact, if ∇̂ is a representative of the projective class, then ∇ is asso-
ciated to it via (4.1) with Υa = − 1

(n+1)ε12···n
∇̂aε12···n, which is a 1-form.

Definition 4.2. A torsion-free affine connection ∇a admitting a vol-
ume form εab···c satisfying (4.7) is called special.
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Special connections will play a crucial role in setting up the metris-
ability problem in terms of a linear system of overdetermined PDE’s
(c.f. Theorem 4.2). However, the property of being special is not in-
variant under a general change of connection (4.1) but only under those
corresponding to exact 1-forms Υa = ∇af , for a smooth function f . To
understand why, we have to look at second order derivatives. Let R be
the Riemann tensor of ∇, then

(∇a∇b −∇b∇a) εc···d = −Rab
e
eεc···d (4.8)

which should vanish for special connections. Let us change the con-
nection according to (4.1) and require that the transformed expression
also vanish. Under (4.1), the contracted Riemann tensor transforms
as R̂ab

e
e = Rab

e
e + 2(n + 1)∇[aΥb] and the transformed volume form

ε̂c···d must be proportional to εc···d (as any volume form). Therefore, a
necessary condition for the ∇̂ to be special is(

∇̂a∇̂b − ∇̂b∇̂a

)
ε̂c···d = −2(n+ 1)∇[aΥb]ε̂c···d = 0

implying that Υ is closed and therefore exact on a simply connected
manifold.

Now, under a change of connection of the form Υa = ∇af ,

∇̂aεb···d = ∇aεb···d − (n+ 1)Υaεb···d.

Hence ∇̂aε̂b···c = e(n+1)f∇aεb···c = 0, where ε̂b···c = e(n+1)fεb···c. We call
such transformations special and a corresponding equivalence class spe-
cial projective class. So, the volume form is rescaled by e(n+1)f under
a special transformation Υa = ∇af as a requirement for it to remain
parallel.

The Riemann tensor of an affine connection can be decomposed as

R d
ab c = W d

ab c + δdaPbc − δdbPac + βabδ
c
d, (4.9)

were βab = Pba − Pab, Pab is the projective Schouten tensor; and W d
ab c

is totally trace-free, has the same symmetries as R d
ab c (including the
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algebraic Bianchi identity) and is called the projective Weyl tensor. A
connection is special if and only if βab = 0, which corresponds to the
vanishing of (4.8). In this case, Pab = 1

n−1Rab is symmetric.

Now we are able to formulate the problem in terms of a linear system
of PDE’s.

Theorem 4.2. Let ∇ be a special torsion-free connection and σab be a
symmetric tensor such that det(σ) ≡ εa···bεc···dσ

ac · · · σbd 6= 0 and

∇aσ
bc = δbaµ

c + δcaµ
b, (4.10)

for some vector field µa. Then, ∇ is projectively equivalent to the Levi-
Civita connection of the metric defined by

gab = det(σ)σab. (4.11)

Proof. See [25].

By contracting indices in (4.10) we see that µa = 1
n+1∇bσ

ab. Then,
(4.10) can be rewritten as(

∇aσ
bc
)
◦ ≡ ∇aσ

bc − 1

n+ 1
δba∇dσ

cd − 1

n+ 1
δca∇dσ

bd = 0, (4.12)

where
(
∇aσ

bc
)
◦ denotes the trace-free part of ∇aσ

bc. Equation (4.10)
is projectively invariant since it implies

∇̂aσ̂
bc = δbaµ̂

c + δcaµ̂
b,

where σ̂bc = e−2fσbc and µ̂b = e−2f
(
µb + Υdσ

db
)
.

4.1.1 Metrisability in 2 dimensions

In 2 dimensions we can use the volume form to raise and lower indices
according to εabvb = va and vbεba = va. Clearly, εabεac = δbc.
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Since we are working with special connections, we can lower the
indices bc in (4.10) and use the symmetry of σ to conclude that, in two
dimensions, (4.10) is equivalent to a Killing equation

∇(aσbc) = 0. (4.13)

In fact, to show that (4.13) implies (4.10), write (4.13) explicitly for the
four choices of symmetrised indices (abc) and raise indices by multiply-
ing by ε12. Notice however that this equivalence is not true in higher
dimensions.

Let us analyse (4.13) in more detail. Let us choose local coordinates
(x1, x2) ≡ (x, y) for M . Let ψ1 = σ11, ψ2 = σ12 and ψ3 = σ22. Choose
the following Thomas symbols [66] as representative of the projective
structure: Πc

ab = Γcab − 1
3Γddaδ

c
b − 1

3Γddbδ
c
a, which is independent of the

initial choice Γabc ∈ [Γ]. Now, it is worth commenting that Γdda is not a
1-form, and thus Πc

ab does not transform as an affine connection in gen-
eral, but only under coordinate transformations of constant Jacobian1.
So once we choose this representative we can only apply this kind of
coordinate transformations in (4.13). In particular, Thomas [66] intro-
duced the terminologies “equi-transformation” for coordinate changes
preserving the volume (of Jacobian identically 1), “projective connec-
tion” for Πc

ab and “equi-tensor” for entities such as Γdda transforming
like tensors under equi-transformations.

Equation (4.13), using the projective connection Πc
ab, yields

∂ψ1

∂x
=

2

3
A1ψ1 − 2A0ψ2, (4.14)

∂ψ3

∂y
= 2A3ψ2 −

2

3
A2ψ3, (4.15)

∂ψ1

∂y
+ 2

∂ψ2

∂x
=

4

3
A2ψ1 −

2

3
A1ψ2 − 2A0ψ3, (4.16)

∂ψ3

∂x
+ 2

∂ψ2

∂y
= 2A3ψ1 −

4

3
A1ψ3 +

2

3
A2ψ2, (4.17)

1The coordinate transformation of Thomas symbols are given in equation (5.22).
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where

A0 = −Γ2
11, A1 = Γ1

11 − 2Γ2
12, A2 = 2Γ1

12 − Γ2
22, A3 = Γ1

22. (4.18)

The functions Ai will reappear as coefficients of the unparametrised
geodesic equations in (4.24) and are all independent of the representa-
tive in [Γ].

According to Theorem 4.2, if there exists a solution of (4.14–4.17)
such that ∆ ≡ ψ1ψ3−ψ2

2 6= 0, then the corresponding projective struc-
ture admits a metric connection. The metric components (4.11) with
low indices read

E = ψ1/∆
2, F = ψ2/∆

2, G = ψ3/∆
2, ∆ = ψ1ψ3 − ψ2

2 6= 0,
(4.19)

where E = g11, F = g12, G = g22.

4.2 Hamiltonian description of geodesics

Consider the metric

g = E(x, y)dx2 + 2F (x, y)dxdy +G(x, y)dy2

and the geodesic Hamiltonian

H =
1

2
gabp

apb. (4.20)

After eliminating pa := gabp
b in Hamilton’s equations

ẋa =
∂H

∂pa
(4.21)

ṗa = −∂H
∂xa

, (4.22)
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where ˙ indicates derivative with respect to t, we find the geodesic equa-
tions

ẍa + Γabcẋ
bẋc = 0. (4.23)

We have identified (x, y) = (x1, x2).

Since we are working in two dimensions, there are two of those.
The unparametrised geodesic equation can be found by eliminating t
in (4.23). It is a second order ODE at most cubic in y′(x),

y′′ = A3(x, y)y′3 + A2(x, y)y′2 + A1(x, y)y′ + A0(x, y), (4.24)

where the Ai’s are defined in (4.18) and ′ means
d

dx
=

1

ẋ

d

dt
, assuming

ẋ 6= 0. To derive this equation, it is useful to suppose that ẋ and ẏ
are different from zero, divide the equations for x and y in (4.23) by
ẋ and ẏ, respectively and subtract them. Equation (4.24) is obviously
independent of the parameter of the geodesic equations and can be
derived in the same way even if we do not start with an affine parameter.
Here we assumed that we can invert the function x = x(t), which is
true in sufficiently small neighbourhoods of points t where ẋ(t) 6= 0 as
assumed above.

A particular interesting case for the integrability point of view is
when the metric g admits a Killing vector K. In this case the following
quantity is conserved along geodesics

Kaẋ
a = gabK

bẋa. (4.25)

By construction, the Hamiltonian (4.20) is also conserved along un-
parametrised geodesics. Thus, using (4.25) to eliminate t in (4.20) we
find that

1

(K1 +K2y′)2

(
E(x, y) + 2F (x, y)y′ +G(x, y)y′2

)
(4.26)

is also conserved along geodesics. In other words, (4.26) is a first inte-
gral of the unparametrised geodesic equation (4.24).
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This result generalises to the following theorems.

Theorem 4.3. If a projective structure in n = 2 dimensions admits at
least two linearly independent solutions σ(1) and σ(2) to (4.13), then

I(x, y, y′) :=
σ

(1)
11 + 2σ

(1)
12 y

′ + σ
(1)
22 y

′2

σ
(2)
11 + 2σ

(2)
12 y

′ + σ
(2)
22 y

′2

is a first integral of the unparametrised geodesic equation (4.24).

If one of the solutions, say σ(2) is degenerate, then the projective
structure is metrisable and the corresponding metric g admits a Killing
vector.

Proof. For the first part, it suffices to notice that equation (4.13) means

that σ(i) (i = 1, 2) are Killing tensors. Therefore I(i)(t) := σ
(i)
11 ẋ

2 +

2σ
(i)
12 ẋẏ + σ

(i)
22 ẏ

2 are conserved along geodesics, that is to say İ(i) ≡ 0 if
(x(t), y(t)) parametrise a geodesic with affine parameter t. Then

d

dx
I(x, y(x), y′(x)) =

1

ẋ

d

dt

I(1)(t)

I(2)(t)
= 0,

where we have used ẏ/ẋ = y′ to write I = I(1)/I(2).

For the second part, the projective structure is metrisable as a conse-
quence of Lemma 4.3 in [6]. Now, if σ(2) is degenerate, then there exists

a non-vanishing 1-form ω such that σ
(2)
ab = ωaωb. Then the metrisability

equations (4.13) yield
∇(aωb) = 0.

It does not yet mean that gabωb is a Killing vector of g because ∇ is
not the Levi-Civita connection, which is obtained by applying a trans-
formation (4.1) with Υa = ∇a

(
−1

2 ln |∆|
)
, so that

∇̂(aω̂b) = 0,
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where ω̂ = ω
∆ and ∇̂ is the Levi-Civita connection of the metric g =

σ/∆2 (c.f. equation (4.19)). This means that gabω̂b is a Killing vector
of g.

Again, we stress that Υa = ∇a

(
−1

2 ln |∆|
)

above is not a tensor, but
an equi-tensor (c.f. paragraphs below equation (4.13)).

The proof of the following theorem is included in the previous one
and gives a relation between Killing forms and degenerate solutions to
the metrisability equations in two dimensions.

Theorem 4.4. A two-dimensional projective structure [∇] has a special
representative ∇ admitting a Killing form ωa, i.e., ∇(aωb) = 0, if and
only if it admits a degenerate solution σab = ω(aωb) to its metrisability
equations (4.13). Moreover, if this projective structure is metrisable,
then its degree of mobility is at least 2.

The converse of the last statement is not true. In fact, if the degree of
mobility of a projective structure is greater than 1, then the metrics do
not necessarily admit a Killing vector. As a counterexample, consider
the pair of metrics

h1 = (X(x)− Y (y))
(
dx2 + dy2

)
and

h2 =

(
1

Y (y)
− 1

X(x)

)(
dx2

X(x)
+

dy2

Y (y)

)
,

which is projectively equivalent and whose unparametrised geodesic
equation is

y′′ +
1

2 (X(x)− Y (y))

(
Y ′ +X ′y′ + Y ′y′2 +X ′y′3

)
= 0. (4.27)

These metrics do not admit a Killing vector in general, but it is clear
that the projective structure has degree of mobility at least 2.
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From Theorem 4.3, a first integral of (4.27) is(
deth1

deth2

)2/3
(h2)abẋ

aẋb

(h1)abẋaẋb
=
Y (y) +X(x)y′2

1 + y′2
.

In section 4.3, we show that all Painlevé equations admit a special
representative admitting a Killing form (following Theorem 4.4). The
problem of existence of Killing forms for two-dimensional affine connec-
tions was solved in [11] (c.f. also Chapter 5), where it was also shown
that the semi-invariant ν5 defined in [31] necessarily vanishes for projec-
tive structures having special representatives admitting Killing forms.
Therefore, our results allow us to say that ν5 vanishes for all Painlevé
equations [31].

