
ar
X

iv
:1

80
4.

02
66

9v
4 

 [
m

at
h.

N
T

] 
 6

 S
ep

 2
01

9

ON THE LOCAL FACTORS OF IRREDUCIBLE REPRESENTATIONS OF

QUATERNIONIC UNITARY GROUPS

HIROTAKA KAKUHAMA

Abstract. In this paper, we give a precise definition of the analytic γ-factor of irreducible
representations of quaternionic unitary groups, which extends a work of Lapid-Rallis.

Contents

1. Introduction 1
2. Quaternionic unitary groups 2
3. Doubling zeta integrals 4
4. Intertwining operator and Whittaker normalization 5
5. Statement of the main theorem 7
6. Proof of the main theorem 10
7. Calculations 17
8. Applications 19
References 22

1. Introduction

The doubling method of Piatetski-Shapiro and Rallis [7, 19] is a theory of integral represen-
tation of standard L-functions. Lapid-Rallis [17] elaborated on the doubling method, and gave a
definition of the analytic γ-factor of irreducible representations of general linear groups, orthogo-
nal groups, symplectic groups and unitary groups. This was extended by Gan [5] to metaplectic
groups. Moreover, Yamana [26] established their analytic properties and verified basic properties
for classical groups containing isometry groups of hermitian or skew-hermitian forms over quater-
nion algebras. However, his work was not enough to characterize the γ-factor. The purpose of
this paper is to give a precise definition of the analytic γ-factor and to characterize it in this
case.

Now, we explain our result in more detail. Let F be a local field of characteristic zero and let
D be a quaternion algebra over F . We consider an ǫ-hermitian space over D (see §2.1). Then
the quaternionic unitary group is defined as the isometry group of the ǫ-hermitian space. Let G
be either a general linear group GLn(D) or a quaternionic unitary group, let π be an irreducible
representation of G, let ω be a character of F×, let ψ be a non-trivial additive character of F .
In this paper, we define the γ-factor of π by

γV(s+
1

2
, π × ω, ψ) = ΓV(s, π, ω,A, ψ)cπ(−1)R(s, ω,A, ψ)

where

• A is some element of the Lie algebra of G✷ (for definition, see §3.1);
1
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• ΓV(s, π, ω,A, ψ) is a “normalized Γ-factor”, which is defined in §4.1. This factor is
obtained from a functional equation of doubling zeta integrals;

• cπ is the central character of π;
• R(s, ω,A, ψ) is a correction term, which is defined in §4.2.

We expect the γ-factor to satisfy

γV(s, π × ω, ψ) = γ(s, φπ ⊗ ω, std, ψ)(1.1)

if the L-parameter φπ is attached to π. Here, we denote by std the standard representation of
the L-group LG into GLN (C). As in [17], one can show that the γ-factor γV(s, π×ω, ψ) satisfies
the global functional equation. Yamana showed that the γ-factor γV(s, π × ω, ψ) satisfies some
required properties: the multiplicativity, the self-duality, the (local) functional equation, and
the equation (1.1) for G = GLn(D). In this paper, we prove the equation (1.1) for G in the
archimedean case. Moreover, we prove that the γ-factor γV(s, π, ψ) is characterized by some
required properties. Both are stated in Theorem 5.7.

In the rest of the introduction, we explain the contents of this paper. In §2-§4, we explain the
(local) framework of the doubling method. In §5, we give a definition of the γ-factor and state
the main theorem. We also recall the definition of the Lapid-Rallis γ-factor. We also define the
L-factor and the ǫ-factor as in [17, §10]. In §6 and §7, we prove the main theorem.

In §6.1, we prove that the properties of the γ-factor γ(s, π×ω, ψ) stated in the main theorem
determine it uniquely by using a global argument. In §6.2, we treat some properties which come
from the framework of the doubling method. For example, the multiplicativity, the functional
equation and the self duality. Note that there is a minor error in the proof of the multiplicativity
of [17]. So we correct it at this opportunity. In §6.3, we prove that the γ-factor defined in §5
is nothing other than Lapid-Rallis γ-factor in the split case. Finally, in §6.4, we discuss the
desired property (1.1). In the archimedean case, we prove it as in [17]. In the non-archimedean
case, we prove it admitting the local Langlands correspondence. In §7, we discuss some explicit
calculations to complete the proof of the main theorem.

In §8, we give two applications. First, we determine the local root number of irreducible
representations of quaternionic unitary groups. This extends the result of Lapid-Rallis [17,
Theorem 1]. Second, over a non-archimedean local field of odd residual characteristic, we give
an explicit formula of the doubling zeta integrals of some spherical representations with respect
to a certain subgroup. In the proof, we use the explicit formula of the γ-factor of the trivial
representation obtained in §7.
Acknowledgments: The author would like to thank my supervisor A. Ichino for many advices.
The author also would like to thank the referee for sincere and useful comments.

2. Quaternionic unitary groups

Let F be a field of characteristic zero, and let D be a quaternion algebra over F . Denote by
∗ the main involution of D. For a finite dimensional right vector space V over D, we denote the
reduced norm of EndD(V ) by NV . For simplicity, we denote the reduced norm of Mn(D) by N .
Note that D is possibly split since it appears as a localization of a division quaternion algebra
over a number field. If D is split, then “finite dimensional right vector space over D” means
“free right module over D of finite rank”. We discuss the split case more in §2.3.
2.1. Hermitian and skew-hermitian spaces over D. Fix ǫ = ±1. Let V = (V, h) be a pair
consisting of an n-dimensional right vector space V over D and a map h : V × V → D such that

(1) h(va, wb) = a∗h(v, w)b
(2) h(v1 + v2, w) = h(v1, w) + h(v2, w)
(3) h(w, v) = ǫh(v, w)∗
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for a, b ∈ D and v, w, v1, v2 ∈ V . We call a pair V = (V, h) a hermitian space (resp. a skew-
hermitian space) over D if h is non-degenerate and ǫ = 1 (resp. h is non-degenerate and ǫ = −1).
We use the term “ǫ-hermitian space” when we treat hermitian space and skew-hermitian space
at the same time. In this paper, we consider the three cases: either the linear case (i.e. the case
h = 0), the hermitian case or the skew-hermitian case.

Let V be an n-dimensional ǫ-hermitian space over D. We define the discriminant of V by

d(V) := (−1)nN((h(vi, vj))ij) ∈ F×/F×2

where v1, . . . , vn is a basis of V . Then d(V) does not depend on the choice of basis.

2.2. Parabolic subgroups. Let

G = Isom(V) = {g ∈ GL(V ) | h(gv, gw) = h(v, w) for v, w ∈ V }
be the isometry group of V where GL(V ) is the general linear group of V . If P is a maximal
parabolic subgroup of G over F , then there is a totally isotropic subspace W (in the linear case,
it is just a subspace) of V such that P coincides with the stabilizer

P (W ) = {g ∈ G | gW =W}
of W . We denote the unipotent radical of P (W ) by U(W ). We put

W0 := (W, 0), W1 := (W⊥/W, h)

where

W⊥ := {v ∈ V | h(v, x) = 0 for all x ∈ W}.
Then there is the exact sequence

1 → U(W ) → P (W ) → GL(W )× Isom(W1) → 1,

and any Levi subgroup of P is isomorphic to

GL(W )× Isom(W1).

We denote the Lie algebra of G (resp. P (W ), U(W )) by g (resp. p(W ), u(W )).

2.3. Morita equivalence. In this subsection we assume that D is split. Then we may identify
D with M2(F ). Put

e :=

(
1 0
0 0

)
.

Then for an n-dimensional right vector space V over D, V ♮ = V e is a 2n-dimensional vector
space over F . For a D-linear map f : V → V ′ of right vector spaces over D, the restriction

f ♮ : V ♮ → V ′♮ of f is an F -linear map. For a zero or an ǫ-hermitian form h on V , we define a
bilinear form h♮ on V ♮ such that

h(xe, ye) =

(
0 0

h♮(xe, ye) 0

)

for x, y ∈ V . Then, the following properties hold:

(1) if h = 0, then h♮ = 0;
(2) if h is hermitian, then h♮ is symplectic;
(3) if h is skew-hermitian, then h♮ is symmetric.

