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Abstract: Parreau compactified the Hitchin component of a closed surface S of negative Euler charac-
teristic in such a way that a boundary point corresponds to the projectivized length spectrum of an action
of π1(S) on an R-Euclidean building. In this paper, we use the positivity properties of Hitchin represen-
tations introduced by Fock and Goncharov to explicitly describe the geometry of a preferred collection of
apartments in the limiting building.
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1. Introduction

Let S be a connected, closed, oriented surface with negative Euler characteristic χ(S). The Teichmüller

space T (S) of S is the space of isotopy classes of hyperbolic metrics on S. It is homeomorphic to R−3χ(S).

Thurston [32, 11] compactified T (S) in such a way that the resulting space T (S) is homeomorphic

to a closed ball of dimension −3χ(S). The boundary points of T (S) can be described from different
perspectives [2, 3, 23, 29]. In particular, Morgan and Shalen used an algebro-geometric approach to
realize these boundary points as length spectra of isometric actions of π1(S) on R-trees. An important
point for their construction is that the Teichmüller space can be identified with a subspace of an affine
variety. In fact, the holonomies of hyperbolic metrics let us realize T (S) as a connected component of the
character variety

Hom(π1(S),PSL(2,R))//PSL(2,R).

This research was partially supported by the grant DMS-1406559 from the U.S. National Science Foundation. In addition,
the author gratefully acknowledges support from the NSF grants DMS-1107452, 1107263 and 1107367 “RNMS: GEometric
structures And Representation varieties” (the GEAR Network).
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where PSL(2,R) acts by conjugation and we consider, as usual, the quotient in the sense of geometric
invariant theory; see [24] for details.

This description of T (S) is prone to generalizations. One can investigate subsets of different character
varieties that share some of the properties of the Teichmüller space. For example, the natural action of
SL(2,R) on the space of degree d−1 homogeneous real polynomials in two variables gives a homomorphism
ιd : PSL(2,R)→ PSL(d,R). Post-composing representations in the Teichmüller space with ιd singles out
a connected component

(ιd)∗(T (S)) ⊂ Hitd(R) ⊂ Hom(π1(S),PSL(d,R))//PSL(d,R).

This Hitchin component Hitd(S) was identified and studied by Hitchin [16] who proved that it is homeo-

morphic to R−(d2−1)χ(S). Using different methods, Fock and Goncharov [12] and Labourie [19] generalized
many classical features of T (S) to the context of Hitchin representations.

Much work has been done to describe generalized versions of Thurston’s compactification for Hitchin
components and related spaces [1, 8, 9, 10, 12, 20, 21, 26, 27].

The classical approach suggests the study of the (vector valued) length spectrum

Ld(ρ) := (log λρ1(γ), log λρ2(γ), . . . , log λρd(γ))γ∈π(S).

Here, λρi (γ) denotes the absolute value of the eigenvalues of ρ(γ), which are non-zero and distinct [12, 19].
Usually, one also assumes that λρi (γ) > λρi+1(γ). Parreau [26] showed that the projectivized image of Ld
is relatively compact and that the boundary points of the closure can be realized as projectivized length
spectra of isometric actions of π1(S) on an R-Euclidean building Bd of rank d− 1.

Euclidean buildings were introduced by Bruhat and Tits [7]. They are metric spaces equipped with an
action of a reductive algebraic group over a field with discrete valuation. An R-Euclidean building is a
generalization of an Euclidean building where the field is allowed to have a non-discrete valuation.

For this introduction, it suffices to think of Bd as a generalization of an R-tree. It is a metric space
obtained by gluing parametrized copies of the affine space

Ad−1 := {(x1, x2, . . . , xd) ∈ Rd : x1 + x2 + · · ·+ xd = 1}

called apartments. Any two such parametrizations differ by an element of the affine Weyl group Waff,
namely by the composition of a permutation of the coordinates and a translation by a vector in the
underlying vector space which is naturally identified with

Vd−1 := {(x1, x2, . . . , xd) ∈ Rd : x1 + x2 + · · ·+ xd = 0}.

The R-Euclidean building Bd is associated to the general linear group over a specific field F with
valuation v. Each element of F is an equivalence class of sequences of real numbers. The non-discrete
valuation v encodes information about the asymptotic behavior of such a sequence. Parreau [25] described
an explicit model for Bd in which apartments correspond to line decompositions of a fixed d-dimensional
F-vector space V .

Our main contribution is to combine this explicit model and the positivity properties of Hitchin repre-
sentations to describe the geometry of a preferred collection of apartments in the building Bd.

Let us be more explicit. Consider the universal cover of S̃ and its boundary ∂S̃. The choice of an

auxiliary hyperbolic metric on S, identifies S̃ to the hyperbolic plane and ∂S̃ with the unit circle. For

any ρ ∈ Hitd(S), there exists a (unique up to PGL(d,R)-action) ρ-equivariant map ξρ from ∂S̃ into the

space of complete flags in Rd [12, 19].
This flag map can be used to extend Thurston’s parametrization of Teichmüller space via shearing

coordinates to Hitchin components [31, 4, 5, 6, 12]. The idea is to fix a certain topological data on S that

singles out preferred tuples of distinct points in ∂S̃. Using the flag map ξρ, one then wishes to parametrize

the space of tuples of flags in Rd considered up to the action of PGL(d,R). Such a PGL(d,R) orbit is
called a configurations of t flags. We will restrict our attention to tuples of flags that have the maximum
span property as in Definition 2.1, which is a strong genericity condition.

It turns out that it is enough to consider configurations of three and four flags, which can be parametrized
by two families of real numbers. Any orbit of four flags (E,F,G,H) that have the maximum span property
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has associated triple ratios Xa,b,c(E,F,G) and Xa,b,c(E,G,H) and double ratios Zi(E,F,G,H), where
a, b, c ≥ 1 are integers such that a+ b+ c = d, and i = 1, 2, . . . , d− 1.

Fock and Goncharov show that for any ρ ∈ Hitd(S), the images of tuples of distinct points via ξρ
are positive in the following sense. For any three distinct points x1, x2, x3 ∈ ∂S̃, the triple ratios of
(ξρ(x1), ξρ(x2), ξρ(x3)) are positive. Moreover, for any four distinct points x1, x2, x3, x4 in this cyclic

order along ∂S̃, the double ratios Zi(ξρ(x1), ξρ(x2), ξρ(x3), ξρ(x4)) are positive.
In this paper we use this positivity property of Hitchin representations to describe intersections of

apartments in the R-Euclidean building Bd arising as limits of positive tuple of flags in Rd.
Consider a sequence of positive tuples of flags (F1,n, F2,n, . . . , Ft,n) in Rd. It follows from Lemma 3.13

and from the definition of the field F that there exists a unique limiting tuple of flags (F1, F2, . . . , Ft) in
Fd that we call the ultralimit of (F1,n, F2,n, . . . , Ft,n). This tuple of flags (F1, F2, . . . , Ft) in Fd is positive
if it has the maximum span property and if the sequences of Fock-Goncharov parameters of the tuple
(F1,n, F2,n, . . . , Ft,n) define non-zero elements in the field F. The genericity condition guarantees that any

two such flags Fi and Fj in Fd determine an apartment in the R-Euclidean building Bd.

Theorem 1.1. Let (En, Fn, Gn) be a sequence of positive triples of flags in Rd. Assume that its ultralimit
(E,F,G) is positive. Denote by AEF , AFG, and AEG the apartments in Bd corresponding to the pairs
(E,F ), (F,G) and (E,G), respectively. Then, there exists

- a preferred parametrization fEG : Ad−1 → AEG,
- two closed cones C1 and C2 in Ad−1, defined by the inequalities 5.6 and 5.7,

such that

C1 = f−1
EG(AEG ∩ AEF ) and C2 = f−1

EG(AEG ∩ AFG).

The cones C1 and C2 are described explicitly in terms of the valuations of the sequences of triple ratios
(Xa,b,c(En, Fn, Gn)).

In the statement of Theorem 1.1, one can permute the three flags E, F and G to obtain similar descrip-
tions of the intersections of the apartments AEF , AFG, and AEG in terms of preferred parametrizations
of the apartment AFG or of the apartment AEG.

In particular, applying Theorem 1.1 to the sequences of positive triple of flags (En, Fn, Gn) and
(En, Gn, Hn), we obtain two parametrization fEG and f ′EG for the apartment AEG. As observed above,
it is a consequence of the definition of an R-Euclidean building that these two parametrizations differ by
an element w(E,F,G,H) of the affine Weyl group Waff.

Theorem 1.2. Consider a sequence (En, Fn, Gn, Hn) of positive quadruples of flags in Rd. Assume
that its ultralimit (E,F,G,H) is positive. Denote by fEG and f ′EG the preferred parametrizations of the
apartment AEG obtained by applying Theorem 1.1 to the sequences of positive triples of flags (En, Fn, Gn)
and (En, Gn, Hn). Then, the element

w(E,F,G,H) := f−1
EG ◦ f

′
EG ∈Waff

of the affine Weyl group Waff is the translation of Ad−1 by the unique vector (x1, x2, . . . , xd) in Vd−1 such
that the difference xi+1 − xi is the valuation of the element in F defined by the sequence of double ratios
Zd−i(En, Fn, Gn, Hn).

Theorem 1.1 and Theorem 1.2 are well-known for d = 2 and in the case of d = 3 they follow from [28,
Thm. 1] and [27, Prop. 4.5], respectively. However, we emphasize that our results are obtained via a
different approach that only relies on the positivity properties of the sequences of flags.

An immediate consequence of our explicit formulas is that the triple intersection AEF ∩AFG ∩AEG is
at most one point and it is exactly one point if the valuations of all the sequences of triple ratios are zero.

Our next result concerns the geometry of apartments in the R-Euclidean building Bd associated to the
ultralimit of a sequence of positive tuples of flags for t ≥ 4. Consider a sequence (F1,n, F2,n, . . . , Ft,n) of

positive tuples of flags in Rd, and assume that the ultralimit (F1, F2, . . . , Ft) is positive. Then, there exists
an apartment Aij in Bd associated to each pair of flags (Fi, Fj). We say that such an apartment Ai2,j2
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combinatorially separates the apartments Ai1j1 and Ai3j3 if, up to a cyclic permutation of the indices of
the flags (F1, F2, . . . , Ft), we have that

1 ≤ i1 ≤ i2 ≤ i3 < j3 ≤ j2 ≤ j1 ≤ t.

Theorem 1.3 (Monotonicity). Let (F1,n, F2,n, . . . , Ft,n) be a sequence of positive tuples of flags in Rd
with positive ultralimit the tuple of flags (F1, F2, . . . , Ft) in Fd. Let A1, A2 and A3 be apartments in the
R-Euclidean building Bd corresponding to a pairs of flags (Fi1 , Fj1), (Fi2 , Fj2) and (Fi3 , Fj3), respectively.
If the apartment A2 combinatorially separates the apartments A1 and A3, then

A1 ∩ A3 = A1 ∩ A2 ∩ A3.