The simplest projective structure is the flat one, namely, whose un-
parametrised geodesic equation is y′′ = 0 (up to point transformations).
In this case, the general solution to equations (4.14–4.17) has 6 con-
stants of integration and the metric has constant curvature [25]. Actu-
ally, these three properties are equivalent [6, 25].

Let us state a result known to R. Liouville giving necessary and
sufficient conditions for the projective structure to be flat.

Theorem 4.5. [41] A second order ODE y′′ = Λ(x, y, y′) is equivalent
to y′′ = 0 under a point transformation, i.e., the projective structure is
flat, if and only if it is of the form (4.24) and the following quantities,
called Liouville invariants, vanish identically

L1 =
2

3

∂2A1

∂x∂y
− 1

3

∂2A2

∂x2
− ∂2A0

∂y2
+ A0

∂A2

∂y
+ A2

∂A0

∂y
− A3

∂A0

∂x
−

− 2A0
∂A3

∂x
− 2

3
A1
∂A1

∂y
+

1

3
A1
∂A2

∂x
,
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L2 =
2

3

∂2A2

∂x∂y
− 1

3

∂2A1

∂x2
− ∂2A3

∂x2
− A3

∂A1

∂x
− A1

∂A3

∂x
+ A0

∂A3

∂y
+

+ 2A3
∂A0

∂y
+

2

3
A2
∂A2

∂x
− 1

3
A2
∂A1

∂y
.

The vanishing of both L1 and L2 is invariant under point transfor-
mation, but not the vanishing of each one individually. This is because
L1 and L2 can be interpreted as the components of a 1-form recovered
in [11] (c.f. also Chapter 5).

In what follows, we will study metrisability of projective structures
defined from the Painlevé equations considered as unparametrised geo-
desic equations of the form (4.24). To calculate first integrals, when
they exist, we will find a Killing vector and use (4.26), however we
could also use Theorem 4.3.

4.3 Metrisability of Painlevé equations

In this section, we analyse the metrisability of projective structures
originated from the Painlevé equations, which are of the form (4.24).
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The six Painlevé equations are:

y′′ = 6y2 + x (PI)

y′′ = 2y3 + xy + α (PII)

y′′ =
1

y
y′2 − 1

x
y′ + α

y2

x
+
β

x
+ γy3 +

δ

y
(PIII)

y′′ =
1

2y
y′2 +

3

2
y3 + 4xy2 + 2(x2 − α)y +

β

y
(PIV)

y′′ =

(
1

2y
+

1

y − 1

)
y′2 − 1

x
y′ +

(y − 1)2

x2

(
αy +

β

y

)
+

+ γ
y

x
+ δ

y(y + 1)

y − 1
(PV)

y′′ =
1

2

(
1

y
+

1

y − 1
+

1

y − x

)
y′2 −

(
1

x
+

1

x− 1
+

1

y − x

)
y′+

+
y(y − 1)(y − x)

x2(x− 1)2

[
α + β

x

y2
+ γ

x− 1

(y − 1)2
+ δ

x(x− 1)

(y − x)2

]
(PVI)

where α, . . . , δ are constant parameters and the metrisability properties
will strongly depend on their values. When convenient we will indicate
them in parenthesis in front of the equation label, for instance: (PII)(α),
(PIII)(α, β, γ, δ) and so on.

These equations do not have a cubic term in y′ (A3 = 0). A general
(not unique!) approach to seek solutions to the metrisability problem
of this kind of projective structure is the following:

0. (optional) calculate the invariants in [25]. If they do not vanish
identically, then there is no non-trivial solution to (4.14–4.17) and
there is no point following the next steps;

1. solve equation (4.15) for ψ3 (note that A3 = 0);

2. substitute ψ3 in (4.17) and solve it for ψ2;
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3. apply the integrability condition ∂x∂yψ1 = ∂y∂xψ1, ∀x, y, to the
remaining equations (4.14) and (4.16);

4. if step 3. is successful, solve equations (4.14) and (4.16).

Step 0. is optional because it is equivalent to step 3. After steps 1.
and 2., in general, we end up with a solution for ψ2 and ψ3 depending
on arbitrary functions of x and y originated from integration of PDEs.
Step 3. is necessary to fix those functions up to constants of integration.

The above steps may be troublesome to be performed by hand, but
they are easily implemented on the computer using softwares of sym-
bolic calculus.

In [6] it is shown that (PI) is not metrisable. The same is true for
(PII) and (PIV). The reason is that step 3. above implies ψ2 = ψ3 = 0
and thus we cannot define a metric via (4.19). On the other hand,
(PIII), (PV) and (PVI)-projective structures are metrisable for special
values of parameters, as we discuss below. The values of the parameters
can be found in step 3. from the condition ∂x∂yψ1 = ∂y∂xψ1, which
involves α, . . . , δ and should hold for all values of x and y in their
domain of definition.

For other choices of parameters, step 3. forces us to choose ψ2 =
ψ3 = 0 and get a degenerate solution. An obvious degenerate solution
is the trivial one ψi = 0. However, for the Painlevé equations, there
always exist non-trivial ones spanning a 1-dimensional space, which is
the maximal dimension allowed to degenerate solutions (c.f. Corollary
4.9 below or Lemma 4.3 of [6]). To see this, set ψ2 = ψ3 = 0. Then
(4.14–4.17) reduce to a closed overdetermined system for ψ1 which has a
non-vanishing solution if and only if ∂yA1 = 2∂xA2. It is straightforward
that this condition is fulfilled by all equations (PI–PVI), that is why all
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invariants of [6] vanish for Painlevé equations. The degenerate solutions
corresponding to each Painlevé equation are, up to a multiplicative

constant, (PI,PII): ψ1 = 1, (PIII): ψ1 = y4/3

x2/3
, (PIV): ψ1 = y2/3, (PV):

ψ1 = (1−y)4/3y2/3

x2/3
and (PVI): ψ1 = (x− y)2/3

[
(y−1)y
(x−1)x

]2/3

.

After analysing (PIII), (PV) and (PVI), we explain in Section 4.3.4
how the metrisability results of (PIII) are related to those of (PV) by
the method of coalescence of Painlevé equations.

4.3.1 Painlevé III

Applying steps 1. to 4. above lead us to conclude that (PIII) is metris-
able only in the following cases: α = γ = 0 or β = δ = 0. If all pa-
rameters are zero, then the projective structure is flat. Actually, both
cases are essentially the same since the change of coordinates y 7→ 1

y in-
duces (PIII)(α, β, γ, δ) → (PIII)(−β,−α,−δ,−γ) and all results from
one case can be recovered from the other through this map. Therefore,
we only explicitly present the detailed results for β = δ = 0. We have
two subcases to analyse, (α, γ) 6= (0, 0) and (α, γ) = (0, 0).
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Case β = δ = 0 and (α, γ) 6= (0, 0)

If β = δ = 0 and (α, γ) 6= (0, 0), we have a two-dimensional family of
solutions giving rise to the metric

g =
B − Axy(2α + γxy)

A2x2(A−B + 2Aαxy + Aγx2y2)2
dx2+

+
2

Axy(A−B + 2Aαxy + Aγx2y2)2
dxdy+

+
1

Ay2(A−B + 2Aαxy + Aγx2y2)2
dy2, (4.28)

where A and B are arbitrary constants. The metric admits a one-
parameter family of isometries (x, y) 7→ (esx, e−sy), generated by the
Killing vector

K = x
∂

∂x
− y ∂

∂y
.

Then, if we define B̃ = B
A − 1,

CK =
ẋ

x
(
B̃ − 2αxy − γx2y2

)
is conserved along geodesics and

I = x2

(
y′

y

)2

+ 2x
y′

y
− 2αxy − γx2y2

is a first integral of (PIII) [30]. Alternatively, we could have used The-
orem 4.3 to find the same results, in fact notice that for A = 0 we have
a degenerate solution.

By defining new coordinates r = xy and s = ln |x| the metric takes
the form

g =
1

A3
(
−B̃ + 2αr + γr2

)2

r2

dr2 − 1

A3
(
−B̃ + 2αr + γr2

)ds2.

By rescaling r we can set either α to 1 if α 6= 0 or γ to γ/|γ| if γ 6= 0.
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Case α = β = γ = δ = 0

If α = β = γ = δ = 0, we have a six-dimensional family of solutions,
meaning that (PIII) gives rise to a projectively flat metric of constant
curvature [25]

g =
[
−12(C1 + C2 lnx+ C3(lnx)2)(3C6 − 2C5 ln y + 3C3(ln y)2)+

+(6C4 − 3C2 ln y + 2 lnx(C5 − 3C3 ln y))2
]−2×

×

{
432

[
3C6 − 2C5 ln y + 3C3(ln y)2

](dx
x

)2

+

+432 [6C4 − 3C2 ln y + 2 lnx(C5 − 3C3 ln y)]
dxdy

xy
+

+1296
[
C1 + C2 lnx+ C3(lnx)2

](dy
y

)2
}
,

where Ci, i = 1, . . . , 6 are arbitrary constants.

Since the projective structure is flat, (PIII)(0,0,0,0) can be put in

the form
d2Y

dX2
= 0 with Y = ey and X = lnx. To see this, set C2 =

C3 = C4 = C5 = 0, then it is clear that X, Y are flat coordinates for
this metric.

4.3.2 Painlevé V

We have analogous results for (PV). The projective structure is metris-
able if and only if γ = δ = 0, and it is projectively flat admitting a
metric with constant curvature if and only if α = β = γ = δ = 0.
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Case γ = δ = 0 and (α, β) 6= (0, 0)

If γ = δ = 0 and (α, β) 6= (0, 0), we have a two-dimensional family of
solutions giving rise to the metric

g =
y

A2x2[By + 2A(β − αy2)]
dx2 +

y

A(y − 1)2[By + 2A(β − αy2)]2
dy2,

(4.29)
which admits (x, y) 7→ (esx, y) as as one-parameter family of isometries,
generated by the Killing vector

K = x
∂

∂x
.

Then, if we define B̃ = B
A , the quantity

CK =
y

2β − B̃y − 2αy2

ẋ

x

is conserved along geodesics and

I =
1

y

(
xy′

y − 1

)2

+
2β

y
− 2αy

is a first integral of PV (c.f. [30]).

By defining θ = ln |x|, the metric becomes

g =
y

A3[B̃y + 2(β − αy2)]
dθ2 +

y

A3(y − 1)2[B̃y + 2(β − αy2)]2
dy2.

By redefining A, B and θ we can set either β to β
|β| if β 6= 0 or α to α

|α|
if α 6= 0.

Case α = β = γ = δ = 0

If α = β = γ = δ = 0, we have again a six-dimensional family of
solutions, meaning that it gives rise to a projectively flat metric of
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constant curvature [25]

g = 27
[
9(C2

1 − C3C6) + 9(C2
4 − 4C3C5)(arctanh

√
y)2+

+6 arctanh
√
y(2C2C3 − 3C1C4 + (C2C4 − 6C1C5) lnx)+

+ lnx(6C1C2 − 9C4C6 + (C2
2 − 9C5C6) lnx)

]−2×

×

{
3C6 − 4C2 arctanh

√
y + 12C5

(
arctanh

√
y
)2

x2
dx2−

−2
3C1 + C2 lnx− 3 arctanh

√
y(C4 + 2C5 lnx)

x(−1 + y)
√
y

dxdy+

+3
C3 + lnx(C4 + C5 lnx)

(−1 + y)2y
dy2

}
,

where Ci, i = 1, . . . , 6 are arbitrary constants.

Equation (PV)(0, 0, 0, 0) can be put in the form
d2Y

dX2
= 0 with Y =

ln
(

1+
√
y√

1−y

)
and X = lnx. These coordinates can be found by choosing

C1 = C2 = C4 = C5 = 0, then the metric is flat in the coordinates
X, Y .

4.3.3 Painlevé VI

(PVI) is metrisable if and only if α = β = γ = 0, δ = 1
2 . This choice

of parameters is well-known. In fact, in this case (PVI) has a solution
given in terms of the elliptic integral [30, 8]∫ y(x)

0

dw√
w(w − 1)(w − x)

= aω1(x) + bω2(x), (4.30)

where the right hand side is the general solution of the Picard-Fuchs
equation

4x(x− 1)ω′′(x)− 4(2x− 1)ω′(x)− ω(x) = 0, (4.31)
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with a and b constants. Since the constants of integration appear lin-
early in (4.30), the projective structure is flat2. In fact, PVI

(
0, 0, 0, 1

2

)
is trivial in the variables Y = 1

ω2(x)

∫ y
0

dw√
w(w−1)(w−x)

, X = ω1(x)
ω2(x) .

