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Abstract

The stiff problem is concerned with a thermal conduction model with a singular barrier of zero
volume. In this paper, we shall build the phase transitions for the stiff problems in one-dimensional
space. It turns out that every phase transition definitely depends on the total thermal resistance of
the barrier, and the three phases correspond to the so-called impermeable pattern, semi-permeable
pattern and permeable pattern of thermal conduction respectively. For each pattern, the related
boundary condition of the flux at the barrier is also derived. Mathematically, we shall introduce
and explore the so-called snapping out Markov process, which is the probabilistic counterpart of
semi-permeable pattern in the stiff problem. [7]
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1 Introduction

The stiff problem (Cf. [22]) is concerned with a thermal conduction model with a singular barrier.
In [[17], the terminology ‘thin layer problem’ was used instead. Let us explain it by a concrete
example in one-dimensional space. Given a small constant € > 0, consider the following heat
equation:

out(t,x) = %V(ag(x)Vua(t, x)), t>0,xeR (1.1
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with the initial condition u®(0,-) = ug. Note that a. is the so-called thermal conductivity (or
diffusive coefficient). A small normal barrier I is put near O in the sense that a. is very small in
I.. In [17]], it is further assumed that a. is constant either in or out of I, and the small thermal
conductivity in I has the same scale as the length of I.. More precisely,

L= (—¢,0), ae(:x)::{ L z¢(=e0), (1.2)
K

€, I € (—¢,¢€),

for a fixed constant £ > 0 as in [[17]. Then the limit of «° is expected in the stiff problem as € | 0.
Heuristically speaking, the singular barrier (at 0) is thought of as a material of zero length and zero
thermal conductivity in this thermal conduction. One can prove that u° converges to a function u
satisfying

Dot @) = Auct, @), u(0,) = uo(a) (13)

and the discontinuity of the flux at 0:
Vu(t,0+) = Vu(t,0—-) = g(u(t, 0+) — u(t,0-)) (1.4)

in a certain meaning (u is also called the flux).

On the other hand, to our knowledge, it was Lejay, who first studied the probabilistic description
of this stiff problem in [17]. For any fixed € > 0, it is well known that with a. in has an
associated diffusion process (X} );>0 on R such that

us(t, x) = Eyuo(Xy).

Needless to say, it is surely interesting to ask whether X ¢ could converge to some process as ¢ | 0,
and if the limit exists, how it links the heat equation and the boundary condition (T.4). As we
have known, the snapping out Brownian motion (SNOB in abbreviation) introduced in [[17] is the
desired limit. It is a Feller process on G := (—o0,0—] U [0+, 00), in which 0 € R corresponds
to two distinct points. Roughly speaking, the SNOB denoted by (Y;);>0 behaves like a reflecting
Brownian motion on G_ := (—o00,0—] or G := [0+, co) and may change its sign and start as a
new reflecting Brownian motion on the other component of G by chance, when it hits 0+ or 0—.
Lejay believed that X ¢ converges to the SNOB and

u(t, x) = Eguo(Yy)

satisfies (1.3) and (T.4) in some sense. In practice, he proved that the resolvent of SNOB satisfies
the boundary condition and another process Z¢, a censored version of X°¢ obtained by a
special transform, converges to the SNOB as ¢ | 0.

The main purpose of this paper is to explore the general stiff problems and their probabilistic
counterparts by means of Dirichlet forms. Let us introduce the background of Dirichlet forms
upfront. A Dirichlet form is a symmetric Markovian closed form on L2(E, m) space, where E is a
nice topological space and m is a Radon measure on it. Theory of Dirichlet form is closely related
to the probability theory because of its Markovian property. Due to a series of important works by
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Fukushima, Silverstein in 1970’s and Albeverio, Ma and Réckner in 1990’s, it is now well known
that a regular (resp. quasi-regular) Dirichlet form is always associated with a symmetric Markov
process. We refer the notions and terminologies in theory of Dirichlet form to [|6, [13].

As mentioned above, Lejay only considered the Brownian case of stiff problems, in which the
conductivity is constant out of the barrier. His approach to the SNOB is based on the resolvent
analysis of elastic Brownian motion, which is a perturbation of two-sided reflecting Brownian
motion on G, and the SNOB is eventually obtained by applying the piecing out transform (Cf. [15]])
to the elastic Brownian motion. Though the idea is heuristic, this approach is a little cumbersome
and hard to generalize. Approach of Dirichlet form proposed by us is another possible way to
obtain the SNOB. As we know, Dirichlet form is a very powerful tool to deal with the general
Markov process and its related probabilistic notions. For example, the perturbation in elastic
Brownian motion is a special case of so-called killing transform for a general Markov process,
and in theory of Dirichlet form, the killing transform is described by the perturbed Dirichlet form
illustrated in Moreover, by an argument of resolvent analysis on L2(E, m), we can also derive
the Dirichlet form of piecing out method in Theorem [3.5] Particularly, the SNOB is associated
with a regular Dirichlet form on L*(G, m) as follows:

F* = {ue L*G,m): uy € H'([0+,0)), u_ € H'((—00,0-1)}

E(u,v) = ;/Gu/(x)v/(m)dﬂs + Z(U(O—I-) — uw(0-)(w(O0+) — v(0-)), wu,ve .F°,

where m is the Lebesgue measure on G and w4 := u|[o+,00), U— := U|(—c0,0—]. This indicates that
the switches of SNOB at 0 are essentially the additional jumps between 0+ and 0—. After the
generator of SNOB on L%(E, m) is put forward in Proposition the relation between SNOB
and also becomes clear, since ui(x) = E,up(Y?) is a continuous function (on G) belonging
to .#® for t > 0. The arguments based on Dirichlet forms are valid not only for the Brownian
case, but also for a rich class of thermal conduction models. In practice, we shall characterize the
associated Markov process and related boundary condition of the flux at O for the stiff problem
with a lower and upper bounded conductivity in

The extension of SNOB is a reason to start this paper, but it is not the most important reason. In
the Brownian case, the form of the conductivity in (I.2) is a little incomprehensible from Lejay’s
approach. Primarily, it is not easy to find a sensible physical interpretation of the assumption that
ae has the same scale as € in I.. Approach of Dirichlet form could shed light on the essence of this
assumption, and this is the principal reason that initiates this article. To show this, let us use a few
lines to summerize the characterization of one-dimenisonal diffusions. It is well known that under
a ‘regularity’ condition, a diffusion on R with no killing inside could be characterized essentially
by a function s, called scale function and a measure m, called speed measure (Cf. [[16]]). In this
case the speed measure is also the unique symmetric measure. Note that the scale function is a
continuous and strictly increasing function and induces a fully supported positive Radon measure
Aon R. It is performed in [11} 12, 20]] that the Dirichlet form (on L%(R, m)) of this diffusion is
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completely characterized by \ (as well as s) as follows (see (4.2))

={rer (&)
F' = fGL(R,m):f<<)\,/ — ] d\ < o0,
& \dA
f(£o0) := xggloo f(x) =0if A1 (G4) < oo}, (1.5)
i _1 ﬁ@ gl
@‘”(f,g)—Q/Rd)\d)\d)\, fge T

As Dirichlet form stands for the energy of associated generator, A plays the role of the ‘thermal
resistance’, which reflects the ability of the material to resist the flow of the heat (see Remark [4.3)).
Thereupon, the general stiff problem in one-dimensional space can be reintroduced in the manner
of thermal resistance as follows. Recall I. = (—¢, €) and declare . to be a finite Radon measure
on I, with full support charging no set of singleton, i.e. v.({z}) = 0 for any z € I.. Another
measure \. is, by definition, equal to . on I and equal to A outside I, (see (4.4)). The diffusion
X ¢ with scale function induced by A, corresponds to a thermal conduction model with the small
barrier (I, 7). Then the stiff problem is concerned with the convergence of X*¢ as well as the
related flux as € | 0. The following heuristic observation gives insight to this stiff problem:

Ae > A+ 70y, aselO,

where 7 := lim | 7-(/.) is called the total thermal resistance of the singular barrier (Figureﬂ']is an
illustration of this observation, in which A} := A|g_ ). This indicates that 7 should play a critical
role (notice that A + 7 - §p cannot induce a scale function if 4 > 0). Indeed, we shall build a phase
transition in terms of 7 for this stiff problem in Theorem [4.6}

(1) 4 = oo: The flow cannot cross the singular barrier and the conduction is divided into two
separate parts. Mathematically, X¢ converges to a non-irreducible diffusion, namely a union
of two separate reflecting diffusions on [0+, co) and (—oo, 0—] respectively.

(2) 0 <7 < oo: This is the most interesting case. The flow could penetrate the singular barrier
partially, and in the probabilistic counterpart, penetrations are realized by additional jumps
between 04 and 0—.

(3) 4 = 0: The barrier makes no sense and X converges to the diffusion associated with (1.3).

We call the three patterns of thermal conduction above the impermeable pattern for ¥ = oo,
semi-permeable pattern for 0 < 4 < oo and permeable pattern for ¥ = 0 respectively. Particularly,
the Brownian case with the conductivity (1.2)) is such that m = X is the Lebesgue measure and

1

a@) dr = (ke) ldx.

Ve(dx) =

As a consequence, ¥ = 2/x and the parameter « is nothing but the reciprocal of total thermal
resistance.
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Figure 1: Stiff problem in the manner of thermal resistance.

This paper is organized as follows. In we shall review several transforms of Markov
processes and their counterparts in theory of Dirichlet form for later use. In §3| we shall extend the
SNOB to the so-called snapping out Markov process on a general state space. This notion is the
probabilistic counterpart of semi-permeable pattern in stiff problem. It is, by definition, a Markov
process obtained by transforms of killing and piecing out with respect to the same finite measure.
We shall derive the Dirichlet form of snapping out Markov process in Theorem [3.5]and explore its
properties. Particularly, rich facts about SNOB are presented in Proposition[3.10] In several
other examples of snapping out Markov processes are raised.

The section §d]is devoted to the general stiff problems in one-dimensional space. As said above,
the phase transitions are built in Theorem 4.6] The convergences of Dirichlet forms in this theorem
are in the sense of Mosco. Mosco convergence is reviewed in and particularly, it implies the
convergence of associated Markov processes in the sense of finite dimensional distributions as
stated in Corollary [4.8] We shall derive the generators of three Markov processes related to every
phase transition in Proposition[4.5] The characterizations of their generators play important roles
in studying the boundary conditions of flux at 0 in the three patterns of thermal conduction. In
we find that the flux is continuous at 0 in permeable pattern and satisfies the boundary conditions
(5.10) and (5.12) at 0 in impermeable and semi-permeable patterns respectively.

Notations

Let us put some often used notations here for handy reference, though we may restate their
definitions when they appear.

Given a topological space F, B(E), By(E), C(E), Cp(E) and C.(F) are families of all the Borel
measurable functions, all the bounded Borel measurable functions, all the continuous functions,
all the bounded continuous functions and all the continuous functions with compact supports
on F respectively. For an interval I, the classes C.(1), Ccl(I ) and C2°(I) denote the spaces of
all the continuous functions with compact supports, all the continuously differentiable functions
with compact supports and all the infinitely differentiable functions with compact supports on
respectively.

