PROOFS OF SOME RAMANUJAN SERIES FOR $1/\pi$ USING A ZEILBERGER'S PROGRAM

JESÚS GUILLERA

Abstract. We show with some examples how to prove some Ramanujan-type series for $1/\pi$ in an elementary way by using terminating identities.

Introduction. Up till now, we know how to prove 11 Ramanujan-type series for $1/\pi$ by using the WZ (Wilf and Zeilberger) method [\[6\]](#page-3-0). Here we will show how to prove some more using a related Zeilberger's algorithm.

1. The WZ algorithm as a black box

Let $G(n, k)$ be hypergeometric in n and k, that is such that $G(n + 1, k)/G(n, k)$ and $G(n, k+1)/G(n, k)$ are rational functions. Then, we can use the Zeilberger's Maple package SumTools[Hypergeometric]);. The output of Zeilberger($G(n,k)$,k,n,K)[1]; is an operator $O(K)$ of the following form

$$
O(K) = P_0(k) + P_1(k) K + P_2(k) K^2 + \cdots + P_m(k) K^m,
$$

where $P_0(k)$, $P_1(k)$, ..., $P_m(k)$ are polynomials of k, and K is an operator which increases k in 1 unity, that is $KG(n, k) = G(n, k+1)$. The output of Zeilberger(G(n,k),k,n,K)[2]; gives a function $F(n, k)$ such that

$$
O(K)G(n,k) = F(n+1,k) - F(n,k).
$$

If we sum for $n \geq 0$, we get

$$
O(K)r_k = \lim_{n \to \infty} F(n,k) - F(0,k),
$$
 $r_k = \sum_{n=0}^{\infty} G(n,k).$

If the above limit and $F(0, k)$ are equal to zero, we have

$$
O(K)r_k=0,
$$

which is a recurrence of order m.

Example 1. Prove that:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n \left(\frac{1}{4}\right)_n \left(\frac{3}{4}\right)_n}{\left(1\right)_n^3} (-1)^n \left(\frac{16}{63}\right)^{2n} (65n+8) = \frac{9\sqrt{7}}{\pi}.
$$
 (1)

We have not found a WZ-pair which proves this Ramanujan series. However our proof is closely related to the WZ-method.

Proof. Let

$$
A(n,k) = 3\left(\frac{64}{63}\right)^k \frac{\left(-k\right)_n \left(\frac{1}{2}\right)_n^2}{\left(\frac{1}{2} - k\right)_n^2 (1)_n} \left(\frac{1}{64}\right)^n (42n+5),
$$

\n
$$
B(n,k) = \frac{\left(-k\right)_n \left(\frac{-k}{2}\right)_n \left(\frac{1}{2} - \frac{k}{2}\right)_n}{\left(\frac{1}{2} - k\right)_n^2 (1)_n} (-1)^n \left(\frac{16}{63}\right)^{2n} (130n - 2k + 15),
$$

We define the sequences

$$
r_k = \sum_{n=0}^{\infty} A(n, k), \qquad s_k = \sum_{n=0}^{\infty} B(n, k).
$$

Then we use a Zeilberger's program which finds recurrences. Writing in a Maple session

with(SumTools[Hypergeometric]); s:=subs(n=0, Zeilberger(A(n,k),k,n,K)[2]); t:=subs(n=0, Zeilberger(B(n,k),k,n,K)[2]);

we see that $s = t = 0$. Then, writing

$$
u:= Zeilberger(A(n,k),k,n,K)[1];
$$

$$
v:= Zeilberger(B(n,k),k,n,K)[1];
$$

and executing it, we see that r_k and s_k satisfy a common recurrence of order 3. Then observe that the sums which define r_k and s_k are finite because the terms with $n > k$ are equal to zero due to presence of $(-k)_n$. By direct evaluation, we check that $r_0 = s_0$, $r_1 = s_1$ and $r_2 = s_2$. Hence, as the three first terms are equal, all of them are. Let

$$
r(k) = 3\left(\frac{64}{63}\right)^k \sum_{n=0}^{\infty} \frac{(-k)_n \left(\frac{1}{2}\right)_n^2}{\left(\frac{1}{2} - k\right)_n^2 (1)_n} \left(\frac{1}{64}\right)^n (42n + 5),
$$

\n
$$
s(k) = \sum_{n=0}^{\infty} \frac{(-k)_n \left(\frac{-k}{2}\right)_n \left(\frac{1}{2} - \frac{k}{2}\right)_n}{\left(\frac{1}{2} - k\right)_n^2 (1)_n} (-1)^n \left(\frac{16}{63}\right)^{2n} (130n - 2k + 15),
$$

