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Abstract

This paper analyzes the randomized subspace iteration for the computation of low-rank
approximations. We present three different kinds of bounds. First, we derive both bounds for
the canonical angles between the exact and the approximate singular subspaces. Second, we
derive bounds for the low-rank approximation in any unitarily invariant norm (including the
Schatten-p norm). This generalizes the bounds for Spectral and Frobenius norms found in the
literature. Third, we present bounds for the accuracy of the singular values. The bounds are
structural in that they are applicable to any starting guess, be it random or deterministic, that
satisfies some minimal assumptions. Specialized bounds are provided when a Gaussian random
matrix is used as the starting guess. Numerical experiments demonstrate the effectiveness of
the proposed bounds.

1 Introduction

The computation of low-rank approximations of large-scale matrices is a vital step in many appli-
cations in data analysis and scientific computing. These applications include principal component
analysis, facial recognition, spectral clustering, model reduction techniques such as proper orthogo-
nal decomposition (POD) and discrete empirical interpolation method (DEIM), approximation algo-
rithms for partial differential and integral equations. The celebrated Eckart-Young theorem [10] says
that the optimal low-rank approximation can be obtained by means of the Singular Value Decom-
position (SVD); however, computing the full or truncated SVD can be computationally challenging,
or even prohibitively expensive for many applications of interest.

Randomized algorithms for computing low-rank approximations have become increasingly pop-
ular in the last two decades. For example, see the survey papers [12, 17]. Randomized methods
have gained in popularity since they are easy to implement, computationally efficient, and numeri-
cally robust. Although randomized algorithms tend to have the same asymptotic cost compared to
classical methods, they have several advantages that make them suitable for large-scale computing.
Specifically, for datasets that are too large to fit in memory, randomized algorithms are able to
exploit parallel computing efficiently and are efficient in the number of times they access the data.
Randomized algorithms also have excellent numerical robustness and are very reliable in practical
applications.

We focus on a specific randomized algorithm known as randomized subspace iteration. The main
idea of this method is to use random sampling to identify a subspace that approximately captures
the range of the matrix. A low-rank approximation to the matrix is then obtained by projecting
the matrix onto this subspace. A post-processing step is then performed to compress the low-
rank representation to achieve a desired target rank, and a conversion step to obtain an equivalent
representation in the desired format (typically, a truncated SVD representation)—both these steps
are deterministic.

∗Department of Mathematics, North Carolina State University asaibab@ncsu.edu. This work was funded, in part,
by NSF DMS 1720398, OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale
Inversion
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Many advances have been made in the analysis of randomized algorithms for low-rank approxi-
mations. The analysis typically has two stages: a structural, or deterministic stage, in which minimal
assumption about the distribution of the random matrix is made, and a probabilistic stage, in which
the distribution of the random matrix is taken into account to derive bounds for expected and tail
bounds of the error distribution. As mentioned earlier, existing literature only targets the error
in the low-rank representation [11, 12]. When the low-rank representation is in the SVD format,
it is desirable to understand the quality of the approximate subspaces and the individual singular
triplets. This paper aims to fill in some of the missing gaps in the literature by a rigorous analysis
of the accuracy of approximate singular values, vectors and subspaces obtained using randomized
subspace iteration. This analysis will be beneficial in applications where an analysis beyond the
low-rank approximation is desired. Examples include Model Reduction techniques [2, 9], Leverage
Score computation [14], Spectral Clustering [6], FEAST eigensolvers [23], Canonical Correlation
Analysis [1].

1.1 Contributions and overview of paper

We survey the contents and the main contributions of this paper.
Canonical angles. We have developed bounds for all the canonical angles between the spaces

spanned by the exact and the approximate singular vectors. Several different flavors of bounds are
provided:

1. The bounds in Section 3.1 relate the canonical angles between the exact and the approximate
singular subspaces. Analysis is also provided for unitarily invariant norms of the canonical
angles.

2. In applications where lower dimensional subspaces are extracted from the approximate singular
subspaces, the bounds in Section 3.2 quantifies the accuracy in the extraction process.

3. Section 3.2 also presents bounds for the angles between the individual exact and approximate
singular vectors, extracted from the appropriate subspaces.

Our bounds suggest that the accuracy of the singular values and vectors, in addition to the low-rank
approximations, is high provided (1) singular values decay rapidly beyond the target rank k, and
(2) the larger the singular value gaps, the higher is the accuracy to be expected. Furthermore, the
truncation step to extract the k dimensional subspaces does not significantly lower the accuracy of
the subspaces.

Low-rank approximation. This paper provides the first known analysis of the randomized
subspace iteration for an arbitrary unitarily invariant norm, with stronger, specialized results for
Schatten-p norms. Bounds for the special cases of the Schatten-p norm, namely the spectral and
Frobenius norms, have already appeared in the literature—our result for the Schatten-p norm re-
covers these results as special cases.

Singular values. We derive upper and lower bounds on the approximate singular values ob-
tained by the randomized subspace iteration. Similar bounds also appear in [11]; however, our
proof technique is different. We also present Hoffman-Wielandt type bounds for the accuracy of the
singular values.

The conclusion of the bounds for the low-rank approximations and the singular values are similar
to those of the conclusions for the canonical angles.

Generalization of sin theta theorem The sin theta theorem [25] is a well known result
in numerical analysis and relates the canonical angles between the true and approximate singular
subspaces in the unitarily invariant norms. We derive a generalization of the sin theta theorem
that derives bounds for the individual canonical angles between the two subspaces. The sin theta
theorem is recovered as a special case. This result maybe of independent interest beyond the study
of randomized algorithms.
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2 Background and preliminaries

2.1 Notation

Denote the target rank by k and let 1 ≤ k ≤ rank (A). Let the matrix A ∈ Cm×n, have the SVD

A =
[
Uk U⊥

] [Σk

Σ⊥

] [
V ∗
k

V ∗
⊥

]
.

Here, Σk ∈ Ck×k and Σ⊥ ∈ C(m−k)×(n−k); the columns of Uk and U⊥ are the corresponding left
singular vectors, and columns of Vk and V⊥ are the corresponding right singular vectors. We also
denote by Ak = UkΣkV

∗
k as the best rank−k approximation to the matrix A, in any unitarily

invariant norm (for a definition, see below). We also define A⊥ = U⊥Σ⊥V
∗
⊥ and observe that

A = Ak +A⊥.

Singular values and ratios Let ‖·‖2 denote the spectral norm, so that ‖Σ⊥‖2 = σk+1 and∥∥Σ−1
k

∥∥
2
= 1

σk
. The singular values of A can be arranged in decreasing order as

σ1 ≥ σ2 ≥ · · · ≥ σk ≥ σk+1 ≥ · · · ≥ σn.

For later use, we define the singular value ratios

γj =
σk+1

σj
j = 1, . . . , k. (1)

Since the singular values are monotonically decreasing, the singular value ratios are monotonically
increasing, i.e., γ1 ≤ · · · ≤ γk ≤ 1.

Norms We have already defined the spectral norm. The Frobenius norm of a matrix is ‖A‖F =√
trace (A∗A). We use the symbol |||·||| to denote any unitarily invariant norm, i.e., a norm that

satisfies |||QAZ||| = |||A||| for unitary matrices Q,Z. An example of the unitarily invariant norms is
Schatten-p class of norms, defined as the vector ℓp norm of the singular values of A, i.e.,

|||A|||p =




min{m,n}∑

j=1

σp
j




1/p

.

With this definition, it can be readily seen that ‖A‖2 = |||A|||∞ and ‖A‖F = |||A|||2. Another example

is the Ky-Fan-k class of norms defined ‖A‖(k) =
∑k

j=1 σj for every k = 1, . . . ,min{m,n}. Associated
with every unitarily invariant norm is a symmetric gauge function acting on the singular values of
the matrix that it acts on.

Projection matrices Suppose the matrix Z has full column rank with column space R (Z); Z†

is a left multiplicative inverse and where † represents the Moore-Penrose inverse. We define the
(orthogonal) projection matrix PZ = ZZ†. An orthogonal projection matrix is uniquely defined by
its range, and R (PZ) = R (Z). For a matrix Q with orthonormal columns, the formula simplifies
and PQ = QQ∗.

Canonical angles The separation between subspaces can be measured by the principal or canon-
ical angles. Let M and N be two subspaces of Cn, such that dimM = ℓ, dimN = k and ℓ ≥ k.
Then the principal angles between the subspacesM and N are recursively defined to be the numbers
0 ≤ θi ≤ π/2 such that

cos θi = max
u∈M,v∈N‖u‖

2
=‖v‖

2
=1

v∗u = v∗i ui, i = 1, . . . , k

3



subject to the constraints ‖ui‖2 = ‖vi‖2 = 1, and

u∗
ju, v∗j v = 0, j = 1, . . . , i− 1.