Put V♮ = (V ♮, h♮) and

G♮ = Isom(V♮) = {g ∈ GL(V ♮;F ) | h♮(gv, gw) = h♮(v, w) for v, w ∈ V ♮}.
Then we have an isomorphism ιG : G → G♮ : g 7→ g♮. If π is a representation of G, then we
denote by π♮ the representation of G♮ such that π = π♮ ◦ ιG.
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3. Doubling zeta integrals

3.1. Doubling ǫ-hermitian spaces and unitary groups. Let V✷ = (V ✷, h✷) be a pair, where
V ✷ = V × V and h✷ = h⊕ (−h), that is, the map defined by

h✷((v1, v2), (w1, w2)) = h(v1, w1)− h(v2, w2)

for v1, v2, w1, w2 ∈ V . Let G✷ = Isom(V✷). Then G×G acts on V × V by

(g1, g2) · (v1, v2) = (g1v1, g2v2),

so that G×G can be embedded naturally in G✷. Consider the maximal totally isotropic subspaces

V△ = {(v, v) ∈ V ✷ | v ∈ V },
V▽ = {(v,−v) ∈ V ✷ | v ∈ V }.

Note that V = V △ ⊕ V ▽. Then P (V △) is a maximal parabolic subgroup of G✷ and its Levi
part is isomorphic to

{
GL(V △)×GL(V ✷/V△) in the linear case

GL(V △) in the ǫ-hermitian case.

3.2. Zeta integrals and intertwining operators. Assume that F is a local field of charac-
teristic zero. Denote by ∆V△ the character of P (V △) given by

∆V△(x) =

{
NV△(x) ·NV ✷/V△(x)−1 in the linear case,

NV△(x) in the ǫ-hermitian case.

Here, NV△(x) (resp. NV ✷/V△(x)) is the reduced norm of the image of x in EndD V
△ (resp.

EndD V
✷/V △). Let ω : F× → C× be a character. For s ∈ C, put ωs = ω · | · |s. Choose a

maximal compact subgroupK of G✷ such that G✷ = P (V △)K. Denote by I(s, ω) the degenerate
principal series representation

IndG
✷

P (V△)(ωs ◦∆V△)

consisting of the smooth right K-finite functions f : G✷ → C satisfying

f(pg) = δ
1
2

P (V△)
(p) · ωs(∆V△(p)) · f(g)

for p ∈ P (V △) and g ∈ G✷, where δP (V△) is the modular function of P (V △). We may extend
|∆V△ | to a right K-invariant function on G✷ uniquely. For f ∈ I(0, ω), put fs = f · |∆V△ |s ∈
I(s, ω). Define an intertwining operator M(s, ω) : I(s, ω) → I(−s, ω−1) by

(M(s, ω)fs)(g) =

∫

U(V△)

fs(w1ug) du

where w1 = (1,−1) ∈ G × G ⊂ G✷. This integral defining M(s, ω) converges absolutely for
ℜs≫ 0 and admits a meromorphic continuation to C. Let π be an irreducible representation of
G. For a matrix coefficient ξ of π, and for f ∈ I(ω, 0), define the zeta integral by

ZV(fs, ξ) =

∫

G

fs((g, 1))ξ(g) dg.

Then the zeta integral satisfies the following properties, which is stated in [26, Theorem 4.1].
This gives a generalization of [17, Theorem 3].

Theorem 3.1. (1) The integral ZV(fs, ξ) converges absolutely for ℜs≫ 0 and extends to a
meromorphic function in s. Moreover, if F is non-archimedean, the function ZV(fs, ξ)
is a rational function of q−s. Here q denotes the cardinality of the residue field of F .
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(2) There is a meromorphic function ΓV(s, π, ω) such that

ZV(M(s, ω)fs, ξ) = ΓV(s, π, ω)ZV(fs, ξ)

for all matrix coefficient ξ of π and fs ∈ I(s, ω).

4. Intertwining operator and Whittaker normalization

4.1. Degenerate Whittaker functionals. We use the notation of §2 and §3. Note that D is
possibly split. We regard u(V △) as a subspace of EndD(V

✷) and we denote by u(V △)reg the set
of A ∈ u(V ) of rank n. Fix a non-trivial additive character ψ : F → C× and A ∈ u(V △)reg. We
define

ψA : U(V ▽) → C× : u 7→ ψ(TrV ✷(uA))

where TrV ✷ denotes the reduced trace of EndD(V
✷). For f ∈ I(ω, 0) we define

lψA
(fs) =

∫

U(V▽)

fs(u)ψA(u) du.

Then this integral defining lψA
converges for ℜs ≫ 0 and admits a holomorphic continuation to

C. For the proof, see [13, §3.3] in the non-archimedean case, [23, Theorem 7.1, Theorem 7,2] in
the archimedean case. The functional lψA

is called a degenerate Whittaker functional, which is

a (U(V ▽), ψA)-equivariant functional on I(s, ω). On the other hand, the space of (U(V ▽), ψA)-
equivariant functionals on I(s, ω) is one dimensional for all s ∈ C (see [13, Theorem 3.2]). Hence
we have the following proposition.

Proposition 4.1. There is a meromorphic function c(s, ω,A, ψ) of s such that

lψA
◦M(s, ω) = c(s, ω,A, ψ)lψA

.

Then we define the normalized intertwining operator

M∗(s, ω,A, ψ) = c(s, ω,A, ψ)−1M(s, ω)

and put

ΓV(s, π, ω,A, ψ) = c(s, ω,A, ψ)−1ΓV(s, π, ω).

Clearly, ΓV(s, π, ω,A, ψ) is a meromorphic function of s satisfying

Z(M∗(s, ω,A, ψ)fs, ξ) = ΓV(s, π, ω,A, ψ)Z(fs, ξ)(4.1)

for any f ∈ I(ω, 0) and any matrix coefficient ξ of π. Note that the function ΓV(s, π, ω,A, ψ)
does not depend on the choice of measure on G.

4.2. The normalization factor. In this subsection, we study the basic properties of the nor-
malizing factor c(s, ω,A, ψ). First, we give an explicit formula of c(s, ω,A, ψ). Second, we study
the dependence of C(s, ω,A, ψ) by the change of ψ.

To give an explicit formula, it is necessary to specify the Haar measure du in the definition of
M(s, ω) (§3.2). Note that we do not have to pay attention to the choice of Haar measure in the
later sections since the normalized intertwining operator M(s, ω,A, ψ) does not depend on that.
Let v1, · · · , vn be a basis of V , and let e1, . . . , e2n be a basis

ej =

{
(vj , vj) 1 ≤ j ≤ n

(vj−n,−vj−n) n+ 1 ≤ j ≤ 2n.

Then, we may regard G✷ ⊂ GL2n(D) by this basis. In the linear case, putting u = Mn(D), we
have a bijection

ι : u → u(V △) : X 7→
(
0 X
0 0

)
.
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In the ǫ-hermitian case, putting

u = {X ∈ Mn(D) | tX∗ = −ǫX},
we have a bijection

ι : u → u(V △) : X 7→
(
0 XR
0 0

)

where R = (h(vi, vj))ij ∈ GLn(D). Let dψX be a self-dual Haar measure on u with respect to
the pairing

u× u → C : (X,Y ) 7→ ψ(T (XY )).

In this subsection, we choose the push-forward measure ι∗(dψX) for du.
Now we state the explicit formula of c(s, ω,A, ψ). Note that we do not use it in the proof of

the main theorem. We denote e(G) the invariant of Kottwitz [15]. If D is split, then we have
e(G) = 1. If D is not split, then we have

e(G) =





(−1)n in the linear case

(−1)
1
2n(n−1) in the skew-hermitian case

(−1)
1
2n(n+1) in the hermitian case.

Let A ∈ u(V △)reg. We define R(s, ω,A, ψ) by

R(s, ω,A, ψ) =





ωs(NV (
1
2A))

−2 in the linear case,

ωs(NV (A))
−1γ(s+ 1

2 , ωχd(A), ψ)ǫ(
1
2 , χd(A), ψ)

−1 in the hermitian case,

ωs(NV (A))
−1ǫ(12 , χd(V), ψ) in the skew-hermitian case.

Proposition 4.2. (1) In the linear case, we have

c(s, ω,A, ψ) = e(G) · |2|−4nsω−2n(4) ·
2n−1∏

i=0

γ(2s− i, ω2, ψ)−1 ·R(s, ω,A, ψ)−1,

(2) In the ǫ-hermitian case, we have

c(s, ω,A, ψ) = e(G) · |2|−2ns+n(n− 1
2 )ω−n(4) ·

n−1∏

i=0

γ(2s− 2i, ω2, ψ)−1 · R(s, ω,A, ψ)−1.