The notation “:=’ is read as ‘to be defined as’. For two functions f, g and a measure ; on F,
fu = fE fgdp and (f, py = fE fdu. Notation dz stands for the Lebesgue measure on R or
an interval throughout the paper. For x € RY, |z| is the Euclidean norm of z. The restrictions of a
measure p and a function f to I are denoted by p|; and f|; respectively. Given two measures /.
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and v, p < v means p is absolutely continuous with respect to v.

Given a scale function s, namely a continuous and strictly increasing function, on I, ds
represents its induced Lebesgue-Stieltjes measure on I. We also use A for ds. For a function
fonl, f < s(or f < A)means f = g o s for some absolutely continuous function g and
a _ df ._
ds —ax =9 °s

For any function v (resp. ameasure v) on G = G_UG = (—00,0—-]U[0+, 00), u4 := ulg,
and u_ := u|g_ (resp. vy = V]@+ and v_ := v|g_). The subscript ‘£’ is read as ‘4 and —’. For
example, u4 < v+ means u4 << vy and u_ << v_.

2 Transforms of Markov processes

In this section we shall review several transforms of Markov processes, which will be frequently
used in the subsequent sections. Let E be a locally compact separable metric space and m a
positive Radon measure fully supported on E. The one-point compactification of F is written
as Fa := F'UA (if E is compact then A is attached as an isolated point). Further let (&, %)
be a regular Dirichlet form on L?(E, m) associated with an m-symmetric Markov process X =
(Q,F, X, Fi, 0, C,(Py)zer, ) on E. The extended Dirichlet space of (&', .%) is denoted by .Z.
Every function in a Dirichlet space will be taken to be its quasi-continuous version for convenience.
All the terminologies above are standard, and we refer them to [6} [13]].

2.1 Killing transform

The first transform is called the killing transform. It kills the trajectories according to a given tactic
and attains a new Markov process. The concrete description is referred to [3, Chapter III]. In the
following, we shall present its counterpart in theory of Dirichlet form.

Let 1 be a smooth Radon measure with respect to (&, .% ), which means p charges no &-polar
set. The perturbed Dirichlet form by w is given by (Cf. [13| §6.1])

Fh=FNLAE, ),

2.1
EMF.q) = Efrg) + [E fodu, f.ge T 2.1

It is also a regular Dirichlet form on L%(E,m) in the light of [6, Theorem 5.1.6].

The associated Markov process of (§#, . "), denoted by X* = (X}");>0, is nothing but the
subprocess of X induced by a multiplicative functional (e_Af) £>0 (Cf. [31), where (A¢)>o is the
positive continuous additive functional (PCAF in abbreviation) of 1 in the Revuz correspondence.
Roughly speaking, the trajectories of X* are realized from those of X by killing at some rates
depending on y. Particularly, the semigroup P} of X* can be written as

Pl'f(x) = Ex[e™ f(Xy)]

for any positive function f.
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2.2 Time change

The second transform is the time change. Take a PCAF (A;);>0 of X with p being its Revuz
measure. Denote the quasi support (Cf. [6]) of by F'. The right continuous inverse 7, of A; is
defined by

) inf{s : As(w > t}, if t < A¢)— (W),
T(w) :=
! 50, i1 > Ag)— ().

Set
Xi(w) = Xpww), (W)= A¢w)—(w).

Then X = (X, (, (Py)ac FA) 1s aright process on F' and called the time-changed process of X by
the PCAF A or speed measure .

The counterpart of time-changed process in theory of Dirichlet form is the so-called trace
Dirichlet form. Its idea goes back to Douglas [10] from an analytic viewpoint, and Chen et al.
studied the traces of general symmetric Dirichlet forms in [§]]. In fact, the time-changed process X
is a p-symmetric Markov process on F'. Its associated Dirichlet form on L2(F, j) is actually the
trace Dirichlet form of (£’,.%#) on F and given by

F = Fe|lp N LA(F, ),

. (2.2)
E(u|p,v|p) = EMpu,Hpv), Yu,v € F|r,

where Hpu(x) := Eg[u(X,,.),0r < ool and o := inf{t > 0 : X; € F'} is the hitting time of F.
If 1 is Radon, then (&, .%) is regular. We refer further considerations of time-changed processes
and trace Dirichlet forms to [6, |8]].

2.3 Darning

The transform of darning was first performed in [5] to study the one-point extensions of Markov
process. Following [9]], let K1, K>, ..., K, be disjoint compact subsets of £/ with positive
capacity. Denote D = E \ U]" ; K;, and short each K into a single point ;. Set a measure m*
on E* := D U {aj,a},...,a’} by letting m* = m on D and m*({aj,a’,...,a}}) = 0. The
Markov process with darning induced by X is a strong Markov process X* on E* such that

(1) the part process of X* in D has the same law as the part process of X in D;

(2) the jumping measure and killing measure of X * have the property inherited from X without
additional jumps or killings.

It is shown in [9] that such a process exists and is unique in law, and its Dirichlet form (£*, .%*) is
given by
F*={f": f e F, fisconstant &-q.e. on each K},
g*(f*ag*):éa(fvg)v f*vg* 69*7

where f*(x) := f(x) forx € D and f*(a}) := f(y) withy € K;. Moreover, (§*,.%*) is a regular
Dirichlet form on L*(E*, m*) by [9, Theorem 3.3].

2.3)
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2.4 Piecing out
Piecing out transform raised by Ikeda et al. in [15]] is, in some sense, an inverse transform of
killing. As in [15], let W := Q x E with B(W) := F ® B(F) and for any w = (w, y) € W, set
y Xt(w)a t < C(w)a
Xi(w) :=
Yy, t= (W)
Take an appropriate kernel v(w, dy) on 2 x Ea with v(w, -) being a probability measure on Ea,
and for each x € Ea put a probability measure Q. (dw) := P,(dw)v(w, dy) on W. Further let

(), F) be the product of an infinite, countable copies of (W, B(V)). Clearly, there exists a unique
probability measure P, on (£, F) such that

P [dwy, -, dw,] = Quldw1]1Qy, [dwa] - - - Qy, _, [dw,],

where w; = (w;,y;) for 1 < ¢ < n. Define a new trajectory for w = (wy, - , Wy, -+) € £ as
follows:

(2.4)

X, (), if0 <t < ((w),

. n n+1
() — Xt (@)t Wng1), if D0 Clw) <t < Y7 Cwy),
(W) = i=1 i=1

N(W)

A ift > C@) = Y. ((wy),
=1

where NV (TZJ) = i~nf{z' : ((w;) = 0} with inf ) := co. After defining the shift operators 5,5 and
filtration F; on €2 accordingly, the principal result of [15] tells us

X = (Qvfu Xtvft)étvé:a (Px)$€EA> (25)

is a right continuous Markov process on Ex with P [X; = AVt >0]=1. Intuitively speaking,
X is realized by resurrection after the death of X, and more precisely, it takes a random reborn site
according to v and continues the motion along a new trajectory of X starting from this reborn site
until the next death. The kernel v is called the instantaneous distribution of piecing out transform
in [[15[]. In this paper, we shall take a special form of instantaneous distribution as follows.

Definition 2.1 Let
vi(dy),  for X (w) € E,

(2.6)
diay(dy), for Xew)-(w) = A

v(w,dy) == {
with some probability measure v# on E. In abuse of terminology, we call (2.5) the piecing out

process with instantaneous distribution v induced by X.

The choice of v in indicates that the left limit X,  exists in E for any ¢ < ¢. This is
necessary for X to be a Hunt process. Furthermore, we can conclude the following lemma by [[15].

Lemma 2.2 Let 7(w) := ((w1) for w = (wi,wa, ) € Q and w; = (wi,yi). Then T is an
Fi-stopping time.
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3 Snapping out Markov processes

Lejay raised a model which he called a snapping out Brownian motion (abbrviated in SNOB)
in [17]. It was introduced for the probabilistic description of a stiff problem in one-dimensional
space. In this section, we shall first recall the main ideas of this model, and then extend this notion
to the so-called snapping out Markov process on a general state space. This class of Markov
processes will be used in §4]to characterize the semi-permeable patterns of thermal conductions in
stiff problems.

3.1 Snapping out Brownian motion: Lejay’s approach

Let G := (—00,0—] U [0+, 00), where 0 in R corresponds to either 0+ or 0— viewed as two
distinct points. In other words, G is composed of two connected components, say (—oo,0—] and
[04, 00). Write

G4 = [0+,00), G_ :=(—00,0—].

An SNOB is a Markov process living in G. Precisely, let us start with a reflecting Brownian motion
RT = (R;r )e>0 on G. Denote its local time at 04 by (Lzr )t>0. Namely,

1 t
L =lim— [ lp4oRDHds, t>0
£ =M /0 [0+,0(R)ds, t >
is a PCAF of R with %(5{0+} being its Revuz measure. Let £ be an exponential random variable
with a parameter x > 0 independent of R™. Set

b R, ift <t:=inf{t: L] > ¢};
¢ A, ift>t

with A being the trap as usual. Then Z+ = (Z,");>( is called the elastic Brownian motion on G ..
We extend Z™T to a process Z on G by symmetry and call Z the elastic Brownian motion on G. In
[17], the author introduced the following definition of SNOB by means of this elastic Brownian
motion and the piecing out transform.

Definition 3.1 ([17]) Let Z be the elastic Brownian motion with the parameter x > 0 on G. Then
the piecing out process with instantaneous distribution %(5{0+} + 5{0_}) induced by Z is called
the snapping out Brownian motion on G.

Intuitively, we may think of the local time L™ as the ‘hitting intensity’ at the boundary 0+,
which increases once R encounters 0+. When the hitting intensity is overloaded, i.e. the local
time is greater than the given threshold &, the elastic Brownian motion will die, while the SNOB
will be reborn at 0+ or 0— with equal probability.

3.2 Snapping out Markov processes

Throughout this part, E' is taken to be a locally compact separable metric space and m is a Radon
measure fully supported on it. Inspired by the SNOB, we introduce the so-called snapping out
Markov process on a general state space as follows.
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Definition 3.2 Let X = (X;);>0 be an m-symmetric Markov process on E associated with a
regular Dirichlet form (&', .%) on L?(E,m), and take a positive, finite smooth measure p on E.
Denote the subprocess of X induced by 1 by X# = (X}")¢>0 and set p# = pu/u(E). Then the
piecing out process, denoted by X* = (X});>0, with instantaneous distribution p# induced by X*
is called the snapping out Markov process with respect to X and p.

We need to emphasize that the Revuz correspondence between p and the associated PCAF
depends on the symmetric measure m. So the killing transform in Definition [3.2]is also relevant to
m. See Example [3.15|for further discussions.