A “first integral” is given by [8]

I =
y′B(x)√

y(y − 1)(y − x)
+

∫ y

0

[
A(x) +

B(x)

2(w − x)

]
dw√

w(w − 1)(w − x)
,

(4.32)
where A and B are a solution to the Picard-Fuchs adjoint equations{

A′(x) = B(x) 1
4x(x−1)

B′(x) = −B(x) 1−2x
x(x−1) − A(x)

4.3.4 Coalescence

The first five Painlevé equations (PI–PV) can be derived from (PVI) by
the process of coalescence [33]. It is described by the following change

2This is actually the definition of projective flatness used by Liouville [41]
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of variables and constants, upon taking the limit ε→ 0,

(PV I)→ (PV ) : x 7→ 1 + εx, δ 7→ δ

ε2
, γ 7→ − δ

ε2
+
γ

ε
;

(PV )→ (PIV ) : x 7→ 1 +
√

2εx, y 7→ 1√
2
εy, α 7→ 1

2ε4
, β 7→ β

4
,

γ 7→ − 1

ε4
, δ 7→ − 1

2ε4
+
α

ε2
;

(PV )→ (PIII) : x 7→ x2, y 7→ 1 + εxy, α 7→ γ

8ε2
+
α

4ε
,

β 7→ − γ

8ε2
, γ 7→ εβ

4
, δ 7→ ε2δ

8
;

(PIV )→ (PII) : x 7→ − 1

ε3
+

εx

22/3
, y 7→ 1

ε3
+

22/3y

ε
,

α 7→ − 1

2ε6
− 2α, β 7→ − 1

2ε12
;

(PIII)→ (PII) : x 7→ 1 + ε2x, y 7→ 1 + 2εy, α 7→ − 1

2ε6
,

β 7→ 1

2ε6
+

2α

ε3
, γ 7→ 1

4ε6
, δ 7→ − 1

4ε6
;

(PII)→ (PI) : x 7→ − 6

ε10
+ ε2x, y 7→ 1

ε5
+ εy, α 7→ 4

ε15
.

We can use this process to recover a metric of (PIII)(α, 0, γ, 0) from a
metric of (PV)(α, β, 0, 0). To do so, it is necessary to start with (4.29)
with the constants of integration

A =

(
4γ

2αε+ γ

) 2
3

, B =
(−αε+ γ)(4αε+ 2γ)

1
3

ε2γ
1
3

.

Then, in the limit ε → 0, we find the metric (4.28) with AIII = 1
and BIII = 1 − 4α2

γ , where we have attached the index III to indi-
cate that these constants AIII and BIII correspond to the metric of
(PIII)(α, 0, γ, 0). This is valid of course only if γ 6= 0. In the case γ = 0

we need A = 42/3AIII and B = 2αAIII+(−AIII+BIII)ε
22/3ε

.

Taking into account the transformation of the parameters α, . . . , δ
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in the coalescence procedure, it is clear that we cannot recover metris-
ability of (PIII) and (PV) from (PVI).

4.4 Degree of mobility of degenerate solutions

One of the conditions of Theorem 4.2 for the existence of a metric, is
that det(σ) 6= 0. In this section we will be interested in solutions of
(4.12) such that det(σ) = 0. More precisely, we want to find bounds to
the dimension of the solution space of (4.12) under the restriction that

σ is a singular matrix. We show that this bound is k(k+1)
2 for rank-k

solutions once the kernel is fixed (c.f. [6] for the result in dimension 2).

Let us write the metrisability equations (4.12) under the condition
det(σ) = 0. We suppose that there exists a non-vanishing 1-form ω

such that
σabωb = 0. (4.33)

Differentiate (4.33) to obtain(
∇cσ

ab
)
ωb + σab∇cωb = 0, (4.34)

use (4.12),

σab∇cωb +
δac

n+ 1
ωb∇dσ

bd +
ωc

n+ 1
∇dσ

ad = 0 (4.35)

contract with ωa, use (4.33) and (4.34) to find

σda∇dωa = ωa∇dσ
da = 0. (4.36)

Substitute it in (4.35)

ωc∇dσ
ad = −(n+ 1)σab∇cωb. (4.37)
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This allows us to rewrite (4.10) in a closed form

ωd∇cσ
ab = −

(
δacσ

be + δbcσ
ae
)
∇dωe. (4.38)

The condition (4.33) allows us to determine all partial derivatives of
σab in terms of ω and σ and no prolongation is needed in this system
once the ω’s are fixed. It is not clear how to fix the kernel of degen-
erate solutions, but some differential and algebraic restrictions can be
derived.

Equation (4.38) should be consistent for all values of the index d.
The consistency conditions are algebraic in σ and can be obtained either
by contracting (4.38) with ωa and using (4.34) or by multiplying (4.38)
by ωf and anti-symmetrising [df ]:

σeb (ωd∇cωe − ωc∇dωe) = 0. (4.39)

Further conditions, this time algebraic in both σ and ω, can be
obtained as follows. Differentiate (4.39)

∇f

[
σbe (ωd∇cωe − ωc∇dωe)

]
= 0,

multiply it by ωg and use (4.38) to get

σbe [(ωc∇dωf − ωd∇cωf)∇gωe + ωg∇f (ωd∇cωe − ωc∇dωe)] = 0.

In particular, by using (4.39) in the last two terms and anti-symmetrising
in c, d, f we get σaeω[c∇f∇d]ωe = 0, which is an algebraic condition in-
volving the Riemann tensor

σaeω[cWfd]
b
e ωb = σaeω[cRfd]

b
eωb = 0, (4.40)

where we used (4.9) in the first equality.

An inductive argument involving the second Bianchi identity gener-
alises this result as the following theorem.
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Theorem 4.6. If σ is a degenerate solution to the metrisability equa-
tions (4.10) and ω is a closed element in its kernel, then

σaeω[c∇a1 · · · ∇am]ωe = 0

for m = 1, . . . , n− 1. Equivalently,

• σaeω[c∇a1]ωe = 0, if m = 1,

• σaeω[cRa1a2]
h
e ωh = 0, if m = 2,

• σaeω[cRa1a2
h
|f |Ra3a4

f
|:| · · ·Ram−1am]

:
e ωh = 0, if m > 2 is even and

• σaeω[cRa1a2
h
|f |Ra3a4

f
|:| · · ·Ram−2am−1

:
|e|∇am]ωh = 0, if m > 1 is odd,

where the : in an index position means that the corresponding index is
contracted with another index in · · · and the vertical bars | | around
indices mean that these indices do not take part in the antisymmetrisa-
tion.

Geometric properties of the kernel

Let us now study some geometric properties of the kernel of a degen-
erate solution σ. Since equation (4.36) is true for all ω ∈ kerσ, it is
a matter of linear algebra to deduce that ∇dσ

ad ∈ Imσ. Thus there
exists a 1-form Sa such that

− µa = − 1

n+ 1
∇dσ

ad = σabSb. (4.41)

Theorem 4.7. Let σ be a degenerate solution to (4.12). Then, its
kernel is spanned by exact 1-forms. Moreover, the integral manifold
defined by the kernel is totally geodesic.
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Proof. Let ω ∈ kerσ and let s = n− rank σ be the dimension of kerσ.
From (4.37) and (4.41),

σab (∇cωb + ωcSb) = 0.

Therefore, there exist 1-forms T (i) such that

∇cωb + ωcSb = T (1)
c ω

(1)
b + · · ·+ T (s)

c ω
(s)
b .

By anti-symmetrising [cb] we conclude that dω belongs to the ideal al-
gebraically generated by kerσ. By Frobenius theorem, kerσ is spanned
by exact 1-forms and there exists a coordinate system y1, . . . , yn such
that kerσ = span{dyn−s+1, . . . , dyn}.

For the second part, let us work in these y-coordinates. Let i, j, k, . . .
be indices taking values from 1 to n − s, α, β, γ, . . . take values from
n − s + 1 to n and a, b, c, . . . take values from 1 to n. In such coordi-
nates, saying that the submanifolds {yα = const} are totally geodesic
means that geodesics starting with with initial velocities tangent to
such submanifolds remain in these submanifolds. Explicitly, let the
affine parametrised geodesics be given as solutions to the equations

ÿa + Γabcẏ
bẏc = 0,

then, choosing a > n − s we see that if ẏα = 0, α = n − s + 1, . . . , n
at some value for the affine parameter, then ẏα remains 0 for the whole
geodesic motion. Looking at the geodesic equations above for a > n−s,
we conclude that this is the case if and only if Γαij = 0. Let us now show
that all such Γαij symbols vanish because of the metrisability equation.

Choosing ω = dyα, we conclude that σaα = σαa = 0 and that
the submatrix

(
σij
)n−s
i,j=1

is non-singular. Therefore, writing (4.12) for
a, b, c > n− s yields

δβαΓγijσ
ij + δγαΓβijσ

ij = 0,

which implies that
σijΓβij = 0. (4.42)
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Now, writing (4.12) for a, b ≤ n− s, c > n− s,

Γγjiσ
ki =

1

n+ 1
δkjΓγilσ

il = 0,

where we used (4.42) in the last equality. This implies that Γγji = 0

because the submatrix
(
σki
)

is invertible. This concludes the proof
that the integral submanifolds of kerσ are totally geodesic.

From basic linear algebra, the submanifolds defined by kerσ are
integrable submanifolds of the distribution generated by the image of
σ. Thus we deduce the following corollary.

Corollary 4.8. Under the conditions of Theorem 4.7, the distribution
defined by the image of σ is integrable.

Proof. We write here an alternative proof to the one given by the pre-
vious paragraph.

Let V a
i = σab Ωi

b, i = 1, 2, be two arbitrary vectors in the image of
arbitrary 1-forms Ωi by σ. We want to show that [V1, V2] ∈ Imσ. In
fact, using (4.10),

[V1, V2]
c = 2σcb

(
Ω

[1
b Ω

2]
d µ

d + σaeΩ[1
e ∇aΩ

2]
b

)
∈ Imσ.

By Frobenius integrability, the image of σ is an integrable distribution.

Theorem 4.7 allows us to make a suitable choice of coordinates to
prove the final result of this section.

Theorem 4.9. The maximal dimension of the solution space of (4.10)

under the condition k ≡ rank(σ) < n for a given kerσ is k(k+1)
2 , where

k = 0, · · ·n− 1.
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Proof. Once the kernel of σ is fixed, using the results and the notation
of the proof of Theorem 4.7, we can choose the kernel of σ to be spanned
by ω(i) = dyn−s+i, i = 1, . . . , s. This implies that σαβ = 0. There are
another k(k+1)

2 unknowns σij. Equations (4.38) give rise to a closed
system of linear PDEs for σij and thus the maximal dimension of the
solution space is k(k+1)

2 .

Let us give an example of a projective structure that is not metrisable
and saturates the maximal bound n(n−1)

2 . Consider, in local coordinates

x1, . . . , xn, the connection given by Γ1
nn = −x2

2 , Γ2
nn = −x1

2 and all the
other symbols equal to zero. This is a particular case of the Newtonian
projective structure [23, 24] describing a classical particle moving in the
(n − 1)-dimensional space (x1, . . . , xn−1), xn playing the role of time,
under the potential V = x1x2. This Newtonian connection admits dx1∧
· · · ∧ dxn as a parallel volume form, so it is special. A careful analysis
of the metrisability equations (4.10) gives the solution σan = 0, for
a = 1, . . . , n and σkl = Ckl, for k, l = 1, · · · , n− 1, where Ckl = Clk are
arbitrary constants. Thus, the projective structure of this connection
saturates the bound n(n−1)/2 for the dimension of the solution space.
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Chapter 5

First integrals of affine connections
and Hamiltonian systems of
hydrodynamic type

The existence of a first integral of a geodesic flow of an affine connec-
tion1 puts restrictions on the form of the connection. A generic connec-
tion admits no first integrals. If the connection arises from a metric,
and the first integral is linear in velocities, then the metric admits a
one-parameter group of isometries generated by a Killing vector field.
Characterising metrics which admit Killing vectors by local tensor ob-
structions is a classical problem which goes back at least to Darboux
[15], and can be solved completely in two dimensions. The analogous
characterisation of non-metric affine connections has not been carried
over in full2. It is given in Theorem 5.1, where we construct two in-
variant scalar obstructions to the existence of a linear first integral.

