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Complex symmetric weighted composition operators
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Abstract

In this paper we find all complex symmetric weighted composition
operators with special conjugations. Then we give spectral properties
of these complex symmetric weighted composition operators.
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1 Introduction

Let D denote the open unit disk in the complex plane. The Hardy space,
denoted H2(D) = H2, is the set of all analytic functions f on D, satisfying
the norm condition

‖f‖2 = lim
r→1

∫ 2π

0
|f(reiθ)|2

dθ

2π
<∞.

The space H∞(D) = H∞ consists of all the functions that are analytic and
bounded on D, with supremum norm ‖f‖∞ = supz∈D |f(z)|.

Let ϕ be an analytic map from the open unit disk D into itself. The
operator that takes the analytic map f to f ◦ ϕ is a composition operator
and is denoted by Cϕ. A natural generalization of a composition operator
is an operator that takes f to ψ · f ◦ ϕ, where ψ is a fixed analytic map
on D. This operator is aptly named a weighted composition operator and
is usually denoted by Cψ,ϕ. More precisely, if z is in the unit disk then
(Cψ,ϕf)(z) = ψ(z)f(ϕ(z)).

The automorphisms of D, that is, the one-to-one analytic maps of the
disk onto itself, are just the functions ϕ(z) = λ a−z

1−az , where |λ| = 1 and
|a| < 1.

1AMS Subject Classifications. Primary 47B33.
key words and phrases: Complex symmetric operator, conjugation, weighted composition
operator.
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Let P denote the orthogonal projection of L2(∂D) onto H2. For each
b ∈ L∞(∂D), the Toeplitz operator Tb acts on H

2 by Tb(f) = P (bf).
In [5], Cowen obtained an adjoint formula of a composition operator

whose symbol is a linear-fractional self-map of D; for ϕ(z) = az+b
cz+d which is

a linear-fractional self-map of D, he showed that C∗
ϕ = TgCσϕT

∗
h , where σϕ, g

and h are the Cowen auxiliary functions given by σϕ(z) := (az − c)/(−bz + d),
g(z) := (−bz + d)−1 and h(z) := (cz + d). We can see that σϕ(z) =

1

ϕ−1( 1
z
)
,

so σϕ maps D into itself. It follows that ϕ(a) = a if and only if σϕ(
1
a) =

1
a ,

where a ∈ C. Note that g and h are in H∞. If ϕ(ζ) = η for ζ, η ∈ ∂D, then
σϕ(η) = ζ. We know that ϕ is an automorphism if and only if σϕ is, and
in this case σϕ = ϕ−1. we will write σ for σϕ except when confusion could
arise. From now on, unless otherwise stated, we assume that σ, h and g are
given as above.

A bounded operator T on a complex Hilbert space H is said to be a
complex symmetric operator if there exists a conjugation C (an isometric,
antilinear involution) such that CT ∗C = T . The complex symmetric oper-
ators class was initially addressed by Garcia and Putinar (see [9] and [10])
and includes the normal operators, Hankel operators and Volterra integra-
tion operators. Invoking [11, Theorem 2], any composition operator with an
involutive automorphism symbol is complex symmetric. In [18], Bourdon
et al. showed that among the automorphisms of D, only the elliptic ones
may introduce complex symmetric operators. Moreover, they proved that
for ϕ, not the rotation and involutive automorphism, which is elliptic auto-
morphism of order q that 4 ≤ q ≤ ∞, Cϕ is not complex symmetric. In this

paper we use the symbol J for the special conjugation that (Jf)(z) = f(z)
for each analytic function f . In [7] and [14], all J-symmetric weighted com-
position operators were characterized. Recently in [17] Narayan et al. have
found complex symmetric composition operators whose symbols are linear-
fractional, but not an automorphism.

In the second section of this paper, first we find all unitary weighted
composition operators which are J-symmetric. Then we consider the special
conjugations which are the products of these unitary weighted composition
operators and the conjugation J . Next in Theorem 2.5, we obtain com-
plex symmetric weighted composition operators with these conjugations. In
addition, in Theorem 2.7, we characterize all complex symmetric weighted
composition operators which are isometries.

In the third section, we provide a characterization of ϕ, when ϕ has
the form which was stated in [7, Proposition 2.9] and [14, Theorem 3.3]. Fi-
nally, we obtain the spectrum and spectral radius of some complex symmetic
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weighted composition operators that study in the second section.