Applying Carlson's theorem $[1, p. 39]$, we can deduce that for all complex values of k we have $r(k) = s(k)$. Finally replacing $k = -1/2$, we get

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n \left(\frac{1}{4}\right)_n \left(\frac{3}{4}\right)_n}{\left(1\right)_n^3} (-1)^n \left(\frac{16}{63}\right)^{2n} (130n + 16) = \frac{9\sqrt{7}}{8} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^3}{\left(1\right)_n^3} \left(\frac{1}{64}\right)^n (42n + 5)
$$

But in 2002, we used the WZ-method to prove

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n^3}{\left(1\right)_n^3} \left(\frac{1}{64}\right)^n \left(42n + 5\right) = \frac{16}{\pi},
$$

in an elementary way. Hence we are done.

Example 2. Prove that:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n \left(\frac{1}{6}\right)_n \left(\frac{5}{6}\right)_n}{\left(1\right)_n^3} \left(\frac{2}{11}\right)^{3n} \left(126n + 10\right) = \frac{11\sqrt{33}}{2\pi}.
$$
 (2)

Proof. It is completely similar to that in our first example: Use Zeilberger to prove the identity

$$
11\left(\frac{32}{33}\right)^k \sum_{n=0}^{\infty} \frac{(-3k)_n \left(\frac{1}{3} - k\right)_n \left(\frac{1}{6} - 2k\right)_n}{\left(\frac{2}{3} - 2k\right)_n \left(\frac{1}{3} - 4k\right)_n (1)_n} \left(\frac{-1}{8}\right)^n (6n+1)
$$

=
$$
\sum_{n=0}^{\infty} \frac{(-k)_n \left(\frac{1}{3} - k\right)_n \left(\frac{2}{3} - k\right)_n}{\left(\frac{5}{6} - k\right)_n \left(\frac{2}{3} - 2k\right)_n (1)_n} \left(\frac{2}{11}\right)^{3n} (126n + 6k + 11),
$$

and take $k = -1/6$.

Example 3. Prove that:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n \left(\frac{1}{6}\right)_n \left(\frac{5}{6}\right)_n}{\left(1\right)_n^3} \left(\frac{-4}{5}\right)^{3n} (63n+8) = \frac{5\sqrt{15}}{\pi}.
$$
 (3)

Proof. As in the preceeding examples, first use Zeilberger to show that

$$
5\sum_{n=0}^{\infty} \frac{(-3k)_n \left(\frac{2}{3} + k\right)_n \left(\frac{1}{3} - k\right)_n}{\left(\frac{5}{6} - k\right)_n \left(\frac{2}{3} - 2k\right)_n (1)_n} \left(\frac{1}{64}\right)^n (42n + 5)
$$

= $\left(\frac{15}{16}\right)^{3k} \sum_{n=0}^{\infty} \frac{(-k)_n \left(\frac{1}{3} - k\right)_n \left(\frac{2}{3} - k\right)_n}{\left(\frac{5}{6} - k\right)_n \left(\frac{2}{3} - 2k\right)_n (1)_n} \left(\frac{-64}{125}\right)^n (252n - 42k + 25).$

Then take $k = -1/6$.

Example 4. With Zeilberger, we can also prove the following general identity:

$$
\sum_{n=0}^{\infty} \frac{(-k)_n \left(\frac{1}{2}\right)_n^2}{\left(\frac{1}{2} - k\right)_n^2 (1)_n} z^n = (1 - z)^k \sum_{n=0}^{\infty} \frac{(-k)_n \left(\frac{-k}{2}\right)_n \left(\frac{1}{2} - \frac{k}{2}\right)_n}{\left(\frac{1}{2} - k\right)_n^2 (1)_n} \left(\frac{-4z}{(1 - z)^2}\right)^n,
$$

which is a particular case of a multi-parameter formula due to Whipple [\[5\]](#page-3-2). Applying to it the operator $5+42\theta$ at $z=1/64$, where $\theta=z d/dz$ (Zudilin's translation method [\[9\]](#page-3-3)), we get an identity which we have proved directly in Example 1. In a similar way, If we apply the operator $1 + 6\theta$ at $z = -1/8$, we get an identity which we can reprove directly with Zeilberger. From this identity we immediatly get an elementary proof of the formula

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n \left(\frac{1}{4}\right)_n \left(\frac{3}{4}\right)_n}{\left(1\right)_n^3} \left(\frac{32}{81}\right)^n (7n+1) = \frac{9}{2\pi},\tag{4}
$$

as there is a WZ-method proof of the series in the other side of the identity [\[6\]](#page-3-0).