1Since the Killing equations are invariant under special change of connections in the sense of
(4.1), the existence of linear integrals is a property of special projective classes (c.f. above equation
(4.9)), although not of the whole projective structure.

2The remarkable exception is the paper of Levine [40] and its extension [67] where the necessary
condition for the existence of a first integral was found, albeit not in a form involving the Schouten
and Cotton tensors. The sufficient conditions found in [40] are not all independent. Levine gives
seven tensor conditions, where in fact two scalar conditions suffice.
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A non-metric connection can (unlike a Levi-Civita connection) admit
precisely two independent linear local first integrals. This case will also
be characterised by a tensor obstruction.

As an application of our results we shall, in Section 5.2, characterise
one-dimensional systems of hydrodynamic type which admit a Hamil-
tonian formulation of the Dubrovin–Novikov type [20]. The existence
of such formulation leads to an overdetermined system of PDEs, and we
shall show (Theorem 5.2) that this system is equivalent to a condition
that a certain non-metric affine connection admits a linear first inte-
gral. This, together with Theorem 5.1 will lead to a characterisation
of Hamiltonian, bihamiltonian and trihamiltonian systems of hydro-
dynamic type. In Section 5.3 we shall give examples of connections
resulting from hydrodynamic type systems.

Let us state the main results of this chapter. Let ∇ be a torsion-
free affine connection of differentiability class C4 on a simply connected
orientable surface Σ (so we require the transition functions of Σ to be
of class C6). A curve γ : R→ Σ is an affinely parametrised geodesic if
∇γ̇γ̇ = 0, or equivalently if

Ẍa + ΓabcẊ
bẊc = 0, a, b, c = 1, 2 (5.1)

where Xa = Xa(τ) is the curve γ expressed in local coordinates Xa on
an open set U ⊂ Σ, τ is an affine parameter, Γcab are the Christoffel
symbols of ∇, and we use the summation convention. A linear function
on TΣ given by κ = Ka(X)Ẋa is called a first integral if dκ/dτ = 0
when (5.1) holds, or equivalently if

∇(aKb) = 0. (5.2)

The following theorem gives local necessary and sufficient conditions
for a connection to admit one, two or three linearly independent solu-
tions to the Killing equation (5.2). The necessary conditions involve
vanishing of obstructions IN and T given by (5.16) and (5.21) – for
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these to make sense the connection needs to be at least three times
differentiable.

Theorem 5.1. The necessary condition for a C4 torsion-free affine
connection ∇ on a surface Σ to admit a linear first integral is the van-
ishing, on Σ, of scalar invariants IN and IS given by (5.16) and (5.20),
respectively. For any point p ∈ Σ there exists a neighbourhood U ⊂ Σ of
p such that conditions IN = IS = 0 on U are sufficient for the existence
of a first integral on U . There exist precisely two independent linear
first integrals on U if and only if the tensor T given by (5.21) vanishes
and the skew part of the Ricci tensor of ∇ is non-zero on U . There
exist three independent first integrals on U if and only if the connection
is projectively flat and its Ricci tensor is symmetric.

This theorem will be established by constructing (Proposition 5.3)
a prolongation connection D on a rank-3 vector bundle Λ1(Σ)⊕Λ2(Σ)
for the overdetermined system (5.2), and restricting the holonomy of its
curvature when one, two or three parallel sections exist. In Proposition
5.8 we shall find all local normal forms of connections from Theorem
5.1 which admit precisely two linear first integrals.

Finally we shall consider one-dimensional systems of hydrodynamic
type. Any such system with two dependent variables (X1, X2) and two
independent variables (x, t) can be written in the so-called Riemann
invariants as

∂X1

∂t
= λ1(X1, X2)

∂X1

∂x
,

∂X2

∂t
= λ2(X1, X2)

∂X2

∂x
, (5.3)

where λ1 6= λ2 at a generic point. This system admits a Hamiltonian
formulation of the Dubrovin–Novikov type, if it can be written as

∂Xa

∂t
= Ωab δH

δXb
, (5.4)

where H[X1, X2] =
∫
RH(X1, X2)dx is the Hamiltonian of hydrody-

namic type, and the Poisson structure on the space of maps Map(R, U)

77



is given by

Ωab = gab
∂

∂x
+ babc

∂Xc

∂x
. (5.5)

The Jacobi identity imposes severe constraints on g(Xa) and b(Xa) –
see Section 5.2 for details. We shall prove

Theorem 5.2. The hydrodynamic-type system (5.3) admits one, two
or three Hamiltonian formulations with hydrodynamic Hamiltonians if
and only if the affine torsion-free connection ∇ defined by its non-zero
components

Γ1
11 = ∂1 lnA− 2B, Γ2

22 = ∂2 lnB − 2A,

Γ1
12 = −

(1

2
∂2 lnA+ A

)
, Γ2

12 = −
(1

2
∂1 lnB +B

)
, (5.6)

where

A =
∂2λ

1

λ2 − λ1
, B =

∂1λ
2

λ1 − λ2
, and ∂a =

∂

∂Xa
(5.7)

admits one, two or three independent linear first integrals, respectively.

This Theorem, together with Theorem 5.1 leads to explicit obstruc-
tions for the existence of a Hamiltonian formulation (5.4).

5.1 Killing operator for affine connection

Given an affine connection ∇ on a surface Σ, its curvature is defined
by

[∇a,∇b]X
c = Rab

c
dX

d.

In two dimensions the projective Weyl tensor vanishes, and the curva-
ture can be uniquely decomposed as

Rab
c
d = δa

cPbd − δbcPad +Babδd
c, (5.8)
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where Pab is the Schouten tensor related to the Ricci tensor Rab = Rca
c
b

of ∇ by Pab = (2/3)Rab + (1/3)Rba, and Bab = Pba−Pab = −2P[ab]. We
shall assume that Σ is orientable, and choose a volume form3 εab on Σ.
We shall also introduce εab such that εabεcb = δac . These skew-symmetric
tensors are used to raise and lower indices according to V a = εabVb and
Va = εbaV

b. Then
∇aεbc = θaεbc,

where θa = (1/2)εbc∇aεbc. Set β = Babε
ab.

Proposition 5.3. There is a one-to-one correspondence between solu-
tions to the Killing equations (5.2), and parallel sections of the pro-
longation connection D on a rank-three vector bundle E = Λ1(Σ) ⊕
Λ2(Σ)→ Σ defined by

Da

(
Kb

µ

)
=

(
∇aKb − εabµ

∇aµ−
(

Pb
a + 1

2βδ
b
a

)
Kb + µθa

)
. (5.9)

Proof. Dropping the symmetrisation in (5.2) implies the existence
of µ such that ∇aKb = µεab. Differentiating this equation covariantly,
skew-symmetrising over all indices and using the curvature decompo-
sition (5.8) together with the Bianchi identity yields the statement of
the Proposition.

2

In the proof of Theorem 5.1 we shall find the integrability conditions
for the existence of parallel sections of this connection. This will lead
to a set of invariants of an affine connection ∇.

3All the results are independent of the choice of volume form. In fact, we could have avoided
introducing εab had we chosen to use tensor densities.
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Proof of Theorem 5.1. The integrability conditions (∇a∇b −
∇b∇a)µ = 0 give the algebraic condition

F aKa + βµ = 0, where F a =
1

3
εab(Lb − εcd∇bBcd) (5.10)

and Lb ≡ εcd∇cPdb is the Cotton tensor of ∇. Geometrically, the condi-
tion (5.10) means that the curvature of D, which is a matrix, has rank
at most one, and annihilates a parallel section of D. Applying ∇a to
the condition (5.10), and using the vanishing of (5.9) leads to two more
algebraic conditions

M̃a
bKb + Ñaµ = 0, (5.11)

where

M̃a
b = ∇aF

b +
(

Pb
a +

1

2
δbaβ

)
β, Ña = −Fa +∇aβ − βθa.

Multiplying the equation (5.10) by 2θa, and adding the resulting ex-
pression to (5.11) results in the changes M̃a

b → M̃a
b + 2θaF

b ≡ Ma
b

and Ña → Ña + 2θaβ ≡ Na. We can use this freedom to get rid of θa

from in (5.11), yielding

Ma
bKb +Naµ = 0, (5.12)

where

Ma
b =

1

3
εbcεde(∇aYdec −∇a∇cBde) + β Pb

a +
1

2
β2δba, (5.13)

Na = −Fa + εbc∇aBbc, (5.14)

and Ycdb = ∇[cPd]b. Therefore a parallel section Ψ ≡ (K1, K2, µ)T of
D must satisfy a system of three linear algebraic equations which we
write in a matrix form as

MΨ ≡

 F 1 F 2 β
M1

1 M1
2 N1

M2
1 M2

2 N2

 K1

K2

µ

 = 0. (5.15)

A necessary condition for the existence of a non-zero parallel section Ψ
is therefore the vanishing of the determinant of the matrix M. This
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gives the first obstruction which we write as a vanishing of the relative
scalar invariant

IN = εcdε
beMe

c
(
NbF

d − 1

2
βMb

d
)
. (5.16)

This invariant has weight −5: if we replace εab by efεab, where f :
Σ→ R, then IN → e−5fIN .The vanishing of IN is not sufficient for the
existence of a non-zero parallel section. To assure sufficiency assume
that IN = 0. Rewrite (5.10) and (5.12) as

V αΨα = 0, (DaV
α)Ψα = 0, α = 1, . . . , 3

where V = (F 1, F 2, β) in the formula above is a section of the dual bun-
dle E∗, and Da is the dual connection inherited from (5.9). We continue
differentiating, and adding the linear equations on Ψ. The Frobenius
theorem tells us that the process terminates once a differentiation does
not add any additional independent equations, as then the rank of the
matrix of equations on Ψ stabilises and does not grow. The space of
parallel sections of D has dimension equal to 3 (the rank of the bundle
E) minus the number of independent equations on Ψ. Therefore the
sufficient condition for the existence of a Killing form assuming that
IN = 0 is

rank



V
D1V

D2V
D1D1V
D(1D2)V
D2D2V

 < 3. (5.17)

If IN = 0 and V 6= 0, then

cV + c1D1V + c2D2V = 0,

where (c, c1, c2) are some functions on U , and (c1, c2) are not both zero.
This implies that the term D(1D2)V in (5.17) is a linear combination
of all other terms, and can be disregarded. Now, suppose that D1V =
0. Then (5.17) becomes det(V,D2V,D2D2V ) = 0. Equivalently, if
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D2V = 0 then (5.17) becomes det(V,D1V,D1D1V ) = 0. We conclude
that (5.17) is equivalent to

(det(V,D1V,D(1D1)V ), det(V,D2V,D(2D2)V )) = (0, 0), (5.18)

as it is easy to show that the condition above implies (5.17). In fact,
condition (5.18) above gives just one independent condition: if c2 6= 0,
then the sufficient condition is the vanishing of the first component
and if c1 6= 0, then it is the vanishing of the second one. The ex-
plicit tensor expression of the obstruction (5.18) is given by calculating
det(V,DaV,D(bDc)V ), which is proportional to the tensor

Wabc = FeMa
eV(bc) − FeU e

(bc)Na + βMaeU
e
(bc), where (5.19)

U b
ca = εbdεef [

1

3
(∇c∇aYefd −∇c∇a∇dBef) +∇c(BefPda)]

+
1

2
εefεgh∇c(BefBgh)δ

b
a + εbdNa(Pdc +

1

2
βεcd), and

Vca = −Mac −
1

3
εde(∇c∇dPea −∇c∇aBde).

Therefore, the sufficient condition for the existence of a Killing 1-form,
under IN = 0, is

IS ≡ (W111,W222) = (0, 0). (5.20)

We shall now consider the case when there exist precisely two inde-
pendent solutions to the Killing equation (5.2) (note that this situation
does not arise if ∇ is a Levi-Civita connection of some metric, as then
the number of Killing vectors can be 0, 1 or 3 - the last case being pro-
jectively flat). Therefore the rank of the matrix M in (5.15) is equal
to one. We find that this can happens if and only if β 6= 0 and

Ta
b = 0, where Ta

b ≡ NaF
b − βMa

b. (5.21)

This condition guarantees the vanishing of all two-by-two minors ofM.

Finally, there exist three independent parallel sections of D iff the
curvature of D vanishes, or equivalently if the matrixM vanishes. This
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condition is equivalent to the projective flatness of the connection ∇
together with the condition β = 0.

Let us now clarify why (5.20) is actually a scalar condition. First,
notice that interpreting the tensor T in (5.21) as a 2×2 matrix, we can
calculate its determinant, which is given by

detT =
1

2
εabεcdTa

cTb
d = βIN .

