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Abstract. In this paper we prove some exponential inequalities involving the sinc
function. We analyze and prove inequalities with constant exponents as well as in-
equalities with certain polynomial exponents. Also, we establish intervals in which
these inequalities hold.
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1 Introduction

Inequalities related to the sinc function, i.e. sincx =
sin x

x

(

x 6= 0
)

, occur in many

fields of mathematics and engineering [2], [6], [7], [9], [10], [13], [15] such as Fourier

analysis and its applications, information theory, radio transmission, optics, signal
processing, sound recording, etc.

The following inequalities are proved in [8]:

(1) cos2
x

2
≤ sin x

x
≤ cos3

x

3
≤ 2 + cos x

3

for every x ∈ (0, π) .

In [1], the authors considered possible refinements of the inequality (1) by a real

analytic function ϕa(x)=

(

sin x

x

)a

, for x∈ (0, π) and parameter a∈R, and proposed

and proved the following inequalities:
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Statement 1 ([1], Theorem 10) The following inequalities hold true, for every x∈(0, π)

and a∈
(

1,
3

2

)

:

(2) cos2
x

2
≤
(

sin x

x

)a

≤ sin x

x
.

In the paper [1], based on the analysis of the sign of the analytic function

Fa(x) =

(

sin x

x

)a

− cos2
x

2

in the right neighborhood of zero, the corresponding inequalities for parameter values

a ≥ 3

2
are discussed.

In this paper, in subsection 3.1, using the power series expansions and the appli-

cation of the Wu-Debnath theorem, we prove that the inequality (2) holds for a =
3

2
.

At the same time, this proof represents another proof of Statement 1. Also, we analyze

the cases a ∈
(

3

2
, 2
)

and a ≥ 2 and we prove the corresponding inequalities.

In subsection 3.2 we introduce and prove a new double-sided inequality of similar
type involving polynomial exponents.

Finally, in subsection 3.3, we establish a relation between the cases of the constant
and of the polynomial exponent.

2 Preliminaries

In this section we review some results that we use in our study.

In accordance with [11], the following expansions hold:

(3) ln
sin x

x
= −

∞
∑

k=1

22k−1|B2k|
k(2k)!

x2k, (0 < x < π),

(4) ln cos x = −
∞
∑

k=1

22k−1(22k − 1)|B2k|
k(2k)!

x2k, (−π/2 < x < π/2),

where Bi (i∈N) are Bernoulli’s numbers.

The following theorem proved by Wu and Debnath in [5], is used in our proofs.

Theorem WD. ([5], Theorem 2 ) Suppose that f(x) is a real function on (a, b), and
that n is a positive integer such that f (k)(a+), f (k)(b−), (k∈{0, 1, 2, . . . , n}) exist.

(i) Supposing that (−1)(n)f (n)(x) is increasing on (a, b), then for all x ∈ (a, b) the

following inequality holds :

(5)

n−1
∑

k=0

f (k)(b−)

k!
(x−b)k +

1

(a− b)n

(

f(a+)−
n−1
∑

k=0

(a−b)kf (k)(b−)

k!

)

(x−b)n

< f(x) <
n
∑

k=0

f (k)(b−)

k!
(x−b)k.

Furthermore, if (−1)nf (n)(x) is decreasing on (a, b), then the reversed inequality of (5)
holds.
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(ii) Supposing that f (n)(x) is increasing on (a, b), then for all x∈ (a, b) the following

inequality also holds :

(6)

n
∑

k=0

f (k)(a+)

k!
(x− a)k < f(x) <

<
n−1
∑

k=0

f (k)(a+)

k!
(x−a)k +

1

(b−a)n

(

f(b−)−
n−1
∑

k=0

(b− a)kf (k)(a+)

k!

)

(x−a)n.

Furthermore, if f (n)(x) is decreasing on (a, b), then the reversed inequality of (6) holds.

Remark 1 Note that inequalities (5) and (6) hold for n ∈ N as well as for n = 0.
Here, and throughout this paper, a sum where the upper bound of the summation is

lower than the lower bound of the summation, is understood to be zero.

The following Theorem, which is a consequence of TheoremWD, was proved in [14].