The canonical angles are arranged in increasing order as

0 ≤ θ1 ≤ · · · ≤ θk ≤ π/2.

It can also be shown that sin θi are also the singular values of PM − PN .
We denote ∠(M,N ) to be the canonical angles between subspacesM and N . Let M and N be

matrices with orthonormal columns, which form bases for subspacesM and N respectively. Then,
the singular values of singular values of (I −MM∗)N can be used to compute sin∠(M,N ) and the
singular values of M∗N can be used to compute cos∠(M,N ) [5, Section 3]. For ease of notation,
in the rest of this paper, we write ∠(M,N) instead of ∠(M,N ).

2.2 Randomized subspace iteration

The basic version of the randomized subspace iteration is summarized in Algorithm 1. Given a
starting guess, denoted by Ω ∈ C

n×(k+ρ), the algorithm performs q steps of the randomized subspace
iteration to obtain the matrix Y , also known as the “sketch.” A thin-QR factorization of Y is
performed to obtain Q whose columns form an orthonormal basis for the range of Y . The main
idea is that, under suitable conditions, the range of Q is a good approximation for the range of A.
We obtain a low-rank approximation to A by the projection Â = QQ∗A. The rest of the algorithm
involves converting this low-rank approximation into the SVD format. The algorithm to compute

Algorithm 1 Idealized version of Subspace iteration for Singular Value Decomposition

Require: Matrix A, Starting guess Ω ∈ C
n×(k+ρ), an integer q ≥ 0.

1: Compute Y = (AA∗)qAΩ
2: Compute thin QR factorization of Y , so that Y = QR.
3: Compute B = Q∗A and its SVD B = UBΣ̂V̂

∗.
4: Compute Û = QUB.
5: return Matrices Û , Σ̂, V̂ that define Â ≡ ÛΣ̂V̂ ∗.

an approximate singular value decomposition, given starting guess Ω ∈ Cn×(k+ρ) is summarized
in Algorithm 1. We say that this is an idealized version, since the algorithm can behave poorly
in the presence of round-off errors. A practical implementation of this algorithm alternates the
QR factorization with matrix-vector products (matvecs) involving A; for more details regarding the
implementation, the reader is referred to [12, 20]. In Algorithm 1, the output

Â ≡ QQ∗A = Û Σ̂V̂ ∗

may have a larger rank than (or equal to) k. If a rank-k approximation to A is desired, then it can be

obtained by discarding the ρ smallest singular values of Â. We denote this low-rank representation
by

Âk = ÛkΣ̂kV̂
∗
k .

This is summarized in Algorithm 2.
Before we state the assumptions needed for our analysis, we introduce the following notation. The
matrix V ∗Ω captures the influence of the starting guess on the right singular matrix V . Partition
this matrix as

V ∗Ω =

[
V ∗
k Ω

V ∗
⊥Ω

]
=

[
Ω1

Ω2

]
, (2)

where Ω1 = V ∗
k Ω ∈ Ck×(k+ρ) and Ω2 = V ∗

⊥Ω ∈ C(n−k)×(k+ρ). As was mentioned earlier, we assume
that the target rank k satisfies 1 ≤ k ≤ rank (A). Additionally, the following assumptions will be
required for our analysis.
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Algorithm 2 Truncated SVD of Â = QQ∗A

Require: Matrix A ∈ C
m×n and Q ∈ C

m×(k+ρ). Target rank 1 ≤ krank (A).
1: Form matrix B = Q∗A.
2: Compute the truncated SVD representation Bk = ÛB,kΣ̂kV̂

∗
k .

3: Form Ûk = QÛB,k

4: return Matrices Ûk, Σ̂k, V̂k such that Âk = ÛkΣ̂kV̂
∗
k .

Assumption 1. Let Ω1 ∈ Ck×(k+ρ) be defined as above. We assume that

rank (Ω1) = k. (3)

The singular value gap at index k is inversely proportional to the singular value ratio

γk = ‖Σ⊥‖2
∥∥Σ−1

k

∥∥
2
=

σk+1

σk
< 1. (4)

The first assumption guarantees that the starting guess Ω has a significant influence over the right
singular vectors, whereas the second assumption ensures that the k dimensional subspace R (Uk)
is well defined. In practice, it is highly desirable that γk ≪ 1, which ensures that there is a large
singular value gap.

3 Accuracy of singular vectors

We want to understand how well R (Û ) approximates R (Uk), measured in terms of the canonical

angles between the subspaces. To this end, abbreviate the subspace angles between Û ∈ Cm×ℓ

and Uk ∈ Cm×k as θ1, . . . , θk. Similarly, denote the angles between V̂ ∈ Cn×ℓ and Vk ∈ Cn×k

by ν1, . . . , νk. We are also interested in obtaining bounds for the canonical angles ∠(Uk, Ûk) and

∠(Vk, V̂k). To distinguish these angles from ∠(Uk, Û) and ∠(Vk, V̂ ), we call them θ′j and ν′j for
j = 1, . . . , k.

3.1 Bounds for canonical angles

Our first result derives bounds for the canonical angles ∠(Uk, Û). The analysis is based on the
perturbation of projectors and the tools used here are similar to [12].

Theorem 1. Let Û and V̂ be obtained from Algorithm 1. With Assumption 1, the canonical angles

θj and νj satisfy

sin θj ≤
γ2q+1
j

∥∥∥Ω2Ω
†
1

∥∥∥
2√

1 + γ4q+2
j

∥∥∥Ω2Ω
†
1

∥∥∥
2

2

sin νj ≤
γ2q+2
j

∥∥∥Ω2Ω
†
1

∥∥∥
2√

1 + γ4q+4
j

∥∥∥Ω2Ω
†
1

∥∥∥
2

2

for j = 1, . . . , k.

This theorem has several interesting features worth pointing out. First, if the matrix has
exact rank k, then all of the canonical angles are uniformly equal to zero; that is, the randomized
subspace iteration identifies the subspace exactly. On the other hand, when γk is very close to 1, the
subspaces may not be well-defined and may be difficult to identify. In practice, it is highly desirable
that γk ≪ 1, so that the angles are captured accurately.

Second, the bounds for the canonical angles show explicit dependence on the singular value ratios
γj . In particular, the canonical angles θj and νj converge to zero quadratically but at different rates
depending on the singular value ratios. Specifically, the smaller the singular value ratio, smaller the
canonical angles.
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Third, the term
∥∥∥Ω2Ω

†
1

∥∥∥
2
can be written in terms of the right singular vector matrix V and the

starting guess Ω as ∥∥∥Ω2Ω
†
1

∥∥∥
2
=
∥∥(V ∗

⊥Ω)(V
∗
k Ω)

†
∥∥
2
.

When the columns of Ω is linearly independent, this quantity is nothing but the tangent of the
largest canonical angle between R (Vk) and R (Ω). This term appears frequently in randomized
linear algebra and can be interpreted as a measure of the subspace overlap between the starting
guess and the right singular vectors. In the ideal case, Ω contains the singular vectors in Vk. A
discussion of the meaning and interpretation of this term, is provided in [8, Section 2.5]. In particular,

when Ω is a Gaussian random matrix,
∥∥∥Ω2Ω

†
1

∥∥∥
2
is roughly on the order of

√
(n− k)k.

Fourth, the influence of
∥∥∥Ω2Ω

†
1

∥∥∥
2
is subdued by the singular value ratios γ2q+1

j . With sufficiently

large number of iterations q, the canonical angles are smaller than a user-defined tolerance. Rigorous
bounds for the requisite number of iterations are provided in Section 3.4.

Lastly, the bounds for the canonical angles θj are smaller than νj because the latter contains an

additional power of γj . The reason for this higher accuracy is as follows: the columns of V̂ are the
right singular vectors of Q∗A. Therefore, the multiplication step with Q amounts to an additional
step of subspace iteration and gives the extra factor.

Remark 1. Theorem 1 gives the sine of the canonical angles; these bounds can also be used to

obtain upper bounds for the tangents and lower bounds for the cosines. With the same assumptions

and notation as in Theorem 1, the relationship between the tangent and sine implies

tan θj ≤ γ2q+1
j

∥∥∥Ω2Ω
†
1

∥∥∥
2

tan νj ≤ γ2q+2
j

∥∥∥Ω2Ω
†
1

∥∥∥
2

for j = 1, . . . , k. Lower bounds for cosine of the canonical angles follow similarly.