Thus, condition IN = 0 implies that T is a degenerate matrix. In this
case, let P be a non-zero vector field such that P aTa

b = 0 and choose
coordinates such that P 2 = 0. In these coordinates, T1

b = 0, which
means that D1V ∝ V (in fact, it is easy to show that the second line of
M is proportional to the first one in this case). This implies that the
only non-zero component of W is W222. Therefore, Wabc is proportional
to PaPbPc in these coordinates, hence in any other for these are tensorial
quantities. This proves the following Lemma.

Lemma 5.4. If IN = 0, then there exists a non-zero 1-form P such
that Wabc = (scalar)PaPbPc and P aTa

b = 0.

The vanishing of (scalar) in the above Lemma is the actual scalar
condition given by (5.20), even though this scalar does not have an
explicit formula from our construction.

2

Remarks

• If the connection ∇ is special (i.e. the Ricci tensor is symmetric,
or equivalently β = 0) then IN = −3−3ν5, where

ν5 ≡ LaLb∇aLb
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is the Liouville projective invariant [42, 6], and the indices are
raised with a parallel volume form. Note that, unlike ν5, the ob-
struction IN is not invariant under the projective changes of con-
nection (see eq. (5.29) in §5.2).

Moreover, since the Killing equations are projectively invariant,
the sufficient condition (5.20) is equivalent to the vanishing of the
invariant w1 constructed by Liouville for second order ODEs in
[42]. In fact, Liouville’s w1 can be obtained from W111 (if L1 6= 0)
or from W222 (if L2 6= 0) by using the connection in the same
projective class annihilating the volume form given by ε12 = 1.

• Theorem 5.1 generalises a well known characterisation of metrics
which admit a Killing vector. See [37] or [21] where a 3 by 3 matrix
analogous to M has been constructed. In this case N = −F =
1
3∗dR, where R is the scalar curvature, and ∗ is the Hodge operator
of the metric g. The invariant (5.16) reduces to4

IN := ∗ 1

432
dR ∧ d(|∇R|2).

From the first item in the above remarks, we deduce the following
corollary.

Corollary 5.5. A special connection that is not projectively flat admits
a Killing 1-form if and only if ν5 = w1 = 0.

This allows us to determine a complete method to tell whether a
projective structure is metrisable, that is to say, if possible solutions to
its metrisability equations are degenerate.

4The prolongation procedure in [21] has been carried over in the Riemannian case. The additional
subtlety in the Lorentzian signature arises if ∇R is a non-zero null vector. We claim that, in this
case, if the metric admits a Killing vector, then it has constant curvature (and thus admits three
Killing vectors). To see it, assume that a Lorentzian metric admits a Killing vector K. If K is null,
then the metric is flat with R = 0. Otherwise it can locally be put in the form dY 2− f(Y )2dX2 for
some f = f(Y ), which implies that R does not depend on X. Imposing the condition |∇R|2 ≡ 0
leads to R = const.
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Corollary 5.6. A projective structure in 2 dimensions is metrisable if
and only if one of the following happens:

• its metrisability equations admit a solution space of dimension at
least 2;

• its metrisability equations admit a unique linearly independent so-
lution and ν5 and w1 are not both zero.

Proof. The first item is a result of Lemma 4.3 of [6]. The second one
comes from the fact that if the metrisability equations admit a unique
linearly independent solution, then (from Theorem 4.4 and the above
corollary) it is degenerate if and only if ν5 = w1 = 0.

It is natural to ask what can be said about the unparametrised
geodesic equations when the special connections of the corresponding
projective structure admits a Killing form. We will show that in this
case (which corresponds to ν5 = w1 = 0) there exists a coordinate
system in which the unparametrised geodesic equations take the form
y′′ = A0(x, y) and these coordinates correspond to those in which the
connection with Thomas symbols admits a closed Killing 1-form. Ac-
tually, the fact that ν5 = w1 = 0 implied the existence of coordinates
such that the unparametrised geodesic equations do not involve first
derivatives was already known [42] (c.f. also [3]), however we give here
a different and independent proof using Theorem 5.1, providing a geo-
metric intuition to this choice of coordinates.

First, let us understand how Thomas symbols transform under change
of coordinates. The following will apply in n dimensions. Let xα, xβ,
xσ, . . . be local coordinates, where α, β, σ, · · · ∈ {1, . . . , n}. Now, on
an overlapping chart, let yi, yj, yk, . . . be another coordinate system,
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where i, j, k, · · · ∈ {1, . . . , n}. Then [66]

Πσ
αβ = Πi

jk

∂yj

∂xα
∂yk

∂xβ
∂xσ

∂yi
+
∂xσ

∂yi
∂2yi

∂xα∂xβ
− 1

n+ 1
δσβ

∂

∂xα
ln

∣∣∣∣∂y∂x
∣∣∣∣−

− 1

n+ 1
δσα

∂

∂xβ
ln

∣∣∣∣∂y∂x
∣∣∣∣ , (5.22)

where

∣∣∣∣∂y∂x
∣∣∣∣ is the modulus of the Jacobian of the change of coordinates

yi = yi(xα).

Notice that, even though the property of Christoffel symbols being
traceless is coordinate dependent (as Γaab is not a 1-form), the transfor-
mation (5.22) assures that tracelessness is preserved for Thomas sym-
bols. In fact, if Πi

ji = 0, then

Πβ
αβ =

∂xβ

∂yi
∂2yi

∂xα∂xβ
− ∂

∂xα
ln

∣∣∣∣∂y∂x
∣∣∣∣ = 0.

Now, let us see how the Killing equations ∇Π
(αKβ) = 0 transform.

The symbol ∇Π corresponds to the covariant derivative associated to
traceless Christoffel symbols (i.e., the Thomas symbols). A direct cal-
culation shows that

2∇Π
(αKβ) ≡

∂

∂xα
Kβ +

∂

∂xβ
Kα − 2Πσ

αβKσ =

=
∂yi

∂xα
∂yj

∂xβ

(
∂

∂yi
Kj +

∂

∂yj
Ki − 2Πk

ijKk

)
,

if

Ki =

∣∣∣∣∂y∂x
∣∣∣∣ 2
n+1 ∂xα

∂yi
Kα. (5.23)

Theorem 5.7. The ODE y′′ = A0(x, y) + A1(x, y)y′ + A2(x, y)(y′)2 +
A3(x, y)(y′)3 defining a non-flat projective structure admits coordinates
(X, Y ) such that YXX = f(X, Y ) if and only if ν5 = w1 = 0. More-
over, this is also equivalent to the fact that the connection with Thomas
symbols admits a Killing 1-form given by dX.
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Proof. First, notice that if YXX = f(X, Y ), then the connection with
Thomas symbols admits dX as Killing form. Conversely, if this con-
nection admits dX as Killing form, then all the Thomas symbols are
vanish except Π2

11 and thus its projective structure is represented by
an ODE in the required form. The “only if” part is immediate. For
the “if” part, choose coordinates such that L1 6= 0, which is possible
since the projective structure is not flat. Then ν5 = w1 = 0 implies
that special representatives of the projective structure admit a Killing
1-form. In particular, the connection with Thomas symbols admits a
Killing 1-form Kα.

If the Killing form is closed, then it can be written as dX under a
volume-preserving transformation and this is the required coordinate
system by the first part of the proof.

If the Killing form is not closed, then it can be written in some coor-
dinate system that we call again (x, y) as g(x, y)dx, for some function
g such that ∂yg 6= 0. Then, the coordinate transformation (X, Y ) =
(x,
∫ y
g(x, y′)−3/2dy′) makes the Killing form closed, according to the

rule (5.23). This, along with what we proved above, concludes the
demonstration of the theorem.

In the metric case, a Levi-Civita connection cannot admit precisely
two local linear first integrals, as β (which is proportional to the skew
part of the Ricci tensor) vanishes. In the following proposition we shall
explicitly find all local normal forms of non-metric affine connections
which admit two first integrals.

Proposition 5.8. Let ∇ be an affine connection on a surface Σ which
admits exactly two non-proportional linear first integrals which are in-
dependent at some point p ∈ Σ. Local coordinates (X, Y ) can be chosen
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on an open set U ⊂ Σ containing p such that

Γ1
12 = Γ1

21 =
c

2
, Γ2

11 =
PX
Q
, Γ2

12 = Γ2
21 =

PY +QX − cP
2Q

,

Γ2
22 =

QY

Q
, (5.24)

and all other components vanish, where c is a constant equal to 0 or 1,
and (P,Q) are arbitrary functions of (X, Y ).

Proof. Let the one-forms K and L be two solutions to the Killing
equation. If K is closed, then there exist local coordinates (X, Y )
on U such that K = dX, and the corresponding first integral is Ẋ.
Therefore Ẍ = 0 and the connection components Γ1

ab vanish. Let the
second solution of the Killing equation be of the form L = PdX+QdY

for some functions (P,Q). Imposing

d

dτ
(PẊ +QẎ ) = 0

yields the non-zero components of the connection given by (5.24) with
c = 0. If dK 6= 0, then coordinates (X, Y ) can be chosen so that
K = eY dX. The condition d/dτ(eY Ẋ) = 0 gives Γ1

12 = 1/2. Imposing
the existence of the second integral (PẊ + QẎ ) yields the connection
(5.24) with c = 1.

2

Note that in both cases the ODEs for the unparametrised geodesics also
admit a first integral, given by e−cY (P + Y ′Q), where ′ = d/dX. Con-
versely if a 2nd order ODE cubic in Y ′ representing projective equiv-
alence class5 [∇] of affine connections admits a first integral linear in
Y ′, then [∇] contains a connection of the form (5.24) with c = 0. To

5See Definition 4.1.
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see it consider a second order ODE of the form (P + Y ′Q)′ = 0, where
(P,Q) are arbitrary functions of (X, Y ) and write it in the form

Y ′′ = Γ1
22(Y

′)3 + (2Γ1
12 − Γ2

22)(Y
′)2 + (Γ1

11 − 2Γ2
12)Y

′ − Γ2
11. (5.25)

Equation (5.25) arises from eliminating the affine parameter τ be-
tween the two ODEs (5.1). Thus its integral curves are unparametrised
geodesics of the affine connection ∇.

5.2 Hamiltonian systems of hydrodynamic type

An n-component (1 + 1) system of hydrodynamic type has the form
∂tu

a = vab(u)∂xu
b, where ua = ua(x, t) and a, b = 1, . . . , n. From now

on we shall assume that n = 2 and that the matrix v is diagonalisable
at some point with distinct eigenvalues, in which case there always
exists (in a neighbourhood of this point) two distinct functions (called
the Riemann invariants) X1 and X2 of (u1, u2) such that the system is
diagonal, i.e. takes the form (5.3) for some λa(Xb). The existence of
Riemann invariants is shown in Section C.5 of the appendix.

The hydrodynamic type system is said to admit a local Hamiltonian
formulation with a Hamiltonian of hydrodynamic type [20, 26], if there
exists a functional H[X1, X2] =

∫
RH(X1, X2)dx, where the density H

does not depend on the derivatives of Xa and such that (5.4) holds for
some functions gab(X) and babc (X). If the matrix gab is non-degenerate,
then the Poisson bracket

{F,G} =

∫
R

δF

δXa

(
gab

∂

∂x
+ babc

∂Xc

∂x

) δG
δXb

dx

is skew-symmetric if gab is symmetric and the metric g = gabdX
adXb,

where gabg
bc = δa

c, is parallel with respect to the connection with
Christoffel symbols γcab defined by babc = −gadγbdc. The Jacobi identity
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then holds iff the metric g is flat, and the connection defined by γcab is
torsion-free. The hydrodynamic type systems which admit a Hamilto-
nian of hydrodynamic type possess infinitely many Poisson commuting
first integrals, and are integrable in the Arnold–Liouville sense [68].

Proof of Theorem 5.2. It was shown in [20] that a hydrodynamic
type system in Riemann invariants is Hamiltonian in the sense defined
above if and only if there exists a flat diagonal metric

g = k−1d(X1)2 + f−1d(X2)2 (5.26)

on a surface U with local coordinates (X1, X2) such that

∂2k + 2Ak = 0, ∂1f + 2Bf = 0, (5.27)

where f, k are functions of (X1, X2), and (A,B) are given by (5.7).
Flatness of the metric g yields

(∂2A+ A2)f + (∂1B +B2)k +
1

2
A∂2f +

1

2
B∂1k = 0. (5.28)

We verify that equations (5.27) and (5.28) are equivalent to the Killing
equations (5.2) for an affine torsion-free connection ∇ on U defined by
(5.6) where K1 = Af,K2 = Bk.