2 Weighted composition operators

Suppose that ϕ(z) = az+b
1−cz is a linear-fractional self-map of D. If ϕ is written

as ϕ(z) = a0+
a1z

1−a0z
, then it is not hard to see that c = b = a0. We use this

fact frequently in this paper.
An operator T is said to be unitary if T ∗T = TT ∗ = I. In the following

proposition, we find all unitary weighted composition operators Cψ,ϕ which
are J-symmetric.

Proposition 2.1. The weighted composition operator Cψ,ϕ is unitary

and J-symmetric if and only if either ψ(z) = c (1−|p|2)1/2

1−pz and ϕ(z) = p
p
p−z
1−pz ,

where p ∈ D−{0} and |c| = 1 or ψ ≡ µ and ϕ(z) = λz, when |µ| = |λ| = 1.

Proof. Let Cψ,ϕ be unitary and J-symmetric. By [2, Theorem 6],

ϕ(z) = λ
p− z

1− pz
(1)

and

ψ(z) = c
(1 − |p|2)1/2

1− pz
, (2)

where |λ| = |c| = 1. First suppose that p 6= 0. We can see that ϕ(0) = λp

and ϕ′(0) = λ(|p|2 − 1). Let ϕ̃(z) = λp + λ(|p|2−1)z
1−λpz . It is not hard to see

that ϕ̃ ≡ ϕ if and only if λ = p
p . Invoking [14, Theorem 3.3] (see also

[7, Proposition 2.9]), the conclusion follows for p 6= 0. Letting p = 0 in
Equations (1) and (2), we get ψ is a constant function and ϕ(z) = −λz,
when |λ| = 1.

Conversely, suppose that either ϕ(z) = p
p
p−z
1−pz and ψ(z) = c (1−|p|2)1/2

1−pz or
ψ is a constant function and ϕ(z) = λz. In this both cases, by [2, Theorem

6], Cψ,ϕ is unitary. Rewriting ϕ, we see that ϕ(z) = p
p
p−z
1−pz = p+

p
p
(|p|2−1)z

1−pz .
Again [7, Proposition 2.9] and [14, Theorem 3.3] imply that in these both
cases the weighted composition operators Cψ,ϕ are J-symmetric. �

From now on, unless otherwise stated, we assume that ϕp(z) =
p
p
p−z
1−pz ,

where p ∈ D − {0} and ψp(z) = c (1−|p|2)1/2

1−pz , when p ∈ D and |c| = 1. The
proof of the next lemma is left to the reader.
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Lemma 2.2. If U is a unitary and complex symmetric operator with
conjugation C, then UC is a conjugation.

Let C be a conjugation. Then CJ = W is a unitary operator and
W is both C-symmetric and J-symmetric (see [8, Lemma 3.2]). We have
C = WJ . Then all conjugations can be considered as a product of a J-
symmetric unitary operator W and the conjugation J .

Proposition 2.3. Suppose that U is unitary and complex symmetric
with conjugation WJ , where W is unitary. Then an operator A is WJ-
symmetric if and only if UA is UWJ-symmetric.

Proof. Suppose that A is WJ-symmetric. Invoking Lemma 2.2, UWJ
is a conjugation. We have

UWJ(UA)∗UWJ = UWJA∗U∗UWJ = UA,

so UA is complex symmetric with conjugation UWJ .
Conversely, suppose that UA is UWJ-symmetric. We see that

WJA∗WJ = U∗UWJ(UA)∗UWJ = U∗UA = A.

Hence, A is WJ-symmetric. �

Assume that an operator B is UJ-symmetric. LetW = I in Proposition
2.3. By Proposition 2.3, U∗B is J-symmetric. We have B = UU∗B. It
shows that every complex symmetric operator can be written as a product of
a unitary J-symmetric operator and a J-symmetric operator. Since recently
a lot of J-symmetric operators have been found, this idea may be useful in
order to obtain complex symmetric operators more.

In the following example, we find a complex symmetric Toeplitz operator
Tf with |f | = 1 on ∂D (see [15, Corollary 2.2]).

Example 2.4. Suppose that p ∈ (−1, 1) is a real number. By [18,
Lemma 2.1] and [18, Lemma 2.2], Uϕp is J-symmetric, when Uϕp is the
unitary part in the polar decomposition of Cϕp (note that in this case
ϕp is an involutive automorphism). By the proof of [16, Lemma 4.7],
Uϕp = CϕpT |1−pz|

(1−|p|2)1/2

. Proposition 2.1 implies that Cψp,ϕp is J-symmetric.