Example 5. With Zeilberger, we can also prove the following general identity:

$$
\sum_{n=0}^{\infty} \frac{(-3k)_n \left(\frac{1}{3} - k\right)_n \left(\frac{1}{6} - 2k\right)_n}{\left(\frac{2}{3} - 2k\right)_n \left(\frac{1}{3} - 4k\right)_n (1)_n} z^n = 2\left(4 - z\right)^{3k} \sum_{n=0}^{\infty} \frac{(-k)_n \left(\frac{1}{3} - k\right)_n \left(\frac{2}{3} - k\right)_n}{\left(\frac{5}{6} - k\right)_n \left(\frac{2}{3} - 2k\right)_n (1)_n} \left(\frac{27z^2}{(4 - z)^3}\right)^n,
$$

which is a particular case of a multi-parameter formula due to Bailey [\[5\]](#page-3-2). Applying to it the operator $1 + 6\theta$ at $z = -1/8$, we get an identity which we have proved directly in Example 2. In a similar way, if we apply the operators: $1 + 4\theta$ at $z = -1$; $1 + 6\theta$ at $z = 1/4$ and $5 + 42\theta$ at $z = 1/64$, we get identities which we can reprove directly with Zeilberger. From these identities we can derive respectively the formulas

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n \left(\frac{1}{6}\right)_n \left(\frac{5}{6}\right)_n}{\left(1\right)_n^3} \left(\frac{3}{5}\right)^{3n} (28n+3) = \frac{5\sqrt{5}}{\pi},\tag{5}
$$

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n \left(\frac{1}{6}\right)_n \left(\frac{5}{6}\right)_n}{\left(1\right)_n^3} \left(\frac{4}{125}\right)^n \left(11n+1\right) = \frac{5\sqrt{15}}{6\pi},\tag{6}
$$

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_n \left(\frac{1}{6}\right)_n \left(\frac{5}{6}\right)_n}{\left(1\right)_n^3} \left(\frac{4}{85}\right)^{3n} (133n+8) = \frac{85\sqrt{255}}{54\pi},\tag{7}
$$

in an elementary way taking into account that we have shown that they are equal to series that we had already proved by the WZ-method [\[6\]](#page-3-0).

$\overline{4}$ JESÚS GUILLERA

Remarks.

- (1) Our proofs are elementary (we do not use the modular theory).
- (2) Formulas [\(6\)](#page-2-0) and [\(7\)](#page-2-1) are due to Ramanujan [\[8\]](#page-3-4). Formulas [\(1\)](#page-0-0) and [\(4\)](#page-2-2) are due to Berndt, Chan and Liaw [\[3\]](#page-3-5). Formulas [\(2\)](#page-1-0) and [\(5\)](#page-2-3) are due to the Borweins [\[4\]](#page-3-6). Formula [\(3\)](#page-2-4) is due to Baruah and Berndt [\[2\]](#page-3-7).
- (3) For other elementary methods to prove these and other Ramanujan series see [\[9\]](#page-3-3) and $[7]$. Those methods are based in the variable z, while the proofs in this paper are based in the free parameter k.

REFERENCES

- [1] W.N. BAILEY, Generalized Hypergeometric Series, Cambridge Univ. Press, (1935).
- [2] N. BARUAH AND B. BERNDT, Eisenstein series and Ramanujan-type series for $1/\pi$, Ramanujan J., 23 (2010), 17–44.
- [3] B. C. BERNDT, H. H. CHAN and W.-C. LIAW, On Ramanujan's quartic theory of elliptic functions, J. Number Theory 88:1 (2001), 129–156.
- [4] J. M. BORWEIN and P. B. BORWEIN, Ramanujan's rational and algebraic series for $1/\pi$, J. Indian Math. Soc. 51 (1987), 147–160.
- [5] I. Gessel and D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal. 13:2 (1982), 295–308.
- [6] J. GUILLERA, On WZ-pairs which prove Ramanujan series, Ramanujan J. 22 (2008), 249–259.
- [7] J. GUILLERA AND W. ZUDILIN, Ramanujan-type formulae for $1/\pi$: The art of translation, in The Legacy of Srinivasa Ramanujan, B.C. Berndt & D. Prasad (eds.), Ramanujan Math. Soc. Lecture Notes Series 20 (2013), 181–195.
- [8] S. RAMANUJAN, Modular equations and approximations to π , Quart. J. Math. 45 (1914), 350–372.
- [9] W. ZUDILIN, Lost in translation, in Advances in Combinatorics, I. Kotsireas and E.V. Zima (eds.) Springer (2013), 287-293.

Department of Mathematics, University of Zaragoza, 50009 Zaragoza, SPAIN E-mail address: jguillera@gmail.com