Proof. In the linear case, by the analogue of [11, Lemma 3.1], we have

c(s, ω,A, ψ) = e(G)ω2
2s(NV (A))γ

GJ
GLn(D)(2s− n+

1

2
, ω2 ◦N,ψ)−1

where the γ-factor in the right hand side is the Godement-Jacquet γ-factor of the representation
ω2 ◦ N : GLn(D) → C×. Hence we have the claim (1). In the skew-hermitian case, the claim
is proved in [27, Theorem 3.1]. In the hermitian case, the claim is proved in [10, Appendix]
considering the analogue of [11, Lemma 3.1]. �

In the later part of this subsection, we study the dependence of c(s, ω,A, ψ) by the change of
ψ. For a ∈ F×, we denote by ψa the the additive character x 7→ ψ(ax) of F , and we denote

TN (s, ω, a) =

{
ωs− 1

2
(a)N in the linear case, the hermitian case,

ωs− 1
2
(a)Nχd(V)(a) in the skew-hermitian case

where

N =





4n in the linear case ,

2n+ 1 in the hermitian case ,

2n in the skew-hermitian case .
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Lemma 4.3. Let a ∈ F×. Then we have

c(s, ω,A, ψa) = T−1
N (s, ω, a) · c(s, ω,A, ψ).

Proof. We can prove this lemma as in [17, Lemma 10]. Note that we can also prove it directly
from Proposition 4.2. �

5. Statement of the main theorem

5.1. Definition of the γ-factor. We use the setting of §2-§4. Note that D is possibly split.
Fix A ∈ u(V △)reg. Then the image of A is V △. Define ϕA ∈ EndD(V ) so that the following
diagram is commutative:

V ▽ A //

p

��

V △

p

��
V ϕA

// V

where p is the first projection of V × V to V . We define

NV (A) := NV (ϕA), d(A) := (−1)nNV (A) ∈ F×/F×2.(5.1)

For d ∈ F×/F×2, denote by χd the character F× → C× : x 7→ (x, d)F where (·, ·)F is the Hilbert
symbol of F .

Definition 5.1. Let π be an irreducible representation of G, let ω be a character of F×, and let
ψ be a non-trivial character of F . Then we define the γ-factor of π by

γV(s+
1

2
, π × ω, ψ) = ΓV(s, π, ω,A, ψ) · cπ(−1) · R(s, ω,A, ψ)

where ΓV(s, π, ω,A, ψ) is the meromorphic function defined by (4.1), R(s, ω,A, ψ) is a meromor-
phic function defined in §4.2, and cπ is the central character of π.

By Proposition 4.2, the factor γV(s, π × ω, ψ) does not depend on the choice of A. Note that
we interpret NV (A) = d(A) = 1, d(V) = 1 and ΓV(s, π, ω,A, π) = 1 when n = 0.

We can also define the L-factor and the ǫ-factor as in [17, §10]. Note that Yamana gave
another definition of the L-factor by g.c.d property and showed that both L-factors coincide [26].

5.2. Lapid-Rallis γ-factors. If D is split, then dimF V
♮ = 2n and h♮ is either zero, symplectic

form or symmetric form (see §2.3). In this subsection, we consider the Lapid-Rallis γ-factor
defined in [17, §9]. We will prove that the Lapid-Rallis γ-factor coincides with the γ-factor
defined in Definition 5.1 (see Theorem 5.7 (3) below). Note that we need to treat the case
where “A is not split” (for definition, see the end of §5 in [17]), since such A may appear as a
localization.

Let F be a local field of characteristic 0, and let V be a pair (V, h) consisting of a 2n-
dimensional vector space V and a bilinear map h : V ×V → F . We assume that h is either zero,
a non-degenerate symplectic form, or a non-degenerate symmetric form. Let G denote Isom(V),
let π be an irreducible representation of G, let ω be a character of F×, and let ψ be a non-trivial
additive character of F . In this subsection, V✷ denotes (V × V, h✷) where h✷ = h⊕ (−h), V △

denotes a totally isotropic subspace {(v, v) | v ∈ V } of V✷, and u(V △) denotes the Lie algebra
of the unipotent radical of the parabolic subgroup of Isom(V✷) corresponding V △. We regard
u(V △) as a subspace of EndF (V

△) and we denote by u(V △)reg the set of A ∈ u(V △) of rank
2n. Take a basis v1, . . . , v2n of V . Then we define the discriminant of V by

d(V) := (−1)n det((h(vi, vj))ij) ∈ F×/F×2.
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We define NV (A) and d(A) for A ∈ u(V △)reg as in §5.1. Then we define the Lapid-Rallis γ-factor
by

γLR(s+
1

2
, π × ω, ψ) = ΓV(s, π, ω,A, ψ) · cπ(−1) ·Q(s, ω,A, ψ)(5.2)

where ΓV(s, π, ω,A, ψ) is the Γ-factor as defined in [17, §5], cπ is the central character of π, and

Q(s, ω,A, ψ) =





ωs(NV (
1
2A))

−2 in the linear case,

ωs(NV (A))
−1γ(s+ 1

2 , ωχd(A), ψ)ǫ(
1
2 , χd(A), ψ)

−1 in the symplectic case,

ωs(NV (A))
−1ǫ(12 , χd(V), ψ) in the symmetric case.

By Proposition 4.2, The right hand side of (5.2) does not depend on A ∈ u(V △)reg. Lapid
and Rallis moreover defined the L-factor and the ǫ-factor in [17, §10]. We denote them by
LLR(s, π × ω) and ǫLR(s, π × ω, ψ).

5.3. Some Remarks. The definition [17, (25)] seems not to be correct, but this can be fixed as
follows.

Remark 5.2. We note here the corrections in the linear case. First, the factor π(−1) of [17,
(25)] should be replaced with π ⊗ ω(−1) (see [5, §7.2]). Second, the factor θ(detV A))

−1 of [17,
(25)] should be replaced with ωs(θ(detV (A))

−1. Consequently, the Lapid-Rallis γ-factor should
be defined by

γV(s+
1

2
, π × ω, ψ) = ΓV(s, π, ω,A, ψ) · cπ⊗ω(−1) ·Q(s, ω,A)

where ΓV(s, π, ω,A, ψ) is the Γ-factor as defined in [17, §5], cπ⊗ω is the central character of π⊗ω
and

Q(s, ω,A, ψ) = ωs(detV (A))
−1ωs(θ(detV (A)))

−1.

Note that ω is a character of E× where E = F of E is a quadratic extension of F .

Remark 5.3. In the symmetric case, the symplectic case, and the hermitian case, the factor
ωs(detV (A)) in [17, (25)] should be replaced with ωs(detV (2A)). See Remark 6.3 for the necessity
of this modification. Since

detV (2A) = NV (A)

where detV (·) and NV (·) are defined in [17, p.337] and the analogue of (5.1) respectively, our
definition of the Lapid-Rallis γ-factor (5.2) is consistent with this modification.

Remark 5.4. In the case of hermitian spaces over a quadratic extension E of F , the definition
[17, (25)] needs to be modified more: let

ǫ(V) = χ((−1)n(n−1)/2 det((h(vi, vj))ij))

where χ is the non-trivial quadratic character of F×/NE/F (E
×), and (v1, . . . , vn) is a basis of

V over E. Then as explained in [6, §10.1], the right hand side of [17, (25)] should be multiplied
by ǫ(V)n+1. Note that ǫ(V)n+1 = 1 when n is odd. Consequently, in the hermitian case over E,
the Lapid-Rallis γ-factor should be defined by

γV(s+
1

2
, π × ω, ψ) = ΓV(s, π, ω,A, ψ) · cπ⊗ω(−1) ·Q(s, ω,A)

where ΓV(s, π, ω,A, ψ) is the Γ-factor as defined in [17, §5], cπ⊗ω is the central character of π⊗ω
and

Q(s, ω,A) = ǫ(V)n+1detV (2A).
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Remark 5.5. Recall that in the hermitian case, the character ψA of [17, §5] is defined by
ψA(X) = ψF (trE/F (tr(XA))), but Gan-Ichino [6, p539] said that ψA should be given by ψA(X) =
ψF (tr(XA)). Taking this into account, the definition of γ-factor stated in [6, §10.1] is correct
as stated in this case. However, in the other cases (Case B,C’,C”,D), their definition [6, §10.1]
requires the same modification explained above.

Remark 5.6. As with the Lapid-Rallis γ-factor, the γ-factor for metaplectic groups defined in
[5, §5] needs to be modified. The factor det(A) appeared in the expression (which defines the
γ-factor) in the fourth line from the bottom of p.76 should be replaced with det(2A).

5.4. Main theorem. We use the setting of §5.1. For a non-trivial character ψ of F and an
irreducible representation ρ of GLm(D), we can attach the “Godement-Jacquet γ-factor” as

γGJ(s, ρ, ψ) = εGJ(s, ρ, ψ)
LGJ(1 − s, ρ̃)

LGJ(s, ρ)

where ρ̃ is the contragredient representation of ρ and LGJ(s,−) (resp. εGJ(s,−, ψ)) is the
Godement-Jacquet L-factor (resp. ǫ-factor) (see [8, Theorems 3.3, 8.7]).