In other words, Theorem 1.3 relates combinatorial separation, which is a property depending exclusively
on the cyclic order of the tuple of flags (F1, F2, . . . , Ft), to intersection properties of the corresponding
apartments in the R-Euclidean building Bd.

Acknowledgments: It is a pleasure to thank my thesis advisor, Francis Bonahon, for encouraging me to
think about this problem, for the numerous insightful conversations, and for his support. I thank Daniele
Alessandrini and Beatrice Pozzetti for useful discussions and feedback. I am very grateful to the referee
for providing several useful comments on an earlier version of this manuscript.

2. Flags, snakes and positivity

2.1. Configurations of t flags and their parametrization. A (complete) flag F in Rd is a nested
sequence

0 = F (0) ⊂ F (1) ⊂ · · · ⊂ F (d−1) ⊂ F (d) = Rd

of vector subspaces of Rd such that dimF (i) = i for all i. The quotient PGL(d,R) of the general linear
group GL(d,R) by the subgroup of non-zero scalar matrices acts naturally on the space of flags.

We focus on tuples of flags enjoying the following genericity property.

Definition 2.1. The tuple of flags (F1, F2, . . . , Ft) has the maximum span property if for any integers
0 ≤ a1, a2, . . . , at ≤ d the following equality holds

(2.1) dim
(
F

(a1)
1 + F

(a2)
2 + · · ·+ F

(at)
t

)
= min{a1 + a2 + · · ·+ at, d}.

Observe that the diagonal action of PGL(d,R) on the space of tuples of flags preserves the maximum
span property.

Definition 2.2. A configuration of t flags is a tuple of flags with the maximum span property considered
up to the diagonal action of PGL(d,R). Denote by Xt the space of configurations of t flags.

It follows from elementary linear algebra that X2 is a single point. Henceforth, we assume t > 2. In
this case there are several PGL(d,R) orbits of maximum span tuples of flags.

Fock and Goncharov [12] parametrized preferred subspaces of Xt. The Fock-Goncharov coordinates
are expressed in terms of the wedge products of vectors in Rd. It is convenient to fix once and for all an

identification
∧dRd ∼= R and to observe the following.

Remark 2.3. Let (F1, F2, . . . , Ft) be a tuple of flags with the maximum span property and let a1, a2, . . . , at ≥
0 be integers such that a1 + a2 + · · ·+ at = d. Choose non-zero elements

f
(aj)
j ∈

aj∧
F

(aj)
j ⊂

aj∧
Rd.

The maximum span property guarantees that f
(a1)
1 ∧ f (a2)

2 ∧ · · · ∧ f (at)
t is different from zero.
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(5, 2, 0)

(2, 3, 2)

(1, 0, 6)

Figure 1. The discrete triangle Θd for d = 7. Highlighted, its interior Θ◦d.

2.1.1. Triple ratios. Consider the discrete triangle

Θd := {(a, b, c) ∈ Z3 : a+ b+ c = d, a, b, c ≥ 0}
depicted in Figure 1 and its interior

Θ◦d := {(a, b, c) ∈ Z3 : a+ b+ c = d, a, b, c > 0}.

Definition 2.4. Let (E,F,G) be a triple of flags with the maximum span property. For (a, b, c) ∈ Θ◦d,
define the (a, b, c)-triple ratio of (E,F,G) as

Xa,b,c(E,F,G) :=
e(a−1) ∧ f (b) ∧ g(c+1)

e(a+1) ∧ f (b) ∧ g(c−1)
· e

(a) ∧ f (b+1) ∧ g(c−1)

e(a) ∧ f (b−1) ∧ g(c+1)
· e

(a+1) ∧ f (b−1) ∧ g(c)

e(a−1) ∧ f (b+1) ∧ g(c)

where we chose non-zero vectors e(·), f (·), and g(·) in the exterior powers
∧·E(·),

∧· F (·), and
∧·G(·),

respectively.

The triple ratios do not depend on any of the choices made in the definition and Remark 2.3 guarantees
that they are non-zero real numbers. The triple ratios are constant on PGL(d,R) orbits.

Theorem 2.5. The map assigning the triple ratios to a configuration of three flags is a bijection between

X3 and (R− {0})
(d−1)(d−2)

2 .

Proof. Cf. [12, §9]. �

Remark 2.6. If we permute the flags E, F and G, the triple ratios vary according to the formulas

Xa,b,c(E,F,G) = Xb,c,a(F,G,E) = Xb,a,c(F,E,G)−1.

2.1.2. Double ratios. In the case of four flags, one needs to consider a generalized version of the classical
cross ratio of four points on a projective line.

Definition 2.7. Let (E,F,G,H) be a quadruple of flags with the maximum span property. For 0 < i < d,
the i-double ratio is

Zi(E,F,G,H) = −e
(i) ∧ g(d−i−1) ∧ f (1)

e(i) ∧ g(d−i−1) ∧ h(1)
· e

(i−1) ∧ g(d−i) ∧ h(1)

e(i−1) ∧ g(d−i) ∧ f (1)
.

where we chose non-zero vectors e(·), f (1), g(·), and h(1) in
∧·E(·), F (1),

∧·G(·), and H(1) respectively.

Note that the double ratios do not depend on the choices involved in the definition and Remark 2.3
implies that they are non-zero real numbers. The double ratios are constant on the PGL(d,R) orbit of
(E,F,G,H).
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σbot

σ

⊥

Figure 2. The triangle Θd and its dual Θ⊥d for d = 6. The red triangle on the left

corresponds to the red dot on the right. The dashed lines trace examples of snakes in Θ⊥d .

Remark 2.8. The rôles of the flags (E,G) and (F,H) in the definition of the double ratios are not equal.
Explicit computations show that if we consider permutations of E, F , G and H that respect this lack of
symmetry (called dihedral permutations) the corresponding double ratios are related to the original ones
by the formulas

Zi(E,F,G,H) = Zd−i(G,H,E, F ) = Zi(E,H,G, F )−1.

Theorem 2.9. The configuration of four flags (E,F,G,H) ∈X4 is determined by the data of

- the triple ratios Xa,b,c(E,F,G) for (a, b, c) ∈ Θ◦d;
- the triple ratios Xa,b,c(E,H,F ) for (a, b, c) ∈ Θ◦d;
- the double ratios Zi(E,F,G,H) for 0 < i < d.

Proof. Cf. [12, §5 and §9]. �

2.2. Snakes and their moves. In this section we describe how the triple and double ratios encode
information about the linear algebra of a quadruple of maximum span flags. We follow the exposition in
[13, App. A].

Notation 2.10. Let us ease notation for the rest of this section by fixing a maximum span quadruple of
flags (E,F,G,H) and by setting Xa,b,c := Xa,b,c(E,F,G) and Zi := Zi(E,F,G,H).

2.2.1. Snakes. The dual triangle of Θd is the discrete triangle Θ⊥d = Θd−1 where a point (α, β, γ) ∈ Θ⊥d
corresponds to the triangle in Θd with vertices

(α+ 1, β, γ), (α, β + 1, γ), (α, β, γ + 1).

See Figure 2.

Definition 2.11. A snake σ in Θ⊥d is a sequence of d points σ(k) = (αk, βk, γk) ∈ Θ⊥d such that
(α1, β1, γ1) = (d− 1, 0, 0) and

(αk+1, βk+1, γk+1) = (αk − 1, βk + 1, γk) or (αk − 1, βk, γk + 1).

Example 2.12. The top snake of Θ⊥d is σtop(k) = (d− k, k − 1, 0); the bottom snake of Θ⊥d is σbot(k) =
(d− k, 0, k − 1).

For a subspace W ⊂ Rd, the dual of W is the vector space

W⊥ := {u ∈ (Rd)∗ : u|W = 0} ⊂ (Rd)∗.

Note that dimW + dimW⊥ = d. For a flag F ∈ Flag(Rd), the dual flag F⊥ ∈ Flag((Rd)∗) is defined by

(F⊥)(i) := (F (d−i))⊥.
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The data of a snake and a maximum span triple of flags (E,F,G) determines a projective basis for (Rd)∗
as follows. Given a snake σ(k) = (αk, βk, γk) the one dimensional subspaces Lk := (E(αk) +F (βk) +G(γk))⊥

form a line decomposition of (Rd)∗ = ⊕di=1Li. Choose a non-zero vector u1 ∈ L1 = (E(d−1))⊥. We wish
to inductively define a non-zero vector ui ∈ Li for all i > 1. Assume we have defined uk ∈ Lk. Given
σ(k) = (αk, βk, γk), there are two options for the value of σ(k + 1) or, equivalently, for the line Lk+1:

L′k+1 =
(
E(αk−1) + F (βk) +G(γk+1)

)⊥
or L′′k+1 =

(
E(αk−1) + F (βk+1) +G(γk)

)⊥
.

Lemma 2.13. For uk ∈ Lk, there exist unique u′k+1 ∈ L′k+1 and u′′k+1 ∈ L′′k+1 so that uk+u′k+1+u′′k+1 = 0.

Proof. Cf. [13, §A.4]. �

The desired basis is obtained by setting

(2.2) uk+1 =

{
u′k+1 if σ(k + 1) = (αk − 1, βk, γk + 1)

−u′′k+1 if σ(k + 1) = (αk − 1, βk + 1, γk)

The choice of sign in Equation 2.2 will be justified in §2.3. If we replace u1 with u′1 = λu1 for some λ 6= 0,
the corresponding basis (u′i) will be so that u′i = λui. Therefore, a snake determines via this construction
a unique projective basis that we refer to as its snake basis.

2.2.2. Snake bases changes. A snake can “move” in two basic ways.

Definition 2.14. Let σ and σ′ be snakes in Θ⊥d .

- σ′ is obtained from σ by a tail move if σ and σ′ only differ in the d-th position so that if σ(d) =
(0, βd, γd), then σ′(d) = (0, βd + 1, γd − 1).

- σ′ is obtained from σ by a diamond move at k + 1, with k < d− 1, if σ and σ′ only differ in the
(k+1)-st position so that if σ(k+1) = (αk+1, βk+1, γk+1), then σ′(k+1) = (αk+1, βk+1+1, γk+1−1).

More explicitly, if σ′ is obtained from σ by a diamond move at k + 1 we have

σ(i) = σ′(i) = (αi, βi, γi) for i 6= k + 1,

σ(k + 1) = (αk − 1, βk, γk + 1),

σ′(k + 1) = (αk − 1, βk + 1, γk).

Example 2.15. The snake σ in Figure 2 is obtained from σbot by a tail move and diamond moves at
k + 1 for k = 4, 3, 2, 1.

