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PROOFS OF SOME RAMANUJAN SERIES FOR 1/π
USING A ZEILBERGER’S PROGRAM

JESÚS GUILLERA

Abstract. We show with some examples how to prove some Ramanujan-type series for
1/π in an elementary way by using terminating identities.

Introduction. Up till now, we know how to prove 11 Ramanujan-type series for 1/π by
using the WZ (Wilf and Zeilberger) method [6]. Here we will show how to prove some
more using a related Zeilberger’s algorithm.

1. The WZ algorithm as a black box

Let G(n, k) be hypergeometric in n and k, that is such that G(n + 1, k)/G(n, k) and
G(n, k+1)/G(n, k) are rational functions. Then, we can use the Zeilberger’s Maple pack-
age SumTools[Hypergeometric]);. The output of Zeilberger(G(n,k),k,n,K)[1]; is
an operator O(K) of the following form

O(K) = P0(k) + P1(k)K + P2(k)K
2 + · · ·+ Pm(k)K

m,

where P0(k), P1(k), . . . , Pm(k) are polynomials of k, and K is an operator which increases
k in 1 unity, that isKG(n, k) = G(n, k+1). The output of Zeilberger(G(n,k),k,n,K)[2];
gives a function F (n, k) such that

O(K)G(n, k) = F (n+ 1, k)− F (n, k).

If we sum for n ≥ 0, we get

O(K)rk = lim
n→∞

F (n, k)− F (0, k), rk =

∞
∑

n=0

G(n, k).

If the above limit and F (0, k) are equal to zero, we have

O(K)rk = 0,

which is a recurrence of order m.

Example 1. Prove that:
∞
∑

n=0

(

1

2

)

n

(

1

4

)

n

(

3

4

)

n

(1)3
n

(−1)n
(

16

63

)2n

(65n+ 8) =
9
√
7

π
. (1)

We have not found a WZ-pair which proves this Ramanujan series. However our proof is
closely related to the WZ-method.

Proof. Let

A(n, k) = 3

(

64

63

)k (−k)n
(

1

2

)2

n
(

1

2
− k

)2

n
(1)n

(

1

64

)n

(42n+ 5),

B(n, k) =
(−k)n

(

−k

2

)

n

(

1

2
− k

2

)

n
(

1

2
− k

)2

n
(1)n

(−1)n
(

16

63

)2n

(130n− 2k + 15),
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We define the sequences

rk =

∞
∑

n=0

A(n, k), sk =

∞
∑

n=0

B(n, k).

Then we use a Zeilberger’s program which finds recurrences. Writing in a Maple session

with(SumTools[Hypergeometric]);

s:=subs(n=0, Zeilberger(A(n,k),k,n,K)[2]);

t:=subs(n=0, Zeilberger(B(n,k),k,n,K)[2]);

we see that s = t = 0. Then, writing

u:=Zeilberger(A(n,k),k,n,K)[1];

v:=Zeilberger(B(n,k),k,n,K)[1];

and executing it, we see that rk and sk satisfy a common recurrence of order 3. Then
observe that the sums which define rk and sk are finite because the terms with n > k
are equal to zero due to presence of (−k)n. By direct evaluation, we check that r0 = s0,
r1 = s1 and r2 = s2. Hence, as the three first terms are equal, all of them are. Let

r(k) = 3

(

64

63

)k ∞
∑

n=0

(−k)n
(

1

2

)2

n
(

1

2
− k

)2

n
(1)n

(

1

64

)n

(42n+ 5),

s(k) =

∞
∑

n=0

(−k)n
(

−k

2

)

n

(

1

2
− k

2

)

n
(

1

2
− k

)2

n
(1)n

(−1)n
(

16

63

)2n

(130n− 2k + 15),

Applying Carlson’s theorem [1, p. 39], we can deduce that for all complex values of k we
have r(k) = s(k). Finally replacing k = −1/2, we get

∞
∑

n=0

(

1

2

)

n

(

1

4

)

n

(

3

4

)

n

(1)3
n

(−1)n
(

16

63

)2n

(130n+ 16) =
9
√
7

8

∞
∑

n=0

(

1

2

)3

n

(1)3
n

(

1

64

)n

(42n+ 5)

But in 2002, we used the WZ-method to prove

∞
∑

n=0

(

1

2

)3

n

(1)3
n

(

1

64

)n

(42n+ 5) =
16

π
,

in an elementary way. Hence we are done. �

Example 2. Prove that:
∞
∑

n=0

(

1

2

)

n

(

1

6

)

n

(

5

6

)

n

(1)3
n

(

2

11

)3n

(126n+ 10) =
11
√
33

2π
. (2)