Theorem 5.7 (Main). The factor γV(s, π × ω, ψ) satisfies the following properties:

(1) (unramified twisting)

γV(s, π × ωs0 , ψ) = γV(s+ s0, π × ω, ψ)

for s0 ∈ C.
(2) (multiplicativity) Let W be a totally isotropic subspace of V , and let σ = σ0 ⊗ σ1 be

an irreducible representation of GL(W ) × Isom(W1) (see §2.2). If π is a constituent of

IndGP (W )(σ), then

γV(s, π × ω, ψ) = γW0(s, σ0 × ω, ψ)γW1(s, σ1 × ω, ψ).

(3) (split factor) If D is split, then

γV(s, π × ω, ψ) = γLR(s, π♮ × ω, ψ).

(4) (functional equation)

γV(s, π × ω, ψ)γV(1− s, π̃ × ω−1, ψ−1) = 1.

(5) (self duality)

γV(s, π̃ × ω, ψ) = γV(s, π × ω, ψ).

(6) (dependence on ψ) Denote by ψa the additive character x 7→ ψ(ax) of F for a ∈ F×.
Then

γV(s, π × ω, ψa) = TN(s, ω, a) · γV(s, π × ω, ψ)

where N and TN (s, ω, a) are defined in §4.2
(7) (minimal cases) Suppose F = R, V is ǫ-hermitian, n ≤ 1, ω = 1 and π is trivial. Let φπ

be the L-parameter of π. Then

γV(s, π × ω, ψ) = γ(s, φπ ⊗ ω, std, ψ).

Here, if n = 0 we interpret the right hand side as γ(s, ω, ψ) (resp. 1) when V is hermitian
(resp. skew-hermitian).
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(8) (GLn-factor) In the linear case,

γV(s, π × ω, ψ) = γGJ(s, π ⊗ ω, ψ)γGJ(s, π̃ ⊗ ω, ψ).

(9) (archimedean Langlands compatibility) If F is archimedean then

γV(s, π × ω, ψ) = γ(s, φπ ⊗ ω, std, ψ)

where φπ is the Langlands parameter corresponding to π and std is the standard repre-
sentation of LG to GLN (F ).

(10) (global functional equation) Let F be a number field, and let D be a quaternion algebra
over F. Let G = Isom(V) where V = (V, h) is a pair consisting of an n-dimensional right
vector space V over D and either 0, hermitian form or skew-hermitian form h on V . Let
π be an irreducible cuspidal automorphic representation of G(AF). Then for any finite
set S of places of F containing all places where D is not split, the functional equation

LLRS (s, π × ω) =
∏

v∈S
γVv (s, πv × ωv, ψv) · ǫLRS (s, π × ω, ψ)LLRS (1 − s, π̃ × ω−1)

holds, where

LLRS (s, π × ω) =
∏

v 6∈S
LLR(s, π♮v × ωv)

and

ǫLRS (s, π × ω, ψ) =
∏

v 6∈S
ǫLR(s, π♮v × ωv, ψv).

Moreover, the properties (1),(2),(3),(6),(7),(8) and (10) determine γV(s, π × ω, ψ) uniquely.

Remark 5.8. The γ-factor appears in a functional equation of the zeta integrals. Suppose that
V is an ǫ-hermitian space for simplicity. Let fs ∈ I(s, ω), and let ξ be a matrix coefficient of π.
We can rewrite (4.1) as

Z(M(s, ω)fs, ξ) = c(s, ω,A, ψ)ΓV(s, ω,A, ψ)Z(fs, ξ).

We choose the Haar measure du in the definition of M(s, ω) as in §4.2. Then, by Proposition
4.2, we can obtain the functional equation

ZV(M(s, ω)fs, ξ) =e(G)ωπ(−1)γV(s+
1

2
, π × ω, ψ)

× |2|−2ns+n(n− 1
2 )ω−n(4)

n−1∏

i=0

γ(2s− 2i, ω2, ψ)−1ZV(fs, ξ)
(5.3)

where e(G) is the invariant of Kottwitz (see. §4.2).

6. Proof of the main theorem

In §6 and §7, we prove Theorem 5.7. Once (7) minimal cases is proved, then the other
parts of the proof are not difficult or are similar to [17, Theorem 4]. However, the proof of
the uniqueness is important: it explains the reason why the minimal cases contains only the
cases where F = R, n = 0, 1, and π, ω are trivial. In this section, we write down the proof of
the uniqueness, (3) split factor, and (9) archimedean Langlands properties for the readers. The
minimal cases will be proved in §7.
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6.1. Uniqueness. In this subsection, we prove the uniqueness of the γ-factor, which is stated at
the end of Theorem 5.7. Let γ′ be another function satisfying the conditions (1),(2),(3),(6),(7),(8)
and (10) of Theorem 5.7. Then we will prove the equation

γ′(s, π × ω, ψ) = γV(s, π × ω, ψ).(6.1)

We denote the skew-field of Hamilton’s quaternions by

H = R⊕ Ri⊕ Rj ⊕ Rk

with the elements i, j, k satisfying

i2 = j2 = k2 = −1, k = ij, ij = −ji.
We use the setting of §5.1. Recall that F is an arbitrary local field of characteristic zero, D
is a quaternion algebra over F , and V is an n-dimensional ǫ-hermitian space over D. By the
condition (2) and (8), we may assume that all the coefficients of π have compact support. By
the condition (3), we may assume that D is a division quaternion algebra. Then, we have the
following:

Lemma 6.1. Let V ′ be an ǫ-hermitian space over H such that dimV ′ = n. Then there is a
quintuple (F,D,V, ω, ψ) where

• F is a number field such that there are two (different) places v1, v2 with Fv1 = F,Fv2 = R,
• D is a division quaternion algebra over F such that D is not split precisely at the two
places v1, v2 and Dv1 = D,Dv2 = H,

• V is an ǫ-hermitian space over D such that Vv1 = V ,Vv2 = V ′

• ω is a Hecke character of F such that ω · ω−1
v1 = | · |tv1 for some t ∈ C and ωv2 = 1,

• ψ is a non-trivial additive character of A/F where A is the ring of adeles of F.

Proof. The existence of such F,D, and ω is well-known. Besides, by using the weak approxima-
tion, we have an ǫ-hermitian space V satisfying the condition of the lemma. �

We apply this lemma to V ′ having a ⌊n/2⌋-dimensional totally isotropic subspace. By [9,
Appendice I], there is an irreducible automorphic cuspidal representation Π of Isom(V)(A) such
that Πv1 = π. Then, by the conditions (1), (3), (6), and (10), we have

γ′v1(s,Πv1 × ωv1 , ψv1
)γ′v2(s,Πv2 × ωv2 , ψv2

) = γVv1(s,Πv1 × ωv1 , ψv1
)γVv2(s,Πv2 × ωv2 , ψv2

).

Thus, we can reduce the equation (6.1) to the case F = R, ω = 1 and V has a ⌊n/2⌋-dimensional
totally isotropic subspace. By Casselman’s embedding theorem ([4, Corollary 5.2]) and the
condition (2), we may assume that n = 0, 1.

Again by the global argument as above, we may assume moreover that π is trivial. In this
case, the equation (6.1) clearly holds by the condition (7).

6.2. Formal properties. The properties (1), (2), (4), (5), (6), and (10) can be deduced from
the framework of the doubling method. They can be proved as in [17, §9]. However we explain
(2) here to give the detail of Remark 5.3.

We use the setting of (2). We may assume that π is a constituent of IndG
✷

P (W ) σ. We denote

by W the orthogonal sum W0⊥W1 (§2.2). We define IW(s, ω) as in §3.2 and we define an
intertwining map

Ψ(s, ω) : IV(s, ω) → IndG
✷

P (W✷)(I
W (s, ω)⊗ |∆W:V |) : fs 7→ (g 7→ [Ψ(s, ω)fs]g)

as in [17, Proposition 1]. Fix A ∈ u(V △)reg. We may assume A(W✷) ⊂ W✷. Then A induces
the following maps

• A0 :W✷ →W✷,
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• A1 : (W⊥/W )✷ → (W⊥/W )✷.

For f ′
s ∈ IW(s, ω) and for

(B,C) ∈ u((W⊥(W⊥/W ))△) = u(W△)× u((W⊥/W )△),

we define lWψ(B,C)
(f ′
s) as in §4.1. Then, we have the following:

Proposition 6.2. Let fs ∈ I(s, ω).

(1) In the linear case, we have

lψA
(fs) =

∫

U(V▽)∩P (W✷)\U(V▽)

lWψ(A0,A1)
([Ψ(s)fs]u)ψA(u) du.

(2) In the ǫ-hermitian case, we have

lψA
(fs) =

∫

U(V▽)∩P (W✷)\U(V▽)

lWψ(2A0,A1)
([Ψ(s)fs]u)ψA(u) du.