Remark 3.3 In Definition [3.1] the construction of SNOB starts with a two-sided reflecting Brow-
nian motion R = (R;)¢>0 on G (more precisely, a union of two separate reflecting Brownian
motions on G4 and G_ respectively). It is not difficult to find that this two-sided reflecting
Brownian motion is symmetric with respect to the Lebesgue measure on G and its associated
Dirichlet form is regular on L?(G). Moreover, the two-sided elastic Brownian motion Z is actually
the subprocess of R induced by %(5{0+} + 5{0_}).

In advance of presenting the principal result of this part, we need to prepare some notations.
Let ¢, CH, ¢® (resp. Py, P!, P and R, Rh, RS) be the lifetimes (resp. semigroups and resolvents)
of X, X* X°® respectively. In abuse of notations, we use the same symbol for the expectations of
X, X*, X®. For example,

P f@) = E.f(X]), Rlf@@)—E, /0 T oot fxht,

where  is vacant or stands for 4 or s. The Dirichlet form of X* on L2(E,m) is given by (2.1).
Accordingly, we can also write down P} and R%, by using X (Cf. [13]]). Moreover, the following
lemma links the resolvents of X* and X*. Note that |u| := u(E).

Lemma 3.4 For a > 0 and any non-negative function f, it holds that

R f o pupy Tbl) e Xt e E} 3.1)

|l

Proof. We first note that * is a stopping time of X*® in the sense of Lemma[2.2] and X*® = X#

before ¢¥. Since Xf,, = A implies ¢* = ¥, it follows that

Rf@ =B, [ et oo
0
¢r 0
—E, / e f(X})dt + E, [ / e ' f(X)dt; X[, € E]
0 3

= REf(2) + Eq [e—a“‘ ‘E, [( / h e—atﬂX;)dt) © 0¢
0

Fgu} ;Xgu_ € E}

= Rlif@)+E, |e ™" - R (X0 XY, € E|.
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On the other hand, X}, is distributed as p# and independent of ¢* and X* by (2.4) and 2.6).
Then we can conclude (3.1). That completes the proof. O

Now we have a position to present the principal theorem of this part. It tells us if X has
no killing inside, then the snapping out Markov process X* is m-symmetric and the associated
Dirichlet form can be also characterized.

Theorem 3.5 Let X and p be in Definition|3.2)and X*® be the snapping out Markov process with
respect to X and p. Set |u| = p(E). Assume that X or (&, .F) has no killing inside. Then X* is
m-symmetric on E, and its associated Dirichlet form is regular on L*(E,m) and given by

LWz{uey: wa>uwﬁmmmum<m}
fXE (3.2)
& (u,v) = E(u,v) + — (u(@) — u(y))(v(x) — v))wdr)(dy), u,v € F*.
2‘#‘ EXE

Furthermore, any special standard core of (&,.%) remains to be a special standard core of
(&%, F%).

Proof. We first show (&%, .7%) given by (3.2) is a regular Dirichlet form on L?(E,m). It is proved
in [1] that is a Dirichlet form. Thus we need only prove its regularity. Let 4 be a special
standard core of (&,.%). Then it is also a core of (&*, . #*) by [6, Theorem 5.1.6]. Denote the
families of all the bounded functions in .%, .#* and .Z° by .%,, Z/' and .7 respectively. Since p
is a finite measure, we have

€ C P =P, =F.

On the other hand, for any u € %5 = .Z.,

1
ﬁww=&mw+§m (u(@) — w(y))* dz)u(dy)

= &, u) + / w2dps— {u, 1)/ |1
< &M (u, ).

For any u € .Z§ = .Z.', we can take a sequence {u, : n > 1} in € such that u,, converges to u in
&!'-norm. Thus from the above inequality, we can obtain that u,, also converges to u in &7-norm.
This implies (8%, %) is a regular Dirichlet form on L*(E,m) and ¥ is its special standard core.

Next, we assert that X*® is m-symmetric under the assumption that X has no killing inside.
Note that 1 is a measure of finite energy integral with respect to &*, i.e.

(o)) < luly/Elw,v), v e Fr.

Thus the a-potential U} i1 of p exists with

EXULu,v) = (v, p), veFH (3.3)
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Since X has no killing inside, the killing measure of (&*,.#*) is equal to u. Applying [13]
Lemma 4.5.2] to i, we have

Ubu() = E. [e‘aCH;Xé‘F_ € E]

Clearly, P, {(/‘ = O;XZ_ € E} = 0 and this implies (U4 p, ) < |p| for any o > 0. For any
positive function f, it follows from Lemma [3.4] that

(B o) = (REf, oy + Liad 1) (Ve 1)

|l
and thus p
<Raf7 M>
Ry fop) = :
oo 1) = T (0, ) ]
We substitute this into (3.1)) to find that
(Raf, 1)
Rif=REf+ : Uty (3.4)
L — (U, )/l
For another positive function g € L?(E,m), (3.3) implies
Ukt Dm = UL, BLg) = (Rog, ). 3.5)

Then from (3.4) we have (R}, f, 9)m = (f, R}, ¢)m. This concludes that X* is m-symmetric.
Finally, it suffices to prove that for any o > 0 and f € L*(E, m),

R, f € 7°, En(RLf,9) = (f,9m, Vg€ F.

Note that ## C Z%. Since RLf,Uku € F*, it follows from (3.4) that RS, f € FF C F°.
Moreover, we can obtain from Lemma (B3) and g € F = FL' that

1
éaosc(R(sxfa .g) = éaolj(fofa g) - 7<R(s)¢f7 M> ' <ga :u>

|l
RS 1
= L+ T g~ R (0
1 1
=(f,9m + m@lf, ) - (g, ) — m@lf, 1) - (gs 1)
= (fa g)m-
That completes the proof. O

The assumption that X has no killing inside is necessary for the symmetry of X*. For
interpreting this fact, suppose the killing measure % (# 0) of X is of finite energy integral with
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respect to (&,.%). Then E,[e~*"; Xéi_ € E] = UL(k + p)(z). Mimicking (3:4), we can
conclude that for positive functions f and g,

(Raf, 1) - (Rag, k + 2
1 — (U& Kk + ), 1)/ 1]

Consequently, the presence of k breaks the symmetry of X®. At a heuristic level, many jumps
are added into the trajectories by the piecing out transform. The additional jumps start with an
initial ‘distribution’ given by the killing measure k + p and arrive at random sites distributed as
u#. When k # 0, the additional jumping measure is not symmetric and thus the symmetry of X
is broken.

On the other hand, the regularity of (3.2) only depends on the finiteness and smoothness of
w. Even if k #£ 0, is still regular and corresponds to an m-symmetric Markov process. This
process could be realized as follows: We first construct the resurrected Markov process X™ of X
according to [6, Theorem 5.2.17], then attain the snapping out Markov process X'** with respect
to X™* and p and finally apply the killing transform induced by k& to X™*. Note that & is also
smooth with respect to X™** due to the following corollary.

(R?x.ﬂ g)m = (Rgfv g)m +

Corollary 3.6 Let X, pu be in Theorem[3.5] but we do not assume X has no killing inside. Further
let (&5, F%) be defined by (3.2). Then (&%, .F%) is a regular Dirichlet form on L*(E,m) sharing
the same set of quasi-notions with (&, % ). In other words, an increasing sequence of closed subsets
of E (resp. a subset of E, a function on E) is an &5-nest (resp. &*-polar set, &*-quasi-continuous
function) if and only it is an &-nest (resp. &-polar set, or &-quasi-continuous function).

Proof. We need only prove that an &*-nest is an &-nest and vice versa. Note that (&*,.%") has
the same quasi-notions as (&, .%) due to [[6, Theorem 5.1.4]. Denote the 1-capacities of (&, .%),
(&, FH) and (&%, . F%) by Cap, Cap* and Cap® respectively. Since

FSCF, Eu,u)>EMw,v), Yue F, (3.6)

it follows that Cap(A) < Cap®(A) for an appropriate subset A of E. Similarly we can also attain
Cap®(A) < Cap”(A). The conclusion then follows from [6, Theorem 1.3.4]. O

Remark 3.7 Denote the resurrected Dirichlet form of (&, %) by (8™, .%#™). In the light of [6]
Theorems 5.1.4 and 5.2.17], (&, %), (&5, F), (&, FH) and (&%, F°) all share the same set
of quasi-notions.

Furthermore, we can also characterize the extended Dirichlet space of (3.2)) and the global
properties of snapping out Markov process.

Proposition 3.8 Let (&,.%) and (&°, . F%) be in Corollary Then the extended Dirichlet space
of (8%, F%) is given by

FS = {u e Z,: /E ; (u(z) — u(y))*p(dx)p(dy) < oo}, (3.7)

where . is the extended Dirichlet space of (&, .F). Particularly, the following assertions hold:



14 SNAPPING OUT MARKOV PROCESSES

(1) (&,.%) is recurrent, if and only if (&%, F*®) is recurrent.

(2) If (&, .F) is transient, then (&%, .%°) is transient. If (&, F) is irreducible, then the transience
of (&%, F%) also implies the transience of (&, F).

(3) If (&,.F) is recurrent or local, then the irreducibility of (&, %) implies the irreducibility of
(&5, F%).

Proof. Since .%#* C .% and &%(u,u) > &(u, u) for any u € .#3, it follows from the definition of
extended Dirichlet space that .7$ C ... Thus .%{ is a subset of the right side of (3.7). A first step
towards to the contrary is to assume u € .%, is bounded. By [6, Theorem 2.3.4], we can take an
approximation sequence {u,} C % of uniformly bounded &-quasi continuous functions for w.
Without loss of generality, we may assume {u,, } is &-Cauchy and w,, converges to u, &-q.e. Since

lim (U — up)(@) — (U — un)(y)) p(dz) p(dy)

n—oo ExXE

_ /E lim (1 — (@) — (1 — un)(@))2(da)pa(dy) = 0

XE’H,*)OO

by the bounded convergence theorem, we can deduce that {u,, } is also &*-Cauchy. Thus u € .%;.
Now take an arbitrary function v in the right side of (3.7). Forany [ € N, set v; := (=) Vv A L.
Then v; € .%¢. On the other hand,

& (i, v) = & (v, vr) +/E . (vi() — vi(W))* p(da)pa(dy)

< E,v) + /E . (v(@) — v(y))® p(dz)p(dy)
< 00.

This implies sup; &5(v;, v;) < oco. By [13| Theorem 1.1.12], we can conclude v € .%.

The first and second assertions about the global properties of (6, .%°) can be directly deduced
from [6, Theorem 2.1.8] and [[6, Theorem 2.1.9]. The final assertion is implied by [6, Theo-
rem 5.2.16] and [13, Theorem 4.6.4]. O

Remark 3.9 If (&, %) is not irreducible, then the transience of (&%, .%*) is not sufficient for that
of (&, %), see Example The converse of third assertion does not always hold either, see
Proposition|3.10

3.3 SNOB from approach of Dirichlet forms

Let us turn to the snapping out Brownian motion by means of Dirichlet forms. Let £ = G and m
be the Lebesgue measure on G, i.e. m_ := m|g_ and m := m|g, are the Lebesgue measures
on G_ and G respectively. As mentioned in Remark the two-sided reflecting Brownian
motion ([%;)¢>0 on G is m-symmetric and clearly its Dirichlet form is

F ={uce LG, m):uy € H(G,), u_ € Hl(G,)},

| o- 1 e (3.8)
E(u,v) = 2/ (@) (x)dx + 3 / W () (x)dr, u,ve.Z,
—00 0+
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where u; = ulg,, u_ = u|g_ and H' denotes the 1-Sobolev space, i.e.