The next Proposition relates the triple ratio to snake bases and moves.

Proposition 2.16 (Snake moves). Let σ and σ′ be snakes in Θ⊥d . Denote by (u′i) and (ui) the respective
snake bases. Suppose u1 = u′1.

- If σ′ is obtained from σ by a tail move, then

(2.3) u′i =

{
ui for i < d

ui−1 + ui for i = d

- If σ′ be a snake obtained from σ by a diamond move at k + 1, then

(2.4) u′i =


ui for i < k + 1

ui−1 + ui for i = k + 1

X(αk−1)(βk+1)(γk+1)ui for i > k + 1

Proof. Cf. [12, §9]. See also [13, §A.4]. �

Fix any pair of snakes σ and σ′ and respective snake bases so that u1 = u′1. We denote byMσ′
σ (E,F,G) ∈

GL(d,R) the upper triangular basis change matrix between the snake bases of σ and σ′. It is a product
of (some of) the basis change matrices described in Proposition 2.16.
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2.2.3. Shearing. Double ratios can also be understood in terms of snake bases. In fact, the maximum
span quadruple of flags (E,F,G,H) determines two projective basis (ui) and (Ui) corresponding to the

line decomposition Li = (E(d−i)⊕G(i−1))⊥: the projective basis (ui) defined via the maximum span triple
(E,F,G) and the projective basis (Ui) defined via (E,G,H). The following well-known proposition relates
these two bases and the double ratios of the quadruple (E,F,G,H). We include a proof for completeness.

Proposition 2.17. Let (ui) and (Ui) be as above. Assume Ud = ud. Then

(2.5) Ui = Z1 · · ·Zd−iui, for 0 < i < d

Proof. Let (ei) denote the standard basis of Rd. Up to PGL(d,R) action, we can renormalize the flags
(E,F,G) so that

E(i) = Span(e1, e2, . . . , ei);

G(i) = Span(ed, ed−1, . . . , ed−i+1);

F (1) = Span(e1 + e2 + · · ·+ ed).

Pick a non-zero vector h1e1 + h2e2 + · · · + hded ∈ H(1). Note that the maximum span property implies
that hi 6= 0 for all i = 1, 2, . . . , d. By Definition 2.7, we compute the double ratios to be

Zi = − hi
hi+1

, i = 1, 2, . . . , d− 1.

Denote by eti the transpose of the vector ei seen as an element in (Rd)∗. Note that (E(d−1))⊥ = Span(etd)
and for i > 1

(E(d−i) ⊕G(i−1))⊥ = Span(etd−i+1);

(E(d−i) ⊕ F (1) ⊕G(i−2))⊥ = Span(etd−i+1 − etd−i+2).

Likewise, note that

(E(d−i) ⊕G(i−2) ⊕H(1))⊥ = Span(v)

with v ∈ Span(etd−i+1, e
t
d−i+2) and H(1) ⊂ ker(v). A computation shows that v is a multiple of the vector

etd−i+1 + Zd−i+1e
t
d−i+2.

The vectors ui = λie
t
d−i+1 are defined recursively by solving Equation 2.2. Namely,

λi−1e
t
d−(i−1)+1 + λie

t
d−i+1 + µi(e

t
d−i+1 − etd−i+2) = 0

for some λi−1, λi, µi ∈ R−{0}. If we set λ1 = 1 and proceed by induction, we obtain ui = (−1)i−1etd−i+1.

The vectors Ui = −Λie
t
d−i+1, on the other hand, are defined recursively by Equation 2.2 as the unique

solutions to
−Λi−1e

t
d−(i−1)+1 + Λie

t
d−i+1 +Mi(e

t
d−i+1 + Zd−i+1e

t
d−i+2) = 0

for Λi−1,Λi,Mi ∈ R − {0} were we assume Λd = (−1)d−2 so that ud = Ud. By iteration, we obtain the
following equality for all i ≤ d

Λi−1e
t
d−(i−1)+1 + (−1)i−1Z1 . . . Zd−ie

t
d−i+1 = Mi(e

t
d−i+1 + Zd−i+1e

t
d−i+2).

Because Λi−1 = MiZd−i+1, it follows that Ui−1 = −(−1)i−1Z1 . . . Zd−iZd−i+1e
t
d−i+2, as needed. �

We denote by S(E,F,G,H) ∈ GL(d,R) the basis change matrix described by Proposition 2.17.

2.3. Positive configurations of flags and total positivity. Total positivity was introduced by Gant-
macher and Krein [14] and Schoenberg [30] for matrices in GL(d,R).

Definition 2.18. A matrix M in GL(d,R) is totally nonnegative if all of its minors are greater or equal
to zero. An element M in GL(d,R) is totally positive if all of its minors belong to R>0.

Example 2.19. The matrix

1 1 1
0 1 1 +X
0 0 X

 is totally nonnegative whenever X > 0.
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Note that the product of totally nonnegative (resp. positive) matrices is totally nonnegative (resp.
positive).

Definition 2.18 has been greatly extended by Lusztig [22] and it plays a prominent rôle in [12]. In fact,
total positivity arises in the context of configurations of flags as follows.

Denote by Pt the regular convex polygon with t vertices v1, v2, . . . , vt appearing in this clockwise order
along the boundary of Pt. A tuple of flags (F1, F2, . . . , Ft) determines a natural labeling of the vertices of
Pt: the vertex vi corresponds to the flag Fi. An oriented triangulation T of Pt is a collection of oriented
edges (vi, vk) that subdivide Pt into triangles. We label any such triangle by its vertices (vi, vj , vk) where,
by convention, we assume i < j < k. An internal edge of T is an edge of the triangulation that does not
belong to the boundary of Pt. Any internal edge (vi, vk) is a diagonal for a quadrilateral (vi, vj , vk, vl)
where the vertices appear in this cyclic order around Pt. Any triangulation T has t − 3 internal edges
and it subdivides Pt into t− 2 triangles.

One can use the Fock-Goncharov coordinates introduced in §2.1.1 and §2.1.2 and the oriented triangu-
lation T to define coordinates for points in Xt. Moreover, one can define X +

t (T ) as the subset of Xt of
configurations of t flags whose coordinates with respect to T are positive.

Theorem 2.20. Let T and T ′ be any two oriented triangulations of the regular convex polygon with t
vertices Pt. Then,

X +
t (T ) = X +

t (T ′) ∼= RN>0,

where N = (d−2)(d−1)
2 (t− 2) + (d− 1)(t− 3).

Proof. Cf. [12, Thm. 1.5]. �

Theorem 2.20 justifies the following definition.

Definition 2.21. A positive configuration of t flags is a configuration of t flags that belongs to X +
t (T )

for any (all) oriented triangulation(s) T of the polygon Pt. Denote by X +
t the space of positive con-

figurations of t flags. A tuple of flags (F1, F2, . . . , Ft) in Rd is positive if its PGL(d,R) orbit is a positive
configuration of t flags.

The choice of signs in Equation 2.2 guarantees plus signs in Equations 2.3 and 2.4 and, consequently,
it implies the following.

Corollary 2.22. Fix a positive quadruple of flags (E,F,G,H) and a non-zero vector in (Ed−1)⊥.

- For any two snakes σ and σ′, the upper triangular matrix Mσ′
σ (E,F,G) ∈ GL(d,R) describing the

snake bases change is totally nonnegative.
- The diagonal matrix S(E,F,G,H) describing the shearing basis change is totally nonnegative.
- There exist bases U = (ui) and U ′ = (u′i) of (Rd)∗ such that

(E(d−i))⊥ = Span(u1, . . . , ui), (G(d−i))⊥ = Span(ud, . . . , ud−i+1)

(F (d−i))⊥ = Span(u′1, . . . , u
′
i), (H(d−i))⊥ = Span(u′d, . . . , u

′
d−i+1)

and the matrix in the basis U of the element sending U to U ′ is totally nonnegative.

3. The building Bd
3.1. Axiomatic definition of R-Euclidean building. Let us recall the axiomatic definition of an
R-Euclidean building associated to the general linear group.

Consider the affine space

Ad−1 = {(x1, x2, . . . , xd) ∈ Rd : x1 + x2 + · · ·+ xd = 1}
with underlying vector space

Vd−1 = {(x1, x2, . . . , xd) ∈ Rd : x1 + x2 + · · ·+ xd = 0}.
Let Sd denote the symmetric group on d elements and let the affine Weyl group be the semi-direct

product Waff := Sd n Vd−1. The symmetric group acts on Ad−1 permuting the coordinates, and Vd−1

acts on Ad−1 by translations, therefore Waff acts on Ad−1.
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The standard inner product in Rd induces a Sd-invariant inner product on Ad−1 for which the elements
of Waff are isometries.

The fundamental Weyl chamber of Ad−1 is the cone C := {x ∈ Ad−1 : x1 ≥ x2 ≥ · · · ≥ xd}. A Weyl
sector S is an image of C via an element of w ∈Waff.

Definition 3.1. An R-Euclidean building modeled on (Ad−1,Waff) is a set B together with a family A of

injective maps f : Ad−1 → B satisfying the following axioms:

1. if f ∈ A , then f ◦ w ∈ A for any element w ∈Waff;
2. for any f, f ′ ∈ A , the set I := (f−1 ◦ f ′)(Ad−1) ⊂ Ad−1 is convex, closed and (f−1 ◦ f ′)|I is the

restriction to I of some w ∈Waff;
3. Any two points x, y belong to a common apartment;
4. Any two Weyl sectors in B contain Weyl subsectors contained in a common apartment;

Axioms 2 and 3 imply that the distance in Ad−1 induces a distance in B.

5. For any point x ∈ B and any f ∈ A such that x ∈ f(Ad−1), there exists a retraction rx,f of B
onto Ad−1 such that r−1

x,f (x) = x and rx,f decreases distances.

An element of A is called a marking ; the image of Ad−1 under a marking is an apartment. It follows
from item 2. in Definition 3.1 that any two markings of a given apartment differ by an element of the
affine Weyl group.

3.2. Asymptotic cones. We will focus on a specific R-Euclidean building Bd that admits an explicit
model we describe in §3.3. We start by recalling some concepts from non-standard analysis. We refer to
standard references [15, 17, 18, 25, 33] for detailed discussions.

A non-principal ultrafilter ω is a finitely additive measure on the natural numbers with values in {0, 1}
and such that ω(S) = 0 whenever S is finite. Given a sequence (xn) ⊂ R we say that x ∈ [−∞,+∞] is
the ω-limit of xn, and we write x := limω xn, if for any neighborhood U of x one has xn ∈ U for ω-almost
every n. Because [−∞,+∞] is a compact and Hausdorff topological space, every sequence (xn) ⊂ R has
a unique ω-limit in [−∞,+∞].