Unitarily invariant norms The following result derives bounds for the canonical angles in any
unitarily invariant norm, in contrast to Theorem 1 which bounds the individual canonical angles.

Theorem 2. Let the approximate singular vectors Û and V̂ for a matrix A be computed according

to Algorithm 1. Under Assumption 1, for every unitarily invariant norm,

∣∣∣
∣∣∣
∣∣∣sin∠(Uk, Û)

∣∣∣
∣∣∣
∣∣∣ ≤ γ2q

k

|||Σ⊥|||
σk

∥∥∥Ω2Ω
†
1

∥∥∥
2
,

∣∣∣
∣∣∣
∣∣∣sin∠(Vk, V̂ )

∣∣∣
∣∣∣
∣∣∣ ≤ γ2q+1

k

|||Σ⊥|||
σk

∥∥∥Ω2Ω
†
1

∥∥∥
2
.

(5)

The interpretation of this theorem is similar to that of Theorem 1. The connection between the
two theorems follows from the identity sin θk = ‖ sin∠(Uk, Û)‖2. If we specialize the result in The-
orem 2 to the spectral norm, then it is clear that this result weaker than the bound in Theorem 1.

3.2 Extraction of k-dimensional subspaces

In the previous subsection, the columns of Û and V̂ spanned ℓ = k+ρ dimensional subspaces. Many
applications, however, require the extraction of k dimensional singular subspaces from the low-rank
approximation Â ≡ QQ∗A. One way to extract the appropriate subspaces is to first compute the
optimal rank-k truncation of Â, denoted by Âk. The singular vectors of Âk, denoted by Ûk and
V̂k, are then used instead of Û and V̂ . See Algorithm 2, for details regarding implementation. The
bounds derived in the previous subsection are not directly applicable since [26, Corollary 10] says

θj ≤ θ′j νj ≤ ν′j j = 1, . . . , k.

To understand how much additional error is incurred during this extraction process, we present
several results. The important conclusion of all these results is that the accuracy of the extracted
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subspaces of dimension k is comparable to the accuracy of the k+ ρ dimensional subspace provided
the singular values are sufficiently well separated.

The approach we take is different from that of the previous section. The starting point of our
analysis is the well-known sin theta theorem for singular subspaces [25]. Let A, Â be two matrices
of conformal dimensions. Assuming that

ζ ≡ σk(A) − σk+1(Â) > 0, (6)

we have

max
{∣∣∣
∣∣∣
∣∣∣sin∠(Uk, Ûk)

∣∣∣
∣∣∣
∣∣∣,
∣∣∣
∣∣∣
∣∣∣sin∠(Vk, V̂k)

∣∣∣
∣∣∣
∣∣∣
}
≤ max{|||E12|||, |||E21|||}

ζ
, (7)

where the two matrices E12 and E21 are

E12 = (I − PÛk
)(A− Â)PVk

E21 = PUk
(A− Â)(I − PV̂k

).
(8)

However, this version of the sin theta theorem does not provide us with a way to obtain bounds
for the individual canonical angles. To this end, we first present a new generalization of the sin theta
theorem.

Theorem 3. Let A ∈ C
m×n with rank (A) ≥ k and let Â be the perturbed matrix with same dimen-

sions. Suppose the singular value gap satisfies Equation (6). Let Âk = ÛkΣ̂kV̂
∗
k be the truncated

SVD of Â. Then

max{sin θ′j , sin ν′j} ≤
σk(A)

σj(A)
max{sin θ′k, sin ν′k} j = 1, . . . , k.

This theorem states that the sine of the canonical angles sin θ′j are bounded by sin θ′k up to a
multiplicative factor, which is at most 1.

Our main result provides the following bounds for canonical angles between the exact and the
approximate singular subspaces, when both the subspaces have the same dimension. The proof
involves simplifying every term in Equation (8).

Theorem 4. Let Û and V̂ be obtained from Algorithm 1, and matrices Ûk and V̂k from Algorithm 2.

Under Assumption 1,

• for every unitarily invariant norm

max
{∣∣∣
∣∣∣
∣∣∣sin∠(Uk, Ûk)

∣∣∣
∣∣∣
∣∣∣,
∣∣∣
∣∣∣
∣∣∣sin∠(Vk, V̂k)

∣∣∣
∣∣∣
∣∣∣
}
≤ φ

γ2q
k

1− γk

|||Σ⊥|||
σk

∥∥∥Ω2Ω
†
1

∥∥∥
2
.

The factor φ takes different values depending on the specific norm used. For an arbitrary

unitarily invariant norm, we have φ =
√
2, whereas for the spectral and Frobenius norms, we

have φ = 1.

• canonical angles θ′j and ν′j satisfy

max{sin θ′j , sin ν′j} ≤ γj
γ2q
k

1− γk

∥∥∥Ω2Ω
†
1

∥∥∥
2

j = 1, . . . , k.

The interpretation of this theorem is: (1) as the number of iterations q increase, the largest
canonical angle converges to 0 quadratically, and (2) a larger singular value gap means that the
subspace is computed more accurately. Comparing this result with Theorem 2, we see that the
upper bound in Theorem 4 has additional factors which depend on the specific norm used. For an
arbitrary unitarily invariant norm, there is an additional factor max{1,

√
2γk}/(1 − γk). For the

spectral and Frobenius norms, the additional factor is 1/(1− γk). Both factors are greater than 1,
suggesting that the truncation process can introduce additional error. The additional factor is also
independent of the number of iterations q, suggesting that it is a one-time price to be paid for the
extraction process. The bound is devastating when γk ≈ 1, but this also means that the subspaces
may not be well-defined.

7



Individual singular vectors The previous results give insight into the accuracy measured us-
ing the canonical angles between the exact and approximate singular subspaces. When individual
singular vectors need to be extracted, does the extraction process introduce additional error? The
following result quantifies the accuracy of the extraction process.

Theorem 5. Let the approximate singular vectors Û and V̂ be computed according to Algorithm 1.

With Assumption 1, we have the following inequalities

sin∠(uj, Û) ≤ γ2q+1
j

∥∥∥Ω2Ω
†
1

∥∥∥
2

sin∠(vj , V̂ ) ≤ γ2q+2
j

∥∥∥Ω2Ω
†
1

∥∥∥
2

(9)

for j = 1, . . . k. Denote the approximate singular triplets (σ̂j , ûj, v̂j) for j = 1, . . . , k. Under As-

sumption 1

max {sin∠(uj , ûj), sin∠(vj , v̂j)} ≤
√
1 + 2

γ̃2

δ̃2
γ2q+1
j

∥∥∥Ω2Ω
†
1

∥∥∥
2
. (10)

Here, γ̃2 ≡ ‖Σ⊥‖22 +
∥∥∥Σ⊥Ω2Ω

†
1

∥∥∥
2

2
and δ̃ ≡ min{minσ̃i 6=σ̃j

{|σj − σ̃i|, σj}}.

The first result bounds the angles between the exact singular vector and the corresponding
approximate singular subspaces. The second result compares the angles of the exact and the ap-
proximate singular vectors. This result also says that the extraction process does not adversely
increase the error in the singular subspaces, provided the singular values are well-separated.

The convergence of the individual singular vectors tell a similar story to that of Theorem 1.
The singular vectors corresponding to the largest singular values converge earlier than the singular
vectors corresponding to the smaller singular vectors. This is a consequence of the fact that the
singular value ratios are non-decreasing.

3.3 Comparison with other bounds

The subspace iteration dates to a 1957 paper by Bauer [3] for eigenvalue problems. The analysis
of the subspace iteration has also been well-established, for example, we refer to [19, Chapter 14].
Randomized subspace iteration has attracted a lot of attention in the last two decades, with a special
emphasis on quantifying the influence of the starting guess Ω. In particular, recent research has
focused on the choice of the distribution and the effect of the oversampling parameter ρ. The effect
of randomized subspace iteration on the accuracy of singular vectors was studied in the context
of spectral clustering in [6]. However, the authors made the rather strong assumption that Ω ∈
Rn×k, which amounts to setting the oversampling parameter ρ = 0. This is a strong requirement
since Assumption 1 now requires Ω1 to be invertible. The authors were able to show (in our notation)

∥∥∥sin∠(Uk, Ûk)
∥∥∥
2
≤

γ2q+1
k

∥∥Ω2Ω
−1
1

∥∥
2√

1 + γ4q+2
k

∥∥Ω2Ω
−1
1

∥∥2
2

.