HY(G_) :={u € L*(G_) : u s absolutely continuous on G_ and u' € L*(G_)},
HY(G,) :={u € L*(G,) : u is absolutely continuous on G and v’ € L*(G,)}.

Though every function in H*(G_) (resp. H'(G)) is well defined at 0— (resp. 0+), u € .Z is
not necessarily such that w(0+) = u(0—). For u,v € .%, write

0— o)
/u’(m)v'(x)dx ::/ u’(:];)v’(a:)dx—i—/ o () (x)dx
G

—00 0+

for convenience. The following proposition contributes to the understanding of SNOB.

Proposition 3.10 Let R be the two-sided reflecting Brownian motion on G associated with the
Dirichlet form (3.8). Then the SNOB'Y = (Yi)i>0 is the snapping out Markov process with respect
to Rand p = %(5{0+} + 5{0_}) with k being the parameter in Definition Furthermore, the
following assertions hold:

(1) The Dirichlet form of SNOB on L*(G, m) is regular and given by
FS={ue L*G,m):uy € H(G,), u_ € HY(G_)},

E5(u,v) = % /Gu’(x)v’(a:)dx + g(u((H—) —uw(0-)(w(O0+) —v(0-)), u,ve.F°.

3.9
(2) The extended Dirichlet space F§ of (&%, .F%) is identified with that of (&, F), i.e.
Fo = {u: ug,u_ are absolutely continuous on G (3.10)
and G_ respectively, &(u,u) < 0o}.
(3) (&5,.7%) is irreducible and recurrent. Particularly, for any z,y € G,
P(0, < 00) = 1, G.11)

where o, :=inf{t > 0 :Y; = y} is the hitting time of {y} relative to the SNOB.

(4) The o-finite symmetric measure of Y is unique up to a constant, in other words, if another
non-trivial o-finite measure m on G is such that 'Y is also m-symmetric, then m = c - m for
some constant ¢ > (.

(5) Let f € LY(G,m) be Borel measurable. Then it holds Py -a.s. for any x € G that

1 t
lim / fY)du = 0.
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Proof. The first and second assertions can be deduced directly from Theorem and Proposi-
tion The third assertion is implied by (3.10). In fact, it follows from (3.10) that 1 € .%#¢
and &5(1,1) = 0. Then [6, Theorem 2.1.8] indicates the recurrence of (£*,.%%). In addition,
E%(u,u) = 0 with u € .Z{ clearly implies that u is constant. Then from [6, Theorem 5.2.16] we
can obtain the irreducibility of (£%,.%#°). Note that the £-polar set has to be empty and so does
the &*-polar set by Corollary [3.6] Then (3.TT)) can be concluded by [13] Theorem 4.7.1]. For the
uniqueness of symmetric measure, it suffices to note that Y is finely irreducible in the sense of
[24]] and the fourth assertion holds by [24, Theorem 2.1]. The final assertion is a consequence of
[13, Theorem 4.7.3]. O

Remark 3.11 It is worth noting that the two-sided reflecting Brownian motion R on G is not
irreducible and its symmetric measures are not unique. In fact, all the non-trivial symmetric
measures of R can be written as

{cldm\(@_ + codz|g, :c1,c0 > 0}.

Intuitively speaking, the snapping out method builds a ‘bridge’ between 0+ and 0— and links the
two separate components of R, so that the SNOB becomes irreducible and its symmetric measure
is unique.

We complete this subsection with an interesting link between SNOB and one-dimensional
Brownian motion. For any 8 > 0,

x+ B, $€G+,

T3 :G — (—o0,—pBlU[B,00), x>
8 ( BIU S, 00) {x—ﬁ, e G
denotes the homeomorphism between G and (—oo, —5]U[f3, 00). Note that T3(Y") := (Ts(Y3))i>0
is a Markov process on (—oo, —3] U [3, 00). The following result tells us the darning of SNOB
by shorting {0+, 0—} into 0 is the one-dimensional Brownian motion, and on the contrary, the
SNOB is the trace of one-dimensional Brownian motion up to a spatial transform.

Theorem 3.12 (1) Let Y be the SNOB on G associated with the Dirichlet form (3.9). By
shorting {0+,0—} into 0, the Markov process with darning induced by Y (Cf. is
nothing but the one-dimensional Brownian motion.

(2) Let (%D7 HY(R)) be the associated Dirichlet form of one-dimensional Brownian motion on
L%(R). Set F,, := (—o0, —k U [k, 00) and m,, = m| g, with m being the Lebesgue
measure on R. Then T,.—1(Y') is a Markov process on F; associated with the trace Dirichlet
form of(%D, HY(R)) on F; with the speed measure m,.

Proof. The first assertion is clear by applying (2.3)). For the second assertion, let (&, .7) be the
trace Dirichlet form of (%D, H'(R)) on F, with the speed measure m,. Clearly,

F ={f € L*(Fr,my) : fliu—1.00 € H'([™,00)), fl(—oo_n-17 € H' (=00, =D}
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Following the proof of [19, Theorem 2.1], we can deduce that for any f € .#

—1y -1
£ = / Fapda+ 1Y (| 1)_{_(K'{1)|))

= Fla)2de + & UGIDE f—rH)%

2 F.
Clearly, T,.-1(Y') is associated with (f , F ). That completes the proof. O

3.4 Snapping out diffusion processes on G

We present a family of more general snapping out Markov processes on G, which will be used in
The symmetric measure (not necessarily the Lebesgue measure) is still denoted by m. Let .#
be the family of fully supported positive Radon measures on G charging no set of singleton. In
other words,

A :={v : afully supported Radon measure on G and v({z}) = 0,Vz € G}. (3.12)

Then v € . indicates 0 < vy ([a,b]),v_([—b, —a]) < oo for 0 < a < b, where vy = v|g,.
Clearly, every v € .# induces a fully supported Radon measure on R charging no set of singleton.
We should use the same symbol v for it if no confusion caused.

Fix A € .# and denote A1 := A|g, as usual. Clearly, A+ induces a unique scale function s
on G4+ such that s (04) = 0, in other words,

S+(£C) = )‘+([O+a Jj])) S,(—CC) = —A,([—LL’, 0_])7 T € G’+‘

Denote the combination of s1 by s, i.e. s(z) := si(x) forx > 0 and s(x) := s_(x) for x < 0.
Then s is the scale function on R induced by A.

A first step towards the snapping out diffusion processes on G is to start with a diffusion X
on G as a union of Xt and X, where X is an irreducible diffusion on G with scale function
s+, speed measure m and no killing inside. In other words, X * is given by the regular Dirichlet
form on L?(G4,m4): (see [20])

df

2

FE = {f € L*(Gy,my): f < /\i,/ (
Gt
f(£o0) 1= EI}Q J@) =0if A(Gy) < OO},

1 df d
gi(f7g)é d)'\]::d)\g d)\j:, f7g€yi’
+

and X is associated with the regular Dirichlet form on L?(G,m)

F={fel’Gm: freF" f eF},

.\ K (3.13)
g(f?.g):g (f+7g+)+@(d (f—7g—)7 f?geg
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where f4 := f|g, . Note that (&,.%) is not irreducible. Its extended Dirichlet space is
Fe=Af: [z € T},

where (Cf. [6, Theorem 2.2.11 and (3.5.11)])

2
FE = {f:f<< Ai,fg (X;) dAy < 00, f(£00) = 0if A+ (G4) < oo},
+

The snapping out diffusion process X°® is, by definition, the snapping out Markov process with
respect to X and a finite smooth measure ;. The smooth measures we are interested in are those
supported on {0+, 0—}, in other words,

W= K4 - Ogoqy + K- Ogo—y (3.14)
for some constants £+ > 0. By applying Theorem [3.5] we can conclude the following result.

Proposition 3.13 Let A\ € .4 and i be in (3.14). Then X*® is m-symmetric on G and associated
with a regular Dirichlet form on L*(G,m)

T = 7,

ENF.g) = Ef,9) + —E=(£(0+) — F(0-))(g(0+) — g(0=)), f.g € Z.
Ky + K

Its extended Dirichlet space is F§ = F.. Furthermore, the following hold:
(1) (&%, F%) is irreducible and particularly, for any x,y € G,
P.(oy < 00) >0, (3.15)
where oy, is the hitting time of {y} relative to X*.

(2) (&%, F%) is transient, if and only if either A1 (G1) < 00 or A_(G_) < oco. Otherwise, it is
recurrent.

(3) The o-finite symmetric measure of X is unique up to a constant.

Proof. Note that for any f € %, f(0=L) exists and is finite. Thus .#* = .% and .#{ = %, by
(3.2) and (3.7).

Let us show the irreducibility of (£*,.%#%). Then (3.15) is implied by the fact that every
singleton is of positive capacity relative to & obtained by Corollary 3.6} Suppose A is an invariant
set (Cf. [6, §2.1]) of (&*, .#%). Then by [6, Proposition 2.1.6], we may easily deduce that A N G
is an invariant set of (&, .Z%). Since (£*, .Z%) is irreducible, it follows that A = ¢, G4, G_ or
G. Suppose A = G. By using [6, Proposition 2.1.6] again, we have

@(ds(f7 g) = @@S(f-i-a g+) + @@S(f—a g—)



SNAPPING OUT MARKOV PROCESSES 19

for any f, g € .#%. However, the right-hand side is equal to

EH g0+ 8 U9+ —(fODIO0D) + [0-)90-) £ £, 9)
for f, g satisfy f(0—)g(0+) + f(0+)g(0—) # 0. This leads to A # G_.. Similarly, we can obtain
A # G_ and therefore, A = ¢ or G.

Next, we prove the second assertion. For the sufficiency of transience, there is no loss of
generality in assuming A\ (Gy) < oo. Suppose f € Z$ with &5(f, f) = 0. This implies
fr € ZE, EF(f+, f+) = 0and f(0+) = f(0—). It follows from A\, (G ) < oo that (T, .F )
is transient. Hence fy = 0. Moreover, & (f_, f-) = 0 indicates f_ is constant on G_.
Then f(0+) = f(0—) tellsus f = 0 on G. To the contrary, we need only note if AL (G1) =
o0, then (&*,.Z %) is recurrent by [6, Theorem 2.2.11] and thus (&%, .%°%) is also recurrent by
Proposition 3.8

The final assertion can be obtained by mimicking the proof of Proposition[3.10} That completes
the proof. O

Remark 3.14 By shoring {0+, 0—} into 0, the darning transform on X*® leads to an irreducible
diffusion on R with scale function s, speed measure m and no killing inside.