Notation 3.2. Let us fix once and for all a non-principal ultrafilter ω and a scaling sequence λ := (λn) ⊂ R
such that λn ≥ 1 and limn λn =∞.

Definition 3.3. Let (X, d, x0) be a metric space with basepoint x0. The asymptotic cone of (X, d, x0)
with respect to the non-principal ultrafilter ω and the scaling sequence λ is the set

Cω,λ(X, d, x0) =

{
(xn) ∈

∏
n

X : lim
ω
d(x0, xn)1/λn <∞

}/
∼

where (xn) ∼ (yn) if the ω-limit limω d(xn, yn)1/λn is zero.

The ultralimit x of a sequence (xn) ∈
∏
nX such that limω d(xn, yn)1/λn < ∞ is the equivalence class

of (xn) in the asymptotic cone Cω,λ(X, d, x0). The asymptotic cone is a complete metric space when

equipped with the distance d(x, y) := limω d(xn, yn)1/λn (Cf. [18, §2]).
Recall that a valuation on a field K is an application v : K→ R ∪ {∞} such that for x, y ∈ K

- v(x) =∞ if and only if x = 0;
- v(xy) = v(x) + v(y);
- v(x+ y) ≥ min{v(x), v(y)} with equality whenever v(x) 6= v(y).

Moreover, a valuation defines an associated absolute value |x|v := e−v(x) where, by convention, e−∞ = 0.
An example of an asymptotic cone is obtained by considering R as a metric space with distance given

by the absolute value and basepoint 0. It turns out that F := Cω,λ(R, | · |, 0) is a field when equipped with
the natural sum and multiplication of sequences (cf. [28, p. 69]).
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The field F has a natural valuation given by

v : F → R ∪ {∞}

x 7→ − lim
ω

(
log |xn|1/λn

)
We embed R in F via constant sequences, and we observe that v(R− {0}) = 0.

3.3. A concrete model for Bd.

3.3.1. Ultrametric norms. Let V be a d-dimensional F vector space.

Definition 3.4. An ultrametric norm η on V is a function η : V → R such that for all w, z ∈ V and all
x ∈ F

- η(w) = 0 if and only if w = 0;
- η(xw) = |x|v η(w);
- η(w + z) ≤ max{η(w), η(z)}.

The absolute value |·|v on F is an example of an ultrametric norm on V = F.
Let E = (e1, e2, . . . , ed) be a basis of V . We say that the ultrametric norm η is adapted to E if for any

w = x1e1 + x2e2 + · · ·+ xded ∈ V
η(w) = max

j=1,...,d
|xj |v η(ej).

An ultrametric norm η is adaptable if there exists a basis E of V so that η is adapted to E . Two ultrametric
norms η, η′ are homothetic if there exists x ∈ F− {0} such that for every vector w ∈ V , η(w) = η′(xw).

Theorem 3.5 (Parreau [25]). The set Bd of homothety classes of adaptable ultrametric norms on the
d-dimensional F-vector space V is an R-Euclidean building modeled on (Ad−1,Waff).

The action of g ∈ GL(V ) on an ultrametric norm η is given by g.η = η ◦ g−1. Note that scalar matrices
act by homothety on ultrametric norms, therefore the action of GL(V ) descends to an action of PGL(V )
on Bd. If η is adapted to the basis E , then g.η is adapted to gE . It is easy to see that PGL(V ), and
therefore Waff, acts on Bd via isometries.

3.3.2. Apartments. Any basis E = (e1, . . . , ed) of the vector space V determines a standard marking

fE : Ad−1 → Bd
x1

x2
...
xd

 7→
{

[η] : η is adapted to E ,
η(ej) = e−xj

Remark 3.6. Note that the apartment AE := fE(Ad−1) depends exclusively on the line decomposition
LE defined as (LE)i = Span(ei). The action of the affine Weyl group on Ad−1 can be interpreted via
the standard marking fE as an action on the set of bases that define the line decomposition LE , or,
equivalently, the set of markings of AE . More explictly, let σ be a permutation in Sd and denote by σE
the basis (eσ(1), . . . , eσ(d)). Then,

fE(x1, x2, . . . , xd) = fσE(xσ(1), xσ(2), . . . , xσ(d)).

Likewise, if y1, y2, . . . , yd ∈ F− {0}, denote by yE the basis (y1e1, y2e2, . . . , yded). Then,

fE(x1, . . . , xd) = fyE(x1 + ỹ1, x2 + ỹ2, . . . , xd + ỹd).

where (ỹ1, ỹ2, . . . , ỹd) is the unique vector in Vd−1 such that ỹi − ỹi+1 = v(yi)− v(yi+1).
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3.4. Intersection of apartments. We outline a general algorithm to parametrize the intersection of
apartments in Bd. We refer to [25] for proofs.

One of the main contributions of this paper is to show that total nonnegativity can be used to simplify
this algorithm.

Notation 3.7. For the rest of this section, let E = (e1, . . . , ed) and E ′ = (e′1, . . . , e
′
d) be bases of V ,

g ∈ GL(V ) be such that gE = E ′ and (gij)1≤i,j≤d be the matrix of g in the basis E .

Step 1: (Cf. [25, Cor. 3.3]) There exists σ ∈ Sd such that for all ultrametric norms η adapted to both
E and E ′

η(e′j) =
∣∣gσ(j)j

∣∣
v
η(eσ(j)).

Moreover, in this case

v(det g) = min
σ∈Sd

v(gσ(1)1 · · · gσ(d)d) = v(gσ(1)1 · · · gσ(d)d).

In other words, we can reorder the elements of E so that the product of the diagonal entries has
the same valuation as the determinant. Note that, in general, v(det g) is only greater or equal to
minσ∈Sd

v(gσ(1)1 · · · gσ(d)d).

Consider the apartments A = fE(Ad−1) and A′ = fE ′(Ad−1) and assume that the intersection of these
two apartments is non-empty. This is equivalent to saying that there exists η adapted to both E and E ′.

Step 2: (Cf. [25, §3.4]) Suppose the permutation σ of Step 1 is the identity and gii = 1 for i =
1, 2, . . . , d. Then,

A ∩A′ = {[η] ∈ A : g.η = η}.
Step 3: (Cf. [25, Prop. 3.5]) Suppose |det g|v = 1. Then, the subset {[η] ∈ A : g.η = η} of the

apartment A is the image under the standard marking fE of the set

{x ∈ Ad−1 : − v(gij) ≤ xi − xj ≤ v(gji) for 1 ≤ i < j ≤ d}.

The next proposition follows by combining Steps 1, 2 and 3 above and it is used implicitly in [25, §3.4].

Proposition 3.8 (Intersection of apartments). Consider bases E = (e1, . . . , ed) and E ′ = (e′1, . . . , e
′
d) of

the F-vector space V . Let g ∈ GL(V ) be such that gE = E ′ and let (gij)1≤i,j≤d be the matrix of g in the

basis E. Denote by A = fE(Ad−1) and A′ = fE ′(Ad−1) the apartments in Bd defined via the standard
markings and assume A∩A′ 6= ∅. Then, there exists a permutation σ ∈W such that A∩A′ is the image
under the standard marking fE of the set{

x ∈ Ad−1 : − v
(
gσ(i)j

gσ(i)i

)
≤ xσ(i) − xσ(j) + v

(
gσ(i)i

gσ(j)j

)
≤ v

(
gσ(j)i

gσ(j)j

)}
=

{
x ∈ Ad−1 : − v

(
gσ(i)j

gσ(j)j

)
≤ xσ(i) − xσ(j) ≤ v

(
gσ(j)i

gσ(i)i

)}
.

Proof. Let σ be as in Step 1 and identify it with the permutation matrix in GL(d,F) it defines with
respect to the basis E . The matrix

g = diag(1/gσ(1)1, . . . , 1/gσ(d)d) · σ · g

satisfies the hypothesis of Step 3 with respect to the bases E = (gσ(j)jeσ(j)) and E ′. Therefore, the
intersection A ∩A′ is the image under the marking fE of

{x ∈ Ad−1 : − v(gij) ≤ xi − xj ≤ v(gji) for 1 ≤ i, j ≤ d}.

On the other hand, as E = (gσ(1)1, . . . , gσ(d)d) · σ · E , by Remark 3.6 we have

fE(x1, . . . , xd) = fE(xσ(1) + g̃σ(1)1, . . . , xσ(d) + g̃σ(d)d),

where (g̃σ(1)1, g̃σ(2)2, . . . , g̃σ(d)d) is the unique vector in Vd−1 such that g̃σ(i)i − g̃σ(i+1)i+1 = v(gσ(i)i) −
v(gσ(i+1)i+1). We end the proof by observing that gij = gσ(i)j/gσ(i)i. �
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3.5. Flags and Endomorphisms in Fd. We now collect a few properties of asymptotic cones that will
be needed in what follows. Equip the vector space V = Fd with the sup-norm

‖x1e1 + · · ·+ xded‖ω = max
i
|xi|v

where e1, e2. . . . , ed denotes the standard basis of Fd.

Proposition 3.9. The pointed normed vector space (Fd, ‖ · ‖ω, 0) is isomorphic to the asymptotic cone

Cω,λ(Rd, ‖ · ‖, 0)

for the standard Euclidean norm ‖ · ‖ on Rd.

Proof. Cf. [26, Prop. 3.12]. �

Proposition 3.9 will allow us to study the asymptotic behavior of sequences of positive tuples of flags
in Rd in terms of the building Bd.

Definition 3.10. Let Wn be a sequence of i-dimensional vector subspaces in Rd. The i-dimensional
subspace W of Fd is an ultralimit for the sequence Wn if the there exists

- a sequence (v1,n, v2,n, . . . , vi,n) of bases for Wn,
- a basis (v1, v2, . . . , vi) of W

such that ulim vj,n = vj for all j.

Lemma 3.11. The sequence Wn of i-dimensional vector subspaces in Rd has a unique ultralimit W .