Notice that this bound coincides with Theorem 1 (for sin θk) when ρ = 0. Our results provide
bounds for the right singular vectors as well as all the canonical angles.

Let us return to this assumption that rank (Ω1). When Ω is standard Gaussian matrix, [21,
Theorem 3.3] says

‖Ω−1
1 ‖2 ≤

2.35
√
k

δ

with probability at least 1 − δ. For a small probability of failure 0 < δ < 1, this bound can be
devastating. By contrast, if we let Ω1 ∈ Ck×(k+ρ) with ρ ≥ 2, and still suppose that Ω is a Gaussian
random matrix. Then, with probability at least 1− δ [12, Proposition 10.4] says

∥∥∥Ω†
1

∥∥∥
2
≤ e

√
k + ρ

ρ

(
1

δ

)1/(ρ+1)

.
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It is clear that when the random matrix is Gaussian, oversampling has an impact on the accuracy
of the randomized subspace iteration. Specifically, larger the oversampling, the more accurate is the
subspace.

Oversampling plays a bigger role for random matrices that have different distributions than
Gaussian. When Ω is generated from the subsampled randomized Hadamard transform (SRHT), or
Rademacher distributions, a more aggressive form of oversampling ℓ ∼ k log k is necessary to ensure
that rank (Ω1) = k. Therefore, by allowing for oversampling, our bounds are applicable to starting
guesses that are not restricted to Gaussian random matrices. Not only that, our bounds are also
informative for matrices with decaying singular values and significant singular value gap.

A recent paper by Nakatsukasa [18] considered the issue of accuracy of extracting singular sub-
spaces for general projection-based approximation methods. In our notation, these refer to relating
bounds for ∠(Uk, Û) to ∠(Uk, Ûk). Our bounds for the canonical angles appear to be tighter than
the result implied by [18, Corollary 1]. This may be because the analysis was applicable to arbitrary
subspace projections, whereas ours is specialized to randomized subspace iteration; we do not go
into a detailed comparison here. Furthermore, our analysis is able to bound the individual canonical
angles which is missing in [18].

3.4 Probabilistic bounds

Thus far, we have not made specific assumptions on the matrix Ω, as long as it satisfies rank (Ω1) = k.
In particular, Ω need not be even be random, and may be deterministic. However, more can be said
about the bounds when Ω is random is drawn from a specific distribution.

In many applications, the matrix Ω ∈ Rn×(k+ρ) is taken to be the standard Gaussian random
matrix. That is, the entries of Ω are i.i.d.N (0, 1) random variables. Here we derive a few probabilistic
results that provide insight into the accuracy of the subspaces. Let ρ ≥ 2 and define the constant

Ce =

√
k

ρ− 1
+

e
√
(k + ρ)(n− k)

ρ
(11)

and for 0 < δ < 1 define the constant

Cd =
e
√
k + ρ

ρ+ 1

(
2

δ

)1/(ρ+1)
(
√
n− k +

√
k + ρ+

√
2 log

2

δ

)
. (12)

Theorem 6 (Probabilistic bounds). Let Ω ∈ R
n×(k+ρ) be a standard Gaussian random matrix with

ρ ≥ 2. Assume that the singular value ratio γk < 1. Let Û and V̂ be obtained from Algorithm 1.

For j = 1, . . . , k, the expected value of the canonical angles satisfy

E [sin θj ] ≤
γ2q+1
j Ce√

1 + γ4q+2
j C2

e

E [sin νj ] ≤
γ2q+2
j Ce√

1 + γ4q+4
j C2

e

.

Let 0 < δ < 1 be a user defined failure tolerance. With probability, at least 1 − δ, the following

inequalities hold independently for j = 1, . . . , k

sin θj ≤
γ2q+1
j+1 Cd√

1 + γ4q+2
j C2

d

sin νj ≤
γ2q+2
j Cd√

1 + γ4q+4
j C2

d

.

The main message of theorem can be seen from the following bound on the number of subspace
iterations q. Specifically, suppose 0 < ǫ < 1, and the number of subspace iterations q we take satisfies

q ≥ 1

2

(
log ǫ/Ce

log γk
− 1

)
,

then E sin θj ≤ O(ǫ2) for j = 1, . . . , k.

9



Several extensions of these results are possible. First, following the proof technique of Theorem 6,
we can extend the probabilistic analysis to Theorems 2 and 5 as well. Second, following the strategy
in [12], the probabilistic results can be extended to other distributions. However, we will not pursue
these extensions here.

4 Low-rank approximation and Singular values

In this section, we provide several structural bounds for the accuracy of the low-rank approximation
and the accuracy of the singular values.

4.1 Low-rank approximation

Several results are available for estimating the error in the low-rank approximation A ≈ QQ∗A in
the spectral and Frobenius norms, when the matrix Q is obtained from the randomized subspace
iteration [11, 12, 27]. As was mentioned earlier, the spectral and Frobenius norms are special cases
of the Schatten-p norm, which are examples of unitarily invariant norms.

Here we present the first known analysis of randomized subspace iteration in a unitarily invariant
norm.

Theorem 7. Let Â ∈ Cm×n be computed using Algorithm 1. Under Assumption 1, the following

inequalities hold in every unitarily invariant norm

|||(I −QQ∗)A||| ≤ |||Σ⊥|||+ γ2q
k

∣∣∣
∣∣∣
∣∣∣Σ⊥Ω2Ω

†
1

∣∣∣
∣∣∣
∣∣∣ (13)

|||(I −QQ∗)Ak||| ≤ γ2q
k

∣∣∣
∣∣∣
∣∣∣Σ⊥Ω2Ω

†
1

∣∣∣
∣∣∣
∣∣∣. (14)

Let B = Q∗A, and let Bk be its best rank−k approximation. If A is approximated using QBk, then

the error in the low-rank approximation is

|||A−QBk||| ≤
(
1 +

σ1

σk

φγ2q
k

1− γk

∥∥∥Ω2Ω
†
1

∥∥∥
2

)
|||Σ⊥|||. (15)

As in Theorem 4, φ = 1 for spectral and Frobenius norms, and
√
2 for an arbitrary unitarily invariant

norm.

In this theorem, as the number of iterations q → ∞, the error in the low-rank approximation
goes to zero.

We present a variant of the error in the low-rank approximation for the special case that a
Schatten-p norm is used. The proof for the special case of the Frobenius norm was provided in [27].

Theorem 8. Let Â be computed using Algorithm 1. Under Assumption 1, we have

|||(I −QQ∗)A|||2p ≤ |||Σ⊥|||2p + γ4q
k

∣∣∣
∣∣∣
∣∣∣Σ⊥Ω2Ω

†
1

∣∣∣
∣∣∣
∣∣∣
2

p
. (16)

The error bound in Theorem 7 is weaker than Theorem 8 for the Schatten-p norm since for
α, β ≥ 0, we have

√
α2 + β2 ≤ α + β. More generally, Theorem 8 is applicable to any unitarily

invariant norm that is also a Q-norm [4, Definition IV.2.9]. A unitarily invariant norm |||·|||Q is a

Q-norm, if there exists another unitarily invariant norm |||·|||a such that |||A|||2Q = |||A∗A|||a. Note

that the Schatten-p norms satisfy this property for p ≥ 2, since |||A|||2p = |||A∗A|||p/2.

4.2 Accuracy of singular values

How are the singular values of A related to the singular values of Â? We now present a result that
quantifies the accuracy of the individual singular values. This result is similar to [11, Theorem 4.3].
Our proof techniques are substantially different. We make extensive use of the Cauchy interlacing
theorem and the multiplicative singular value inequalities Equation (20).
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Theorem 9. Let Â = ÛΣ̂V̂ ∗ be computed using Algorithm 1. Under Assumption 1, the approximate

singular values σj(Â) satisfy for j = 1, . . . , k

σj(A) ≥ σj(Â) ≥ σj(A)√
1 + γ4q+2

j

∥∥∥Ω2Ω
†
1

∥∥∥
2

2

.

It can be readily seen that the large singular values are computed more accurately since the
singular value ratio corresponding to larger singular values is smaller.

Rather than quantify the accuracy of the individual singular values, the next results are of the
Hoffman-Wielandt type and account for all the singular values together. Define the two matrices of
conformal sizes

Σ =

[
Σk

Σ⊥

]
Σ′ =

[
Σ̂

0

]
.