Invoking Proposition 2.3, Cψp,ϕpCϕpT |1−pz|

(1−|p|2)1/2

is Cψp,ϕpJ-symmetric. Then

T1/(1−pz)T|1−pz| is symmetric. Thus, (T1/(1−pz)T|1−pz|)
−1 = T1/|1−pz|Tp−z =

4



T p−z
|1−pz|

is symmetric with conjugation Cψp,ϕpJ .

In the following theorem, we find all complex symmetric weighted com-
position operators with conjugations UJ that U is unitary and J-symmetric
weighted composition operator which was stated in Proposition 2.1.

Theorem 2.5. Let a0 ∈ D and a1, b ∈ C. Suppose that ψ(z) = b
1−a0z

and ϕ(z) = a0 +
a1z

1−a0z
that ϕ is an analytic self-map of D.

(1) For p 6= 0, the weighted composition operator C
ψ̃,ϕ̃

is complex symmetric

with conjugation Cψp,ϕpJ if and only if ψ̃ = ψp · ψ ◦ ϕp and ϕ̃ = ϕ ◦ ϕp for
some ϕ and ψ.
(2) For |λ| = 1, the weighted composition operator C

ψ̃,ϕ̃
is complex symmet-

ric with conjugation CλzJ if and only if ψ̃ = ψ(λz) and ϕ̃(z) = ϕ(λz) for
some ϕ and ψ.

Proof. (1) Let ψ̃ = ψp · ψ ◦ ϕp and ϕ̃ = ϕ ◦ ϕp for some ϕ and ψ.
Then C

ψ̃,ϕ̃
= Tψp·ψ◦ϕpCϕ◦ϕp = Cψp,ϕpCψ,ϕ. Since Cψp,ϕp and Cψ,ϕ are J-

symmetric (see [7, Proposition 2.9] and [14, Theorem 3.3]), by Proposition
2.3, C

ψ̃,ϕ̃
is Cψp,ϕpJ-symmetric.

Conversely, suppose that C
ψ̃,ϕ̃

is complex symmetric with conjugation
Cψp,ϕpJ . By Proposition 2.3, C∗

ψp,ϕp
C
ψ̃,ϕ̃

is J-symmetric. The Cowen ad-
joint formula shows that C∗

ψp,ϕp
is also a weighted composition operator.

Then C∗
ψp,ϕp

C
ψ̃,ϕ̃

is a weighted composition operator which was defined in

[7, Proposition 2.9] and [14, Theorem 3.3]. Then there is a J-symmetric
weighted composition operator Cψ,ϕ that C

ψ̃,ϕ̃
= Cψp,ϕpCψ,ϕ.

(2) By the same idea which was stated in the proof of Part (1), the con-
clusion follows. �

Proposition 2.6. Suppose that T is a bounded operator on a Hilbert
space H. Then T is a complex symmetric operator and an isometry if and
only if T is unitary.

Proof. Suppose that T is complex symmetric with conjugation C. Since
T is an isometry, for each f ∈ H2,

‖T ∗Cf‖ = ‖CT ∗Cf‖ = ‖Tf‖ = ‖f‖.

Then ‖T ∗f‖ = ‖T ∗C(Cf)‖ = ‖Cf‖ = ‖f‖, and so T ∗ is an isometry. We
infer that T is a unitary operator from [4, Proposition 2.17, p. 35] and [4,
Proposition 2.18, p. 35].
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Conversely, it is obvious. �

In Theorem 2.7, we show that a weighted composition operator which is
both a complex symmetric operator and an isometry is unitary; moreover,
we find all conjugations for unitary weighted composition operators.

Theorem 2.7. A weighted composition operator Cψ,ϕ is both an isom-
etry and a complex symmetric operator if and only if ϕ(z) = λ p−z

1−pz and
ψ ≡ ψp, where |λ| = 1 and p ∈ D. Furthermore, if p 6= 0, then the conjuga-
tion for Cψ,ϕ is Cψp,ϕpJ .