Proof. Existence of the ultralimit is obtained by choosing an orthonormal basis (v1,n, v2,n, . . . , vi,n) for
each Wn and considering the ultralimits of these vectors. In fact, as each vj,n has constant norm equal
to one, by definition of the asymptotic cone vj,n has a non-zero ultralimit vj . We show by contradiction

that the vectors vj are independent. Suppose there exists 1 ≤ l ≤ i such that vl =
∑

j 6=l xjvj in Fd. There

exist sequences of real numbers (xj,n) such that xj = ulim xj,n ∈ F. It follows that1 +
∑
j

x2
j,n

1/λn

=

∥∥∥∥∥∥vl,n −
∑
j 6=l

xj,nvj,n

∥∥∥∥∥∥
1/λn

≥ 1

has ultralimit equal to zero, which is a contradiction.
Let us now prove the uniqueness of the ultralimit W of the sequence Wn. Suppose, by contradiction,

that there exist two ultralimits W and W ′ for Wn obtained by considering the sequences of bases vj,n
and v′j,n of Wn with ultralimits vj ∈ W and v′j ∈ W ′. Write v′j,n =

∑
k xk,j,nvk,n. As we know that the

ultralimits of vj,n and v′j,n are non-zero vectors in Fd, it follows that the ultralimits xk,j of the sequences

xk,j,n are elements in F. In particular, we have that v′j =
∑

k xk,jvk and v′j belongs to W . As this holds

for every v′j , it follows that W ′ ⊂ W . We obtain the reverse inclusion W ′ ⊃ W analogously, therefore

W = W ′ as needed. �

Definition 3.12. Let Fn be a sequence of flags in Rd. The flag F in Fd is the ultralimit of the sequence
Fn of real flags if the there exist a sequence (v1,n, v2,n, . . . , vd,n) of bases of Rd and a basis (v1, v2, . . . , vd)

of Fd such that:

- for each i, the sequence of vectors vi,n in Rd converges to the non-zero vector vi in Fd;
- for each n, the sequence of i-dimensional vector subspaces F

(i)
n = Span(v1,n, v2,n, . . . , vi,n) con-

verges to the vector subspace F (i) = Span(v1, v2, . . . , vi).

Lemma 3.13. Let Fn be a sequence of flags in Rd. Then, there exists a unique flag F in Fd such that F
is the ultralimit of the sequence Fn.

Proof. The proof follows by applying Lemma 3.11 to each sequence of i-dimensional subspaces F
(i)
n . �

The algebra End(V ) of endomorphisms of V = Fd can also be identified with an asymptotic cone.
Observe that the norm ‖ · ‖ω on V = Fd induces an operator norm Nω on End(V ).
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Proposition 3.14. The pointed normed algebra (End(V ), Nω, Id) is isomorphic to the asymptotic cone

Cω,λ(End(Rd), N, Id)

where N is the operator norm induced by the Euclidean norm ‖ · ‖ on Rd.
Furthermore, let us identify End(V ) and End(Rd) with the spaces of matrices M(d,F) and M(d,R)

via the standard bases. Suppose that M = (mij) ∈ M(d,F) is the ultralimit of a sequence of matrices
Mn = ((mij)n) ∈M(d,R). Then, for every i and j, we have that mij = ulim (mij)n

Finally, the group GL(V ) of invertible isomorphisms in End(V ) is identified with the set of ultralimits

of sequences (gn) ∈ End(Rd) such that gn ∈ GL(Rd) for ω-almost every n and limωN(g−1
n )1/λn < +∞.

Proof. Cf. [26, Prop. 3.17, Cor. 3.18] and [27, Prop. 5.1]. �

4. Positivity in Bd
Recall that we fixed a non-principal ultrafilter ω and a scaling sequence λ = (λn). This allows us to

consider the asymptotic cone F of the real numbers R with base point 0 and distance given by the absolute
value. Every element in F is an equivalence class of sequences of real numbers. Therefore, the field F is
naturally equipped with an order by setting

[xn] ≥ [yn] if xn ≥ yn ω-a.e..

The set F≥0 = {x ∈ F : x ≥ 0} is a semifield with respect to the operations in F and it contains R≥0.
Set F>0 := F≥0 − {0}. Total nonnegativity and total positivity can be defined naturally for elements in
GL(d,F) as follows.

Definition 4.1. An element M ∈ GL(d,F) is totally positive if all of its minors belong to F>0. The
matrix M ∈ GL(d,F) is totally nonnegative if all of its minors are in F≥0.

4.1. Positivity and intersections. The main goal of this section is to show how total nonnegativity
can be used to simplify the problem of parametrizing the intersection of two apartments A and A′ in the
R-Euclidean building Bd. More precisely, assume that A ∩ A′ is non-empty. Proposition 3.8 states that,
in general, the intersection of these two apartments is described by d(d − 1) inequalities. Corollary 4.7
below shows that 2(d− 1) inequalities suffice when A and A′ are related by a totally nonnegative matrix.

We will need the following technical lemmas.

Lemma 4.2. For any x, y in F≥0, we have that v(x+ y) = min{v(x), v(y)}.

Proof. Cf. [26, Prop. 3.2.1.]. �

Lemma 4.3. Suppose y, x− y are in F≥0 and y is different from zero. Then, v(xy−1) ≤ 0.

Proof. As F≥0 is a semifield and y 6= 0, we know that xy−1 − 1 = (x− y)y−1 ∈ F≥0. Thus,

v(xy−1) = v((xy−1 − 1) + 1)

= min{v(xy−1 − 1), 0} ≤ 0.

where the second equality follows from Lemma 4.2, observing that 1 ∈ F≥0 and v(1) = 0. �

Proposition 4.4. Let M = (mij) be a matrix in GL(d,F) with |detM |v = 1 and mii = 1. Consider the
sets

IM = {x ∈ Ad−1 : − v(mij) ≤ xi − xj ≤ v(mji) for 1 ≤ i < j ≤ d};

I+
M = {x ∈ Ad−1 : − v(mi,i+1) ≤ xi − xi+1 ≤ v(mi+1,i) for 1 ≤ i < d}.

If M is totally nonnegative, then IM = I+
M .

Proof. It is clear that IM ⊆ I+
M . We show that if x ∈ I+

M , then xi − xi+k ≤ v(mi+k,i) by induction on
k ≥ 2. We omit the proof of the inequality xi − xj ≥ −v(mij) as it is very similar.
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For k = 2, we want to show xi − xi+2 ≤ v(mi+2,i). Namely, we focus on the sub-matrix 1 ? ?
mi+1,i 1 ?
mi+2,i mi+2,i+1 1


If mi+2,i = 0 there is nothing prove as v(mi+2,i) = ∞. Assume mi+2,i 6= 0. Total nonnegativity of
M implies that mi+2,i and mi+1,imi+2,i+1 − mi+2,i are in F≥0. This implies that mi+1,i and mi+2,i+1

are non-zero. Therefore, the valuations of mi+1,i and mi+2,i+1 are finite. We apply Lemma 4.3 with
x = mi+1,imi+2,i+1 and y = mi+2,i to obtain

v

(
mi+1,imi+2,i+1

mi+2,i

)
≤ 0 ⇐⇒ v(mi+1,i) + v(mi+2,i+1) ≤ v(mi+2,i).

Thus, if x ∈ I+
M we have

xi − xi+2 = xi − xi+1 + xi+1 − xi+2 ≤ v(mi+1,i) + v(mi+2,i+1) ≤ v(mi+2,i)

which proves the base case for the induction. Assume that for x ∈ I+
M we know that xi−xi+l ≤ v(mi+l,i)

whenever l < k. If mi+k,i = 0, the inequality xi − xi+k ≤ v(mi+k,i) =∞ is obvious. Thus, let us assume
mi+k,i 6= 0. We obtain the desired inequality

xi − xi+k = xi − xi+1 + xi+1 − xi+k ≤ v(mi+1,i) + v(mi+k,i+1) ≤ v(mi+k,i)

by using the induction hypothesis for the inequality xi+1 − xi+k ≤ v(mi+k,i+1) and applying Lemma 4.3
with x = mi+1,imi+k,i+1 and y = mi+k,i. �

We specialize Proposition 4.4 to the case of upper triangular matrices for future reference.

Corollary 4.5. Let M = (mij) be an upper triangular matrix in GL(d,F) and consider the sets:

IM =

{
x ∈ Ad−1 : xi − xj + v

(
mii

mjj

)
≥ −v

(
mij

mii

)
for 1 ≤ i < j ≤ d

}
;

I+
M =

{
x ∈ Ad−1 : xi − xi+1 + v

(
mii

mi+1,i+1

)
≥ −v

(
mi,i+1

mii

)
for 1 ≤ i < d

}
.

If M is totally nonnegative, then IM = I+
M .

Proof. As the determinant of M is non-zero, we can multiply M by the totally nonnegative diagonal
matrix S = diag(1/m11, . . . , 1/mdd). The matrix M ′ = SM = (m′ij) is totally nonnegative, |detM ′|v = 1

and its diagonal entries are equal to 1. Therefore, we conclude by applying Proposition 4.4 to M ′ and
performing an easy algebraic manipulation. �

Remark 4.6. In the statement of Corollary 4.5, the expressions for the inequalities defining the sets IM
and I+

M can be simplified by subtracting v(mii) on both sides. However, we wish to not do so as these
two terms play different rôles when considering intersections of apartments in §5.

Corollary 4.7. Let A and A′ be apartments in Bd. Assume that there exist bases E and E ′ of the F-vector
space V such that

- A = fE(Ad−1) and A′ = fE ′(Ad−1) where fE and fE ′ are the standard marking of the bases E and
E ′, respectively;

- the matrix (gij) in the basis E corresponding to the group element g ∈ GL(V ) such that gE = E ′
is totally nonnegative, gii = 1 and v(det g) = 0.

Then,

f−1
E (A ∩A′) = {x ∈ Ad−1 : − v(gi,i+1) ≤ xi − xi+1 ≤ v(gi+1,i) for 1 ≤ i < d}.

Proof. This is an immediate consequence of Proposition 3.8 and Proposition 4.4. �
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Example 4.8. Note that Proposition 4.4 fails if M is not totally nonnegative. Consider the sequence
(eλn) ⊂ R and observe that this defines a non-zero element in F with valuation

v([eλn ]) = − lim
ω

1

λn
log eλn = −1

The matrix M =

1 1 [eλn ]
0 1 1
0 0 1

 is not totally nonnegative as it has a minor equal to [1− eλn ] < 0.

Using the notations introduced in Proposition 4.4, the set IM is defined by the inequalities

x1 − x2 ≥ 0, x2 − x3 ≥ 0, x1 − x3 ≥ −v([eλn ]) = 1

and it is properly contained in I+
M , which is defined by the inequalities x1 − x2 ≥ 0, and x2 − x3 ≥ 0.

4.2. Positivity of configurations of flags in Fd. In §3.5, we described how a sequence of tuple of flags
in Rd defines a tuple of flags in Fd. Fix an oriented triangulation T of the regular convex polygon with
t vertices Pt. In particular, for any sequence of tuples of flags we obtain corresponding Fock-Goncharov
parameters as described in §2.3.

Definition 4.9. The ultralimit (F1, F2, . . . , Ft) in Fd of a sequence of t real flags (F1,n, F2,n, . . . , Ft,n) is
positive if

(1) the tuple of flags (F1, F2, . . . , Ft) has the maximum span property,
(2) the sequences of triple and double ratios Xa,b,c(Fi,n, Fj,n, Fk,n) and Zs(Fi,n, Fj,n, Fk,n, Fl,n) with

respect to the oriented triangulation T are such that

0 < ulim Xa,b,c(Fi,n, Fj,n, Fk,n) <∞ and 0 < ulim Zs(Fi,n, Fj,n, Fk,n, Fl,n) <∞
for all (a, b, c) ∈ Θ◦d and s = 1, 2, . . . , d− 1.