2

Computing the relative invariants IN and IS gives explicit but com-
plicated (albeit perfectly manageable by MAPLE) obstructions given
in terms of (λ1, λ2) and their derivatives of order up to 6. These ob-
structions, together with the tensor (5.21) and the Cotton tensor of ∇
characterise Hamiltonian, bihamiltonian and trihamiltonian systems of
hydrodynamic type. The trihamiltonian systems have been previously
characterised by Ferapontov in [26] in terms of two differential forms
he called ω and Ω. We shall now show how Ferapontov’s formalism
relates to our connection (5.6). We shall find that Ω is proportional to
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the skew-symmetric part of the Ricci tensor of ∇, and ω is the volume
form of the (generically) unique Lorentzian metric on U which shares
its unparametrised geodesics with ∇.

We say that a symmetric affine connection ∇ is metric if it is the
Levi-Civita connection of some (pseudo)-Riemannian metric. Recall
that an affine connection ∇ is metrisable if it shares its unparametrised
geodesic with some metric connection. Thus in the metrisable case
there exists a one-form Υ and a metric h such that the Levi-Civita
connection of h is given by

Γabc + δabΥc + δacΥb, (5.29)

where Γabc are the Christoffel symbols of ∇. Not all affine connections
on a surface are metrisable. The necessary and sufficient conditions for
metrisability have been found in [6] and in Corollary 5.6.

Proposition 5.9. The connection (5.6) from Theorem 5.2 is generi-
cally not metric but is metrisable by the metric

h = AB(dX1)� (dX2). (5.30)

Proof. The connection is generically not metric, as its Ricci tensor
Rab is in general not symmetric. The skew part of Rab is given by

(R21 −R12)dX
1 ∧ dX2 = 3dΥ,

where

Υ =
(1

2
∂1 lnB +B

)
dX1 +

(1

2
∂2 lnA+ A

)
dX2. (5.31)

The unparametrised geodesics of this connection are integral curves of
a 2nd order ODE

Y ′′ = (∂XZ)Y ′ − (∂YZ)(Y ′)2, where Z = ln (AB), (5.32)

and (X1, X2) = (X, Y ). The ODE (5.32) is also the equation for un-
parametrised geodesics of the pseudo-Riemannian metric (5.30) (it can
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be found directly by solving the metricity equations as in [13]). The
Levi-Civita connection of h is given by (5.29), where Υ is given by
(5.31). Therefore, connection (5.6) is projectively equivalent to a met-
ric connection.

2

Remarks

• The pseudo-Riemannian metric (5.30) depends only on the product
AB, so the transformation (A → γA,B → γ−1B), where γ =
γ(Xa) is a non-vanishing function, does not change unparametrised
geodesics. It corresponds to a projective change of connection
(5.29) by a one-form

Υ =
(

(1− γ−1)B +
1

2
∂1 ln γ

)
dX1 +

(
(1− γ)A− 1

2
∂2 ln γ

)
dX2.

This transformation can be used to set R[ab] to zero, but it does
not preserve (5.3).

• As the Ricci tensor Rab is in general not symmetric, the connection
(5.6) does not annihilate any volume form on Σ which is parallel
w.r.t ∇. Therefore the Killing equations (5.2) do not imply the
existence of a Killing vector for the metric h.

• The two-form Ω in Theorem 9 of [26] equals 2dΥ, while ω in [26]
is given by the volume form of h. In the trihamiltonian case the
connection ∇ is projectively flat. Equivalently the metric (5.30)
has constant Gaussian curvature, i.e.

(AB)−1∂1∂2 ln (AB) = const. (5.33)

This is the Liouville equation from Section 5 in [26].
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• If n ≥ 3, there is always a discrepancy between the number of
equations for a Killing tensor of any given rank and a number of
conditions for a hydrodynamic-type system to admit a Hamilto-
nian formulation. Therefore Theorem 5.2 does not generalise to
higher dimensions in any straightforward way.

5.3 Examples

In the examples below we set X1 = X,X2 = Y .

Example 1

Consider an affine connection (5.6) corresponding to a system of hy-
drodynamic type with

A = cX + Y, B = X + cY, where c = const.

This connection admits a parallel volume form iff c = 0 or c = 1.
If c = 0 then the connection is projectively flat, and so the system
of hydrodynamic type is trihamiltonian. Calculating the obstruction
(5.21) yields

T =
8c2(c2 − 9)

9(cX + Y )3(X + cY )3

(
dY ⊗ ∂Y − dX ⊗ ∂X+

+
X + cY

cX + Y
dY ⊗ ∂X −

cX + Y

X + cY
dX ⊗ ∂Y

)
.

Therefore, if c = 3 or c = −3 then the connection admits precisely two
linear first integrals, so the system is bihamiltonian. Finally for any c
not equal to 0,±3 the system admits a unique Hamiltonian.
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Example 2

One dimensional non-linear elastic medium is governed by the system
of PDEs [53, 63]

ut = h2(v)vx, vt = ux,

where h(v) is a function characterising the type of fluid. This system
is Hamiltonian with H = u2/2 + F (v), where F ′′ = h2. We find the
Riemann invariants (X, Y ) such that

u = X + Y, v = G(X − Y ),

where G′h(G) = 1 and λ1 = −λ2 = 1
G′ . Therefore A = −B =

−G′′/(2G′) and we find β = 0, so that the Ricci tensor of the associated
connection (5.6) is symmetric. In particular, Theorem 5.1 implies that
the system can not admit precisely two Hamiltonian structures.

The projective flatness (5.33) of the connection (5.6) reduces to
(lnA2)′′ = const.A2 which can be solved explicitly, and leads to a
four-parameter family of trihamiltonian systems. The singular solu-
tion A = 1/(2z) corresponds to the Toda equation vtt = (ln v)xx.

Example 3

We consider the system of hydrodynamic type (5.3) with

λ1 = −λ2 = (X − Y )n(X + Y )m.

Examining the conditions of Theorem 5.1 for the resulting connection
(5.6) we find that this system is always bihamiltonian. It is trihamilto-
nian iff nm(n2 −m2) = 0.
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Example 4. Frobenius manifolds

A basic introduction to Frobenius manifolds and the corresponding
hydrodynamic-type systems is given in Appendix C, where it is shown
that systems of the form (C.12) are trihamiltonian corresponding to a
3-parameter family of metrics for (5.5) given by (C.14).

Example 5. Zoll connections

A Riemannian metric h on a surface Σ is Zoll if all geodesics are simple
closed curves of equal length. A two-dimensional sphere admits a family
of axisymmetric Zoll metrics given by

h = (F (X)− 1)2dX2 + sin2XdY 2, (5.34)

where (X, Y ) are spherical polar coordinates on Σ = S2, and F :
[0, π] → [0, 1] is any function such that F (0) = F (π) = 0 and F (π −
X) = −F (X). A projective structure [∇] on Σ is Zoll if its un-
parametrised geodesics are simple closed curves. The general projective
structure admitting a projective vector field, and close to the flat struc-
ture of the round sphere is given by the second order ODE [39]

Y ′′ = A3(Y
′)3 + A2(Y

′)2 + A1Y
′, (5.35)

where

A1 =
F ′

F − 1
− 2 cotX,

A2 =
H ′ sinX cosX − 2H

cosX(F − 1)
,

A3 = −(H2 + 1) sinX cosX

(F − 1)2
,

where F = F (X) is as before, and H = H(X) satisfies H(0) = H(π) =
H(π/2) = 0, and H(π −X) = H(X). The metric case (5.34) arises if

95



H = 0. A general connection ∇ in this projective class with β 6= 0 will
not admit even a single first integral. We use Theorem 5.1 together
with (5.25) to verify that the following choice of the representative
connection

Γ1
11 = A1, Γ1

22 = A3, Γ1
12 = Γ1

21 =
1

2
A2 (5.36)

admits a first integral for any F and H. To find a (necessarily non-
metric) Zoll connection with precisely two linear first integrals we use
Proposition (5.8) and match the connection (5.36) with the connection
(5.24) (with the roles of X and Y reversed). This, for any given H,
leads to a one-parameter family of examples

F = 1 + c(H2 + 1) cotX

which does not satisfy the boundary conditions. The existence of a
non-metric Zoll structure on S2 with precisely two first integrals is an
interesting open problem.
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Chapter 6

Concluding remarks

This thesis presented six main results. In chapter 2, we show that
the vortex equations proposed by Manton are symmetry reductions of
ASDYM equations with various symmetry and gauge groups. Two
immediate consequence are the characterisation of twistor-integrable
cases and the calculation of the metric on a submanifold of the moduli
space by the Samols’ localisation method. This moduli space is actually
comprehensive for Taubes vortices but not necessarily for the other
types. A determination of the full moduli space would require analysis
of the general solution of Manton’s equation upon suitable boundary
conditions. The main difficulty consists of the fact that Taubes’ analysis
on the ordinary vortex equations relied on the convexity of the energy
function and thus is not immediately generalisable to the other cases.

The second main result is presented in chapter 3, where a modi-
fied version of the Ginzburg–Landau theory is presented as a means to
produce more integrable cases besides Taubes vortices on hyperbolic
surfaces. The existence of such cases was evidenced by two vortex
solutions presented by Dunajski, which are included in the model pro-
posed. A detailed analysis to seek Painlevé-integrable cases was carried
out in a particular class of equations and showed the existence of four
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integrable vortex-like solitons. One of them is the Taubes vortex on
hyperbolic space itself, plus both solutions proposed by Dunajski. The
fourth case is new and, as in Dunajski’s cases, gives rise to solutions
involving the third Painlevé transcendent. Existence of solutions to
the model proposed in general is not established. In fact, the explicit
solutions come from the assumption that the vortices are radially sym-
metric. Existence of non-symmetric solitons is an open problem and
boils down to proving existence of solution of the sinh-Gordon and Tz-
itzeica PDEs under suitable boundary conditions – basically, requiring
finiteness of the energy functional, isolation of the zeroes of the Higgs
field and integrality of its winding number around each zero, that is to
say, existence of a holomorphic gauge.

In chapter 4, two main results were presented. Firstly, it is shown
that the projective structures defined by the Painlevé equations are
metrisable if and only if the equation admits a first integral linear in
first derivatives for PIII and PV or if the projective structure is flat,
which includes a special case of PVI. It is also shown that the projective
structures of all six Painlevé equations admit a degenerate solution to
their metrisability equations. In the second half of the chapter, we show
that the dimension of the space of degenerate solutions to the metris-
ability equations in n dimensions, once the kernel is fixed, is n(n−1)/2.
It is believed, though not yet proved, that the condition of fixed kernel
is not necessary for the result to hold. It is shown that the kernel of
a degenerate solution defines a Frobenius-integrable distribution and
the induced submanifold is totally geodesic with respect to the original
projective structure, thus defining an induced structure. The analysis
of deformations of totally geodesic submanifolds of projective struc-
tures and their induced structure might provide geometrical tools to
the generalisation of the result.

Chapter 5 introduced the last two main results of this work. We
solve, locally, the problem of existence of Killing forms for general affine
connections on the tangent space of a 2-manifold and show that the
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existence depends only on the vanishing of two scalars, while further
conditions control the number of Killing forms admitted. Moreover, it
is shown that the problem of existence of a Hamiltonian description
of hydrodynamic-type systems with two components boils down to the
problem of existence of Killing forms of a particular type of affine con-
nection constructed from the data of the hydrodynamic-type system.
Consequently, all the conditions for the existence of Hamiltonian de-
scriptions can be derived from the conditions for the existence of Killing
forms for that connection. This chapter connects with chapter 4 in that
a solution of the Killing equations for special connections implies the
existence of a degenerate solution of the metrisability equations associ-
ated to the corresponding projective structure. This allowed us to add
two simple conditions – consisting of the above-mentioned two scalars –
for the existence of non-degenerate solutions to the metrisability equa-
tions in 2 dimensions.
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Appendix A

Construction of symmetric gauge
fields

In this appendix we summarise a general procedure to construct local
gauge fields that are invariant under the action of a given symmetry
group. This procedure is described in more details in [28]. We start
by setting some notation. Let S and G be Lie groups corresponding to
symmetry and gauge groups, respectively. Let M be a d-dimensional
manifold admitting an action of the group S with orbits of codimension
d′ < d. We assume that there exist local coordinates xµ, µ = 1, . . . , d
such that the submanifold xi = constant, i = 1, . . . , d′ are invariant
under the action of S and that this action is transitive, this means that
these submanifolds are locally homeomorphic to a homogeneous space
S/R, where R is the little group of a chosen point p0 in the submanifold.
We use indices i, j, k, . . . for the range of values 1, . . . , d′ and µ, ν, σ, . . .
for the range 1, . . . , d.