Proof. By Proposition 2.6 and [2, Theorem 6], the first part is obvious.
According to [14, Theorem 3.3] and [7, Proposition 2.9], Cγz is J-symmetric,
when |γ| = 1. Let γ = λpp . We obtain Cψ,ϕ = Cψp,ϕpCγz. By Propositions
2.1 and 2.3, we complete the proof. �

3 Spectral theory

Recall that a nontrivial automorphism ϕ of D (i.e., ϕ is not the identity
function of D) is called elliptic if ϕ has a fixed point in D and the other fixed
point is in the complement of the closed disk.

We say that ϕ has a finite angular derivative at ζ ∈ ∂D if the nontangen-
tial limit ϕ(ζ) exists, has modulus 1, and ϕ′(ζ) = ∠ limz→ζ

ϕ(z)−ϕ(ζ)
z−ζ exists

and finite. Let ϕ0 = I and ϕn = ϕ◦ϕ◦ ...◦ϕ denote the n-th iterate of ϕ. If
ϕ, not the identity and not an elliptic automorphism of D, is a holomorphic
self-map of D, then there is a unique point w in D so that the iterates ϕn
of ϕ tend to w uniformly on compact subsets of D (see [6, Theorem 2.51]).
The point w will be referred to as the Denjoy-Wolff point of ϕ. We know
that the Denjoy-Wolff point of ϕ can be described as the unique fixed point
of ϕ in D with |ϕ′(w)| ≤ 1.

Suppose that ϕ, not an automorphism, is a linear-fractional self-map of
D with a fixed point on ∂D. Then ϕ satisfies one of the following

(a) ϕ is hyperbolic with one fixed point ζ ∈ ∂D and the other fixed point
outside the closed unit disk. Let T (z) = ζ+z

ζ−z . Then φ(z) = (T ◦ϕ◦T−1)(z) =

rz + t, where r = 1/ϕ′(ζ) (note that r > 1) and Re(t) ≥ 0 (and Re(t) = 0 if
and only if ϕ is an automorphism; moreover, in this case both fixed points
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of ϕ lie on ∂D). We call t the translation number of ϕ. Then we obtain

ϕ(z) =
(1 + r − t)z + (r + t− 1)ζ

(r − t− 1)ζz + (1 + r + t)
. (3)

(b) ϕ is hyperbolic with one fixed point, w, inside the unit disk, and
the other fixed point ζ, on the unit circle. It is not hard to see that ϕ is
hyperbolic with this type (Denjoy-Wolff point of ϕ is in D) if and only if the
Cowen auxiliary function σϕ is hyperbolic under the condition (a). Hence
in this case

ϕ(z) =
(1 + r − t)z − (r − t− 1)ζ

1 + r + t− (r + t− 1)ζz
, (4)

where t is the translation number of σϕ and r = 1
σ′ϕ(ζ)

. Note that in this

case, since ϕ has a Denjoy-Wolff point in D, ϕ is not an automorphism.
Hence σϕ is not automorphism, so Re(t) > 0.

(c) ϕ is parabolic with only one fixed point ζ ∈ ∂D. Let T (z) = ζ+z
ζ−z .

Then φ(z) = (T ◦ ϕ ◦ T−1)(z) = z + t, where Re(t) ≥ 0. Let us call t the
translation number of ϕ. Note Re(t) = 0 if and only if ϕ is an automorphism.
In [19, p. 3] Shapiro showed that among the linear-fractional self-map of D
fixing ζ ∈ ∂D, the parabolic ones are characterized by ϕ′(ζ) = 1. We see
that in this case

ϕ(z) =
(2− t)z + tζ

2 + t− tζz
. (5)

Suppose that ϕ1 and ϕ2 are parabolic with the same fixed point. It is not
hard to see that ϕ1 ◦ ϕ2 is also parabolic. We use this fact in the proof of
Theorem 3.5.

Lemma 3.1. Suppose that ϕ is hyperbolic with fixed point ζ ∈ ∂D. If ϕ
is written as

ϕ(z) = a0 +
a1z

1− a0z
, (6)

when a0 ∈ D and a1 ∈ C, then ϕ is an automorphism.

Proof. First suppose that ϕ is hyperbolic with Denjoy-Wolff point ζ ∈
∂D. Then by Equation (3), we have

ϕ(z) =
1+r−t
1+r+tz +

(r+t−1)ζ
1+r+t

(r−t−1)ζ
1+r+t z + 1

.