Remark 4.10. Observe that, in Definition 4.9, the maximum span property for the tuple (F1, F2, . . . , Ft)
of flags in Fd is independent on the choice of oriented triangulation. The positivity property is also
independent on the choice of triangulation T thanks to [12, §10]. In fact, given any other oriented
triangulation T ′ of the regular convex polygon with t vertices Pt, the sequences of Fock-Goncharov
coordinates for T ′ can be expressed as a ratio of subtraction-free polynomials of the Fock-Goncharov
coordinates with respect to the triangulation T . It follows that the positivity and finiteness of the
ultralimit of the coordinates is preserved by a change of triangulation.

The following example illustrates how the maximum span property in Definition 4.9 is not implied by
the positivity of the ultralimits of the Fock-Goncharov coordinates.

Example 4.11. Consider the sequence of four flags (En, Fn, Gn, Hn) in R2 such that

E(1)
n = Span

(
1
0

)
, G(1)

n = Span

(
eλ

2
n

1

)
,

F (1)
n = Span

(
−1 + eλ

2
n

1

)
, H(1)

n = Span

(
2 + eλ

2
n

1

)
,

An easy computation shows that the sequence of double ratios of these four lines is constant equal to two.
In particular, it is positive. However,

ulim E(1)
n = ulim F (1)

n = ulim G(1)
n = ulim H(1)

n = Span

(
1
0

)
.

The following lemma gives a sufficient criterion for positivity of the ultralimit of a sequence of positive
tuples of flags.

Lemma 4.12. Consider the ultralimit (F1, F2, . . . , Ft) of a sequence of tuples of flags (F1,n, F2,n, . . . , Ft,n).
Assume that there exists 1 ≤ i, j, k ≤ t such that for all a, b = 0, 1, . . . , d and c = 0, 1 we have

dim
(
F

(a)
i + F

(b)
j + F

(c)
k

)
= min{a+ b+ c, d}.
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Assume that the Fock-Goncharov invariants of (F1, F2, . . . , Ft) have finite positive ultralimits. Then, the
ultralimit (F1, F2, . . . , Ft) is positive.

Proof. Without loss of generality, let us assume (i, j, k) = (1, 2, 3). Let T be an ideal triangulation of Pt

such that the vertices labeled by 1,2,3 and 4 form a quadrilateral with diagonal labeled by the vertices
(v1, v3). In dimension d = 3, this lemma is a consequence of [27, Prop. 5.5]. For d > 3 one uses the
following standard observation. For any triple of flags (En, Fn, Gn) with the maximum span property,

and for any (a, b, c) ∈ Θ◦d, the quotient flags (En, Fn, Gn) in Rd/(E(a−1)
n ⊕ F (b−1)

n ⊕G(c−1)
n ) ∼= R3 has the

maximum span property. Moreover, it is easy to check that

Xa,b,c(En, Fn, Gn) = X1,1,1(En, Fn, Gn).

Therefore, choose an index (a, b, c) ∈ Θ◦d with c = 1. Then, for every n, the quotient flag F 3,n is simply

the flag with line F
(1)
3,n and plane F

(2)
3,n . Letting a and b vary and applying [27, Prop. 5.5], we have that

F
(2)
3 is such that

(4.1) dim
(
F

(a)
1 + F

(b)
2 + F

(2)
3

)
= min{a+ b+ 2, d}

Iterating this argument as we let c vary between 2 and d− 2, we have that the limiting triple (F1, F2, F3)
satisfies the maximum span property.

A similar argument can be used to prove the maximum span property for quadruples of flags. In
fact, whenever we have a sequence of maximum span quadruple of flags (En, Fn, Gn, Hn), the quotient of

Rd by the subspace E
(i−1)
n ⊕ G(d−i−2)

n is three-dimensional and defines a sequence of quadruples of flags
(En, Fn, Gn, Hn) such that

Zi(En, Fn, Gn, Hn) = Z1(En, Fn, Gn, Hn),

Zi+1(En, Fn, Gn, Hn) = Z2(En, Fn, Gn, Hn).

Therefore, consider the sequence of positive quadruples (F1,n, F2,n, F3,n, F4,n). Applying [27, Prop 5.5] to

the quadruples (F 1,n, F 2,n, F 3,n, F 4,n) as we let i vary between 1 and d− 2, we obtain that

dim
(
F

(a)
1 + F

(b)
3 + F

(1)
4

)
= min{a+ b+ 1, d}.

In summary, we showed that if the flags (F1, F2, F3) in Fd satisfy Equation 4.1 and we have positivity
of the ultralimits of the Fock-Gonchaorv coordinates of the quadruple (F1, F2, F3, F4), then (F1, F2, F3)
satisfies the maximum span property and (F1, F3, F4) satisfies Equation 4.1. This finishes the proof as we
can now iterate this procedure. �

Finally, recall that given a triple of flags (E,F,G) in Rd, a snake σ in Θ⊥d defines a projective basis for

the space (Rd)∗. The following lemma states that snake bases are well behaved when we consider positive
ultralimits of sequences of positive triples of flags.

Lemma 4.13. Let (En, Fn, Gn) be a sequence of positive triples of flags whose ultralimit (E,F,G) is
positive. Let (ui,n) be the corresponding sequence of snake bases for the snake σ. Up to rescaling, assume

that the sequence (u1,n) of non-zero vectors in (E
(d−1)
n )⊥ is such that

ulim u1,n = u1 ∈ Fd − {0}.

Then, the ultralimit of ui,n is a non-zero vector in Fd for every i = 1, 2, . . . , d.

Proof. Fix a snake σ and denote by (L1,n, L2,n, . . . , Ld,n) the sequence of line decompositions it defines
via the triples of flags (En, Fn, Gn) as described in §2.2. The result follows from the normalization
for the vectors ui,n given in Lemma 2.13 and by the maximum span property for the triple of flags

(E,F,G) in Fd. In fact, by construction of the snake basis, given ui−1,n ∈ Li−1,n, the vector ui,n ∈ Li,n
is defined recursively, up to a sign, as one of the two vectors u′i,n ∈ L′i and u′′i,n ∈ L′′i satisfying the

equality ui−1,n +u′i,n +u′′i,n = 0. On the other hand, the maximum span property implies that there exist

sequences of non-zero real numbers a′n and a′′n such that the ultralimits ulim a′nu
′
i,n and ulim a′′nu

′′
i,n are
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non-zero vectors v′i and v′′i in (Fd)∗. If a′ = (a′n) and a′′ = (a′′n) are elements in F − {0}, it follows that
ulim u′i,n = v′i/a

′ and ulim u′′i,n = v′′i /a
′′ are non-zero vectors in (Fd)∗. Therefore, we want to show that

this has to be the case. This follows by writing

ui−1,n +
1

a′n
(a′nu

′
i,n) +

1

a′′n
(a′′nu

′′
i,n) = 0

and observing that if limω |a′n|1/λn = 0 or +∞, then ui−1 ∈ Span(v′′i ) or v′i ∈ Span(v′′i ), respectively. In
either case, this contradicts the maximum span property of the triple of flags (E,F,G). �

5. Positive intersections of flag apartments

In this section we collect the proofs of our main results: Theorems 1.1, 1.2 and 1.3 from the introduction.
Our main tool is Proposition 4.4, which we use to describe the geometry of a preferred collection of
apartments in the R-Euclidean building Bd.

5.1. Monotonicity for positive configurations of flags. Consider a sequence of positive tuples of
flags (F1,n, F2,n, . . . , Ft,n) in Rd. If the ultralimit (F1, F2, . . . , Ft) is positive, any pair of flags (Fi, Fj)

defines a line decomposition of the d-dimensional vector space V = (Fd)∗. It follows from §3.3.2 that
such a line decomposition determines an apartment Aij in the R-Euclidean building Bd. Recall from
the introduction that given three apartments Ai1j1 , Ai2j2 and Ai3j3 we say that Ai2j2 combinatorially
separates Ai1j1 and Ai3j3 if, up to a cyclic permutation of the indices of the tuple of flags (F1, F2, . . . , Ft),
we have

1 ≤ i1 ≤ i2 ≤ i3 < j3 ≤ j2 ≤ j1 ≤ t.

Theorem 5.1 (Theorem 1.3). Consider a sequence (F1,n, F2,n, . . . , Ft,n) of t positive flags in Rd with
positive ultralimit (F1, F2, . . . , Ft). Consider apartments A1, A2 and A3 defined via the line decomposi-
tions associated to pairs of flags (Fi1 , Fj1), (Fi2 , Fj2), and (Fi3 , Fj3), respectively. If the apartment A2

combinatorially separates A1 and A3, then

A1 ∩ A3 = A1 ∩ A2 ∩ A3.

Proof. If A1 ∩ A3 = ∅, the result is trivial. Therefore, we assume that the intersection A1 ∩ A3 is non-
empty. Moreover, it suffices to show A1∩A3 ⊆ A1∩A2. In fact, it then follows that A1∩A3 ⊆ A1∩A2∩A3

and the reverse inclusion is obvious. We subdivide the proof into three cases. The first two cases will
need the following technical lemma.

Lemma 5.2. Let A = (aij), B = (bij) be totally nonnegative matrices in GL(d,F) such that A = (aij) is
upper triangular and B is a triangular matrix (upper or lower). Denote by C = (cij) the product AB and
assume that

(5.1) v(detC) = min
σ∈Sd

v(cσ(1)1 . . . cσ(d)d).

Then, v(detC) = v(c11 . . . cdd) and

(5.2) v
( ci,i+1

ci+1,i+1

)
≤ v
( ai,i+1

ai+1,i+1

)
.

Proof. As A and B are totally nonnegative, we have the following implications

ci,i+1 = ai,i+1bi+1,i+1 +
∑
j 6=i

aijbj,i+1 =⇒ v(ci,i+1) ≤ v(ai,i+1bi+1,i+1),

cii = aiibii +
∑
j 6=i

aijbji =⇒ v(cii) ≤ v(aiibii).
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Moreover, as A and B are triangular matrices in GL(d,F), we have that the valuations v(aii) and v(bii)
are finite. Let us prove the equality v(cii) = v(aiibii) for all i. We have

v(a11 . . . addb11 . . . bdd) = v(detC)

≤ v(c11 . . . cdd)

≤ v(a11b11 . . . addbdd)

where the first inequality follows from Equation 5.1. Therefore, v(detC) = v(c11 . . . cdd) and

v(ci,i+1)− v(ci+1,i+1) ≤ v(ai,i+1) + v(bi+1,i+1)− v(ai+1,i+1)− v(bi+1,i+1)

= v(ai,i+1)− v(ai+1,i+1)

which is equivalent to Equation 5.2. �

It follows from Proposition 3.14 and Lemma 4.13 that there exist bases Ei, i = 1, 2, 3 of V such that

- the apartment Ai is the image of Ad−1 via the standard marking of the basis Ei,
- for i < j, if gij ∈ GL(V ) is the element such that gijEi = Ej , then the corresponding matrix in the

basis Ei is totally nonnegative.