Under Assumption 1, the error in the singular values satisfies

|||Σ− Σ′||| ≤ |||Σ⊥|||+ γ2q
k

∣∣∣
∣∣∣
∣∣∣Σ⊥Ω2Ω

†
1

∣∣∣
∣∣∣
∣∣∣. (17)

The proof combines [4, III.6.13] with Theorem 7. For the Schatten-p norm, with p ≥ 2, we can
derive the bound

|||Σ− Σ′|||p ≤
√
|||Σ⊥|||2p + γ4q

k

∣∣∣
∣∣∣
∣∣∣Σ⊥Ω2Ω

†
1

∣∣∣
∣∣∣
∣∣∣
2

p
. (18)

The proof is similar, and is therefore omitted.

5 Proofs

We recall some results here that will be useful in our analysis, see [15, Section 7.7] for proofs.
Let M,N be Hermitian positive definite. The notation M � N means N −M is positive semi-
definite and it defines a partial ordering on the set of Hermitian matrices. Clearly, this also implies
I −N � I −M . The partial order is preserved under the conjugation rule. That is

SMS∗ � SNS∗ ∀ S ∈ C
m×n.

Weyl’s theorem implies that the eigenvalues satisfy λj(M) ≤ λj(N) for all j = 1, . . . , n. If
additionally, M,N are both positive semidefinite then M1/2 � N1/2 [4, Proposition V.1.8] and
(I +N)−1 � (I +M)−1.

Singular value inequalities Let A,B ∈ Cm×n. For all i, j such that 1 ≤ i, j ≤ min{m,n} and
i+ j−1 ≤ min{m,n}, the following singular value inequalities hold for the sum A+B [15, Equation
7.3.13]

σi+j−1(A+B) ≤ σi(A) + σj(B), (19)

and product AB∗ [15, Equation (7.3.14)]

σi+j−1(AB
∗) ≤ σi(A)σj(B). (20)

A useful corollary of these results is that σi(A + B) ≤ σi(A) + σ1(B) and σi(AB
∗) ≤ σi(A)σ1(B)

for i = 1, . . . ,min{m,n}.

Unitarily invariant norms It is useful to recall some properties of the unitarily invariant norms.
Every unitarily invariant norm |||·||| on Cn is associated with a symmetric gauge function on Rn. The
|||·||| satisfies |||M ||| =

∣∣∣∣∣∣(M∗M)1/2
∣∣∣∣∣∣, since both matrices have the same nonzero singular values. The

following inequality for unitarily invariant norms, also known as strong sub-multiplicativity, will be
useful [4, (IV.40)]

|||ABC||| ≤ ‖A‖2 ‖C‖2 |||B|||.
We will need the following lemma

11



Lemma 1. Let A,B,D ∈ Cn×n such that A,B Hermitian and 0 � A � B, then

∣∣∣
∣∣∣
∣∣∣(D∗AD)1/2

∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣(D∗BD)1/2

∣∣∣
∣∣∣
∣∣∣.

Proof. Combining the properties of the partial ordering, the eigenvalues of the scaled matrices satisfy
λj(D

∗AD)1/2 ≤ λj(D
∗BD)1/2 for all j = 1, . . . , n. Since the matrices are positive semidefinite, the

eigenvalues are the singular values and ‖(D∗AD)1/2‖(k) ≤ ‖(D∗BD)1/2‖(k) for every Ky-Fan-k norm
k = 1, . . . , n. By the Fan dominance theorem [4, Theorem IV.2.2], the advertised inequality is true
for every unitarily invariant norm.

5.1 Proofs of Section 3.1 Theorems

Theorem 1. We tackle each case separately.
Bounds for sin θj : The proof is lengthy and proceeds in four steps. We give a great level of detail
here, since the proof technique will be applicable to the subsequent proofs.

1. Converting an SVD to an EVD We compute the thin SVD of (I −PÛ )Uk = KSUG
∗. The

matrix
SU = diag (sin θk, . . . , sin θ1) ∈ R

k×k

contains the sine of the canonical angles between the subspaces spanned by the columns of Û and
Uk [5, Equation (13)]. It is readily seen that

GS2
UG

∗ = U∗
k (I − PÛ )Uk. (21)

2. Shrinking space In Algorithm 1, we had defined Y = (AA∗)qAΩ. It follows that

U∗Y =

[
Σ2q+1

k

(Σ⊥Σ
⊤
⊥)

qΣ⊥

]
(V ∗Ω) =

[
Σ2q+1

k Ω1

(Σ⊥Σ
⊤
⊥)

qΣ⊥Ω2

]
,

where from Equation (2), Ω1 = V ∗
k Ω and Ω2 = V ∗

⊥Ω. Next, by Assumption 1, Ω1 has full row rank
and therefore it has a right multiplicative inverse. Define

Z ≡ U∗Y Ω†
1Σ

−(2q+1)
k =

[
I
F

]
F ≡ (Σ⊥Σ

⊤
⊥)

qΣ⊥Ω2Ω
†
1Σ

−(2q+1)
k .

Recall that Y = QR is the thin-QR factorization of Y . Let Q1R1 be the thin-QR factorization of

RΩ†
1Σ

−(2q+1)
k ; here, Q1 ∈ C(k+ρ)×k, R1 ∈ Ck×k.

From Q1Q
∗
1 � I, the conjugation rule implies

PZ = U∗QQ1Q
∗
1Q

∗U � U∗QQ∗U = PU∗Q.

Since R (U∗Y ) = R (U∗Q) = R (U∗Û), they have the same projectors, so

PZ � PU∗Û I − PU∗Û � I − PZ . (22)

Plug in UU∗ = I into (21), and use (22) to obtain

U∗
k (I − PÛ )Uk = U∗

kU(I − PU∗Û )U
∗Uk �

[
I 0

]
(I − PZ)

[
I
0

]
.
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3. Simplifying PZ Since PZ = ZZ†, we have

PZ =

[
I
F

]
(I + F ∗F )−1

[
I F ∗

]
,

from which, it can be readily seen that

[
I 0

]
(I − PZ)

[
I
0

]
= I − (I + F ∗F )−1

= F ∗F (I + F ∗F )−1 ≡ H. (23)

Note that H is positive semidefinite. To summarize the story so far, GS2
UG

∗ � H .

4. Applying singular value inequalities A straightforward SVD argument shows that the j-th
singular value of H satisfies

σj(H) = σ2
j (F )/(1 + σ2

j (F )) j = 1, . . . , k.

The singular value inequalities Equation (20) imply

σj(F ) ≤ σ1(Σ⊥Σ
⊤
⊥)

qΣ⊥Ω2Ω
†
1)σj(Σ

−2q−1
k ) ≤

(
σk+1

σk−j+1

)2q+1 ∥∥∥Ω2Ω
†
1

∥∥∥
2
.

Plugging this inequality into σj(H)

σ2
j (H) ≤

γ4q+2
k−j+1

∥∥∥Ω2Ω
†
1

∥∥∥
2

2

1 + γ4q+2
k−j+1

∥∥∥Ω2Ω
†
1

∥∥∥
2

2

j = 1, . . . , k.

Since GS2
UG

∗ � H , Weyl’s theorem implies sin2 θk−j+1 ≤ σ2
j (H). Take square roots on both sides

and rename j ← k − j + 1 to get the desired result.
Bounds for sin νj : Let GS2

V G
∗ be the eigenvalue decomposition of V ∗

k (I − PV̂ )Vk. Note that

the diagonals of SV are the sine of the canonical angles ∠(Vk, V̂ ). Since V̂ is obtained from the thin

SVD of A∗Q, R (A∗Q) = R (V̂ ) and PV̂ = PA∗Q, since an orthogonal projection matrix is uniquely

determined by the range. Next, consider Ẑ defined as

Ẑ ≡ Σ⊤U∗Y Ω†
1Σ

−2q−2
k =

[
I

F̂

]
F̂≡(Σ⊤

⊥Σ⊥)
q+1Ω2Ω

†
1Σ

−2q−2
k , (24)

from (AV )∗Q = Σ∗U∗Q, it can be verified that

R (Ẑ) ⊂ R (Σ⊤U∗Y ) = R (Σ⊤U∗Q) = R ((AV )∗Q).

Using an argument similar to Equation (22), we obtain

V ∗
k V (I − PV̂ )V

∗Vk � V ∗
k V (I − PẐ)V

∗Vk =
[
I 0

]
(I − PẐ)

[
I
0

]
.

The right hand side simplifies to I − (I + F̂ ∗F̂ )−1. The rest of the proof is similar to that of the
proof for sin θj .