If ϕ is written as in Equation (6), then −r+t+1
1+r+t ζ = r+t−1

1+r+tζ. Therefore,

−rζ+ tζ+ ζ = rζ+ tζ− ζ and so (Re(ζ))(1− r) = t(Im(ζ))i. It shows that t
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is pure imaginary and the result follows. Now suppose that ϕ is hyperbolic
with Denjoy-Wolff w ∈ D and fixed point ζ ∈ ∂D. By Equation (4), assume
that

ϕ(z) =

(1+r−t)
1+r+t

z − r−t−1
1+r+t

ζ

1− (r+t−1)ζz

1+r+t

.

Since ϕ is as in Equation (6), (r+t−1)ζ
1+r+t

= − (r−t−1)ζ
1+r+t

. Then (Re(ζ))(r − 1) =

t(Im(ζ))i. It follows that t is pure imaginary which is a contradiction. �

Lemma 3.2. Suppose that ϕ is parabolic with fixed point ζ ∈ ∂D. Then
ϕ is as in Equation (6) if and only if ζ = 1 or ζ = −1.

Proof. Suppose that ϕ is written as in Equation (6) and by Equation

(5), ϕ(z) =
(2−t)z
2+t

+ tζ
2+t

− tζ
2+t

z+1
. If t = 0, then ϕ(z) = z and ϕ is not parabolic. Then

we assume that t 6= 0. Since ϕ is as in Equation (6), ζ = ζ. It shows that
ζ = 1 or ζ = −1.

Conversely, it is obvious. �

Note that by the proof of the pervious lemma, we see that if ϕ is parabolic
with Denjoy-Wolff point 1 which is written as in Equation (5), then

ϕ(z) =
2−t
2+tz +

t
2+t

−t
t+2z + 1

. (7)

Lemma 3.3. Suppose that p ∈ D − {0}. If 1 is the fixed point of ϕp,
then ϕp is a parabolic automorphism. Moreover, if −1 is the fixed point of
ϕp, then ϕp is a hyperbolic automorphism with Denjoy-Wolff point −1.

Proof. Assume that ϕp(1) = 1. Note that p = |p| cos(θ) + |p| sin(θ)i,
where θ = Arg(p). Then p(p−1) = p(1−p) and so |p|2 = Re(p) = |p| cos(θ).
Hence |p| = cos(θ). Since p

p = e−2θi, [19, Exercise 4, p. 7] implies that ϕp is
parabolic. Now suppose that ϕp(−1) = −1. Then p(p + 1) = −p(1 + p)
and so |p|2 = −Re(p) = −|p| cos(θ). Hence |p| = − cos(θ). Again by
[19, Exercise 4, p. 7], ϕp is a hyperbolic automorphism. Now we show

that −1 is the Denjoy-Wolff point of ϕp. We have ϕ′
p(−1) = p

p
|p|2−1
(1+p)2 . We

know that p = |p| cos(θ)+ |p| sin(θ)i = − cos2(θ)− sin(θ) cos(θ)i. Therefore,
1 + p = 1 − cos2(θ) + sin(θ) cos(θ)i = sin2(θ) + sin(θ) cos(θ)i. We obtain

|ϕ′
p(−1)|2 = | |p|

2−1
(1+p)2

|2 = | cos2(θ)−1

(sin2(θ)+sin(θ) cos(θ)i)2
|2 = sin4(θ)

sin4(θ)+sin2(θ) cos2(θ)
< 1.
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Then |ϕ′
p(−1)| < 1 and it follows that −1 is the Denjoy-Wolff point of ϕp.

�

In the rest of this paper, we suppose that Cψ,ϕ is J-symmetric and ϕ and
ψ were represented in Theorem 2.5. From now on, unless otherwise stated,
we assume that C

ψ̃,ϕ̃
is weighted composition operator which was given in

the first part of Theorem 2.5. Suppose that T is a bounded operator on a
Hilbert space H. Through this paper, the spectrum of T and the spectral
radius of T are denoted by σ(T ) and r(T ), respectively.

Theorem 3.4. If C
ψ̃,ϕ̃

is compact or power compact, then r(C
ψ̃,ϕ̃

) =

|ψp(w)ψ(ϕp(w))| and σ(Cψ̃,ϕ̃) = {ψp(w)ψ(ϕp(w))(ϕ̃
′(w))m : m = 0, 1, ...} ∪

{0}, where w is the Denjoy-Wolff point of ϕ̃ = ϕ ◦ ϕp.