Let A, B and C be the totally nonnegative matrices corresponding to the elements g12, g23 and g13,
respectively. Observe that C = (ABA−1)A = AB. Moreover, as A1 ∩A3 6= ∅, Step 1 in §3.4 implies that
the determinant of C satisfies Equation 5.1.

Case 1. Assume Fi1 = Fi2 = Fi3 . It follows that A and B are upper triangular as they need to preserve
the flag Fik . In particular, the determinant of C is

∏
i cii =

∏
i aiibii. By Corollary 4.5 we know that

A1 ∩ A2 = fE1

({
x ∈ Ad−1 : xi − xi+1 ≥ −v

(
ai,i+1

ai+1,i+1

)})
A1 ∩ A3 = fE1

({
x ∈ Ad−1 : xi − xi+1 ≥ −v

(
ci,i+1

ci+1,i+1

)})
.

Therefore, Lemma 5.2 implies that A1 ∩ A3 ⊆ A1 ∩ A2.
Case 2. Assume Fi1 = Fi2 and Fj2 = Fj3 . Therefore, A is upper triangular and B is lower triangular.

In particular,

A1 ∩ A2 = fE1

({
x ∈ Ad−1 : xi − xi+1 ≥ −v

(
ai,i+1

ai+1,i+1

)})
On the other hand, by the second part of Lemma 5.2 and Proposition 4.4 we have

A1 ∩ A3 = fE1

({
x ∈ Ad−1 : − v

(
ci,i+1

ci+1,i+1

)
≤ xi − xi+1 ≤ v

(
ci+1,i

cii

)})
.

Once again, Lemma 5.2 implies that A1 ∩ A3 ⊆ A1 ∩ A2.
General Case. Recall that we denote by Aij the apartment defined by the flags Fi and Fj so that

Ak = Aikjk . Using Case 2, we have

A1 ∩ A3 = A1 ∩ Ai1,j3 ∩ A3.

On the other hand, the previous cases imply the following inclusions

(5.3)

A1 ∩ Ai1,j3 ⊆ A1 ∩ Ai1,j2 ,
Ai1,j3 ∩ A3 ⊆ Ai1,j3 ∩ Ai2,j3 ,
Ai1,j2 ∩ Ai2,j3 ⊆ Ai1,j2 ∩ A2.

Therefore, it follows that

A1 ∩ A3 = A1 ∩ Ai1,j3 ∩ A3

⊆ A1 ∩ Ai1,j2 ∩ Ai2,j3
⊆ A1 ∩ A2

where the first inclusion follows from the first two lines in Equation 5.3 and the second inclusion follows
from the last line in Equation 5.3. �
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5.2. Ultralimits of positive triples and intersection of apartments. For the rest of this section,
fix a sequence of positive triples of flags (En, Fn, Gn) in Rd with positive ultralimit the triple (E,F,G) of
flags in Fd. We ease notation by setting

Xa,b,c := ulim Xa,b,c(En, Fn, Gn),

which, by hypothesis, is positive in the field F.
As the triple (E,F,G) has the maximum span property, the choice of a snake σ in Θ⊥d determines a

line decomposition Lσ of V = (Fd)∗ and a corresponding apartment Aσ in the R-Euclidean building Bd.

Lemma 5.3. Let Aσ and Aσ′ be apartments associated to snakes σ and σ′. Then, Aσ ∩ Aσ′ 6= ∅.

Proof. Any snake determines a line decomposition (L1, L2, . . . , Ld) of V such that for every i,

L1 ⊕ L2 ⊕ · · · ⊕ Li = (E(d−i))⊥.

It then follows from [25, Prop. 3.8] that given any two snakes σ and σ′, the corresponding apartment Aσ
and Aσ′ intersect in, at least, a Weyl sector. �

As a consequence of Lemma 4.13, every snake σ determines a projective basis of V = (Fd)∗. Remark
3.6 implies that given bases (e1, e2, . . . , ed) and (λe1, λe2, . . . , λed) for some λ ∈ F−{0}, the corresponding
standard markings are equal. Therefore, given a snake σ there exists a unique associated marking fσ of Aσ
obtained by taking the ultralimit of the sequences of snake bases of σ with respect to the sequence of triples
of flags (En, Fn, Gn). We refer to this marking as the standard marking of σ. Thanks to Propositions 2.16,

Proposition 3.14 and Lemma 4.13, we have explicit expressions for the totally nonnegative matrices Mσ′
σ =

ulim Mσ′
σ (En, Fn, Gn) ∈ GL(d,F) sending the ultralimit of the sequence of σ-bases to the ultralimit of

sequences of σ′-bases. We use this fact together with Proposition 4.4 to explicitly describe the intersections
of the apartments associated to snakes.

Recall from §2.2, that the bottom snake σbot is the snake associated to the line decomposition (E(d−i)⊕
G(i−1))⊥. Concretely, Lemma 5.4 and Lemma 5.5 below say that if the snake σ′ is obtained from the
snake σ by a diamond or a tail move, the intersection between the apartments Aσbot∩Aσ′ can be obtained
from the intersection Aσbot ∩ Aσ via a restriction to a half-apartment and by a translation.

Lemma 5.4. Let σ and σ′ be snakes in Θ⊥d such that σ′ is obtained from σ by a diamond move at k+ 1.
Suppose the intersection of Aσbot ∩ Aσ is the image via the standard marking fσbot of the set

{x ∈ Ad−1 : xi − xi+1 + αi ≥ −βi, i = 1, . . . , d− 1}

with αi ∈ R and βi ∈ R ∪ {∞}. Then, the intersection Aσbot ∩ Aσ′ is the image under fσbot of the set

{x ∈ Ad−1 : xi − xi+1 + α′i ≥ −β′i, i = 1, . . . , d− 1},

where

α′i =

{
αi for i 6= k + 1

αi − v(Xa,b,c) for i = k + 1
, β′i =


βi for i 6= k, k + 1

min{0, βi} for i = k

βi + v(Xa,b,c) for i = k + 1

and Xa,b,c is the triple ratio naturally associated to σ and σ′.

Proof. Consider the basis change matrices Mσ
σbot = (mij) from (ubot

i ) to (uσi ) and Mσ′

σbot = (m′ij) from

(ubot
i ) to (uσ

′
i ) where we assume ubot

1 = uσ1 = uσ
′

1 . Observe that Mσ
σbot and Mσ′

σbot are totally nonnegative as
they are products of totally nonnegative matrices and they are upper triangular. Moreover, by Proposition
2.16, we know that

m′ii =

{
mii for i ≤ k + 1

Xa,b,cmii for i > k + 1
, m′i,i+1 =


mi,i+1 for i < k

mii +mi,i+1 for i = k

Xa,b,cmi,i+1 for i > k

(5.4)
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As the matrices Mσ
σbot and Mσ′

σbot are upper triangular, it follows from Proposition 3.8 and Corollary 4.5
that Aσbot ∩ Aσ and Aσbot ∩ Aσ′ are the images under the marking fσbot of the sets

Aσbot ∩ Aσ :

{
x ∈ Ad−1 : xi − xi+1 + v

(
mii

mi+1,i+1

)
≥ −v

(
mi,i+1

mii

)
for 1 ≤ i < d

}
,

Aσbot ∩ Aσ′ :

{
x ∈ Ad−1 : xi − xi+1 + v

(
m′ii

m′i+1,i+1

)
≥ −v

(
m′i,i+1

m′ii

)
for 1 ≤ i < d

}
.

Therefore, by Equation 5.4, the intersection Aσbot ∩ Aσ′ is the image under the marking fσbot of the set
of x ∈ Ad−1 satisfying the following inequalities:

xi − xi+1 + v
(

mii
mi+1,i+1

)
≥ −v

(
mi,i+1

mii

)
for i < k

xi − xi+1 + v
(

mii
mi+1,i+1

)
≥ −v

(
1 +

mi,i+1

mii

)
for i = k

xi − xi+1 + v
(

mii
mi+1,i+1

)
− v(Xa,b,c) ≥ −v

(
Xa,b,c

mi,i+1

mii

)
for i = k + 1

xi − xi+1 + v
(

Xa,b,cmii

Xa,b,cmi+1,i+1

)
≥ −v

(
Xa,b,cmi,i+1

Xa,b,cmii

)
for i > k + 1

Observe that as 1 +
mk,k+1

mkk
∈ F≥0, its valuation is equal to min

{
0, v

(
mk,k+1

mkk

)}
. The result follows by

comparing the above inequalities to the inequalities defining Aσbot ∩ Aσ. �

An analogous argument as the one in the proof of Lemma 5.4 shows the following.

Lemma 5.5 (Asymptotic tail move). Let σ and σ′ be snakes in Θ⊥d such that σ′ is obtained from σ by a
tail move. Suppose the intersection of Aσbot ∩ Aσ is the image under the marking fσbot of the set

{x ∈ Ad−1 : xi − xi+1 + αi ≥ −βi for i = 1, . . . , d− 1}

with αi ∈ R, βi ∈ R ∪ {∞}. Then, the intersection of Aσbot ∩ Aσ′ is the image under the marking fσbot

of the set defined by the inequalities{
xi − xi+1 + αi ≥ −βi for i < d− 1,

xi − xi+1 + αi ≥ −min{0, βi} for i = d− 1.

Proof. This proof is similar to the proof of Lemma 5.4, but it is simpler. �

The following theorem is the main step in the proof of Theorem 1.1 from the introduction.

Theorem 5.6. Let σbot and σtop be the bottom and top snakes in Θ⊥d with snake basis (ubot
i ) and (utop

i ),
respectively. Let Aσbot and Aσtop denote the corresponding apartments in the R-Euclidean building Bd.
Then, the intersection Aσbot ∩Aσtop is the image under the marking fσbot of the set of x ∈ Ad−1 satisfying
the inequalities 

x1 − x2 ≥ 0

x2 − x3 ≥ max{0, v(Xd−2,1,1)}
x3 − x4 ≥ max{0, v(Xd−3,2,1), v(Xd−3,2,1Xd−3,1,2)}

...

xn−1 − xn ≥ max{0, v(X1,d−2,1), . . . , v(X1,d−2,1 · · ·X1,1,d−2)}

(5.5)

Proof. We want to prove this theorem by induction on d. The case d = 2 is reduced to Lemma 5.5 as
there are only two snakes in Θ⊥2 that differ by a tail move.