Remark 6.3. Proposition 6.2 corrects the inaccuracy in the statement of [17, Lemma 8]. The
functional lWψB

in [17, Lemma 8] corresponds to lWψ(A0,A1)
in our notation. However, it should be

replaced with lWψ(2A0,A1)
in the symplectic case, the symmetric case, and the hermitian case. This

causes the modification explained in Remark 5.3 of §5.3.

As in [17, §9], we have

ΓV(s, π, ω,A, ψ) = ΓW0(s, σ0, ω, 2A0, ψ) · ΓW1(s, σ1, ω, A1, ψ).

Observe that

RV(s, ω,A, ψ) = RW0(s, ω, 2A0, ψ) ·RW1(s, ω,A1, ψ),

thus we have

γV(s, π × ω, ψ) = γW0(s, σ0 × ω, ψ) · γW1(s, σ1 × ω, ψ),

as desired.

6.3. Split case. In this subsection, we prove the property (3). Suppose that D is split. Take
A ∈ u(V △)reg. Then one can express I(s, ω), Z(−, ξ) and lψA

in the term of V ♮, π♮ and A♮ where
A♮ corresponds to A via the Morita equivalence between EndF (V

✷♮) and EndD(V
✷) (§2.3). Note

that V ✷♮ = V ♮✷ and A♮ ∈ u(V ♮△)reg (§5.2). Then we have

ΓV♮

(s, ω, π♮, A♮, ψ) = ΓV(s, ω, π,A, ψ),

QV♮

(s, ω,A♮, ψ) = RV(s, ω,A, ψ).

Thus, we have the property (3).

6.4. Relation with the local Langlands Correspondence. The properties (7), (8), and (9)
of Theorem 5.7 say that the equation (1.1) is true as desired in special cases. Note that the
property (8) is proved by Yamana [25, Appendix]. The property (7) will be proved in §7. In this
subsection, we prove the property (9) admitting the consequence of §7. Moreover we consider
the non-archimedean case (§6.4.4).
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6.4.1. Notations. Before starting the proof, we give some notations involving the quaternionic
unitary groups over archimedean local fields and their representations. We use the setting of
§5.1. Suppose that F is archimedean. If D is split over F , the equation (1.1) is proved by Lapid
and Rallis [17]. Hence, we may assume F = R and D = H. By unramifed twisting, we may
assume that ω = 1 or the sign character sgn. Moreover, by the multiplicativity, we may assume
that V = (Hn, 〈In〉) (resp. V = (H, 〈i〉)) in the hermitian case (resp. the skew-hermitian case).
Here,

〈In〉 : Hn ×Hn → H : (x, y) 7→ tx∗ · y,
〈i〉 : H×H → H : (x, y) 7→ x∗iy.

Then G is a subgroup of GLn(H). We choose a basis e1, . . . , e2n of (Hn)✷ = Hn×Hn defined by

ej =

{
1√
2
(vj , vj) 1 ≤ j ≤ n,

1√
2
(vj−n,−vj−n) n+ 1 ≤ j ≤ 2n,

where v1 = t(1 0 · · · 0), . . . , vn = t(0 · · · 0 1). We may regard G✷ ⊂ GL2n(H) by this basis. Put

K = {g ∈ G✷ | g · tg∗ = 1}.
Then K is a maximal compact subgroup of G✷, and the embedding

G×G→ K : (a, b) 7→ w0

(
a 0
0 b

)
w−1

0

is an isomorphism. Here

w0 :=
1√
2

(
In In
In −In

)
.

Moreover, we have the decomposition G✷ = P (V △)K by the analogue of [7, Lemma 2.1].
In the later part of this subsection, we explain the finite dimensional representations of the

Weil group WR of R. We regard C as a subfield of H by identifying i ∈ H with the imaginary
unit of C. The Weil group WR of R is given by C× ∪ jC× ⊂ H×. For any character ω′ of R×, we
also denote by ω′ the one-dimensional representation of WR defined by the composition ω′ ◦ α
where α :WR → R× is the homomorphism defined by

α(j) = −1, α(z) = zz for z ∈ C×.

For l ∈ Z, we denote by Dl the two-dimensional representation of WR defined by

Dl(j) =

(
0 (−1)l

1 0

)
, Dl(re

iθ) =

(
eilθ 0
0 e−ilθ

)
for r ∈ R>0, θ ∈ R.

Then Dl
∼= D−l and Dl ⊗ sgn ∼= Dl for l ∈ Z. Note that all finite dimensional representations

of WR are completely reducible, and the finite dimensional irreducible representations of WR are
1, sgn, Dl for l = 1, 2, . . ., and their unramified twistings (cf. [14, §3]). Take the non-trivial
additive character ψ given by ψ(x) = e2πix for x ∈ R. Put

ΓR(s) := π−s/2Γ(s/2), ΓC(s) := 2(2π)−sΓ(s).

Then, the γ-factors of 1, sgn and Dl for l ∈ Z are given by

γ(s+
1

2
, 1, std, ψ) =

ΓR(−s+ 1
2 )

ΓR(s+
1
2 )

, γ(s+
1

2
, sgn, std, ψ) = i · ΓR(−s+ 3

2 )

ΓR(s+
3
2 )

and

γ(s+
1

2
, Dl, std, ψ) = i|l|+1 · ΓC(−s+ |l|+1

2 )

ΓC(s+
|l|+1
2 )

.

In what follows, we first describe the γ-factor of the representation std ◦φπ of WR.
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6.4.2. Hermitian case. We use the setting of §6.4.1. Suppose that V is hermitian. Recall that
ω = 1 or sgn. In this case, G = Sp(n). Choose the maximal torus

T = {diag(z1, . . . , zn) ∈ Sp(n) | z1, . . . , zn ∈ C×, |z1| = · · · = |zn| = 1}

of Sp(n). We identify the character group X∗(T ) of T with Zn. We fix the “standard” positive
system. We denote by ρ = (ρ1, . . . , ρn) the half sum of the positive roots ofG. Then ρj = n+1−j.
Let

λ = (λ1, . . . , λn) ∈ Zn, λ1 ≥ · · · ≥ λn ≥ 0

be the highest weight of π. Then

std ◦(φπ ⊗ ω) = ((

n⊕

j=1

D2(λj+ρj))⊕ sgnn)⊗ ω

= (

n⊕

j=1

D2(λj+ρj))⊕ (sgnn⊗ω))

where sgnn is the character of WR defined by sgnn(j) = (−1)n, sgnn(z) = 1 for z ∈ C×. Since

n∏

j=1

i2(λj+ρj)+1 = in(n+2)
n∏

j=1

(−1)λj = ǫ(
1

2
, sgnn, ψ)−1cπ(−1),

we have

γ(s+
1

2
, φπ ⊗ ω, std, ψ)

= cπ(−1)γ(s+
1

2
, sgnn⊗ω, ψ)ǫ(1

2
, sgnn, ψ)−1

n∏

j=1

ΓC(−s+ 1
2 + λj + ρj)

ΓC(s+
1
2 + λj + ρj)

.

We next compute γV(s, π × ω, ψ). Observe that

I(s, ω) = I(s, 1), ΓV(s, π, ω,A, ψ) = ΓV(s, π, 1, A, ψ), ωs(A) = |NV (A)|s

for A ∈ u(V △)reg. Hence, if we prove the equation

ΓV(s, π, 1, A, ψ) = |NV (A)|s
n∏

j=1

ΓC(−s+ 1
2 + λj + ρj)

ΓC(s+
1
2 + λj + ρj)

,(6.2)

then we can conclude (1.1). We prove (6.2) by induction on

|λ| :=
v∑

i=1

|λi|

by using the “strong adjacency” (see [17, p. 347]).

We first explain the “strong adjacency”. Since G✷ = P (V △)K, letting Ĝ the set of the
equivalence classes of the irreducible representations of G, we have the decomposition

I(0, 1) =
⊕

π∈Ĝ

π̃ ⊗ π

as G×G-modules. We define i
(s)
π by the composition

π̃ ⊗ π →֒ I(0, 1) → I(s, 1)
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where I(0, 1) → I(s, 1) is the map f 7→ fs (see §3.2). Let s be the orthogonal complement of k in

g✷ with respect to the Killing form κ. Then s⊗R C is isomorphic to St⊗ S̃t as a representation
of K ∼= G×G, where St is the representation of G defined by the action

g · x = (g ⊗ 1)♮x

for g ∈ Sp(n), x ∈ (Hn ⊗R C)♮ (for the definition of ♮, see §2.3). We identify s ⊗R C with a
subrepresentation of I(0, 1) through the map ω(ν) which is defined in [2, 1.f].