Theorem 2. With the notation of Theorem 1, we follow steps 1-3 of the proof to obtain

GS2
UG

∗ � H � F ∗F.
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Since the square root preserves partial ordering, implies GSUG
∗ � (F ∗F )1/2. Note that (F ∗F )1/2

and F have the same nonzero singular values. Therefore,
∣∣∣
∣∣∣
∣∣∣sin∠(Uk, Û)

∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣(F ∗F )1/2

∣∣∣
∣∣∣
∣∣∣ = |||F |||.

By using strong sub-multiplicativity of the unitarily invariant norm, we have

∣∣∣
∣∣∣
∣∣∣sin∠(Uk, Û)

∣∣∣
∣∣∣
∣∣∣ ≤ γ2q

k

∥∥∥Ω2Ω
†
1

∥∥∥
2

|||Σ⊥|||
σk

.

5.2 Proofs of Section 3.2 Theorems

Theorem 3. Let X = (I −PÛk
)PUk

and Y = (I −PV̂k
)PVk

. In decreasing order, the singular values

of X and Y are {sin θ′j}kj=1 and {sin ν′j}kj=1 respectively. Let B ≡ Â− Âk. First, we observe that

E12 = (I − PÛk
)(A− Â)PVk

= (I − PÛk
)Ak − (I − PÛk

)ÂPVk

= (I − PÛk
)PUk

Ak − (Â− Âk)PVk

=XAk − B(I − PV̂k
)PVk

= XAk −BY.

A similar calculation shows that E21 = X∗B − AkY
∗. From the first relation, since rank (A) ≥ k,

we have
XAkA

†
k = (E12 +BY )A†

k.

But AkA
†
k = PUk

and XPUk
= X . Applying Equation (20), we have

σj(X) ≤ (‖E12‖2 + ‖B‖2‖Y ‖2)/σk−j+1(A) j = 1, . . . , k.

A similar argument gives

σj(Y ) ≤ (‖E21‖2 + ‖B‖2 ‖X‖2)/σk−j+1(A) j = 1, . . . , k.

Combining these relations

max{σj(X), σj(Y )} ≤ max{‖E21‖2, ‖E12‖2}
σk−j+1(A)

+
‖B‖2

σk−j+1(A)
max{‖X‖2, ‖Y ‖2}.

Recognize that ‖B‖2 = σk+1(Â). Applying Equation (7) in the spectral norm simplifies the expres-
sion since

1

σk−j+1(A)

(
1 +

σk+1(Â)

σk(A)− σk+1(Â)

)
=

σk(A)

σk−j+1(A)(σk(A)− σk+1(Â))
.

Therefore,

max{σj(X), σj(Y )} ≤ σk(A)

σk−j+1(A)

max{‖E21‖2 , ‖E12‖2}
ζ

.

Now σj(X) = sin θ′k−j+1 and σj(Y ) = sin ν′k−j+1. Rename j ← k − j + 1 to finish.

Theorem 4. We tackle each case independently.
Unitarily invariant norms: Our proof involves simplifying each term in Equation (7), and Equa-
tion (8) and has several steps.

1. Simplifying the gap Recall ζ = σk(A) − σk+1(Â) and Â = QQ∗A. From the first part
of Theorem 9

ζ = σk(A)− σk+1(Â) ≥ σk(A)− σk+1(A).
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2. Simplifying |||E12||| First observe that APVk
= Ak. So

E12 = (I − PÛk
)(I −QQ∗)APVk

= (I − PÛk
)(I −QQ∗)Ak.

Then applying Equation (14) along with sub-multiplicativity gives

|||E12||| ≤ |||(I −QQ∗)Ak||| ≤ γ2q
k

∣∣∣
∣∣∣
∣∣∣Σ⊥Ω2Ω

†
1

∣∣∣
∣∣∣
∣∣∣ ≤ γ2q

k |||Σ⊥|||
∥∥∥Ω2Ω

†
1

∥∥∥
2
.

3. Simplifying |||E21||| First, E21 = PUk
(I−QQ∗)APV̂k

, and since ‖PUk
(I −QQ∗)‖2 =

∥∥∥sin∠(Uk, Û)
∥∥∥
2
,

|||E21||| ≤
∥∥∥sin∠(Uk, Û)

∥∥∥
2
|||(I −QQ∗)A|||,

because of strong sub-multiplicativity. Applying Theorem 1 and Equation (14)

|||E21||| ≤
γ2q+1
k

∥∥∥Ω2Ω
†
1

∥∥∥
2√

1 + γ4q+2
k ‖Ω2Ω

†
1‖22

(
1 + γ2q

k

∥∥∥Ω2Ω
†
1

∥∥∥
2

)
|||Σ⊥|||.

Let β = γ2q
k

∥∥∥Ω2Ω
†
1

∥∥∥
2
. Then for β ≥ 0, since γk < 1

γk(1 + β)√
1 + γ2

kβ
2
≤ 1 + γkβ√

1 + γ2
kβ

2
≤
√
2.

Therefore, |||E21||| ≤
√
2γ2q

k |||Σ⊥|||‖Ω2Ω
†
1‖2.

4. Putting everything together Plugging in the intermediate quantities into Equation (7), we
have

max
{∣∣∣
∣∣∣
∣∣∣sin∠(Uk, Ûk)

∣∣∣
∣∣∣
∣∣∣,
∣∣∣
∣∣∣
∣∣∣sin∠(Vk, V̂k)

∣∣∣
∣∣∣
∣∣∣
}
≤
√
2γ2q

k

∥∥∥Ω2Ω
†
1

∥∥∥
2

|||Σ⊥|||
σk − σk+1

.

Dividing the numerator and denominator by σk proves the stated result for unitarily invariant norms.
Spectral/Frobenius norms: Let ‖·‖ξ denote the spectral and Frobenius norms. The first two

steps are identical to the proof for unitarily invariant norms. For the third step, using Equation (14)

‖E21‖ξ ≤
γ2q+1
k ‖Ω2Ω

†
1‖2√

1 + γ4q+2
k ‖Ω2Ω

†
1‖22
‖Σ⊥‖ξ

√
1 + γ4q

k

∥∥∥Ω2Ω
†
1

∥∥∥
2

2
.

With β defined as before, since γk < 1,
√
γ2
k + γ2

kβ
2/
√
1 + γ2

kβ
2 ≤ 1. Therefore,

‖E21‖ξ ≤ γ2q
k ‖Σ⊥‖ξ

∥∥∥Ω2Ω
†
1

∥∥∥
2
.

The rest of the proof is the same.
Canonical angles: The proof combines Theorem 3 with the above analysis for the spectral

norm. The right hand side contains the term

max
{∥∥∥sin∠(Uk, Ûk)

∥∥∥
2
,
∥∥∥sin∠(Vk, V̂k)

∥∥∥
2

}
.

The rest of the proof involves some simple manipulations.

Theorem 5. We first address Equation (9). Following the steps of the proof of Theorem 1, we have

sin2 ∠(uj , Û) = u∗
jU(I − PU∗Q)U

∗uj �
[
e⊤j 0

]
(I − PZ)

[
ej
0

]
,
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where ej is the j–th column of the k×k identity matrix. Therefore, we have sin2 ∠(uj , Û) ≤ e⊤j Hej,
where H was defined in Equation (23). The inequality H � F ∗F implies

sin2 ∠(uj, Û) ≤ σ−4q−2
j

∥∥∥(Σ⊥Σ
⊤
⊥)

qΣ⊥(Ω2Ω
†
1)ej

∥∥∥
2

2

≤ γ4q+2
j

∥∥∥Ω2Ω
†
1

∥∥∥
2

2
.

Taking square-roots on both sides gives the desired results. The strategy for bounding the canonical
angles sin∠(vj , V̂ ) is very similar and will be omitted.

We now address Equation (10), which is a straightforward application of [13, Theorem 2.5]. Let
PU = QQ∗ and PV = I. Then, in our notation, this result takes the form

max {sin∠(uj, ûj), sin∠(vj , v̂j)} ≤
√
1 + 2

γ̃′2

δ̃2
max

{
sin∠(uj, Û), sin∠(vj , I)

}
.

where γ̃′ = max{0, ‖(I −QQ∗)A‖2} and δ̃ is as defined in the statement of the theorem. Theorem 8
for the spectral norm implies γ̃′ ≤ γ̃, whereas Theorem 5 implies

max
{
sin∠(uj, Û), sin∠(vj , I)

}
≤ γ2q

j

∥∥∥Ω2Ω
†
1

∥∥∥
2
.

Plug in the intermediate steps to obtain the desired bound.