Case d = 3: In this case, there is only one triple ratio X1,1,1. We can obtain the top snake from the
bottom snake with a sequence of a tail move, a diamond move at k = 1 and another tail move. Therefore,
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diam. tail

Figure 3. A pictorial version of the proof of Theorem 5.7 in dimension d = 3.

applying Lemma 5.4 and Lemma 5.5 we have{
x1 − x2 ≥ −∞
x2 − x3 ≥ −∞

tail⇒

{
x1 − x2 ≥ −∞
x2 − x3 ≥ 0

diamond⇒

{
x1 − x2 ≥ 0

x2 − x3 − v(X1,1,1) ≥ −v(X1,1,1)

tail⇒

{
x1 − x2 ≥ 0

x2 − x3 − v(X1,1,1) ≥ −min{0, v(X1,1,1)}

and we conclude by observing that

−min{0, v(X1,1,1)}+ v(X1,1,1) = −min{0,−v(X1,1,1)} = max{0, v(X1,1,1)}.
See Figure 3.

We now assume the result is true for d− 1 and we prove it for d.
Case d > 3: Consider the subtriangle Θ⊥d−1 ⊂ Θ⊥d as in Figure 4. The key observation, which follows

from Lemma 5.4 and Lemma 5.5, is that any snake move at a vertex in (Θ⊥d−1)◦ does not affect the
inequality involving the variables xd−1 and xd.

Starting with σbot, by Lemmas 5.4 and 5.5, performing a tail move and a diamond move at d− 1 gives
us the new inequality

xd−1 − xd − v(X1,1,d−2) ≥ −min{0,∞}− v(X1,1,d−2).

We proceed by performing diamond moves at k for k = 1, 2, . . . , d− 2. Again, by Lemma 5.4 these moves
do not affect the last inequality, and therefore we still have

xd−1 − xd − v(X1,1,d−2) ≥ −v(X1,1,d−2).

We then perform a tail move in Θ⊥d which gives

xd−1 − xd − v(X1,1,d−2) ≥ −min{0, v(X1,1,d−2)}

and then a diamond move at d− 1 in the triangle Θ⊥d . This changes the last inequality to

xd−1 − xd − v(X1,1,d−2X1,2,d−3) ≥ −min{0, v(X1,1,d−2)} − v(X1,2,d−3)

which is equivalent to

xd−1 − xd − v(X1,1,d−2X1,2,d−3) ≥ −min{v(X1,2,d−3), v(X1,2,d−3X1,2,d−2)}.

We conclude by iterating this procedure. More precisely, consider the level sets in Θ⊥d given by fixing the

value of the second variable b (these are horizontal lines in the discrete triangle Θ⊥d ). We can proceed by
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Figure 4. Diamond moves at d− 1 in the triangle Θ⊥d correspond to tail moves in Θ⊥d−1.

induction as b varies between 1 and d− 2. The discussion above proves our claim for the cases b = 1 and
2. To simplify notation, set

Vb,a = v(X1,b,d−b−1X1,b−1,d−b−2 . . . X1,b−a,d−(b−a)−1)

with b = 1, . . . , d− 2 and a = 0, . . . , b− 1. Observe that Vb,a + v(X1,b+1,d−b−2) = Vb,a + Vb+1,0 = Vb+1,a+1.
Assume

xd−1 − xd − Vb,b−1 ≥ −min{Vb,0, Vb,1, . . . , Vb,b−1}.

Applying a tail move to the snake we obtain

xd−1 − xd − Vb,b−1 ≥ −min{0, Vb,0, Vb,1, . . . , Vb,b−1}.

Hence, with a diamond move we have

xd−1 − xd − Vb+1,b ≥ −min{0, Vb,0, Vb,1, . . . , Vb,b−1} − v(X1,b+1,d−b−2)

m
xd−1 − xd − Vb+1,b ≥ −min{Vb+1,0, Vb+1,1, . . . , Vb+1,b}.

In other words, we showed that the formula repeats itself when we apply a tail move followed by a diamond
move. The result then follows because this process ends with a tail move in Θ⊥d which has the effect of
changing the right hand side of the inequality

xd−1 − xd − Vd−2,d−3 ≥ −min{Vd−2,0, Vd−2,1, Vd−2,2, . . . , Vd−2,d−3}

to −min{0, Vd−2,0, Vd−2,1, Vd−2,2, . . . , Vd−2,d−3}. �

The edges of the discrete triangle Θ⊥d determine three apartments AEG, AGF and AEF associated to
line decompositions defined by the pairs of flags (E,G), (G,F ) and (E,F ), respectively. The pairwise
intersections of these three apartments are non-empty by Lemma 5.3. The following theorem expresses
these intersections in terms of the valuations of the triple ratios Xa,b,c.

Theorem 5.7 (Theorem 1.1). Let (En, Fn, Gn) be a sequence of positive triples of flags in Rd such that
the ultralimit (E,F,G) is positive. Let AEG, AGF and AFE be the apartments associated to the triple
(E,F,G). There exists a marking fEG of AEG such that

- the intersection AEG ∩ AEF is the image under fEG of the subset of Ad−1 described by the in-
equalities:

(5.6)



x1 − x2 ≥ 0

x2 − x3 ≥ max{0, v(Xd−2,1,1)}
x3 − x4 ≥ max{0, v(Xd−3,2,1), v(Xd−3,2,1Xd−3,1,2)}

...

xd−1 − xd ≥ max{0, v(X1,d−2,1), . . . , v(X1,d−2,1 · · ·X1,1,d−2)}



24 GIUSEPPE MARTONE

- the intersection AEG ∩ AGF is the image under fEG of the subset of Ad−1 described by the in-
equalities:

(5.7)



x1 − x2 ≤ min{0, v(X1,d−2,1), . . . , v(X1,d−2,1 · · ·Xd−2,1,1)}
...

xd−3 − xd−2 ≤ min{0, v(X1,2,d−3), v(X1,2,d−3X2,1,d−3)}
xd−2 − xd−1 ≤ min{0, v(X1,1,d−2)}
xd−1 − xd ≤ 0

Proof. The proof follows by combining Remark 2.6 and Theorem 5.6. The formula for AEG∩AEF follows
at once from Theorem 5.6. Permute the positive maximum span triple from (E,F,G) to (G,F,E). Then,
we can apply Theorem 5.6 to the triple (G,F,E) in order to find the intersection of the apartments
AEG ∩ AGF . Let (vbot

i ) denote the basis associated to the bottom snake in the discrete triangle Θ⊥d
with respect to the maximum span triple (G,F,E). By choosing vbot

1 = ubot
d−1, we have that vbot

i = ubot
d−i.

This allows us to explicitly relate the markings fEG and fGE . Namely, fGE is obtained from fEG by the
permutation defined by

w0 =


0 . . . 0 1
... . .

.
. .
.

0

0 1 . . .
...

1 0 . . . 0

 ∈ Sd

Moreover, by Remark 2.6 we have Xa,b,c(G,F,E) = X−1
c,b,a(E,F,G). Therefore, by Theorem 5.6 and

Remark 3.6 we have that AEG ∩ AFG is the image via fEG of the set

xd − xd−1 ≥ 0

xd−1 − xd−2 ≥ max{0,−v(X1,1,d−2)}
xd−2 − xd−3 ≥ max{0,−v(X1,2,d−3),−v(Xd−3,2,1X2,1,d−3)}

...

x2 − x1 ≥ max{0,−v(X1,d−2,1), . . . ,−v(X1,d−2,1 · · ·Xd−2,1,1)}
It is easy to see that these inequalities are equivalent to the ones in the statement of the theorem. �

Remark 5.8. The marking fEG from Theorem 5.7 determines a preferred point fEG(1/d, 1/d, . . . , 1/d) ∈
AEG. Geometrically, Theorem 5.7 says that the intersections AEG∩AEF and AEG∩AFG are Weyl sectors
fEG(C1) and fEG(C2) contained in the opposite Weyl sectors based at fEG(1/d, 1/d, . . . , 1/d). Note that
the triple intersection AEG∩AFE ∩AGF is a point when all triple ratios have valuation equal to zero. For
d = 2 this recovers the fact that if three apartments (lines) in an R-tree intersect pairwise along half-lines,
then they form a tripod. For d = 3, Theorem 5.7 was proved by Parreau [27] in greater generality, but
with different methods.

Remark 5.9. Theorem 5.7 and Remark 2.6 suffice to describe the intersections AE′,G′ ∩ AF ′,G′ for any
E′, F ′, G′ with {E′, F ′, G′} = {E,F,G}.

5.3. Shearing in Bd. The analogous of Theorem 5.7 for the positive ultralimit of a sequence of positive
quadruple of flags (En, Fn, Gn, Hn) follows from Proposition 2.17. Let us ease notation by setting

Zi := ulim Zi(En, Fn, Gn, Hn)

which we are assuming to be a positive element in F.

Theorem 5.10. Let (En, Fn, Gn, Hn) be a sequence of positive quadruples of flags in Rd with positive
ultralimit the quadruple of flags (E,F,G,H) in Fd. Consider the markings fEG and f ′EG of the apart-
ment AEG obtained by applying Theorem 5.7 to the sequence of positive triples of flags (En, Fn, Gn) and
(En, Hn, Gn), respectively. Then, the element

w(E,F,G,H) := f−1
EG ◦ f

′
EG ∈Waff
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is the translation by the unique vector (z1, z2, . . . , zd) ∈ Vd−1 such that zi − zi+1 = −v(Zd−i).

Proof. Recall that the sequence of flags (En, Fn, Gn) determines a sequence of bases (ui,n) for the line
decomposition associated to the flags (En, Gn). Likewise, the sequence of flags (En, Hn, Gn) determines
a sequence of bases (Ui,n) for the line decomposition associated to the flags (En, Gn). Thanks to Lemma
4.13, the ultralimits of the basis (ui,n) and (Ui,n) define bases (ui) and (Ui) of the vector space V =

(Fd)∗. The markings fEG and f ′EG in Theorem 5.7 are the standard markings of the bases (ui) and (Ui),
respectively. Proposition 2.17 implies that Ui = Z1Z2 · · ·Zd−iui. Applying Remark 3.6, we have that for
all (x1, x2, . . . , xd),

f−1
(ui)
◦ f(Ui)(x1, x2, . . . , xd) = (x1 + z1, x2 + z2, . . . , xd + zd)

where (z1, z2, . . . , zd) ∈ Vd−1 is such that

zi − zi+1 = v((Z1Z2 · · ·Zd−i)−1)− v((Z1Z2 · · ·Zd−i−1)−1)

= −v(Zd−i)

which is what needed to be proved. �

Remark 5.11. Theorem 5.10 is equivalent to [27, Prop. 4.5]. The reader should be aware of the small
difference between the double ratios and the edge parameters as explained in [27, §2.6].
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