We complete this subsection with several concrete examples. The first example sheds light on
the significance of symmetric measure m in the snapping out method.

Example 3.15 Let us consider the two-sided reflecting Brownian motion R on G but take a
different symmetric measure m(dzx) := 2(1 — «) - dz|g_ + 2c - dx]((;+ with a constant 0 < o < 1.
Its Dirichlet form on L*(G, ) is written as

F ={ue L*G,m):uy € H(G4), u_ € H(G_)},
0= , o (3.16)
Ew,v)=~0A— a)/ u' (x)v' (x)dr + a/ () (x)dr, u,ve.F.
—00 0+

Let i = %(5{0+} + (5{0_}). Note that the killing transforms of (3.16) and (3.8)) induced by the
same measure [ are different, since the PCAFs of 1 are different with respect to different symmetric
measures. .

The snapping out Markov process Y with respect to (3.16) and p is also m-symmetric and its
associated regular Dirichlet form on L*(G, ) is

FP=F,
& (u,v) = E(u,v) + Z(U(OH —uw(0-)(0O0+) —v(0-)), u,ve€ F".
It is is irreducible and recurrent by Proposition The symmetric measure of Y is unique up to

a constant. Particularly, if  # 1/2, then'Y is not symmetric with respect to the Lebesgue measure
on G.

The next example gives the so-called a-skew SNOB.
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Example 3.16 Let (&,.F) be the regular Dirichlet form (3.16) of R on L*(G, m). Take another
smooth measure po := (1 — a)kdo_y + akdyoyy. The Dirichlet form of snapping out Markov

process with respect to (3.16) and iy, is
FS=F
9

3.17
& (u,v) = E(u,v) + a(l — a)s(w(0+) — w(0-)(w(O0+) — v(0-)), wu,ve F°. ( )

We call this snapping out Markov process the a-skew SNOB and denote it by Y*. This name
follows the so-called o-skew Brownian motion in [14)]. Indeed, after shorting {0+, 0—} into 0 and
applying the darning transform to (3.17)), we can obtain the associated Dirichlet form of a-skew
Brownian motion. Particularly, when oo = 1/2, the a--skew SNOB is nothing but the SNOB.

Mimicking [17, Proposition 1], we can deduce that Y* is related to the heat equation (1.3)
and the condition of discontinuous flux at 0:

aVu(t,04+) = (1 — a)Vu(t,0-),
(1 — a)r(u(t, 04) — u(t,0—)) = Vu(t, 0+).

See 5| for more considerations about this boundary condition.

Another example below shows that the transience of (&%, .%°%) is not sufficient for that of
(&, .F)if (&,.%) is not irreducible.

Example 3.17 In Proposition take s_(x) = x and s (x) == 1 —e*. Then X~ is recurrent,
while X is transient by [I6 Theorem 2.2.11]. Thus (&,.F) is neither transient nor recurrent.
However, since A;.(G) < 0o, we know that (&%, F%) is transient by Proposition[3.13]

3.5 Other examples

Two more examples of snapping out Markov processes are presented below. The first one is based
on a diffusion on R, which consists of a countable set of separate reflecting Brownian motions.

Example 3.18 Let K be the standard Cantor set and write K¢ as a union of disjoint open
intervals:
K¢ = UnZl(an) bn)v

where (a1,b1) = (1,00) and (as, by) = (—o0, 0). We use the conventions [a1,b1] := [1, 00) and
[ag, ba] = (—o00,0] for convenience. For each n > 1, denote the associated Dirichlet form on
L?([ap, by]) of reflecting Brownian motion on [ay, b,] by (™, F™). Set

F ={u € L*R) : ulja, ) € F",n > 1},
g(u,'l)) = Zgn(u‘[anybnb v|[an7bn])7 'LL,'U € y

n>1

Then (&,.F) is a regular Dirichlet form on L*(R) due to [20]. Note that R\ Un>1lan, byl is &-
polar and {z} is of positive capacity for any x € Up>1[an, by,]. Roughly speaking, the associated
Markov process of (&, .F) is a disjoint union of countable reflecting Brownian motions.
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Let p be a smooth probability measure on R, in other words, j1(R \ Up>1[an, by]) = 0. Assume
that
o = p[an, bp]) >0, Vn > 1.

For example,

1 1
=700y +0) + X 57 (Gay +04py)-
n>3
Then the snapping out Markov process with respect to (& ,.%) and y is irreducible and recurrent.
This fact can be attained by mimicking the proof of Proposition [3.10 and we omit its details.
Intuitively speaking, if [in, tm > 0, then the snapping out method builds a ‘bridge’ between
[an, bn] and [an,, bn,] by additional jumps.

The next example starts with a pure-jump process on G.

Example 3.19 Consider a regular Dirichlet form (B, W) on L*(Gy) = L*([0+, 00)) for 1 <
a < 2:
W= {u € L3(G,) : |u| < oo a.e., B(u,u) < oo},

Bu.v) = ¢ / (ux) — U(y))(vl(a?) — @) .. dy. wweWw,
G+><G+\d+ ‘.’L’ - y‘ o

where d is the diagonal of G4 x G4 and ¢ > 0 is a constant depending on « (see [4|]). The
associated process is called the reflecting a-stable process on G.. It is irreducible and recurrent,
and every singleton is of positive capacity. We refer to [4l] for more details about these facts.
Mimicking the two-sided reflecting Brownian motion on G, we extend the reflecting a-stable
process to a two-sided one X = (Xy)i>0 on G = G U G_ by symmetry. Namely, X is given by
the regular Dirichlet form on L*(G,m) (m is the Lebesgue measure on G) as follows:

F = {u € LAG,m) : |u| < oo ace., &(u,u) < oo},
& _ / (u(x) — uy)@) — vy))
(u,v) =c¢ Tra
(G4 XG4 )U(G— xG_)\d [z —y

where d is the diagonal of (G4 x G4) U (G_ x G_). Clearly, (&,.F) is recurrent but not
irreducible.

Take . = %(5{0+} + 00—}, which is a smooth probability measure with respect to (&, F).
The snapping out Markov process with respect to X and . is denoted by X® and we call it the
snapping out a-stable process. Its associated Dirichlet form is

drdy, u,v € ZF,

TS = {u € LAG,m) : |u| < oo a.e., &5u,u) < oo},
E5(u,v) = c/ (u(x) — U(?/))(Ul(x) - U(y))dazdy
(G4 XG1)U(G— xG_)\d |z —y|te

+ %(’U,(O—F) —uw(0-))(v(0+) —v(0—-)), wu,ve F°.

Clearly, X® is also a pure-jump process and mimicking the proof of Proposition|3.10, we can
conclude that X is irreducible and recurrent.
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4 Stiff problems in one-dimensional space

This section is devoted to explore the stiff problem in R via Dirichlet forms. We shall first introduce
the Mosco convergence of Dirichlet forms. It will be used in to build a phase transition of
stiff problem as the length of the normal barrier decreases to zero. Then in we shall give three
Markov processes on G or R, which are the probabilistic counterparts of thermal conductions in
stiff problem. In what follows, the general stiff problem in one-dimensional space will be phrased
and solved.

4.1 Mosco convergence of Dirichlet forms

Mosco convergence raised in [21] is a kind of convergence for closed forms. We shall write down
its specific definition for handy reference. Let (8™,.%™) be a sequence of closed forms on a same
Hilbert space L?(E,m), and (&, .%) be another closed form on L*(E, m). We always extend the
domains of & and &, to L2(E,m) by letting

&E(u,u) =00, u€ L*(E,m)\.Z,
E™(u,u) =00, ue L*E,m) \ Z".
In other words, v € % (resp. u € ™) if and only if &(u,u) < oo (resp. &™(u,u) < 00).

Furthermore, we say u,, converges to u weakly in L?(E, m), if for any v € L?(E, m), (un, V)m —
(1, v)m as 1 — 00, and strongly in L2(E, m), if |ju,, — uHLQ(Em) — 00.

Definition 4.1 Let (£",.%™) and (&, %) be given above. Then (&, .%™) is said to be convergent
to (&, %) in the sense of Mosco, if

(1) For any sequence {u, : n > 1} C L?*(F,m) that converges weakly to u in L2(E,m), it
holds that

n—oo

(2) Forany u € L?(E,m), there exists a sequence {u, : n > 1} C L*(E,m) that converges
strongly to u in L?(E, m) such that

E(u,u) > Tim E™(up, uy).
n—oo

Let (17")i>0 and (T})>0 be the semigroups of (£, .%# ™) and (&, .F#) respectively, and (G7)a>0, (Ga)a>0
be their corresponding resolvents. The following result is well-known (Cf. [21]]).

Proposition 4.2 Let (&, ™), (&, F) be above. Then the following are equivalent:
(1) (&™, F") converges to (&,.F) in the sense of Mosco;
(2) foreveryt > 0and f € L*(E,m), T/'f converges to T, f strongly in L*>(E, m);

(3) forevery a > 0and f € L*(E, m), G f converges to G f strongly in L*(E,m).
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4.2 Markov processes related to the phases of stiff problem

Recall that G = G4 UG_. The family .# of measures is given by (3.12)). Fix m, A € .# . Denote
the scale function induced by A+ by si. Their combination, i.e. the scale function induced by A
on R, is denoted by s as in

The following Markov processes on R or G related to m and A are of great interest in this
section:

(1) a two-sided diffusion process X on G, which is a union of reflecting diffusion X* :=
(Xti)tzg on G4 with scale function s, speed measure m- and no killing inside (Cf. [16]),

(2) the snapping out Markov process X* on G with respect to X and

K
1= 50104y +0p0-)
with a parameter x > 0, and

(3) a diffusion process X e (X}/)tzo on R with scale function s, speed measure m and no
killing inside.

The diffusion X is given by the Dirichlet form (3.13). It is not irreducible, and G, G_ are its
invariant sets. Applying Proposition [3.13] X*® is associated with

T =7,

K 4.1
It is irreducible. Finally, the irreducible diffusion X I (the superscript ‘i’ stands for ‘irreducible’) is
m-symmetric and associated with a regular Dirichlet form on L*(R,m)

{rer (&)
F' = fGL(]R,m):f<<)\,/ — ] dX\ < 0,
R \LdA

f(00) = lim f(a:):Oif)\i(Gi)<oo}, (4.2)

. 1 df d .
é“(f,g)z/fgdA, f.ge T

2 Jg dXdA
It is worth noting that every (quasi-continuous) function f in .# (or .#%) is continuous on G and
G_ respectively, but possibly f(0—) # f(0+). However, every (quasi-continuous) function in .%#*
is continuous on R, particularly it is continuous at 0. Notice that L*(G,m) = L3R, m). If we
regard every function in .7 as an m-equivalence class, then 7' G .7 = .7°.