Let Aµ be a gauge field with gauge group G, locally a G-valued 1-
form. We say that A is S-equivariant if the lifted action of S on A

preserves A up to gauge transformations. Infinitesimally, this is stated
in the following form: given a vector field η generator of the action S
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on M , there exists a scalar g-valued function W such that

LηAµ = DµW, (A.1)

where L is the Lie derivative and D is the covariant derivative defined
by A.

In this appendix, we are going to describe, without details, the pro-
cedure used in [28] to solve, for A, the system formed of (A.1) for all
symmetry generators η. Basically, the procedure consists in extending
the components of (A.1) corresponding to S/R to the whole symmetry
group S. Fixing the xi’s and looking just at the coordinates of S/R,
this allows the consistency conditions of the system to be solved by
rather simple expressions for the W ’s that can be even gauged out as
fields on S, symplifying the extended equations (A.1) over S for A.
Once the extended equations for A are solved, one has to make sure
that A – which is now a field over S – can be interpreted as a gauge field
on S/R. This means that the dependency of A on the complementary
coordinates of S/R over S (the yω below) can be gauged away. The
conditions for this to be possible are the so called consistency equations
introduced later in a convenient form.

As mentioned above, a submanifold xi = constant, now denoted by
H, is locally homeomorphic to S/R and this allows us to relate the
coordinates of S/R to the coordinates xα=d′+1,...,d of H. Let yω (late
Greek indices) denote coordinates on R and yα (early Greek indices)
denote coordinates on S/R, so that (yα, yω) forms a coordinate system
of S. If S has dimension N and R codimension N ′, then α = 1, . . . , N ′

and ω = N ′ + 1, . . . , N . In practise, this is realised as follows. For any
s ∈ S, let s0(y

α) ∈ Rs(yα) be a fixed element in the right coset Rs
varying smoothly with yα. Then, s can be uniquely written in the form
s = r(yω)s0(y

α) for some r ∈ R. Let p0 be a fixed point in H having R
as stabiliser. By transitivity, for any p ∈ H, there exists s ∈ S mapping
p to p0. Clearly, this map lifts to the coset Rs(yα) and thus we can
associate to p the coordinate yα of the coset Rs. This is how we endow
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H with coordinates yα. Notice that d′ +N ′ = d.

Let Jm, m = 1, . . . , N , be the generators of the Lie algebra of S with
structure constants fmnp so that [Jm, Jn] = fmnpJp. We assume that Jm
for m > N ′ generate the Lie algebra of R.

Construct the right-invariant 1-forms denoted by ξm and defined by
the equation

−dss−1 = ξmJm.

Let Φn, n = 1, . . . , N be local g-valued functions on M so that
Φn>N ′ are constants and Φn≤N ′ depend only on xi≤d

′
. These Higgs

fields correspond to the projection of the symmetric gauge potential on
S along the symmetry generators (c.f. equation (A.3) below). Solve
the following constraint equations which, in a suitable gauge, take the
form

[Ai,Φn] = 0, i = 1, . . . , D′, n > N ′

fmnpΦp + [Φm,Φn] = 0, m = 1, . . . , N, n > N ′. (A.2)

The second equation means that the −Φn>N ′ generate an R Lie sub-
algebra in the gauge group G while the first equation means that the
Ai’s are gauge fields with gauge group being the little group of R in G
and thus henceforth only gauge transformations in this little group are
allowed.

Start by defining a gauge potential on S as

Aω = Φm (ξm)ω and Aα = Φm (ξm)α . (A.3)

By construction of the constraint equations, the components Aω will
be pure gauge of the form Aω = ∂ωrr

−1, for some r = r(yω) in the
above mentioned little group. Moreover, under a gauge transformation
by r−1, Aω will be set to zero while Aα will become yω-independent.
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Now we can consistently define a gauge potential on R/S and thus in
the whole M as

Ai = ai(x
1, . . . , xd

′
), i = 1, . . . , d′,

Aα = r−1Φmr (ξm)α , α = 1, . . . , N ′ = d− d′,

where ai are arbitrary components of a gauge field that are constant
along the H’s. This is the most general ansatz for a gauge potential A
satisfying the S-equivariant condition (A.1).
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Appendix B

The group GC0

In this appendix, we denote by JC0
m (m = 1, 2, 3) the generators of the

Lie-algebra gC0
given by (2.4) with C replaced by C0. Obviously, all

properties of GC0
are valid for GC , and vice-versa, upon changing C

into C0.

A parametrisation of GC0
is given by

K=

(
ei(κ3−κ2)/2 cos(

√
−C0 κ1/2) − 1√

−C0
ei(κ3+κ2)/2 sin(

√
−C0 κ1/2)√

−C0e
−i(κ3+κ2)/2 sin(

√
−C0 κ1/2) e−i(κ3−κ2)/2 cos(

√
−C0 κ1/2)

)
,

where 0 ≤ κ3 ≤ 4π, 0 ≤ κ2 ≤ 2π, 0 ≤ κ1 < π/
√
−C0 if C0 < 0 and

κ1 ≥ 0 if C0 ≥ 0.

The coordinate κ3 parametrises the U(1) fibres of the fibrationGC0
→

N = GC0
/U(1). In the proof of Proposition 2.2 we need expressions

relating the local coordinates (z, z) on N to (κ1, κ2) on GC0
/U(1). Let

p ∈ N be a point corresponding to the coordinate z = 0. Consider the
group action (2.7) such that the RHS is 0. This gives a system of two
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equations for (z, z) with a solution

z =
1√
−C0

tan(
√
−C0 κ1/2)eiκ2. (B.1)

Note that 1√
−C0

tan(
√
−C0 κ1/2) ≥ 0 regardless of the sign of C0. The

formula (B.1) is well defined for C0 = 0 upon taking the limit C0 → 0.
The coordinate κ3 of GC0

parametrises the stabiliser of p ∈ N , which
is a U(1) subgroup generated by JC0

3 .

The right-invariant one-forms χ1, χ2, χ3 such that

(dK)K−1 +
3∑

m=1

χm ⊗ JC0
m = 0,

and the left-invariant vector fields η1, η2, η3 on GC0
are given by

χ1 =

(
1√
−C0

sin(
√
−C0 κ1) cosκ3 dκ2 + sinκ3 dκ1

)
,

χ2 =

(
− cosκ3dκ1 +

1√
−C0

sinκ3 sin(
√
−C0 κ1)dκ2

)
,

χ3 =
(
−dκ3 + cos(

√
−C0 κ1)dκ2

)
(B.2)

and

η1 = − sinκ2∂κ1 −
√
−C0

tan(
√
−C0 κ1)

cosκ2∂κ2 −
√
−C0

sin(
√
−C0 κ1)

cosκ2∂κ3,

η2 = cosκ2∂κ1 −
√
−C0

tan(
√
−C0 κ1)

sinκ2∂κ2 −
√
−C0

sin(
√
−C0 κ1)

sinκ2∂κ3,

η3 = −∂κ2. (B.3)
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Appendix C

Frobenius manifolds and
hydrodynamic-type systems

In this appendix we present the concept and basic definitions of Frobe-
nius manifolds and how they give rise to hydrodynamic-type systems.

Definition C.1 (Frobenius algebra). A commutative associative C-
algebra (A,+, ·) with unity e is a Frobenius algebra if it is endowed with
a bilinear symmetric non-degenerate inner product < , >: A × A → C
such that < a · b, c >=< a, b · c >.

Definition C.2 (Frobenius manifold). A smooth manifold M is a Frobe-
nius manifold if each fibre of the tangent bundle TM is endowed with
a Frobenius algebra structure such that

1. The inner product < , > is a smooth flat metric η on M . Its Levi-
Civita connection will be denoted by ∇.

2. The unity e is a smooth section of TM and is parallel: ∇e = 0.

3. The symmetric 3-tensor c(u, v, w) =< u · v, w > is smooth and its
covariant derivative ∇c is a symmetric 4-tensor.
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4. There exists a conformal Killing vector field E such that ∇∇E = 0,
LEe = −e and LEc = c.

Condition 4. means that the 1-parameter group of diffeomorphisms
generated by E acts as rescalings on the Frobenius algebras: u · v 7→
ku · v, e 7→ k−1e, k ∈ C∗.

Commutativity along with condition 3. implies that locally there
exists a complex function F , called free energy or prepotential, such
that c = ∇∇∇F . Notice that F is determined up to an arbitrary
quadratic function.

Let (M, ·, e, E, η) be an n-dimensional Frobenius manifold, where e
is the unit element of the Frobenius algebra, E is the Euler vector field
and η is a flat metric. By definition, in flat coordinates {t1, . . . , tn} –
whose indices will be denoted by a, b, c, . . . – the components of the

metric ηab are constant and, by condition 2., we can set e =
∂

∂t1
. This

implies ηab = c1ab by condition 3. We shall use the notation ∂a ≡
∂

∂ta
.

Condition 4. implies that there exists a constant matrixQ = (qab ) and
a constant vector ra such that E = (qab t

b + ra)∂a. If Q is diagonalisable
with eigenvalues d1, . . . , dn, then we can perform a linear transformation
to rewrite the Euler vector field as

E =
∑
a

dat
a∂a +

∑
a|da=0

ra∂a (C.1)

without changing the above properties. By condition 4., d1 = 1.

Since E is a conformal Killing vector (condition 4.) and ηab = c1ab =
∂1∂a∂bF , we conclude that F should rescale with a fixed weight dF ,
namely

LEF (t) = dFF (t) + Aabt
atb +Bat

a + C, (C.2)
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where Aab, Ba and C are arbitrary constants. The quadratic terms play
no role when we take third order derivatives.

The one parameter group of transformations generated by E acts on
ηabdt

adtb = ∂1∂a∂bFdt
adtb as ηabdt

adtb 7→ ηabdt
adtb+ε(dF−1)ηabdt

adtb+
O(ε2), so that

LEηab = (dF − 1)ηab. (C.3)

Associativity of · means that F should satisfy the so called associa-
tivity equation in flat coordinates

0 = ccabccde − ccadccbe = ∂1∂f∂bF η
fc ∂c∂d∂eF − ∂f∂1∂dF η

fc ∂c∂b∂eF.
(C.4)

Equations (C.2) and (C.4) together are known as the WDVV equa-
tions.

Definition C.3 (Dubrovin connection). The Dubrovin connection is
the following deformation of ∇

∇̃(z)
u v = ∇uv + zu · v,

for arbitrary z ∈ C.

Flatness of this connection for any z is equivalent to associativity of
· (coming from the z2 terms of the curvature) and condition 3. (from
the z terms of the curvature).

The flat coordinates t̃a of ∇̃(z) are the solutions to the overdeter-
mined system of differential equations ∇̃(z)

∂t̃a
dt̃ = 0, i.e.,

∂a∂bt̃ = zccab∂ct̃. (C.5)

The consistency conditions of this system correspond to the vanish-
ing of the curvature of ∇̃(z), so that it forms a Lax pair of (C.4) with
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spectral parameter z. Once the consistency conditions are satisfied,
there exists a fundamental set of solutions t̃1a = ∂at̃

1, . . . , t̃na = ∂at̃
n of

(C.5).

C.1 Intersection form

We can define another metric g on M by the inner product

(ω, σ)∗ ≡ ιE(ω · σ).

The ∗ indicates that it is a product defined on T ∗M and ιE is the
contraction of the vector field E with the 1-form ω · σ. The product
· of two 1-forms is induced by the product of their dual vector fields
through η. In flat coordinates, the components of ( , ) are

gab = (dta, dtb)∗ = Eccabc . (C.6)

It is worth pointing out here that we still raise and lower indices using
η, unless explicitly stated.

Definition C.4. g is called the intersection form.

Until the end of this section, the indices i, j, k, . . . will denote ab-
stract indices.

Definition C.5 (Contravariant Levi-Civita connection). If g is a met-
ric and its Levi-Civita connection is given by the Christoffel symbols
Γijk then the contravariant Levi-Civita connection are the symbols Γjik
given by

Γjik ≡ −g
jlΓilk.

Definition C.6 (Flat pencil). We say that two metrics g1 and g2 form
a flat pencil if the metric gij = gij1 + λgij2 is flat for arbitrary λ and its
contravariant Levi-Civita connection Γijk is given by

Γijk = Γij1k + λΓij2k,
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where Γijαk = −gilαΓjαlk, α = 1, 2, and Γjαlk is the Levi-Civita connection
of the metric gα.