Definition 6.4. Let π, π′ be irreducible representations of G. We say that π and π′ are strongly
adjacent if the image of (s⊗R C)⊗ (π ⊗ π̃) of the multiplication map

I(0, 1)⊗ I(s, 1) → I(s, 1) : f ′ ⊗ fs 7→ f ′fs

contains π′ ⊗ π̃′.

If π and π′ are strongly adjacent, then

either HomG(St⊗ π, π′) or HomG(π, St⊗ π′) is non-zero .(6.3)

Conversely, one can show that the (6.3) implies the strongly adjacency. By the branching rule
of St⊗ π (see the end of [16, §2.5]), we have the following lemma.

Lemma 6.5. Let π, π′ be irreducible representations of G. We denote by λ = (λ1, . . . , λn) (resp.
λ′ = (λ′1, . . . , λ

′
n)) the highest weight of π (resp. π′). Then the following are equivalent:

(1) π and π′ are strongly adjacent,
(2) there exists a unique integer l with 1 ≤ l ≤ n such that

|λj − λ′j | =
{
1 j = l

0 j 6= l

for j = 1, . . . , n.

Now we prove the property (9) admitting (6.2) for the trivial representation.

Proposition 6.6. Let π, π′ be irreducible representations of G of highest weights λ, λ′ ∈ Zn,
respectively. Suppose π and π′ are strongly adjacent, and moreover λ′l = λl + 1 for some unique
l. Then

(λl + ρl +
1

2
− s)ΓV(s, π, 1, A, ψ) = (λl + ρl +

1

2
+ s)ΓV(s, π′, 1, A, ψ).

To prove this, we first note the following lemma:

Lemma 6.7. Let π ∈ Ĝ, and let A ∈ u(V △)reg. For s ∈ C, the following diagram is commuta-
tive:

I(s, 1)
M∗(s,1,A,ψ) // I(−s, 1)

π̃ ⊗ π

i(s)π

OO

ΓV(s,π,1,A,ψ)·
// π̃ ⊗ π

i(−s)
π

OO
.

Proof. The normalized intertwining operator M∗(s, 1, A, ψ) acts on π̃ × π as the multiplication
by a scalar for almost all s ∈ C. We denote the scalar by b. On the other hand, we have
Z(f−s, ξ) = Z(fs, ξ) 6= 0 for f ∈ π̃ ⊗ π ⊂ I(0, 1) with f 6= 0. Hence we have b = Γ(s, π, ω,Aψ),
and then we have the lemma. �

Then, applying [2, (2.14)] as in [17, §9], we have Proposition 6.6.
Hence, to complete the induction, it only remains to verify (6.2) in the case λ = 0, that is,

π is trivial. We prove (6.2) for the trivial representation in §7 below to finish the proof of the
property (9).
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6.4.3. Skew-hermitian case. We use the setting of §6.4.1. Suppose that V is skew-hermitian.
Recall that ω = 1 or sgn. In this case, G = C1 and

U(V ▽) =

{(
1 0
x 1

) ∣∣∣∣x ∈ iR
}
.

Any irreducible representation of G is of the form

πl : C1 → C× : z 7→ zl(6.4)

for some l ∈ Z. We know that

std ◦φπl
⊗ ω ∼= D2l ⊗ ω ∼= D2l,

so we have

γ(s+
1

2
, φπl

⊗ ω, ψ, std) = i(−1)l
ΓC(−s+ 1

2 + |l|)
ΓC(s+

1
2 + |l|) .

It is obvious that γ(s, φπl
⊗ ω, std, ψ) does not depend on ω. On the other hand, γV(s, π×ω, ψ)

does also not depend on ω. Thus we may assume ω = 1. Moreover, we may assume l ≥ 0 by the
property (5). Then, by Proposition 7.1 (3) below, we have

γ(s+
1

2
, φπl

⊗ ω, ψ, std) = γV(s+
1

2
, πl × ω, ψ).

Remark 6.8. Let V be an anisotropic ǫ-hermitian space over H. Lemma 6.7 holds even in the
skew-hermitian case. By the lemma, we have

lψA
(fs) = ΓV(s, π, 1, A, ψ)lψA

(f−s).(6.5)

for an irreducible representation π of G, f ∈ π̃ ⊗ π ⊂ I(s, 0), and A ∈ u(V △)reg. This equation
is useful to compute the γ-factor in the case where V is anisotropic.

6.4.4. A remark on the non-archimedean case. In the non-archimedean case, the local Langlands
correspondence is partly proved. Although it is not completed yet in general, we can conclude
the equation (1.1) admitting the local Langlands correspondence.

Let F be a non-archimedean local field of characteristic zero, let ω be a character of F×, let
D be a quaternion algebra over F (it may be split), let V = (V, h) be an ǫ-hermitian space over
D and let G be the isometry group of V . We may fix a globalization of (F,D,V , G, ω) as follows:

• a number field F and a place v0 such that Fv0 = F ;
• a quaternion algebra D over F such that Dv0 = D and Dv are split for all non-archimedean
places v 6= v0;

• an ǫ-hermitian space V over D and its isometry group G such that Vv0 = V , Vv is
unramified and G(Fv) is quasi split over Fv for all non-archimedean places v 6= v0;

• a Hecke character ω of A× such that ωv0 = ω is ωv are unramified for all non-archimedean
places v 6= v0, where A is the ring of adeles of F.

We admit the following two (expected) hypotheses;

(1) The local Langlands correspondence for G;
(2) Existence of the global functorial lifting to GLN associated to the standard representation

of LG into GLN (C) for an irreducible cuspidal automorphic representation of G(A).

Remark 6.9. These hypotheses were proved by Arthur [1] and Mok [18] for quasi-split classical
groups. Moreover, Kaletha, Minguez, Shin, and White extended their work to inner-forms of
unitary groups [12].
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By a property of the local Langlands correspondence, it suffices to show the equation (1.1) for
all irreducible tempered representations. On the other hand, an irreducible tempered representa-
tion π can be realized as a direct summand of a representation induced from an irreducible square
integrable representation σ of some Levi subgroup, and the L-parameter of π factors through
that of σ. Thus, it suffices to prove the equation (1.1) for all square integrable representations.

Let π be an irreducible square integrable representation of G. Then, one can apply [21,

Theorem 5.8] with S = {v0} and Û = {π}. Thus, there is an irreducible cuspidal automorphic
representation Π of G(A) such that

• Πv0
∼= π,

• Πv is unramified for all non-archimedean places v 6= v0.

Note that, by a property of functrial lifting, we have

γ(s, φΠv
⊗ ωv, std, ψ) = γGJ(s, L(Π)v ⊗ ωv, ψ)

for all places v. Here, we denote by L(Π) the global functorial lifting of Π. Then, by the global
functional equation of π × ω (Theorem 5.7 (10)) and that of L(Π) ⊗ ω, we can conclude the
equation (1.1) at v0 from those at v 6= v0.

7. Calculations

In §6.4, we prove the properties (7) and (9) of Theorem 5.7 admitting a formula of the γ-
factor of the trivial representation (and the characters in the skew-hermitian case) of quaternionic
unitary groups. In this section, we compute them to finish the proof of Theorem 5.7.

Proposition 7.1. Let F be a local field of characteristic 0, let ψ be a non-trivial additive char-
acter of F , let D be a quaternion algebra over F , and let V be an arbitrary n-dimensional ǫ-
hermitian space over D. Note that D is possibly split. We denote by 1 the trivial representation
of G.

(1) In the hermitian case, we have

γV(s+
1

2
, 1× 1, ψ) =

n∏

j=−n
γF (s+

1

2
+ j, 1, ψ).

(2) In the skew-hermitian case, we have

γV(s+
1

2
, 1× 1, ψ) = γF (s+

1

2
, χd(V), ψ)

n−1∏

j=−(n−1)

γF (s+
1

2
+ j, 1, ψ).

(3) In the case F = R, D = H, and V = (D, 〈i〉), for A ∈ u(V △)reg, we have

γV(s+
1

2
, πl × 1, ψ) = i(−1)l

ΓC(−s+ 1
2 + l)

ΓC(s+
1
2 + l)

where πl is the character of G defined by (6.4) and we fix ψ as ψ(x) = e2πix for x ∈ R.