Remark 4.3 The fixed measure m € .# is the common symmetric measure (or speed measure) of
these Markov processes. It is usually taken to be the Lebesgue measure in the thermal conduction
model. The scale function s as well as A plays the role of the ‘thermal resistance’, which reflects
the ability of the material to resist the flow of the heat. Let us make a brief explanation of this fact.
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Take m to be the Lebesgue measure on R and assume that s is absolutely continuous. Then for
any f,g € F!

f'(@)g () (w)
2 Jg s@)
Under a slight assumption, the generator Ll of (&1,.F) has CP(R) as its core and for any
[ e CEM),

E'f.9) =

- 1
g —
L'f(x) = 2V< . )Vf(l‘)>
In other words, 1/s’ is nothing but the thermal conductivity a in (I.T)).

Example 4.4 When m and )\ are both the Lebesgue measure on G, X is the two-sided reflecting

Brownian motion on G, X* is the SNOB, and X' is the one- dimensional Brownian motion on R.
In Example |3.15| m = m, A\ (dzx) = 5> and \_(dx) = 2(1 a) In Example m is the

Lebesgue measure on G, \_ is the Lebesgue measure on G_ but \y is a finite measure on G .

Let H := L*(R,m) = L*(G,m). Denote the generators of X, X%, X' on H by L, L%, L
respectively. Recall thatw € D(L), f = LTu € Hifandonlyifu € .Z1and &T(u,v) = (= f,v)y
for any v € .# T, where 1 is vacant or stands for s or i until the end of this section, and D(LT) is the
domain of £1.

Proposition 4.5 Let m, \, k and X, X°, X' be given above.

(1) The generator of X is
Eu\ _1 d dui
© 7 2dmy \ dhs

DL)y=u€eF: duii < M4, L duii L2(Gi,mi), (0:|:) =0
dmy \ dA+

with

(2) The generator of X is

ol 1 d (dus
UG = 9 dms \dhs

, d d (d
D(LY) = {u e 8E M <ui> € LGy, my),

with

A+ (4.3)

E22 (0 = g(u(0+> — u(0—>)}.
+

(3) The generator of X' is

with
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Ut du4 2 . duy - .
Proof. Note that & Dy K mx and dmi (@) € L“(G4,my) imply 7x, 1s continuous on G+

and of bounded variaiton, since m charges no set of singleton. Particularly, dui (Oi) is well

defined. The expressions of £ and £! are derived in [12]]. We need only prove the second assertion.
Denote the right side of by G. It is direct to check that G C D(L®) and L%u = %%% for
u € G. To the contrary, take v € D(L®) with L% = f € H. Then for any fixed M > 0 and any
v € %N C.(G) with supp[v+] € Gy N[—M, M],

éos(ua v) = (—f,v)n.

On one hand, v is of bounded variation and we have

X 1 du du
E(u,v) = /(G+ ﬁdV—F 2/@ ﬁdV—FC’(v(O—i—) —v(0-)),

where V is the signed measure induced by v and C' := %(u((H—) — u(0—)). On the other hand,
write

(—M)VaeAM
F(x) := F(0+) + / f@ym(dx), =z e Gy,
0+

where F'(0+) and F(0—) are two constants. Since f € L*(G, m), it follows that F is of bounded
variation and dF' = fdm on G respectively. This implies

R — / o(@)dF () — / o(@)dF ()
Gy

= / FdVv + / FdV + F(0+)v(04+) — F(0—)v(0—).
Gy _
By letting v|g_ = 0 or v|g, = 0, we have

1
— / dfudV + Cv(0£) = / FdV £ F(0t)v(0xt).
G+ dA G+

Then we can easily conclude that C' = F'(0+) and %%ﬁ = F on G. This indicates

du4+ 1 d du+ 2
— == = LY(G
D < may, > dms (d)\:t> J+ € L7(Gy,my)
and p
E(Oi) =20 = —(u(0+) — u(0-)).
That completes the proof. O

The semigroup PtT of X1 satisfies the strong Feller property in the sense that

Pl f() = E[f(XD] € Cy(E), Vf € By(E),
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where E = R or G is the state space of XT. Indeed, take g, € L?(F,m) with g, 1 1, and
set fu := f - gn. Then f, € L?(E, m) and thus Pj fn is a quasi-continuous function in .% 1.
This indicates P{r fn € Cy(E), since every singleton of E is of positive capacity with respect to
(&1, F1). Therefore we can conclude PtTf € Cy(F) from HPtTfn — PtTfH(;b < |lfn = flloo = 0.
The strong Feller property of PtT tells us it is also feasible to explore the generator of X T on Cy,(F).
We refer further considerations to [12].

4.3 Phase transition of stiff problem

As mentioned before, the stiff problem is concerned with a thermal conduction model with a
singular barrier. In this subsection, we shall focus on the probabilistic description of this problem,
and the main tool is the Mosco convergence of Dirichlet forms introduced in
For £ > 0, assume that a normal barrier is located at I. = (—¢,¢). It is identified with a
thermal resistance 7. on I.. In other words, . is a positive, finite and fully supported measure
on I, charging no set of singleton. Let R \ I. be of normal material with T# N being its thermal
resistance. Recall that 7. : G — R\ . is a homeomorphism, and 7. # X is the image measure of A
under 7. Set a measure on R
Ae :=THFN+ .. (4.4)

Clearly, \; € .# and denote its induced scale function by s.. By means of m and A., we could
write the Dirichlet form related to the thermal conduction model with the normal barrier (I, ;) as
follows

F¢ = fEL(]R,m):f<<)\5,/ — ] d)\: < 00,
.\
fCoo) = lim_f() = 01 A(G) < oo}, 4.5)

1 df dg
&° = — X € F°.
(f?g) 2/]Rd)\gd)\g 58] fag
The associated diffusion X< of (&%, .%°) is irreducible and m-symmetric on R.

The main purpose of this section is to study the convergence of (£¢,.#°) as ¢ | 0. Before
moving on, we need to prepare some notations. Take a decreasing sequence ¢, | 0 and write
Iy Yy A, (8™, F M) for Ie, e, Ae,,, (657, FE7) respectively. Set

m*(n) .= supm([z,x +,]), A'(n):=sup A([z,z + &,]).
z€eR z€R

Moreover, ¥(n) := v, (1) is called the fotal thermal resistance of I,,. In the following theorem,
we build a phase transition in the context of the convergence of (&",.%™) as n — oo. This
phase transition sheds light on the patterns of thermal conduction model with a singular barrier
at 0, which definitely depend on its total thermal resistance. Notice that although the associated
Markov processes live in G or R, the Dirichlet forms (3.13)), (4.1), and (&, .#") are on the
same Hilbert space H = L*(G, m) = L*(R,m). Thus H is also the underlying space of Mosco
convergences below.
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Theorem 4.6 Let ¢, Iy, Yo, A, (8™, F ™) be given above. Assume
Fm)ym*(n) + AX*(nym*(n) - 0 asn — oo, (4.6)
and
v = lim ¥(n) (< oc0)
n— o0
exists. Then the following assertions hold:

(1) ¥ = oo: (E™,.F™) converges to the Dirichlet form (&,.%) given by (3.13) in the sense of
Mosco.

(2) 0 <7 < o0: (&™, F™) converges to the Dirichlet form (&%, F*) given by @) with the
parameter k = 2/7 in the sense of Mosco.

(3) 7 = 0: (&™, . F™) converges to the Dirichlet form (&', . %) given by @.2) in the sense of
Mosco.

Proof. (1) Suppose {f,} converges to f weakly in H and lim,, .. &"(fn, fn) < oo. For
showing &(f, f) < lim,,_, . &"(fy, fn). there is no loss of generality in assuming

M = sup E"(fn, fr) < 00.

n>1

Define a function fn = fpoly,,ie. fn(ac) = fa(x+ey,) forxz > 0and fn(ac) = fa(x—ep)
for x < 0. We assert
lfn— follg =0 asn — oo, 4.7

and particularly, fn converges to f weakly in H. Indeed,

0

v o0 o 2 y 2
= Fult = [ (o) = ) mido + [ (e = o)) mido
0

—0o0

We can deduce that

00 00 Tten 2
| (= f@) mian = [ ( / jf/\tld)\n> m(da)

< (dfn\®

< (A" (n) +F(n)ym*(n) - / <d/\> dXy,
0 n

< 2M - (X*(n) + H(n))m™(n).

o 2
Similarly, [°_ ( Fol) — fn(a:)> m(dz) < 2M - (\(n) + 3(n))m*(n) and thus || f, —
fvnH%{ — 0 by (4.6). Clearly, fn € .%. Then it follows from fn = fanoT., and \y|1c =
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Ao T 1 that

ES, < im E(f, fin)

n—o0

o 2
1 [ (df,

—1im - [ [ Y2) ax
oo 2 G(dA)

2
= lim 1 (dfn> d\,

< lim &"(fn, fn).

n—o0

On the other hand, let ¢ € H with &(g, g) < oco. Particularly, g is continuous on G and
G_ respectively, and g(0+), g(0—) are well defined. For each n, define a function g,, as
follows:

x

dulzs = goTY, ga(@) == g(0—) + cx - / By @€ I, 4.8)

—En

with ¢, := (g(0+) — g(0—))/7(n). Clearly, g,, € .Z™. Since 7(n) — oo, we have

(9(0+) — g(0—))?
27y(n)

1
E"(Gn» gn) = E(g.9) + =c2 - F(n) = (g, 9) + — &(9, 9)-

Mimicking (4.7), we can also obtain || g, — g||z — 0. This implies {g, } is a sequence that
converges to g strongly in H and

n@ E™(Gn, gn) < E(g, 9).

(2) Suppose { f} converges to f weakly in H, lim,,_, ., &"(fn, fn) < coand M := sup, 1 E"(fn, fn) <
oo. Let fn = fnoT;, €. F = .%°% We know that fn — f weakly in H. Since

o v 2 9
(£a00) = Fa0)) " = (fulen) = fal=20)
= dfy, 2
“([L i) 4

€n df,, 2
< 3(n) <dj;) Y,

—En
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3)

it follows that

ENS, N < lim Efu, fn)

n—oo

o df, 2
~ lim |5 / ( CM) dA+ 5 (Fa0+) = Fa0)
e df,, Yk [ [ dfy\?
i (/ (i ) o 20 () d””)
_ €n 2
— lim (ﬁ”(fn,fmﬂ(m”‘z / <df> d%)
n—00 4 —en dyn

Note that ff’;n (df ") dyn < E™(fn, fn) < M. As a consequence,

IN

lim W/ dfn dﬁyn < M lim Yk — 2 —0.
n—00 4 e d")/n n—00 4
This implies &5(f, ) < lim,,_, o &™(fn, fn)-
On the other hand, let ¢ € H with &5(g, g) < co. Take g, as in (4.8). Then g, € #" and
n 0+) — g(0—))? S
E"(gn, gn) = €(9,9) + 9@+ — 9t — &°(9,9)-
25(n)

Similar to (@.7), we can also conclude lim,,_, ||gn, — gl = 0.