Theorem 6. In Theorem 1, bounds for
∥∥∥Ω2Ω

†
1

∥∥∥
2
are available in the literature. From the proof

of [12, Theorem 10.6] we find the inequality

E

∥∥∥Ω2Ω
†
1

∥∥∥
2
≤ Ce,

where the constant Ce was defined in Equation (11). Let α > 0 be a constant. The map x 7→
x/
√
1 + αx2 is convex. Therefore, by Jensen’s inequality the results in expectation follow.

For the concentration inequalities, [11, Theorem 5.8] showed that
∥∥∥Ω2Ω

†
1

∥∥∥
2
≤ Cd with a prob-

ability at least 1 − δ. Here, Cd was defined in Equation (12). Plug into Theorem 1 to obtain the
desired bounds.

5.3 Proofs of Section 4 Theorems

Theorem 7. Proof of Equation (13): Using the unitary invariance of the norms

|||(I − PQ)A||| = |||(I − PU∗Q)Σ||| =
∣∣∣
∣∣∣
∣∣∣(Σ⊤(I − PU∗Q)Σ)

1/2
∣∣∣
∣∣∣
∣∣∣.

We use Equation (22) combined with Lemma 1 to obtain

∣∣∣
∣∣∣
∣∣∣(Σ⊤(I − PU∗Q)Σ)

1/2
∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣(Σ⊤(I − PZ)Σ)

1/2
∣∣∣
∣∣∣
∣∣∣.

With M1 ≡ I − (I + F ∗F )−1 and M2 ≡ I − F (I + F ∗F )−1F ∗, then Σ⊤(I − PZ)Σ simplifies as

Σ⊤(I − PZ)Σ =

[
ΣkM1Σk ∗
∗ Σ⊤

⊥M2Σ⊥

]
. (25)

The square root function is concave on [0,∞) and Σ⊤(I −PZ)Σ is positive semidefinite. Therefore,
an extension to Rotfel’d’s theorem says [16, Theorem 2.1]

∣∣∣
∣∣∣
∣∣∣(Σ⊤(I − PZ)Σ)

1/2
∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣(Σ⊤

k M1Σk)
1/2
∣∣∣
∣∣∣
∣∣∣+
∣∣∣
∣∣∣
∣∣∣(Σ⊤

⊥M2Σ⊥)
1/2
∣∣∣
∣∣∣
∣∣∣.
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Use the inequalities M1 � F ∗F and M2 � I, along with Lemma 1 gives

|||(I − PQ)A||| ≤
∣∣∣
∣∣∣
∣∣∣(ΣkF

∗FΣk)
1/2
∣∣∣
∣∣∣
∣∣∣+
∣∣∣
∣∣∣
∣∣∣(Σ⊥Σ⊥)

1/2
∣∣∣
∣∣∣
∣∣∣

≤ |||FΣk|||+ |||Σ⊥|||.
(26)

Use FΣk = (Σ⊥Σ⊥)
qΣ⊥Ω2Ω

†
1Σ

−2q
k and the sub-multiplicativity to obtain the advertised bounds.

Proof of Equation (14): The proof for Equation (14) is similar and is omitted. The main
observation is that Ak has only k nonzero singular values.

Proof of Equation (15): We follow the strategy in [7, Section 3.3]. Recall that Bk is the best
rank-k approximation to B = Q∗A. With the notation in Algorithm 2, note that

QBk = QÛB,kÛ
∗
B,kB = ÛkÛ

∗
kA = PÛk

A,

the triangle inequality gives
∣∣∣
∣∣∣
∣∣∣(I − PÛk

)A
∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣(I − PÛk

)Ak

∣∣∣
∣∣∣
∣∣∣+
∣∣∣
∣∣∣
∣∣∣(I − PÛk

)A⊥

∣∣∣
∣∣∣
∣∣∣.

Since Ak = PUk
Ak, applying strong sub-multiplicativity

∣∣∣
∣∣∣
∣∣∣(I − PÛk

)A
∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣(I − PÛk

)PUk

∣∣∣
∣∣∣
∣∣∣ ‖Ak‖2 + |||A⊥|||.

We recognize that
∣∣∣
∣∣∣
∣∣∣(I − PÛk

)PUk

∣∣∣
∣∣∣
∣∣∣ =

∣∣∣
∣∣∣
∣∣∣sin∠(Uk, Ûk)

∣∣∣
∣∣∣
∣∣∣, apply Theorem 4 to complete the proof.

Theorem 8. The proof is similar to that of the proof of Theorem 7. Consider the term of interest
|||(I −QQ∗)A|||2p, which can be simplified to

|||(I −QQ∗)A|||2p = |||A∗(I −QQ∗)A|||p/2 =
∣∣∣∣∣∣Σ⊤(I − PU∗Q)Σ

∣∣∣∣∣∣
p/2

.

The first equality holds only for p ≥ 2, whereas the last equality follows because of the unitary
invariance. As in the proof of Theorem 1, we have

Z = U∗Y Ω†
1Σ

−(2q+1)
k F = (Σ⊥Σ

⊤
⊥)

qΣ⊥Ω2Ω
†
1Σ

−(2q+1)
k .

The use of Equation (22) and Lemma 1 ensures

∣∣∣∣∣∣Σ⊤(I − PU∗Q)Σ
∣∣∣∣∣∣

p/2
≤
∣∣∣∣∣∣Σ⊤(I − PZ)Σ

∣∣∣∣∣∣
p/2

.

We apply [16, Theorem 2.1] to Equation (25) with f(t) = t to obtain

∣∣∣∣∣∣Σ⊤(I − PZ)Σ
∣∣∣∣∣∣

p/2
≤ |||ΣkM1Σk|||p/2 +

∣∣∣∣∣∣Σ⊤
⊥M2Σ⊥

∣∣∣∣∣∣
p/2

≤ |||ΣkF
∗FΣk|||p/2 +

∣∣∣∣∣∣Σ⊤
⊥Σ⊥

∣∣∣∣∣∣
p/2

= |||FΣk|||2p + |||Σ⊥|||2p.

We have used M1 � F ∗F and M2 � I. The rest of the proof is similar to that of Theorem 7.

Theorem 9. The proof makes heavy use of the partial ordering which was reviewed in the start of
Section 5. From the inequality I � QQ∗, the conjugation rule gives

A∗A � A∗QQ∗A.

Then, Weyl’s theorem implies λj(A
∗A) ≥ λj(A

∗QQ∗A) for j = 1, . . . , k. Relating the eigenvalues to
the singular values proves the first inequality.

For the second inequality consider again A∗QQ∗A. With the aid of Equation (22)

A∗QQ∗A = V Σ⊤PU∗QΣV
∗ � V Σ⊤PZΣV

∗. (27)
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Therefore, λj(A
∗QQ∗A) ≥ λj(V Σ⊤PZΣV

∗) for j = 1, . . . , k. Since VΣ⊤PZΣV
∗ and Σ⊤PZΣ are

similar, they share the same eigenvalues. It can be readily shown that

Σ⊤PZΣ =

[
Σk(I + F ∗F )−1Σk ∗

∗ ∗

]
.

For j = 1, . . . , k, the eigenvalues of A∗Q∗QA satisfy

λj(A
∗QQ∗A) ≥ λj(V Σ⊤PZΣV

∗) ≥ λj(Σk(I + F ∗F )−1Σk). (28)

The second inequality follows from the Cauchy interlacing theorem [19, Section 10-1]. Applying the
properties of partial ordering, we obtain

F ∗F � σ4q+2
k+1

∥∥∥Ω2Ω
†
1

∥∥∥
2

2
Σ

−(4q+2)
k =

∥∥∥Ω2Ω
†
1

∥∥∥
2

2
Γ4q+2
k ,

where Γk = diag (γ1, . . . , γk) is a diagonal matrix with the singular value gaps. Furthermore,

Σk(I + F ∗F )−1Σk � Σk(I +
∥∥∥Ω2Ω

†
1

∥∥∥
2

2
Γ4q+2
k )−1Σk.

Since the diagonal matrix on the right hand side has its singular values on the diagonals; this fact,
combined with Equation (28) gives for j = 1, . . . , k

σ2
j (Q

∗A) = λj(A
∗QQ∗A) ≥ λj(Σk(I + F ∗F )−1Σk) ≥

σ2
j (A)

1 +
∥∥∥Ω2Ω

†
1

∥∥∥
2

2
γ4q+2
j

.

Taking square-roots, we obtain the desired result.