Theorem 2 ([14], Theorem 1) Let the function f : (a, b) −→ R have the following

power series expansion :

(7) f(x) =
∞
∑

k=0

ck(x− a)k

for x∈ (a, b), where the sequence of coefficients {ck}k∈N0
has a finite number of non-

positive members and their indices are in the set J={j0, . . . , jℓ}.
Then, for the function

(8) F (x) = f(x)−
ℓ
∑

i=0

cji(x− a)ji =
∑

k∈N0\J

ck(x− a)k,

and the sequence {Ck}k∈N0
of the non-negative coefficients defined by:

(9) Ck =

{

ck : ck > 0,

0 : ck ≤ 0;

holds that :

(10) F (x) =
∞
∑

k=0

Ck(x− a)k,

for every x∈(a, b).

It is also F (k)(a+) = k!Ck and the following inequalities hold:

(11)

n
∑

k=0

Ck(x− a)k < F (x) <

<
n−1
∑

k=0

Ck(x− a)k +
1

(b− a)n

(

F (b−)−
n−1
∑

k=0

Ck(b− a)k
)

(x− a)n,

for every x ∈ (a, b) and n ∈ N0, i.e.
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(12)
m
∑

k=0

Ck(x−a)k +

ℓ
∑

i=0

cji(x− a)ji < f(x) <

<

m−1
∑

k=0

Ck(x−a)k+

ℓ
∑

i=0

cji(x−a)ji+
(x−a)m

(b−a)m

(

f(b−)−
m−1
∑

k=0

Ck(b−a)k−
ℓ
∑

i=0

cji(b−a)ji

)

for every x∈(a, b) and m > max{j0, . . . , jℓ}.

3 Main results

3.1 Inequalities with constants in the exponents

First, we consider a connection between the number of zeros of a real analytic function
and some properties of its derivatives. It is well known that the zeros of a non-constant
analytic function are isolated [4], see also [3] and [12].

We prove the following assertion:

Theorem 3 Let f : (0, c) −→ R be real analytic function such that f (k)(x) > 0 for

x ∈ (0, c) and k = m,m+ 1, . . . ,
(

for some m ∈ N
)

.

If the following conditions hold:

1) there is a right neighbourhood of zero in which the following inequalities hold

true: f(x) < 0, f ′(x) < 0, . . . , f (m−1)(x) < 0,

and

2) f(c−) > 0, f ′(c−) > 0, . . . , f (m−1)(c−) > 0,

then there exists exactly one zero x0 ∈ (0, c) of the function f .

Proof. As f (m)(x) > 0 for x ∈ (0, c), it follows that f (m−1)(x) is monotonically
increasing function for x ∈ (0, c). Based on conditions 1) and 2), we conclude that
there exists exactly one zero xm−1 ∈ (0, c) of the function f (m−1)(x). Next, we can
conclude that function f (m−2)(x) is monotonically decreasing for x ∈ (0, xm−1) and
monotonically increasing for x ∈ (xm−1, c). It is clear that function f (m−2)(x) has
exactly one minimum in the interval (0, c) at point xm−1 and f (m−2)(xm−1)< 0. On
the basis of conditions 2), it follows that function f (m−2)(x) has exactly one root xm−2

on the interval (0, c) and xm−2∈(xm−1, c).

By repeating the described procedure, we get the assertion given in the theorem. �

Let us consider the family of functions

(13) fa(x) = a ln
sin x

x
− 2 ln cos

x

2
,

for x∈(0, π) and parameter a ∈ (1,+∞).

Obviously, the following equivalence is true:

(14) a1 < a ⇐⇒ fa(x) < fa1
(x),

for a, a1 > 1 and x∈(0, π).
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Thus:

(15)
3

2
< a ⇐⇒ fa(x) < f 3

2

(x), for x∈(0, π).

Based on the power series expansions (3) and (4), we have:

(16) fa(x) =
∞
∑

k=1

Ek x
2k

for a > 1 and x ∈ (0, π), where

(17) Ek =

(

(2− a) 4k − 2
)

|B2k|
2k · (2k)! (k∈N).

For a=
3

2
, it is true that E1 = 0 and Ek > 0 for k = 2, 3, . . .. Thus, from (16), we

have
f 3

2

(x) > 0 for x ∈ (0, π),

and consequently the following theorem holds:

Theorem 4 The following inequalities hold true, for every x ∈ (0, π) :

cos2
x

2
≤
(

sin x

x

) 3

2

≤ sin x

x
.

As the inequality
(

sin x

x

) 3

2

≤
(

sin x

x

)a

holds for x∈ (0, π) and a∈
(

1,
3

2

]

, the previous theorem can be thought of as a new

proof of Statement 1.