We still suppose { f,,} converges to f weakly in H, lim,_, . &"(fy, fn) < oo and M :=
sup,,>1 & (fn, fn) < co. It has been proved in the case § = oo that f € 7 and

E(f, ) < lim E"(fn, fn)-

n—oo

We need only show f € .Z!, which implies &'(f, f) = &(f, f) < lim,,_,.. E(fn, fn).
In fact, f is continuous on G4 and G_ respectively. We still consider f‘n = fpoTl,,.
Clearly, fn — f weakly in H and sup,, &( fn, fn) < sup,, E"(fn, fn) < M. The weak
convergence of fn in H implies sup,, anHH < oo. Thus sup, éal(fn, fn) < o0. By
Banach-Saks theorem, the Cesaro mean of a suitable subsequence of { fn} converges to
some h € % in || - norm Without loss of generality, we still denote this subsequence
by {fn}. Then hy, := £ Z _1 fn is & -convergent to h. This implies Ay, converges to h,
&-q.e., and particularly, hj,(0+) — h(0+). It follows from @J) that | f,,(0+) — f,,(0—)| <
VM -~(n) — 0asn — oo. Hence

k
[h(O+) = h0-)] = Tim | =" (Fu(04) = Fu0-) )| =

1 '
k n=1
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i

This indicates h is continuous on R, and so that h € .F'.
(fnswz — (f,w)m and

Take any u € H, we have

k
. 1 .
mwg—gym@m—g&kZ}me—mwﬂ

Therefore, f = h € Z1.

On the other hand, let ¢ € H with &(g, g) < co. This means g € .#' and g is continuous
on R. Consider g,, in @.8). Note that g,,(z) = g(0) for any = € [—¢&,,&,] since ¢, = 0.
Clearly, g, — ¢ strongly in H and

E"(gn, gn) = £(g, 9).

That completes the proof. 0

Remark 4.7 In [17], m and X are both the Lebesgue measure, and . is taken to be ﬁ—“; on I..
Clearly, (4.6) holds and 4 = 7.(I;) = 2/k. The snapping out Markov process associated with the
limit of (&¢,.%¢) as € | 0 is actually the SNOB with the parameter .

We call the three patterns of thermal conduction in Theorem [4.6]

(1) the impermeable pattern for the phase ¥ = oo,
(2) the semi-permeable pattern for the phase 0 < 4 < oo, and

(3) the permeable pattern for the phase v = 0.

The most interesting case is the semi-permeable pattern (it is very similar to the ‘barrier penetration’
in quantum mechanics). As we have shown in the penetrations in this case are realized by
additional jumps between 04 and 0— in the probabilistic counterpart. The parameter «, i.e. the
reciprocal of total thermal resistance, reflects the ability of the flow to penetrate the singular barrier.

Though the convergences in Theorem [4.6] are in the manner of Dirichlet forms, we can also
obtain the convergences of corresponding Markov processes in the sense of finite dimensional
distributions. Let (&",.#™) be in Theorem (or Corollary and X" be its associated
diffusion on R. Further let (&7, .Z1) be one of (&,.%), (&%, F%) and (&', F1) and denote its
associated Markov process by X T = (XtT )e>0. Write (P})zcr, (P2)zer (E = R or G) for the
probability measures of X™ and X f respectively. Take a function h € L?>(R,m) = L*(G,m) and
set

homl] :Z/Rh(ﬂi)m(dx)Pz[-], Pp.ml-] :Z/Rh(sv)m(dx)Px[']-

The expectation with respect to Py (resp. Pp.p,) is denoted by Ej . (resp. Ej.;,). Then the
following result holds. The proof is direct by using Proposition[4.2] see [[18] Proposition 4.3].

Corollary 4.8 Assume (&",.F™) converges to (&1, F1) in the sense of Mosco and fix h €
L2(R,m). Then forany k > 1,0 < t; < --- < t, < oo and f; € By(R) N L2 (R, m) with
1 < i <k, it holds that

Tim EfL [ -+ XD = B[ 1)+ (X)) (4.10)
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Remark 4.9 In the case of impermeable pattern or semi-permeable pattern, £ = G. Thus f;
should be replaced by a suitable measurable function f; on G in the right side of (4.10). Clearly,
fi = fi apart from 0 (or 0+). Thanks to [13, Theorem 4.2.3], we know that

Epon [ - X)) = B [ - X))

if fz is another appropriate version of f; on G, i.e. fi(a:) = fi(x) for x # 0. So in abuse of symbols,
we still use f; in the right side of @.10).

On the other hand, the convergence in (4.10) is weaker than the weak convergence of {P}!
n > 1}, by realizing which as a family of probability measures (suppose | hdm = 1) on the space
C([0, 00), R) of continuous paths or Skorokhod space D([0, 00), R) of cadlag paths. However for
the weak convergence, we are stuck in the trouble that X f might live in G and C([0, c0), G) (resp.
D([0, ), G)) differs from C([0, c0), R) (resp. D([0, o0), R)) significantly.

Let us briefly explain the technical condition (.6) in Theorem[.6] As mentioned in Remark[4.3]
m is usually taken to be the Lebesgue measure in the thermal conduction. Without loss of generality,
we take €, = 1/n further. Then the first part of becomes

lim M:

n—oo n

0. 4.11)

It has no effects on the semi-permeable and permeable patterns. However, in the impermeable
pattern, (4.11)) causes that the divergence of 7(n) must be slower than n. We believe this restriction
is not essential. Indeed, the convergence of the phase ¥ = oo is proved for the Brownian case
without (.11 in Corollary 4.10] On the other hand, the second part of (#£.6)) is

. A'(n)
lim =

n—oo n

0. 4.12)

This is a very mild assumption. It admits A to be not absolutely continuous. For example, let
d\ = dx + de, (4.13)

where c¢ is the Cantor function with ¢(z) = 0 for any x < 0 and ¢(x) = 1 for any = > 1. Then
A*(n) < 1 and (&.12) holds, but A is not absolutely continuous. When X is absolutely continuous,
write a(x) := 1/s'(x) for the thermal conductivity. Since

(o) = ke
n y a(x)

we find that the condition a(z) > § a.e. with some constant 6 > 0 implies (.12)). But (.12) also
admits a to be very close to 0. For example, take 0 < 8 < 1 and

a@@) =z’ A1, zeR. (4.14)

Then \(dx) := %daj satisfies (@.12).
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4.4 Brownian case of phase transition

The short subsection is to present the Brownian case of Theorem [4.6] in which the phase transition
becomes more complete.

Corollary 4.10 Let m and X be the Lebesgue measure. Then the assertions in Theorem[d.6| hold
without the condition [@.6). Particularly, take o € R,k > 0 and set

Yn(dx) = (kep)“dx.
Then we have:

(1) a < —1: (™, F™) converges to the Dirichlet form (3.8) of two-sided reflecting Brownian
motion on G in the sense of Mosco.

(2) a=—1: (&, F") converges to the Dirichlet form (3.9) of snapping out Brownian motion
on G with the parameter k in the sense of Mosco.

(3) a > —1: (8™, F™) converges to the Dirichlet form (%D, HY(R)) of one-dimensional
Brownian motion on R in the sense of Mosco.

Proof. Note that v,,(I,) = 2k* - €2+, Thus it suffices to prove the case ¥ = oo without (#.6).
We still denote the Dirichlet form (3.8) by (&,.%#). Suppose {f,} converges to f weakly in
H= LQ(R) = Lz(G) and lim,, , . &"(fn, fn) < sup, E"(fn, fn) = M < oco. Set

fn(_f‘:n)a S (_ETHO_])
Fa(@) =< fulen), @ €[04, en),
ful®), zelf.

Clearly, f, € .%. Forany g € H, we have
0

(fn - fmg> = / fa(@)g(@)dr — fn(—cy) g(x)dx — fn(gn)/ ' g(x)dz.
H I, 0

e
The weak convergence of { f,,} implies K := sup,, || fn||% < oc. Thus as n — oo,

2

<K- g(x)*dx — 0.
I,

fn(@)g(x)dw

In

Since | fu(en)| < [fu(@)| + | [ fL(y)dyl for any = > &y, it follows that
1+en 0
| fu(En)® < 2/ fa(@)dx + 2/ Frn@)?dy < A&7 (fu, ) (4.15)
En En

This implies }fn(en) I g(x)d:r| < 4(M + K)‘fin g(:p)d:c‘ — 0 asn — oo. Similarly, we can

deduce that f,(—ey) fin g(x)dx — 0. As a consequence, we can conclude fn converges to f
weakly in H, and

Ef, ) < lim E(fn, fn) < lim E"(fr, fr)-

n—o0 n—o0
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On the other hand, let g € H with &(g, g) < oco. For each n, define a function g, as follows:

x
gn‘[ﬁ = g|1§ia In(x) == g(—€n) +cp - / d’Yna z € I,

—En

where ¢, := (g(e,,) — g(—¢€y))/7(n). We assert ||g, — g||g — 0 as n — oo. In fact, mimicking
(4.15)), we can obtain for any x € I,,,

lgn(@)* < |gen) > + |g(—en)|? < 881(y, 9).

It follows that

lgn — g7 <2 /1 g(x)*dz + 2 /1 gn(2)?dx < 2 /1 g(x)*dz + 3281(9,9) - €0 — 0.

Clearly, g, € .-#" and we can deduce that

1 1
E"(Ggn: gn) = 5 / g@?dr+ e, 3m)
Ig

2
oy / e + OG0
2 I y(n)

Since 4(n) — oo, we can conclude
_ — 1
T £"(g,,90) < Tim 5 [ o/@Pde = 5(0.9)
n—o00 n—o0 2 G
That completes the proof. O

4.5 Continuity of the phase transition

This subsection is to derive the continuity of the phase transition in Theorem §.6|in the sense that
the Dirichlet forms, which describe the phases, are continuous in the parameter 7.

To show this continuity, let us make some notations for convenience. For any 7y € [0, oc], write
(&7, F7) for the limit in Theorem [4.6| that corresponds to the total resistance 7. In other words,

(1) (£, F>) := (&, F) given by (3.13);
(2) (&7, F7) :=(&5,.F°) given by with k = 2/7 for any 0 < § < 00;
(3) (£% F0) = (&',.F") given by @.2).

The following result states that [0, oo] > 7 — (£7, F7) is continuous in the sense of Mosco.

Theorem 4.11 Let {5’ : 1 > 1} be a sequence in [0, 00] such that lim;_,o, 7' = 7 € [0, 00]. Then
(c‘ﬂl , .7:'71) is convergent to (€7, F7) in the sense of Mosco as | — oc.
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Proof. We still denote H := L*(R, m) = L*(G,m) and for the sake of brevity, write (!, F') for
(SZY[ s F Wl). Without loss of generality, we could assume 0 < 4! < oo for any [.