Let the covariant derivatives corresponding to g and gα be ∇ and
∇α, respectively and let ∇i ≡ gij∇j and ∇j

α ≡ gijα∇αj; then forming a
flat pencil amounts to saying that ∇i

α = ∇i
1 + λ∇i

2.

Lemma C.1. [18] The intersection form and the flat metric η form a
flat pencil.

C.2 Hierarchy of hydrodynamic type

Define the quantities ha(t, z) = ηabt̃
b from the flat coordinates of the

Dubrovin connection. In order to recover the flat coordinates t when
z = 0, we choose the following normalisation ha(t, 0) = ta. We formally
expand these functions as power series in z

ha(t, z) =
∑
p≥0

ha,p(t)z
p,

so that the components ha,p are determined recursively from (C.5):

∂b∂cha,p+1(t) = cdbc∂dha,p(t) (C.7)

along with
ha,0(t) = ta. (C.8)

Now we consider the coordinates ta as functions in the loop space
of M , L(M) = {t : S1 → M}. We parametrise S1 by a variable
X ∈ [0, 2π]. Thus, ta = ta(X).

From the flat metric ηab, we define the Poisson bracket of hydrody-
namic type by

{ta(X), tb(Y )} = ηabδ′(X − Y ).
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Proposition C.2. Two flat metrics g1 and g2 define, as above, com-
patible Poisson brackets of hydrodynamic type { , }1 and { , }2 if and
only if they form a flat pencil.

Consider the functionals

Ha,p(t) =

∫ 2π

0

ha,p+1(t(X))dX.

We introduce an infinite sequence of “times” T a,p in order to define the
flows of hydrodynamic type

∂T a,pt
b = {tb(X), Ha,p}. (C.9)

From (C.7) and (C.8), it is natural to mark the variable T 1,0 = X

so that the flow (a, p) = (1, 0) is trivial.

By using associativity (C.4) one can show [17]

∂T a,0t
b = cbac(t)∂Xt

c (C.10)

and
∂T a,pt

b = ∇cha,p∂T c,0t
b. (C.11)

This relation implies that if all the flows for p = 0 admit the same
Riemann invariants, then all the Hierarchy admits the same Riemann
invariants. In particular, this is true for systems with n = 2 compo-
nents.

Lemma C.3. [17] {Ha,p, Hb,q} = 0.

Theorem C.4. [19] The hydrodynamic-type systems (C.10) from Fro-
benius manifolds are bihamiltonian and the corresponding hydrodyna-
mic-type Poisson brackets are induced by the flat metric η and by the
intersection form.
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Proof. From Lemma C.1 and Proposition C.2, we just need to show that
there exists a Hamiltonian associated to the Poisson bracket { , }2 of the
intersection form. It can be checked explicitly, by using associativity of
c, that this Poisson bracket satisfies the conditions of Lemma 1 of [26]
and thus admits a Hamiltonian.

C.3 2D Frobenius manifolds

In 2 dimensions, the prepotential F automatically satisfies the associa-
tivity condition (C.4) and can be determined solely from (C.2). It is
possible to classify all Frobenius manifolds according to 6 families.

Theorem C.5. [18] A 2-dimensional Frobenius manifold with diago-
nalisable Q admits flat coordinates such that its prepotential is one of
the following

F (t1, t2) =
1

2
t21t2 +Ktk2, k =

3− d
1− d

=
3− d
d2

, d 6= −1, 1, 3,

F (t1, t2) =
1

2
t21t2 +Kt22 ln t2, d2 = 2,

F (t1, t2) =
1

2
t21t2 +K ln t2, d2 = −2,

F (t1, t2) =
1

2
t21t2 +Ke

2
r t2, d2 = 0, r 6= 0,

F (t1, t2) =
1

2
t21t2, d2 = 0, r = 0,

F (t1, t2) =
1

2
t21t2 +

c

6
t31 +

K

6
t32, d2 = 1,

where in the fourth and fifth cases the Euler vector field is E = t1∂1+r∂2

and in the others, E = t1∂1 + d2t2∂2. K and c are arbitrary constants.

In such coordinates ηab = δa+b,3, except in the last case, in which
η11 = c. Let us construct the first flow of the hierarchy (C.9). Let
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us write the prepotentials of the first five cases in the general form
F (t1, t2) = 1

2t
2
1t2 + f(t2). After suppressing the index (2,0), the flow

(a, p) = (2, 0) is given by,

∂T t
1 = f ′′′(t2)∂Xt

2

∂T t
2 = ∂Xt

1. (C.12)

The characteristic velocities are λ1 =
√
f ′′′(t2) and λ2 = −

√
f ′′′(t2)

and the Riemann invariants,

Ri = t1 +

∫
λidt2. (C.13)

Using Theorems 5.1 and 5.2, it is possible to show that such systems
are trihamiltonian. The most general metric giving rise to Hamiltonian
structures is given by the general solution of the Killing equations for
the connection defined in Theorem 5.2,[(

C1 + C2R
1 + C3

(
R1
)2
)
λ1
]−1

dR1dR1+

+
[(
C1 + C2R

2 + C3

(
R2
)2
)
λ2
]−1

dR2dR2, (C.14)

where Ci are arbitrary constants. One can check that the three funda-
mental metrics in this solution form a flat pencil.

The metrics given by C2 = C3 = 0 and C1 = C3 = 0 are η and the
intersection form, respectively. In fact, the intersection form is given
by (C.6). Notice that we can choose Riemann invariants such that the
Euler vector field is E = R1∂R1 +R2∂R2 (c.f. Lemma C.8 along with the
fact that these Riemann invariants are canonical coordinates). In such
coordinates, the intersection form reads gij = 2λiRiδij, which is the
metric corresponding to C1 = C3 = 0 above, while the inner product η
becomes ηij = 4λiδij, corresponding to C2 = C3 = 0.

Remark : we have not studied hydrodynamic-type systems coming
from the two last Frobenius manifolds of Theorem C.5 because the
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flows constructed from the fifth one have two identical characteristic
velocities while the last one has vanishing A and B for every flow.
These cases are not taken into account in the present work.

C.4 The third Hamiltonian structure

The metric corresponding to C1 = C2 = 0 in (C.14) is given in terms
of the Frobenius data by hab = gacgbc = gacgbdηdc. As mentioned below
equation (C.14), this metric is flat in that context.

However, given an arbitrary Frobenius manifold with flat metric
ηab and intersection form gab, it still makes sense to define another
metric by hab as above and whose curvature we briefly analyse now. Its
contravariant Levi-Civita connection Γ̃bca is the solution to

∂ah
bc = Γ̃bca + Γ̃cba

hadΓ̃bcd = hbdΓ̃acd ,

which reads

Γ̃bca = gcdΓ
bd
a + gbdΓ

dc
a = Ee

(
ccefRf

g + cdegRc
d

)
cbga , (C.15)

where Γbca = Rc
dc
bd
a is the Levi-Civita connection of the intersection form

gab andRc
b ≡

(
d−1

2 δcb +∇bE
c
)
. We have used associativity in the second

equality.

The curvature of this connection does not vanish in general. In fact,
it does not vanish in 2 dimensions when the identity e is not null, i.e.
η11 6= 0 (sixth case of Theorem C.5), but it vanishes otherwise and
forms a flat pencil with η and g yielding the trihamiltonian structure
mentioned in the previous section. Let us understand why.

By raising the last three indices of its Riemann tensor R̃ with h, we
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can write it in terms of the contravariant Levi-Civita connection

R̃a
bcd = hbe

(
∂eΓ̃

dc
a − ∂aΓ̃dce

)
+ Γ̃bde Γ̃eca − Γ̃bce Γ̃eda .

From (C.15) and associativity the last two terms cancel out, however
the first two terms

∂eΓ̃
dc
a − ∂aΓ̃dce (C.16)

do not necessarily vanish. For instance, for the last Frobenius manifold
of Theorem C.5, we have

∂2Γ̃
12
1 − ∂1Γ̃

12
2 = Kc,

so hab is not flat. But for the other five cases, hab is flat and forms a
flat pencil with ηab + λgab for any λ.

Keeping the same notation, we state the following theorem.

Theorem C.6. The tensor hab+ληab+µgab does not degenerate in any
open set and its contravariant Levi-Civita connection is Γ̃abc + µΓabc , for
any λ, µ.

The metric hab is flat (and forms a flat pencil with ληab + µgab) if
and only if (C.16) vanishes. This is precisely the case for 2-dimensional
Frobenius manifolds of prepotential F (t1, t2) = 1

2t
2
1t2 + f(t2).

Proof. Let P ab = hab + ληab + µgab. Let us first prove that P ab is non-
degenerate on an open dense subset of the Frobenius manifold. We can
write gab = Eccabc = t1η

ab + g̃ab(t2, . . . , tn), for some symmetric tensor
g̃ab. Thus

hab + ληab + µgab = ηab
(
t21 + µt1 + λ

)
+ 2t1g̃

ab + µg̃ab + λg̃acg̃adηcd.

Since it is a polynomial in t1 and ηab is non-degenerate, it does not
degenerate in an open set for any fixed values of λ and µ.
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Now, by the definition of the contravariant connections of ηab and
gab,

∂cP
ab = Γ̃abc + µΓabc + Γ̃bac + µΓbac .

The relation

P dc
(

Γ̃abc + µΓabc

)
= P ac

(
Γ̃dbc + µΓdbc

)
is obtained by associativity. This concludes the proof of the first state-
ment.

Flatness of hab was discussed above. The fact that it implies that hab

and ληab + µgab form a flat pencil is a matter of calculation similar to
what was done above, bearing in mind the associativity property (C.4)
and flatness of ληab + µgab (c.f. Lemma C.1).

C.5 Riemann invariants

We explain here how to calculate Riemann invariants for a hydrodyna-
mic-type system. This will also prove that hydrodynamic-type systems
with 2 components always admit Riemann invariants.

Consider the hydrodynamic-type system

wi
T = vijw

j
X .

Under a change of coordinates wi = wi(t) it transforms as

tiT =
(
J−1
)i
j
vjkJ

k
l t
l
X .

where J ij = ∂tjw
i,

We immediately conclude that for a system to admit Riemann in-
variants it must have a diagonalisable matrix vij and the so called char-
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acteristic velocities λi are its eigenvalues. Now suppose that v is di-

agonalisable so that P i
jv

j
k

(
P−1

)k
l

is a diagonal matrix. The Riemann
invariants Ri, if they exist, are given as solutions of

∂wjR
i = P i

j (C.17)

up to redefining P in a way that we explain now. In fact, if we define
the 1-forms ωi = P i

jdw
j, then it is necessary and sufficient that

ωi ∧ dωi = 0 (C.18)

in order to be able to define local coordinates Ri such that ωi =
f i(R)dRi, for some non-vanishing function f i(R). Notice that we have
the freedom to rescale the lines of the matrix P so that f i = 1 and thus
we find (C.17).

The existence of Riemann invariants for hydrodynamic-type systems
of n = 2 components is trivial since (C.18) is identically satisfied.

Remark : define the vector fields Vi =
(
P−1

)k
i
∂wk, which are the

eigenvectors of v. The existence of Riemann invariants means that the
distribution defined by any set of n− 1 vector fields Vi is integrable. In
other words, the flow of any such distribution generates a submanifold
Ri(w) = constant.

Canonical coordinates

We say that a point t ∈M in a Frobenius manifold M is semisimple if
the Frobenius algebra TtM is semisimple (i.e. has no nilpotents). This
is an open property: every semisimple point admits a neighbourhood
of semisimple points.

Lemma C.7. [18] In a neighbourhood of a semisimple point, there exist
local coordinates u1, . . . , un such that

∂i · ∂j = δij∂i , where ∂i = ∂ui.
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Such coordinates are called canonical and can be found as indepen-
dent solutions of the system

∂duc
d
ab = ∂au∂bu. (C.19)

This equation means that ∂au is an eigenvalue of the matrix
(
cdab
)
b,d=1,...,n

with eigenvector (∂du)d=1,...,n. From what has been said in the first part
of this appendix, we conclude that the canonical coordinates are actu-
ally the Riemann invariants for the hydrodynamic-type system (C.10)
and the characteristic velocities are ∂au

i. Notice that this is consistent
with (C.13).

Lemma C.8. [18] There exist canonical coordinates in a neighbourhood
of a semisimple point such that the Euler vector field E reads E =∑n

i=1 u
i∂i.
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