Proof. When D is split, we know that this formulas (1) and (2) hold. Thus, we may assume
that D is a division quaternion algebra over F . Once (1) and (2) in the case where F = R, D =
H, n = 0, 1 are proved, by using multiplicativity (Theorem 5.7 (10)), we have (1) and (2) in the
case where F = R, D = H and V has a ⌊n/2⌋-dimensional totally isotropic subspace. Then, by
using the global argument as in §6.1, we have (1) and (2) in the case V is anisotropic. Moreover,
by using multiplicativity (Theorem 5.7 10) again, we have (1) and (2) in the general case.
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Now we prove (1). By the above discussion, it only remains to show 1 in the case F = R, D =
H, and n = 0, 1. If n = 0, the claim is obvious. Let n = 1. We may fix ψ as ψ(x) = e2πix for
x ∈ R. We may put V = (D, 〈1〉) and

A =

(
0 i
0 0

)
∈ u(V △).(7.1)

Take the K-invariant section fs ∈ I(s, ω) with fs(e) = 1. The equation

(
1 0
x 1

)
=

(
1√

1+xx∗

x∗
√
1+xx∗

0
√
1 + xx∗

)(
1√

1+xx∗

−x∗
√
1+xx∗

x√
1+xx∗

1√
1+xx∗

)

gives an Iwasawa decomposition of
(
1 0
x 1

)
∈ U(V ▽)

in G✷. Hence we have

fs(

(
1 0

iy + jz + kw 1

)
) =

(
1

1 + y2 + z2 + w2

)s+ 3
2

for y, z, w ∈ R and then we have

ΓC(s+
3

2
)lψA

(fs)

= 2(2π)−s−
3
2

∫ ∞

0

∫

R3

(
1

1 + y2 + z2 + w2

)s+ 3
2

e−tts+
3
2 e4πiy dy d×t

= 2

∫ ∞

0

∫

R3

e−2π(1+y2+z2+w2)te4πiy dy dz dw ts+
3
2 d×t

=
1√
2

∫ ∞

0

e−2π(t+ 1
t
)ts d×t.

Note that this integral is not zero. By the change of variable t↔ t−1, we get

ΓC(s+
3

2
)lψA

(fs) = ΓC(−s+
3

2
)lψA

(f−s).

Therefore, by (6.5), we have

ΓV(s+
1

2
, π × 1, ψ) =

ΓC(−s+ 3
2 )

ΓC(s+
3
2 )

.

Since ωs(NV (A)) = 1, cπ(−1) = 1 and

γ(s+
1

2
, sgn, ψ) = i

ΓR(−s+ 3
2 )

ΓR(s+
3
2 )

, ǫ(
1

2
, sgn, ψ) = i,

we have

γV(s+
1

2
, π × 1, ψ) =

ΓC(−s+ 3
2 )ΓR(−s+ 3

2 )

ΓC(s+
3
2 )ΓR(s+

3
2 )

=
ΓR(−s− 1

2 )ΓR(−s+ 1
2 )ΓR(−s+ 3

2 )

ΓR(s− 1
2 )ΓR(s+

1
2 )ΓR(s+

3
2 )

.

Hence we have (1) with n = 1, and hence we complete the proof of (1).
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Now we prove (3). Note that we also obtain (2) with F = R, n = 1 by putting l = 0. Take
f ∈ π−l ⊗ πl ⊂ I(s, 0) such that f(e) = 1, and take A as in (7.1). Then,

ΓC(s+
1

2
+ l)lψA

(fs) =

∫ ∞

0

e−2π(t+ 1
t
)P (t)ts d×t(7.2)

where

P (t) = t
1
2+l

∫

R

e−2πt(y− i
t
)2(iy − 1)2l dy.

By Cauchy’s integral theorem, P (t) becomes
∫

R

e−2πy2(iy − (
1√
t
+
√
t))2l dy,

which is invariant under the permutation t ↔ t−1. Note that the right hand side of (7.2) is

not zero since it is the Mellin transform of the non-zero function e−2π(t+t−1)P (t). Thus, by the
change of variable t↔ t−1 of the right hand side of (7.2), we get

ΓC(s+
1

2
+ l)lψA

(fs) = ΓC(−s+
1

2
+ l)lψA

(f−s).

Then, by (6.5), we have (3), and hence we have (2). �

Proposition 7.1 contains the things which are not proved in §6 (see §6.4). Hence we complete
the proof of Theorem 5.7.

8. Applications

In this section, we give two applications of the main theorem.

8.1. The local root number. In [17], they determine the root number of irreducible represen-
tations for symplectic groups and (even) orthogonal groups. We can consider the analogue of
their work. In this subsection, we suppose that V is an ǫ-hermitian space and ω2 = 1.

At first, we note the irreducibility of I(0, ω), which is a special case of [24, Theorem1, 2].

Proposition 8.1. The degenerate principal series representation I(0, ω) is irreducible as a rep-
resentation of G✷.

Then, the normalized intertwining operatorM(0, ω, A, ψ) acts on I(0, ω) as the multiplication
by a scalar for A ∈ u(V △)reg. However, by the relation lψA

= M(0, ω, A, ψ) ◦ lψA
, the scalar is

1. Thus, we have

ǫV(
1

2
, π × ω, ψ) = γV(

1

2
, π × ω, ψ) = cπ(−1)R(0, ω, A, ψ).

By computing the correcting factor, we have the formula of the root number:

Proposition 8.2.

ǫV(
1

2
, π × ω, ψ) = cπ(−1)ω(−1)n

{
ǫ(12 , ω, ψ) in the hermitian case

ω(d(V))ǫ(12 , χd(V), ψ) in the skew-hermitian case

Proof. Let V be a hermitian space. Since ω2 = 1, we have

γ(
1

2
, ωχd(A), ψ)ǫ(

1

2
, χd(A), ψ)

−1 = ω(d(A))ǫ(
1

2
, ω, ψ)
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([22, §3, Corollary 2]). Hence, we have

ǫV(
1

2
, π × ω, ψ) = cπ(−1)ω(NV (A))γ(

1

2
, ωχd(A), ψ)ǫ(

1

2
, χd(A), ψ)

−1

= cπ(−1)ω(−1)nǫ(
1

2
, ω, ψ).

Let V be a skew-hermitian space. Then, d(A) = d(V) in F×/F×2. Hence, we have

ǫV(
1

2
, π × ω, ψ) = cπ(−1)ω(NV (A))ǫ(

1

2
, χd(V), ψ)

= cπ(−1)ω(−1)nω(d(V))ǫ(1
2
, χd(V), ψ).

�

8.2. The doubling zeta integral of representations induced from a minimal parabolic

subgroup. In this subsection, over a non-archimedean local field of odd residual characteristic,
we compute the zeta integral of some spherical representations with respect to a certain sub-
group. Note that if G is unramified, then the spherical representations above are the unramified
representations.

Let F a non-archimedean local field of characteristic 0, and let D be a division quaternion
algebra of F . In this subsection, we assume that the residue characteristic of F is not 2. Let V
be an n-dimensional ǫ-hermitian space. We can take a basis v1, . . . , vn of V such that

(h(vi, vj))ij =




0 0 Jr
0 R0 0
ǫJr 0 0




with R0 = diag(α1, . . . , αn0), ordD(αi) = 0,−1 for i = 1, . . . n0, 2r + n0 = n, and

Jr =



0 1

. .
.

1 0


 ∈ GLr(D).

We choose a basis e1, . . . , e2n of V ✷ = V × V defined by

ej =

{
(vj , vj) 1 ≤ j ≤ n

(vj−n,−vj−n) n+ 1 ≤ j ≤ 2n.

We may regard G✷ ⊂ GL2n(D) by this basis, and we choose the maximal compact subgroup

K = {g ∈ G✷ |
(
1 0
0 R

)
g

(
1 0
0 R−1

)
∈ GL2n(OD)}.

Let Wi be a subspace of V spanned by v1, . . . , vi for i = 1, . . . , r, and let P0 be the stabilizer
of the flag (0 $ W1 $ · · · $ Wr) of V . Then, P0 is a minimal parabolic subgroup of G and its
Levi subgroup M0 is canonically isomorphic to (D×)r ×G0 where G0 is the unitary group of the
ǫ-hermitian space (Dn0 , 〈R0〉). Let σ0 be a trivial representation of G0, let σi be a character of
D× defined by σi(x) = |ND(x)|si for some si ∈ C, and let σ the representation ⊗li=0σi of M0.
Put C0 := G ∩GLn(OD), and put

C1 := {g ∈ C0 | R(g − 1) ∈ Mn(OD)}.

Then C1 is an open compact subgroup of G.
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Proposition 8.3. Let f◦
s ∈ I(s, 1)K be a non-zero K invariant section with f◦

s (e) = 1, π be a

constituent of IndGP0
σ. Suppose that π has a non-zero C1 fixed vector. If we denote by ξ a bi-C1

invariant matrix coefficient of π with ξ(e) = 1, then we have

ZV(f◦
s , ξ) =

Vol(C1)

dV(s)

r∏

i=0

LVi(s+
1

2
, σi × 1)

where

dV(s) =

{
ζF (s+m+ 1

2 )
∏⌊n/2⌋
i=1 ζF (2s+ 2n+ 1− 4i) in the hermitian case∏⌈n/2⌉

i=1 ζF (2s+ 2n+ 3− 4i) in the skew-hermitian case.