Consider now the family of functions fa(x) = a ln
sin x

x
− 2 ln cos

x

2
, for x∈ (0, π)

and parameter a>
3

2
.

It easy to check that for the sequence {αk}k∈N where

(18) αk = 2− 2

4k
.

the following equivalences are true:

(19)
a = αk ⇐⇒ Ek = 0,

a ∈ (αk, αk+1) ⇐⇒ (∀i∈{1, 2, . . . , k})Ei < 0 ∧ (∀i>k)Ei > 0.

Let us now consider the function m :
[

3

2
, 2
)

−→ N0 defined by:

(20) m(a) = k if and only if a ∈ (αk, αk+1] .

It is not difficult to check that lim
a→2

−

m(a) = +∞, while for a fixed a∈
(

3

2
, 2
)

the

number of negative elements of the sequence {Ek}k∈N is m(a) and their indices are in

the set {1, . . . ,m(a)}. For this reason, we distinguish two cases a∈
(

3

2
, 2
)

or a ≥ 2.
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As for the parameter a = 2 and x ∈ (0, π) we have:

(

sin x

x

)2

≤ cos2
x

2
⇐⇒ sin2 x

2
≤
(x

2

)2

,

while for a > 2 and x ∈ (0, π) we have:

(

sin x

x

)a

≤
(

sin x

x

)2

.

Hence, we have proved the following theorem:

Theorem 5 For every a ≥ 2 and every x ∈ (0, π) the following inequality holds true:

(21)

(

sin x

x

)a

≤ cos2
x

2
.

Consider now the case when the parameter a ∈
(

3

2
, 2
)

. As noted above, for any

fixed a ∈
(

3

2
, 2
)

there is a finite number of negative coefficients in the power series

expansion (17), so it is possible to apply Theorem 2.

According to Theorem 2, the following inequalities hold:

(22)

n
∑

k=m(a)+1

Ekx
k +

m(a)−1
∑

i=0

Eix
i <

< fa(x) <

<



fa(c−) −
n−1
∑

k=m(a)+1

Ekc
k −

m(a)−1
∑

i=0

Eic
i





xn

cn
+

n−1
∑

k=m(a)+1

Ekx
k +

m(a)−1
∑

i=0

Eix
i,

for every x∈(0, c), c∈(0, π), n>m(a) + 1 and a ∈
(

3

2
, 2
)

.

The family of functions fa(x), for x ∈ (0, π) and a∈
(

3

2
, 2
)

, satisfy the conditions

1) and 2) of Theorem 3, as we prove in the following Lemma:

Lemma 1 Consider the family of functions fa(x) = a ln
sin x

x
−2 ln cos

x

2
for x∈(0, π)

and parameter a∈
(

3

2
, 2

)

. Let m = m(a), where m(a) is defined as in (20).

Then, it is true that
dk

dxk
fa(x) > 0 for k = m,m + 1, . . . and x∈ (0, π), and the

following assertions hold true:

1) There is a right neighbourhood of zero in which the following inequalities hold true:

fa(x) < 0,
d

dx
fa(x) < 0, . . . ,

dm−1

dxm−1
fa(x) < 0,

2) fa(π−) > 0,
d

dx
fa(π−) > 0, . . . ,

dm−1

dxm−1
fa(π−) > 0.

6



Proof. Let us recall that for any fixed a ∈
(

3

2
, 2
)

there is a finite number of negative

coefficients in the power series expansion (17). Also, we have:
(

d

dx
fa

)

(x) = a

(

cot x− 1

x

)

+ tan
x

2
.

For the derivations of the function fa(x) in the left neighborhood of π, it is enough to
observe the following:
(

d

dx
fa

)

(π−x) = a

(

− cot x− 1

π − x

)

+cot
x

2
=

2− a

x
− a

π
+

(

a

(

1

3
− 1

π2

)

− 1

6

)

x+ . . . .

From this, the conclusions of the lemma can be directly derived. �

Thus, for every a∈
(

3

2
, 2
)

, the corresponding function fa(x) = a ln
sin x

x
−2 ln cos

x

2
has exactly one zero on the interval (0, π). Let us denote it by xa.

The following Theorem is a direct consequence of these considerations.

Theorem 6 For every a ∈
(

3

2
, 2
)

, and every x ∈ (0, xa] , where 0 < xa < π, the

following inequality holds true:

(23)

(

sin x

x

)a

≤ cos2
x

2
.