Proof. If ϕ ◦ ϕp is compact or power compact, then it is easy to
see that ϕ ◦ ϕp has a Denjoy-Wolff point w ∈ D. There is an integer
n such that Cn

ψ̃,ϕ̃
= C

ψ̃·ψ̃◦ϕ̃...ψ̃◦ϕ̃n−1,ϕ̃n
is compact. By the Spectral Map-

ping Theorem, σe(Cψ̃,ϕ̃) = {0}. Moreover, by [12, Theorem 1], σ(Cn
ψ̃,ϕ̃

) =

{(ψ̃(w))n(ϕ̃′(w))mn : m = 0, 1, ...} and it follows from the Spectral Map-
ping Theorem that all elements of σ(C

ψ̃,ϕ̃
) are in ∂σ(C

ψ̃,ϕ̃
). Then by

[4, Proposition 6.7, p. 210] and [4, Proposition 4.4, p. 359], σ(C
ψ̃,ϕ̃

) =

σe(Cψ̃,ϕ̃)∪σp(Cψ̃,ϕ̃). The result follows by [7, Proposition 2.6] and [14, The-

orem 4.3]. �

Now suppose that ϕ̃ = ϕ ◦ ϕp is not power compact and it is not an
automorphism. Then either
(i) ϕ(ζ) = ζ and ϕp(ζ) = ζ, where ζ ∈ ∂D
or
(ii) ϕ(ζ) = η and ϕp(η) = ζ, where ζ, η ∈ ∂D and ζ 6= η.

By Lemmas 3.1 and 3.2, we see that if ϕ and ϕp satisfy the conditions
of Part (i), then either ζ = 1 or ζ = −1. In the following theorem, we find
r(C

ψ̃,ϕ̃
), when ϕ and ϕp satisfy the conditions of Part (i) and ϕ̃ is parabolic.

Theorem 3.5. Suppose that ϕ̃ is not an automorphism. If ϕ and ϕP

fix 1, then ϕ,ϕp and ϕ̃ are parabolic, r(C
ψ̃,ϕ̃

) = |ψ(0)(1−|p|2)1/2(2+t)
2(1−p) | and

σ(C
ψ̃,ϕ̃

) = {ψ(0)(1−|p|2)1/2(2+t)
2(1−p) e−b(t+t̃) : b ≥ 0} ∪ {0}, where t and t̃ are the

translation number of ϕ and ϕp, respectively.

Proof. Since ϕp is an automorphism and ϕ ◦ ϕp is not an automor-
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phism, ϕ is not an automorphism. Invoking Lemmas 3.1 and 3.2, ϕ must
be parabolic with fixed point 1. By Lemma 3.3, ϕp must be parabolic with
fixed point 1. Hence ϕ̃ = ϕ ◦ ϕp is also parabolic. Since ϕ is parabolic
with fixed point 1 and Cψ,ϕ is J-symmetric, by Equation (7), we find that

ψ(z) = ψ(0)

1− t
2+t

z
. Then by [1, Theorem 4.7], r(C

ψ̃,ϕ̃
) = |ψ̃(1)| = |ψp(1)·ψ(1)| =

|ψ(0)(1−|p|2)1/2(2+t)
2(1−p) | and σ(C

ψ̃,ϕ̃
) = {ψ(0)(1−|p|2)1/2(2+t)

2(1−p) e−b(t+t̃) : b ≥ 0}∪{0}.�

In the next theorem, we find r(C
ψ̃,ϕ̃

), when ϕ̃ is a hyperbolic non-
automorphism with Denjoy-Wolff point −1.

Theorem 3.6. Suppose that ϕ̃ is not an automorphism. If ϕ and ϕp
fix −1, then ϕ̃ is hyperbolic with Denjoy-Wolff point −1, ϕ is parabolic with

translation number t, r(C
ψ̃,ϕ̃

) = | 2+t
2(1+p)(

1−|p|2

ϕ′
p(−1))

1/2| and σ(C
ψ̃,ϕ̃

) = {z : |z| ≤

r(C
ψ̃,ϕ̃

)}.