Note that if n0 = 0, then LV0(s, σ0) denotes
{
1 in the hermitian case,

LF (s, χd(V)) in the skew-hermitian case.

This proposition is proved at the end of this subsection. We start with a basic lemma:

Lemma 8.4. For g ∈ G, we have |∆((g, 1))| ≤ 1. Moreover, |∆((g, 1))| = 1 if and only if
g ∈ C1.

Proof. By considering the Iwasawa decomposition in G✷, we can take a ∈ GLn(D) and X ∈
Mn(D) with tX∗ = −ǫX such that

(
1 X
0 1

)−1(
a 0
0 ta∗−1

)−1(
1 0
0 R

)
(g, 1)

(
1 0
0 R−1

)
∈ GL2n(OD).(8.1)

Consider two submodules

L1 = R(g − 1) · On
D, L2 = R(g + 1)R−1 · On

D

of the vector space Dn, then (8.1) concludes that

L1 + L2 = ta∗−1On
D.

On the other hand, considering in tg−1 = RgR−1, we have

L1 = (tg−1 − 1)R · On
D ⊃ (tg−1 − 1) · On

D, L2 = (tg−1 + 1) · On
D,

and thus L1 + L2 ⊃ On
D. Hence we have

|∆((g, 1))| = |N(a)| = |N(ta∗−1)|−1 ≤ 1.

Moreover, |∆((g, 1))| = 1 if and only if L1 ⊂ On
D and L2 ⊂ On

D, which is equivalent to the
condition of the lemma. �

Consider the partition of the integral

ZV(f◦
s , ξ) =

∫

C1

ξ(g) dg +

∫

G−C1

f◦
s ((g, 1))ξ(g) dg.

If s0 be a sufficiently large real number so that ZV(f◦
s0 , ξ) converges absolutely, then, by Lemma

8.4, we have
∣∣∣∣
∫

G−C1

f◦
s ((g, 1))ξ(g) dg

∣∣∣∣ ≤
∫

G−C1

|∆((g, 1))|s−s0 |f◦
s0((g, 1))ξ(g)| dg

≤ q−(ℜs−s0)
∫

G

|f◦
s0((g, 1))ξ(g)| dg
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for ℜs > s0. Thus we have

lim
ℜs→∞

ZV(f◦
s , ξ) = Vol(C1).(8.2)

Now we prove Proposition 8.3. Note that ZV(f◦
s , ξ) 6= 0 by (8.2). Put Ξ(q−s) by

ZV(f◦
s , ξ)∏r

i=0 L
Vi(s+ 1

2 , σi × 1)
.

The “g.c.d property” [26, Theorem 5.2] and [26, Lemma 6.1] conclude that Ξ(q−s) is a polynomial
in q−s and qs. Moreover, (8.2) implies that it is a polynomial in q−s with the constant term
Vol(C1). We define the polynomial D(q−s) by dV(s)−1. Since the action of the normalized
intertwining operator on f◦

s is given by

M∗(s, ω,A, ψ)f◦
s = e(G)q−n

′s · D(q−s)

D(qs)
f◦
−s

(Proposition 4.2 and [20, Proposition 3.5] (or [3, Theorem 3.1])), and since the γ-factor of π is
given by

γV(s+
1

2
, π × 1, ψ) = e(G)q−n

′s
r∏

i=0

LVi(−s+ 1
2 , σ

∨
i × 1)

LVi(s+ 1
2 , σi × 1)

where

n′ =

{
2⌈n2 ⌉ in the hermitian case,

2⌊n2 ⌋ in the skew-hermitian case.

(Proposition 7.1), we can rewrite the functional equation (5.3) as

Ξ(q−s)D(qs) = Ξ(qs)D(q−s).

However, for sufficiently large m, q−msD(qs) is coprime to D(q−s) as polynomials. Thus, com-
paring the constant term of D(q−s) and Ξ(q−s), we have

Ξ(q−s) = Vol(C1) ·D(q−s).

Hence we have the proposition.
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[2] Branson, T., Ólafsson, G., Ørsted, B.: Spectral generating operators and intertwining operators for repre-
sentations induced from a maximal parabolic subgroup. J. Funct. Anal. 135(1), 163-205 (1996)

[3] Casselman, W.: The unramified principal series of p-adic groups. I. The spherical function. Compositio Math.
40(3), 387-406 (1980)

[4] Casselman, W., Osborne, M.S.: The restriction of admissible representations to n. Mathematische Annalen,
233(3), 193-198 (1978)

[5] Gan, W.T.: Doubling zeta integrals and local factors for metaplectic groups. Nagoya Math. J. 208, 67-95
(2012)

[6] Gan, W.T., Ichino, A.: Formal degrees and local theta correspondence. Invent. Math. 195(3), 509-672 (2014)
[7] Gelbert, S., Piatetski-Shapiro, I., Rallis, S.: Explicit constructions of automorphic L-functions. vol. 1254 of

Lecture Notes in Mathematics, Springer-Verlag, Berlin (1987)
[8] Godement, R., Jacquet, H.: Zeta functions of simple algebra. Lecture Notes in Mathematics, Vol. 260,

Springer-Verlag, Berlin-New York (1972)
[9] Henniart, G. La conjecture de Langlands locale pour GL(3). Mém. Soc. Math. France (N.S.), 11-12, 186

(1984)
[10] J. Igusa, Some results on p-adic complex powers, American Journal of Mathematics 106. 10131032 (1984)
[11] Ikeda, T.: On the functional equation of the Siegel series. J. Number Theory 172, 44-62 (2017)
[12] Kaletha, T., Minguez, A., Shin, S W., White, P.: Endoscopic Classification of Representations: Inner Forms

of Unitary Groups. arXiv:1409.3731 [math.NT]



ON THE LOCAL FACTORS OF IRREDUCIBLE REPRESENTATIONS OF QUATERNIONIC UNITARY GROUPS23

[13] Karel, M.L.: Functional equations of Whittaker functions on p-adic groups. Amer. J. Math. 101(6), 1303-1325
(1979)

[14] Knapp, A.W.: Local Langlands correspondence: the Archimedean case. In: Motives (Seattle, WA, 1991),
vol. 55 of Proc. Sympos. Pure Math., pp. 393-410. Amer. Math. Soc., Providence, RI (1994)

[15] R. Kottwitz, Sign Changes in Harmonic Analysis on Reductive Groups, Trans. of AMS 278. p. 289-297 (1983)
[16] Koike, K., and Terada, I.: Young-diagrammatic methods for the representation theory of the groups Sp and

SO. In: The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), vol. 47 of Proc.
Sympos. Pure Math., pp. 437-447. Amer. Math. Soc., Providence, RI (1987)

[17] Lapid, E.M., and Rallis, S.: On the local factors of representations of classical groups. In: Automorphic
representations, L-functions and applications: progress and prospects, vol. 11 of Ohio State Univ. Math.
Res. Inst. Publ., pp. 309-359. de Gruyter, Berlin (2005)

[18] Mok, C.P.: Endoscopic classification of representations of quasi-split unitary groups. Mem. Amer. Math. Soc.
235 (2015), no. 1108

[19] Piatetski-Shapiro, I., and Rallis, S.: ǫ factor of representations of classical groups. Proc. Nat. Acad. Sci.
U.S.A. 83(13), 4589-4593 (1986)

[20] Shimura, G.: Some exact formulas on quaternion unitary groups. J. Reine Angew. Math. 509. pp.67-102
(1999)

[21] Shin, S.W.: Automorphic Plancherel density theorem. Isr. J. Math, 192(1), pp 83120 (2012)
[22] Tate, J. T.: Local constants. Prepared in collaboration with C. J. Bushnell and M. J. Taylor. Algebraic

number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pp. 89131.
Academic Press, London (1977)

[23] Wallach, N.R.: Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals. In:
Representations of Lie groups, Kyoto, Hiroshima, 1986, vol. 14 of Adv. Stud. Pure Math., pp. 123-151.
Academic Press, Boston, MA (1988)

[24] Yamana, S.: Degenerate principal series representations for quaternionic unitary groups. Israel J. Math. 185.
77-124 (2011)

[25] Yamana, S.: The Siegel-Weil formula for unitary groups. Pacific. J. Math. 264(1), 235-256 (2013)

[26] Yamana, S.: L-functions and theta correspondence for classical groups. Invent. Math. 196(3), 651-732 (2014)
[27] Yamana, S.: Siegel series for skew Hermitian forms over quaternion algebras. Abh. Math. Semin. Univ.

Hambg. 87(1), 43-59 (2017)

E-mail address: hkaku@math.kyoto-u.ac.jp

Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-

8502, Japan