For the selected discrete values of a ∈
(

3

2
, 2
)

, the zeros xa of the corresponding

functions fa(x) are shown in Table 1. Although the values xa can be obtained by any
numerical method, the following remark can also be used to locate them.

Remark 7 For a fixed a∈
(

3

2
, 2
)

, select n > m(a) + 1 and consider inequalities (22).

Denote the corresponding polynomials on the left-hand side and the right-hand side of

(22) by PL(x) and PR(x), respectively. These polynomials are of negative sign in a

right neighborhood of zero (see [12], Theorem 2.5.), and they have positive leading

coefficients. Then, the root xa of the equation fa(x) = 0 is always localized between

the smallest positive root of the equation PL(x) = 0 and the smallest positive root of

the equation PR(x)=0.

3.2 Inequalities with the polynomial exponents

In this subsection we propose and prove a new double-sided inequality involving the
sinc function with polynomial exponents.

To be more specific, we find two polynomials of the second degree which, when
placed in the exponent of the sinc function, give an upper and a lower bound for cos2 x

2
.

Theorem 8 For every x ∈ (0, 3.1) the following double-sided inequality holds:

(24)

(

sin x

x

)p1(x)

< cos2
x

2
<

(

sin x

x

)p2(x)

,

where p1 (x) =
3

2
+

x
2

2π2
and p2 (x) =

3

2
+

x
2

80
.

7



Proof. Consider the equivalent form of the inequality (24):

p1 (x) ln
sin x

x
< 2 ln cos

x

2
< p2 (x) ln

sin x

x
.

Now, let us introduce the following notation:

Gi (x) = pi (x) ln
sin x

x
− 2 ln cos

x

2
,

for i = 1, 2.

Based on the Theorem WD, from (3) we obtain:

(25)

−
m−1
∑

k=1

22k−1|B2k|
k(2k)!

x2k +
(1

c

)2m
(

ln
sin c

c
−

m−1
∑

k=1

22k−1|B2k|
k(2k)!

c2k
)

x2m <

< ln
sin x

x
< −

n
∑

k=1

22k−1|B2k|
k(2k)!

x2k,

for x∈(0, π) where n,m∈N, m,n ≥ 2.

Based on the Theorem WD, from (4) we obtain:

(26)

−
m−1
∑

k=1

22k−1(22k−1)|B2k|
k(2k)!

x2k +
(1

c

)2m
(

ln cos c−
m−1
∑

k=1

22k−1(22k−1)|B2k|
k(2k)!

c2k
)

x2m <

< ln cos x < −
n
∑

k=1

22k−1(22k−1)|B2k|
k(2k)!

x2k,

for x∈(0, c) and where 0 < c <
π

2
, n,m∈N, m,n ≥ 2, i.e.

(27)

n
∑

k=1

(22k−1)|B2k|
2k(2k)!

x2k < − ln cos
x

2
<

<

m−1
∑

k=1

(22k−1)|B2k|
2k(2k)!

x2k −
(2

c

)2m
(

ln cos
c

2
−

m−1
∑

k=1

(22k−1)|B2k|
2k(2k)!

c2k
)

x2m,

for x∈(0, c) and 0<c<π, n,m∈N, m,n ≥ 2.

Now, let us introduce the notation:

H1 (x,m1, n1, c1) = −p1 (x)
m1−1
∑

k=1

22k−1|B2k|
k(2k)!

x2k−

−2

(

−
m1−1
∑

k=1

(22k−1)|B2k|

2k(2k)!
x2k + 1

c
2m1

1

(

ln c1
2
+

n1−1
∑

k=1

(22k−1)|B2k|

2k(2k)!
c2k1

)

x2m1

)

,

for m1, n1 ∈ N, m1, n1 ≥ 2, c1 ∈ (0, π), and x ∈ (0, c1).

H2 (x,m2, n2, c2) = p2 (x)

(

−
m2−1
∑

k=1

22k−1 |B2k|
k(2k)!

x2k + 1

c
2m2

2

(

ln sin c2
c2

+
m2−1
∑

k=1

22k−1|B2k|
k(2k)!

c2k2

)

x2m2

)

+

+2
n2
∑

k=1

(22k−1)|B2k|

2k(2k)!
x2k,

for m2, n2 ∈ N, m2, n2 ≥ 2, c2 ∈ (0, π), and x ∈ (0, c2).