Proof. It is easy to see that −1 is the fixed point of ϕ ◦ ϕp. We see
that (ϕ ◦ ϕp)

′(−1) = ϕ′(ϕp(−1)) · ϕ′
p(−1). Since by Lemmas 3.1 and 3.2, ϕ

is parabolic, ϕ′(−1) = 1 and so (ϕ̃)′(−1) = ϕ′
p(−1). Lemma 3.3 shows that

|(ϕ ◦ ϕp)
′(−1)| < 1 and −1 is the Denjoy-Wolff point of ϕ̃. Then ϕ̃ must be

a hyperbolic non-automorphism with Denjoy-Wolff point −1. From Equa-

tion (5), ϕ(z) = (2−t)z−t
tz+2+t =

2−t
2+t

z− t
2+t

1+ t
2+t

z
, where t is the translation number of

ϕ. Since Cψ,ϕ is J-symmetric, it is easy to see that ψ(z) = 1
1+ t

2+t
z
. Invok-

ing [1, Theorem 4.5], r(C
ψ̃,ϕ̃

) = |ψ(−1)
1+p ( 1−|p|2

ϕ′
p(−1))

1/2| = | 2+t
2(1+p)(

1−|p|2

ϕ′
p(−1))

1/2| and

σ(C
ψ̃,ϕ̃

) = {z : |z| ≤ r(C
ψ̃,ϕ̃

)}. �

Note that although every complex symmetric composition Cϕ must have
a fixed point in D (see [3, Proposition 2.1]), Theorems 3.5 and 3.6 showed
that there are complex symmetric weighted composition operators C

ψ̃,ϕ̃
that

ϕ̃ has no fixed point in D.
In [14, Theorem 4.6] Jung et al. obtained an inequality for r(Cψ,ϕ), when

Cψ,ϕ is J-symmetric. In the next corollary, we find the spectral radius of
J-symmetric weighted composition operators, when ϕ is not an automor-
phism. Note that for an automorphism ϕ, the spectral radius of Cψ,ϕ was
found in [13].

Corollary 3.7. Assume that ϕ is not an automorphism. Let w be the
Denjoy-Wolff point of ϕ.
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(a) If w ∈ D, then r(Cψ,ϕ) = |ψ(w)|.
(b) If w ∈ ∂D, then ϕ is parabolic and w is either 1 or −1. Moreover, if

w = 1, then r(Cψ,ϕ) =
∣∣∣ψ(0)(2+t)2

∣∣∣ and if w = −1, then r(Cψ,ϕ) =
∣∣∣ψ(0)(2+t)2+2t

∣∣∣,
where t is the translation number of ϕ.

Proof. (a) If w ∈ D, then by Lemmas 3.1 and 3.2, ϕ has no fixed point
in ∂D. Then Cϕ is compact or power compact. The result follows by the
Spectral Mapping Theorem, [14, Theorem 4.3] and [7, Proposition 2.6].
(b) Assume that ϕ has a Denjoy-Wolff point w ∈ ∂D. As we saw in Lemmas
3.1 and 3.2, ϕ must be parabolic with fixed point 1 or −1. By [1, Theorem
4.7] and the similar idea which was stated in the proof of Theorem 3.5, we

see that if w=1, then r(Cψ,ϕ) = |ψ(1)| =
∣∣∣ψ(0)(2+t)2

∣∣∣ and if w = −1, then

r(Cψ,ϕ) = |ψ(−1)| =
∣∣∣ψ(0)(2+t)2+2t

∣∣∣. �

It is not hard to see that for |λ| = 1, Cϕ(λz) is not power compact if and
only if there is ζ ∈ ∂D such that ϕ(λζ) = ζ. In the following proposition, we
find the spectrum of power compact weighted composition operator C

ψ̃,ϕ̃
,

when C
ψ̃,ϕ̃

was given in the second part of Theorem 2.5.

Proposition 3.8. Assume that ϕ is not an automorphism. Suppose
that C

ψ̃,ϕ̃
is as in the second part of Theorem 2.5. Let λ be constant and

|λ| = 1. If for each ζ ∈ ∂D, ϕ(λζ) 6= ζ, then σ(C
ψ̃,ϕ̃

) = {ψ(λw)(λϕ′(λw))n :

n = 0, 1, ...} and r(C
ψ̃,ϕ̃

) = |ψ(λw)|, when w ∈ D and ϕ(λw) = w.

Proof. One may easily see that in this case C
ψ̃,ϕ̃

is power compact and
the result follows by the similar idea which was stated in the proof of The-
orem 3.4. �
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