Proof. It is completely similar to that in our first example: Use Zeilberger to prove the
identity

11

(

32

33

)k ∞
∑

n=0

(−3k)n
(

1

3
− k

)

n

(

1

6
− 2k

)

n
(

2

3
− 2k

)

n

(

1

3
− 4k

)

n
(1)n

(

−1

8

)n

(6n+ 1)

=
∞
∑

n=0

(−k)n
(

1

3
− k

)

n

(

2

3
− k

)

n
(

5

6
− k

)

n

(

2

3
− 2k

)

n
(1)n

(

2

11

)3n

(126n+ 6k + 11),

and take k = −1/6. �
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Example 3. Prove that:

∞
∑

n=0

(

1

2

)

n

(

1

6

)

n

(

5

6

)

n

(1)3
n

(

−4

5

)3n

(63n+ 8) =
5
√
15

π
. (3)

Proof. As in the preceeding examples, first use Zeilberger to show that

5
∞
∑

n=0

(−3k)n
(

2

3
+ k

)

n

(

1

3
− k

)

n
(

5

6
− k

)

n

(

2

3
− 2k

)

n
(1)n

(

1

64

)n

(42n+ 5)

=

(

15

16

)3k ∞
∑

n=0

(−k)n
(

1

3
− k

)

n

(

2

3
− k

)

n
(

5

6
− k

)

n

(

2

3
− 2k

)

n
(1)n

(

−64

125

)n

(252n− 42k + 25).

Then take k = −1/6. �

Example 4. With Zeilberger, we can also prove the following general identity:

∞
∑

n=0

(−k)n
(

1

2

)2

n
(

1

2
− k

)2

n
(1)n

zn = (1− z)k
∞
∑

n=0

(−k)n
(

−k

2

)

n

(

1

2
− k

2

)

n
(

1

2
− k

)2

n
(1)n

(

−4z

(1− z)2

)n

,

which is a particular case of a multi-parameter formula due to Whipple [5]. Applying to it
the operator 5+42θ at z = 1/64, where θ = z d/dz (Zudilin’s translation method [9]), we
get an identity which we have proved directly in Example 1. In a similar way, If we apply
the operator 1 + 6θ at z = −1/8, we get an identity which we can reprove directly with
Zeilberger. From this identity we immediatly get an elementary proof of the formula

∞
∑

n=0

(

1

2

)

n

(

1

4

)

n

(

3

4

)

n

(1)3
n

(

32

81

)n

(7n+ 1) =
9

2π
, (4)

as there is a WZ-method proof of the series in the other side of the identity [6].

Example 5. With Zeilberger, we can also prove the following general identity:

∞
∑

n=0

(−3k)n
(

1

3
− k

)

n

(

1

6
− 2k

)

n
(

2

3
− 2k

)

n

(

1

3
− 4k

)

n
(1)n

zn = 2 (4−z)3k
∞
∑

n=0

(−k)n
(

1

3
− k

)

n

(

2

3
− k

)

n
(

5

6
− k

)

n

(

2

3
− 2k

)

n
(1)n

(

27z2

(4− z)3

)n

,

which is a particular case of a multi-parameter formula due to Bailey [5]. Applying to
it the operator 1 + 6θ at z = −1/8, we get an identity which we have proved directly
in Example 2. In a similar way, if we apply the operators: 1 + 4θ at z = −1; 1 + 6θ at
z = 1/4 and 5 + 42θ at z = 1/64, we get identities which we can reprove directly with
Zeilberger. From these identities we can derive respectively the formulas

∞
∑

n=0

(

1

2

)

n

(

1

6

)

n

(

5

6

)

n

(1)3
n

(

3

5

)3n

(28n+ 3) =
5
√
5

π
, (5)

∞
∑

n=0

(

1

2

)

n

(

1

6

)

n

(

5

6

)

n

(1)3
n

(

4

125

)n

(11n+ 1) =
5
√
15

6π
, (6)

∞
∑

n=0

(

1

2

)

n

(

1

6

)

n

(

5

6

)

n

(1)3
n

(

4

85

)3n

(133n+ 8) =
85
√
255

54π
, (7)

in an elementary way taking into account that we have shown that they are equal to series
that we had already proved by the WZ-method [6].
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Remarks.

(1) Our proofs are elementary (we do not use the modular theory).
(2) Formulas (6) and (7) are due to Ramanujan [8]. Formulas (1) and (4) are due to

Berndt, Chan and Liaw [3]. Formulas (2) and (5) are due to the Borweins [4].
Formula (3) is due to Baruah and Berndt [2].

(3) For other elementary methods to prove these and other Ramanujan series see [9]
and [7]. Those methods are based in the variable z, while the proofs in this paper
are based in the free parameter k.
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