8



Based on the inequalities (25) and (27) the following holds true:

G1 (x) < H1 (x,m1, n1, c1) ,

G2 (x) > H2 (x,m2, n2, c2) ,

for m1, n1, m2, n2 ∈ N and c1, c2 ∈ (0, π).

For c1 = c2 = 3.1, m1 = 25 and n1 = 10 and for m2 = 13 and n2 = 27, it is easy
to prove that H1 (x,m1, n1, c1) < 0 and H2 (x,m2, n2, c2) > 0, for every x ∈ (0, c1).

Hence, we conclude that G1(x) < 0 and G2(x) > 0 for every x ∈ (0, 3.1), and the
double-sided inequality (24) holds. �

Remark 9 Note that this method can be used to prove that the inequality (24) of The-
orem 8 holds on any interval (0, c) where c ∈ (0, π), but the degrees of the polynomials

H1 and H2 get larger as c approaches π.

3.3 Constant vs. polynomial exponents

Let us observe the inequalities in Theorem 6 and Theorem 8, inequality (24), containing
constants and polynomials in the exponents, respectively.

A question of establishing a relation between these functions, with different types
of exponents, comes up naturally. The following theorem addresses this question.

Theorem 10 For every a∈
(

3

2
, 2
)

and every x ∈ (0,ma), where ma =

√

2π2
(

a− 3

2

)

,

the following double-sided inequality holds:

(28)

(

sin x

x

)a

<

(

sin x

x

)3

2
+ x

2

2π2

< cos2
x

2
.

Proof. Let a =
3

2
+ ε, ε∈

(

0,
1

2

)

and x > 0. Then:

(

3
2
+ x2

2π2

)

ln sin x
x

− a ln sinx
x

=
(

3
2
+ x2

2π2

)

ln sinx
x

−
(

3
2
+ ε
)

ln sinx
x

=

=
(

x2

2π2 − ε
)

ln sinx
x

= 1
2π2

(

x−
√
2π2ε

)(

x+
√
2π2ε

)

ln sinx
x

.

Now we have:

x∈
(

0,
√
2π2ε

)

⇐⇒
(

3

2
+ αx2

)

ln
sin x

x
>
(

3

2
+ ε
)

ln
sin x

x
⇐⇒

(

sin x

x

)3

2
+ x

2

2π2

>

(

sin x

x

)3

2
+ε

.

Hence, applying Theorem 8, the double-sided inequality (28) holds for every

a∈
(

3

2
, 2
)

and every x ∈ (0, ma). �
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Now, in Table 1, we show the values xa and ma for some specified a∈
(

3

2
, 2
)

:

a 1.501 1.502 1.503 1.504 1.505 1.506 1.507 1.508 1.509 1.510

xa 0.282... 0.398... 0.487... 0.561... 0.626... 0.685... 0.738... 0.788... 0.834... 0.878...

ma 0.140... 0.198... 0.243... 0.280... 0.314... 0.344... 0.371... 0.397... 0.421... 0.444...

a 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.65

xa 1.220... 1.468... 1.666... 1.831... 1.973... 2.096... 2.205... 2.302... 2.302... 2.302...

ma 0.628... 0.769... 0.888... 0.993... 1.088... 1.175... 1.256... 1.256... 1.256... 1.256...

a 1.70 1.75 1.80 1.85 1.90 1.92 1.94 1.96 1.98 1.9999

xa 2.911... 3.034... 3.103... 3.133... 3.141... 3.141... 3.141... 3.141... 3.141... 3.141...

ma 1.986... 2.221... 2.433... 2.628... 2.809... 2.879... 2.947... 3.013... 3.087... 3.141...

Table 1

Remark 11 Note that Theorem 10 represents another proof of the following assertion

from [1] :
(

∀a∈(3/2, 2)
)(

∃δ>0
)(

∀x∈(0, δ)
)

(

sin x

x

)a

< cos2
x

2
.

4 Conclusion

In this paper, using the power series expansions and the application of the Wu-

Debnath theorem, we proved that the inequality (2) holds for a=
3

2
. At the same

time, this proof represents a new short proof of Statement 1.

We analyzed the cases a ∈
(

3

2
, 2
)

and a ≥ 2 and we prove the corresponding

inequalities. We introduced and prove a new double-sided inequality of similar type
involving polynomial exponents. Also, we established a relation between the cases of
the constant and of the polynomial exponent.
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