6 Numerical Results

6.1 Test matrices

To demonstrate the performance of the bounds, we use the following test matrices

1. Controlled gap The first set of test matrices A ∈ R3000×300 are constructed using the formula

A =

r∑

j=1

gap

j
xjy

⊤
j +

300∑

j=r+1

1

j
xjy

⊤
j ,

where xj ∈ R3000 and yj ∈ R300 are sparse random vectors with non-negative entries gen-
erated using the MATLAB commands sprand(3000,1,0.025) and sprand(300,1,0.025)

respectively. The formula above is not an SVD, since the vectors do not form an orthonormal
set. Nonetheless, the singular values decay like 1/j and the gap between the singular values
between 15 and 16 is controlled by the parameter gap. We consider three cases:

(a) Small gap (GapSmall) gap = 1,

(b) Medium gap (GapMedium) gap = 2,

(c) Large gap (GapLarge) gap = 10.

2. Low-rank plus noise The matrices are of the form

A =

[
Ir 0
0 0

]
+

√
γnr

2n2
(G+G⊤),

where G ∈ Rn×n is a random Gaussian matrix. We consider three cases:
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Figure 1: Singular value of the matrices from the (left) ‘Controlled Gap’ example, (right) ‘Low-rank
plus noise’ example, (below) ‘Low-rank plus decay’ example.

(a) Small noise (NoiseSmall) γn = 10−2,

(b) Medium noise (NoiseMedium) γn = 10−1,

(c) Large noise (NoiseLarge) γn = 1.

3. Low-rank plus decay The matrices take the form

A = Udiag (1, 1, . . . , 1︸ ︷︷ ︸
r

, 2−d, 3−d . . . , (n− r + 1)−d)V ∗.

The unitary matrices U, V are obtained by drawing a random Gaussian matrix, and taking its
QR factorization. We distinguish between the following cases

(a) Slow decay (DecaySlow): d = 0.5,

(b) Medium decay (DecayMedium): d = 1.0,

(c) Fast decay (DecayFast): d = 2.0.

The first example is adapted from [22], whereas the second and third examples are drawn from [24].
In all the examples, the random matrices were fixed by setting the random seed and we the set the
parameter r = 15. The singular values of all the test matrices are plotted in Figure 1.

6.2 Canonical angles

For the first numerical example, we use the 9 test matrices in Section 6.1. For each matrix, we chose
an oversampling parameter ρ = 20 and the target rank k was chosen to be 25. The starting guess Ω
was taken to be a random Gaussian matrix.

6.2.1 No extraction

We plot the canonical angles sin∠(Uk, Û) in solid lines, the corresponding bounds from Theorem 1
are also plotted in dashed lines. The results are displayed in Figure 2. We make the following general
observations:

• The influence of the subspace iterations on the canonical angles is clear: the angles become
smaller as the number of iterations q increases. This implies that the subspace is becoming
more accurate.

• If there is a large singular value gap in the spectrum, this means that all the canonical angles
below that index are captured accurately. This is prominently seen in Figure 2(c), in which
there is a large gap between singular values 15 and 16. Similar observations can be made in
the other figures.

• As the decay rate of the singular values increases, the corresponding canonical angles become
smaller.
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Figure 2: Plots of sin θj for j = 1, . . . , k. The test matrices were described in Section 6.1. The
target rank k = 25 and an oversampling parameter of 20 was chosen for all the experiments. The
solid lines correspond to the computed values, the dashed lines correspond to bounds obtained
using Theorem 1. The parameter q corresponds to the number of subspace iterations.

• In most figures the bounds are qualitatively informative, but in some figures, the bounds are
also quantitatively accurate (e.g., GapLarge).

• Similar results were observed for sin∠(Vk, V̂ ) and, therefore, omitted.

We now make observations specific to the test examples:

1. Gap examples The computed canonical angles decrease as the gap increases, and with more
iterations. The test matrices (GapMedium and GapLarge) have both a decay in the singular
values and a prominent singular value gap between indices 15 and 16. These matrices satisfy
the assumptions of our analysis, and therefore the bounds can be expected to be good. We
see that as the size of the gap increases, the bounds become more accurate in accordance with
Theorem 1. GapSmall has decay in the singular values but no special singular value gap. Even
in this case, the bounds are qualitatively good.

2. Noise examples NoiseSmall is close to a low-rank matrix and there is a large singular value gap
at index 15. For this example, the bounds are qualitatively good. As the level of noise increases,
the gap decreases and therefore, the computed angles increase, as predicted by Theorem 1.
The bounds are uninformative for q = 0, but qualitatively good for q = 1 and 2. Compared to

20



the Gap examples, the bounds are not as sharp since there is very little decay in the singular
values.

3. Decay examples In these examples, the singular values decay beyond index 15 but there is no
prominent gap. As the rate of decay increases, in general, the canonical angles decrease. It is
also seen that the bounds are qualitatively accurate (except for q = 0).

6.2.2 Extraction step

Our next experiment tests the effect of the extraction step on the accuracy of the canonical angles.
We now compute sin θ′j and sin ν′j for the test matrices described in Section 6.1. We plot the quantities
max{sin θ′j , sin ν′j} for j = 1, . . . , k in solid lines. The corresponding bounds from Theorem 4 are
plotted in dashed lines. Here, the target rank was chosen to be k = 15, to exploit the singular value
gap in the matrices. We make the following general observations:

• The extraction step did not significantly affect the canonical angles and the accuracy is com-
parable to Figure 2. The subspaces are more accurate as the number of iterations increase,
and if there is a large singular value gap at index j, then the canonical angles with index j′ < j
are captured accurately.

• Although the canonical angles are small, compared to Theorem 1, the bounds in Theorem 4
are not as accurate. One reason is that the upper bounds in Theorem 1 are at most 1, but the
bounds in Theorem 4 are allowed to be greater than 1. Furthermore, the bound in Theorem 4
has the factor 1/(1− γk) in the denominator, which can be quite large when there is a small
singular value gap. It may be possible to derive better bounds, but we could not immediately
see how to derive them.

• We also compared the accuracy of the individual singular vectors (not shown here). The results
and the conclusions are similar.

We now make observations specific to the test examples:

1. Gap examples The behavior of the computed canonical angles is very similar to that without
the extraction step. In general, the angles decrease as the gap increases. When the parameter
gap is small, the singular value ratio γk is large, and (1 − γk)

−1 is small. This explains why
the bounds are bad for GapSmall and GapMedium, and show little improvement with more
subspace iterations. Only for the GapLarge example with q = 0, the bounds are qualitatively
good.

2. Noise examples The computed canonical angles decrease as the noise decreases. In all three
examples, the bounds are qualitatively good. The bounds are better for NoiseSmall and
NoiseMedium because the singular value gap between indices 15 and 16 is bigger than that for
NoiseLarge.

3. Decay examples The computed canonical angles become smaller as the decay of the singular
values increases. In these examples, there is no prominent gap, so the bounds don’t capture
the behavior well. However, the computed angles are small, and the subspace is accurate.

6.3 Singular Values

We now consider the accuracy of the singular values. We use the same test matrices and the
remaining parameters are kept fixed. The computed singular values are plotted against the upper
and lower bounds. We make the following general observations:

• For the large singular values, both the upper and lower bounds are qualitatively good for all
the examples that we tested.
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Figure 3: Plots of max{sin θ′j , sin ν′j} for j = 1, . . . , k. The test matrices were described in Section 6.1.
The target rank k = 15 and an oversampling parameter of 20 was chosen for all the experiments.
The solid lines correspond to the computed values, the dashed lines correspond to bounds obtained
using Theorem 4. The parameter q corresponds to the number of subspace iterations.

• As the number of iterations increase, the singular values are computed more accurately and
are close to the upper bounds (the exact singular values). However, for indices close to the
target rank, the lower bounds are are not tight. The bounds get tighter as the number of
iterations q increase.

• The bounds for the singular values quantitatively better than the bounds for the canonical
angles.

We now make observations specific to the test examples:

1. GapSmall In these examples, the large singular values are captured accurately. As the number
of iterations increase, both the lower bound and the approximate singular values approach the
true singular values (upper bound). For GapMedium and GapLarge, the bounds were much
more accurate.

2. NoiseMedium There is a qualitatively different behavior before and after indices 15− 16. The
upper and lower bounds are tight before index 15, but only the upper bound is tight after
index 16. The lower bound significantly under-predicts the singular values.
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Figure 4: Plots of the singular values. The test matrices were described in Section 6.1. The target
rank k = 25 and an oversampling parameter of ρ = 20 was chosen for all the experiments. The solid
lines black and blue lines correspond to the upper and lower bounds respectively, the dashed red
lines correspond to bounds obtained using Theorem 9. The parameter q corresponds to the number
of subspace iterations.

3. DecayMedium Similar to the previous example, the lower bounds are good before index 15,
and improve with number of iterations after index 15.
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