Firstly, we consider the case 4 = oo. To prove the first item of Definition suppose
{u; : 1 > 1} converges weakly to u € H and

lim &y, w) < sup Euy, w) < M < . (4.16)
l—o00 1

Then it follows from u; € F' = F> = .Z that

E%(u,u) < lim EX(uy,w) < lim E(uy, w). (4.17)
l—o00 l—00
For the second item of Definition .1} let w € H with £%°(u,u) < oo. Take u; := u € F>® =
Z = F', we have

lim &y, w) = lim Eu,u) = E(u, v) = EX(u, v).
l—o0 l—o0

Secondly, we prove the case 0 < 4 < co. The second item of Definition 4.1| could be checked
by taking u; := w as in the case 4 = co. It suffices to check the first item. Let u; and u such that
([@.16) holds. Take a constant K > 5. Then for some integer N, ' < K for all [ > N. It follows
that

1 1
— sup (u(0+) — u(0-))* < sup — (w(0+) — w(0-))* < sup &', u) < M.
2K >N I>N 27 I>N

This implies sup;-, y (w(0+) — ul(O—))2 < 2K M. As a consequence,

EV(u,u) < lim E7(uy, uy)

l—00

1 1
= lim <5l(uz,uz) + (27 - 271) “(w(0+) — ul(O))2>

I>N,l—o00

= lim  E'u,w)
I>N,l—00

= lim &', w).
l—00
Finally, let us consider the case ¥ = 0. For the second item of Definition 4.1} it is also very
clear by taking u; := u, since F* = .#% C F! for every . For the first item, we still assume 1,
and u satisfy (#.16). We need only prove u € F°, which leads to

E%u,u) = E%(u,u) < lim E*(ug,up) < lim E(ug, ).
=00 l—o0
This can be attained by mimicking the proof of the third assertion in Theorem .6 That completes
the proof. O

Remark 4.12 Note that (£°, F°) is the darning of (£7, F7) obtained by shorting {0+, 0—} into 0
for any 4 € (0, oo]. The same fasion of Mosco convergence as the case ¥ = 0 was also considered
in [9] for the study of general darning transform.
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5 Boundary conditions of the flux at the barrier

In this section, we shall consider the stiff problems in the context of heat equations in R. Especially,
the boundary conditions of the flux at the barrier will be derived for the three phases by means of
Dirichlet forms.

5.1 Heat equation with a normal barrier

Take a function ¢ on R such that for some constants §, C' > 0,
6 <alx) <C, ae. xr €R. (5.1
For any € > 0, let b. be a function on I, = (—¢, €) such that for some constants 6., C. > 0,
0 <bc(r)<(C. ae zxe€l.. (5.2)
Set
alr —¢g), x>¢,
a‘s(-’I;) = bs(ﬂf), HAS (_575)7
alr+¢), x< —¢,
and the stiff problem is concerned with the convergence of u® (as € | 0) in the heat equation

%ut(t,m) - %V(ag(x)VuE(t,x)), t>0,z R,

UE(O) ) = Uuop-

5.3)

The solution to (3.3)) is considered to be a weak form as follows.

Definition 5.1 A function u® € Cj ([0, 00), LA([R)) N L ([0, 00), H'(R)) is called a weak solu-
tion to (5.3) if ©*(0, -) = g, and for any ¢ > 0, g € C°(R),

t
/(uo(w) —ut(t, x))g(x)dr = 1/ /ag(x)Vug(s,x)Vg(fL‘)dxds. (5.4)
R 2J)o Jr

Though the well posedness of (5.3)) is well known, we shall derive it by means of Dirichlet
forms. Write

Ae(dx) = dx. (5.5

as(x)
Then (5.1) and (5.2) imply A. € .# and denote its induced scale function by s.. Let (£¢,.%¢) be
the Dirichlet form of the diffusion X with scale function s.. In other words, (£¢,.7°) is (@.3)
with A; in (5.5) and m being the Lebesgue measure on R. Thanks to [20, Theorem 3.2], C2°(R) is
a core of (&¢,.%°) and for any u,v € ¢,

E(u,v) = ;/Ras(x)u’(x)v'(:v)dx.

Note that .#¢ = H'(R) on account of § A 6, < a. < C V C.. Denote the semigroup of X¢ by
(Pf)t>0. The following result claims the well posedness of (5.3).
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Lemma 5.2 Assume ug € H'(R). Then u¢(t,z) := PFug(x) is the unique weak solution to (5.3)).
Proof. Let (&%, .%°) be above. Note that
ug(z) = Pyuo(r) = Ezuo(Xy).

We assert u® is a weak solution to (5.3). Indeed, ui = Pfuy € #¢ = HY(R) and clearly,
| Pfuol| 2wy < |luollrz) and ¢ — || Pfuo||r2(r) is continuous. Moreover, since ug € H'(R) =
¢, it follows from [13] Lemma 1.3.3] that

1
4 ey < Mol Bagey + g (Pro. Puo) < ol Fage) + 57 Cuo, o)

5
For any g € C°(R) C .# ¢, we have

= 2|6%(Pyug, 9)| < 26%(ug, up)*/? - £5(g, 9)*/2.

/R as(x)(ug) (2)g (x)dx

This indicates
sH/aE(x)Vua(s,x)Vg(m)da:
R

is locally integrable in [0, co) and particularly, both the left side .%; and right side %; of (5.4) are
continuous in ¢. Denote the resolvent of X ¢ by (R )a>0. Clearly, for any o > 0,

(uo, 9 r2m) — ARy u0, 2wy = E°(Reu0,9) = / e ' E°(Pfug, g)dt. (5.6)
0

/ eo‘téftdt—/ e~ R,dt,
0 0

and so that .Z; = %, for any ¢ > 0 in the light of their continuities.
We turn to prove the uniqueness. Suppose ug = 0 and u° is a weak solution to (5.3). Then
uf € HY(R) = .%¢ and for any g € C°(R),

This implies

¢
—/uf(z)g(az)dwz/ E°(us, g)ds. 5.7
R 0

Note that sup; ||uf|| 1) < oo. Thus for any a > 0,

o
Ui = [ e it € )
0
By performing the Laplace transform at both sides of (5.7)), we obtain
EEUS,9) =0, Vge CR).
This indicates US = 0 in L?(R). Particularly, for any ¢ € C°(R),

oo
/ e (uj, SO)LZ(]R)dt Us: @2y =0, Va > 0.
0

Since t — (ug, ) 12k, is continuous, we can conclude that (uf, ¢) 2R, = 0 for any ¢ € C2°(R)
and ¢t > 0. Therefore u® = 0. O
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5.2 Boundary conditions of the flux at a singular barrier

Now we consider the convergence of u° as € | 0. The expected limit is the solution to heat equation
with the conductivity a in (5.1)

0 1

a—?(t,x) = SV@Vut,2), t>0zck,

u(0, -) = ug.

(5.9)

Similar to Definition [5.1] the weak solution to (5.8) is defined as follows.

Definition 5.3 Given a family .77 of space-time functions, w is called a weak solution to (5.8) in
A, if u e H,u0,-) = up and for any t > 0, g € C°(R),

t
/(uo(x) — u(t, x)g(x)dxr = 1/ /a(x)Vu(s,x)Vg(x)d:nds. 5.9
R 2Jo Jr

Two families of space-time functions for the solutions to will be considered:
H(R) := Cy(10,00), LAR)) N L([0, 00), H'(R)),
H(G) = Cy(10,00), L*(G)) N L*([0, 00), H(G)).

Recall that H(G) = {u € L*(G) : ux € H'(G+)}. Every function u in H!(G) or C(G) may be
regarded as a discontinuous function on R, which is continuous on (—o0, 0) and (0, co) respectively
and has finite left and right limits at 0.

Theorem 5.4 Assume ug € H'(R). Take a decreasing sequence €, | 0 and write u™ for u®", i.e.
the unique weak solution to (5.3)). Set

o[
¥(n) = /En bgn(az)dm‘

Assume lim,, o €, - ¥(n) = 0 and
5~ lim A <
7= lim 4(n) (< 00)

exists. Then for any t > 0, the limit u; of u}® exists in L*(R) as n — oo. Furthermore, assume
a € C(G), and write u(t, x) := uy(x), Un(+) := Ooo e~ (-)dt for any o > 0. Then the following
assertions hold:

(1) 7 = oo: u is a weak solution to (5.8) in 7(G). For any o > 0, U, satisfies the following
boundary condition at 0:

U/(0+) = U (0—) = 0. (5.10)

If in addition
a(z)up(x) € HYG), uh(0£) =0, (5.11)

then for any t > 0, uy also satisfies the boundary condition at 0:

uh(04) = ul(0—) = 0.
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(2) 0 < 7 < oo: u is a weak solution to (5.8) in F£(G). For any o > 0, U, satisfies the
following boundary condition at 0 with k = 2/7:

a(0-H)U.(0+) = a(0—)UL(0—) = g(Ua(0+) — Un(0-)). (5.12)
If in addition (5.11)) holds, then for any t > 0, u; also satisfies the boundary condition at 0:

a(0+)uj(04) = al0-)uy(0-) = £ (un(04) = ui(0-)).

(3) 4 = 0: w is the unique weak solution to (3.8)) in 7#(R). For any t > 0, u; is continuous at 0.

Particularly, the weak solution to (5.8) is unique in 7 (R) but not unique in 7 (G).

Proof. Note that uj’ = P[*ug, where P} is the semigroup of X°”, and the total thermal resistance
of I, with respect to (&, .%#°") is nothing but J(n). Then the existence of u; in L?(R) follows
from Theorem [4.6and Proposition

The case 7 = 0 is clear by mimicking Lemma[5.2] Now consider the case 0 < 7 < oco. Denote

1
A\ = —
a@) ™
and the Dirichlet form (4.1)) with this A (m is the Lebesgue measure) by (£*,.%°). Then uy = Pfuy,

where P} is the semigroup of X*®. Its resolvent is denoted by R¢,. Mimic the first part of the proof
of Lemma 5.2]for (£*,.%°) and note that (3.6) is replaced by

) e 1 )
(uo, PDr2mry — Ry U0, Pr2mr) = & (Ryuo, 9) = 3 /G a(@)(Riuo) (2)g' (z)dz,

because of the continuity of g. Then we can conclude that u is a weak solution to in 72(G).
Since U, = RSug € D(L®), where L® is the generator of (&°,.%°) on L?(R), it follows from
Proposition [4.5] that U, satisfies the boundary condition (5.12). The condition implies
ug € D(L%). By Hille-Yosida theorem, we have u; = Pfug € D(L®) and thus u; also satisfies the
same boundary condition at 0. The proof of the case ¥ = oo is the same as that of 0 < 7 < oo.
The non-uniqueness of weak solutions in J#°(G) is clear, since different 4 corresponds to different
Markov process. That completes the proof. O

Remark 5.5 In Corollary[4.10, a = 1 and b.(z) = (ke)~“. The three phases in Theorem still
correspond to o < —1, « = —1 and o« > —1 respectively. Particularly, the boundary condition
(5.12)) for the phase «« = —1 has been considered in [17, Proposition 1].

As shown in Lemma u$ € HY(R) and this indicates the flux of thermal conduction with a
small normal barrier is continuous near 0. When ¢ | 0, the continuity at O still holds unless the
total thermal resistance tends to 0. Otherwise, the flux has a gap between 0— and 04, and the
boundary condition (5.10) or (5.12)) appears. Note that by letting 7 1 oo in the semi-permeable
case, the boundary condition (5.12)) becomes the impermeable one (5.10) formally.
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