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LOCALISATION OF SPECTRAL SUMS CORRESPONDING TO

THE SUB-LAPLACIAN ON THE HEISENBERG GROUP

RAHUL GARG AND K. JOTSAROOP

Dedicated to Prof. Sundaram Thangavelu on the occasion of his 60th birthday.

Abstract. In this article we study localisation of spectral sums {SR}R>0

associated to the sub-Laplacian L on the Heisenberg Group Hd where SRf :=∫ R

0
dEλf , with L =

∫
∞

0
λ dEλ being the spectral resolution of L. We prove

that for any compactly supported function f ∈ L2(Hd), and for any γ < 1

2
,

RγSRf → 0 as R → ∞, almost everywhere off supp(f).

1. Introduction

We define the standard Laplacian on Rd as ∆ = −∑d
j=1

∂2

∂x2
j

. It is a densely

defined positive, self-adjoint operator and it admits a spectral decomposition in
L2(Rd). Using functional calculus we define Bochner Riesz means of order α ≥ 0
corresponding to ∆ by

Sα
R =

(
I − 1

R2
∆

)α

+

.

When α = 0, we obtain the spectral sums {S0
R}R>0 associated to ∆. Let f be a

measurable function on Rd vanishing identically on an open subset Ω of Rd. We say
that the localisation principle for Sα

R holds if limR→∞ Sα
Rf = 0 either pointwise or

uniformly over compact subsets of Ω. To be more specific, when the convergence is
pointwise a.e. we will refer to it as a.e. localisation principle.

For any d ≥ 1 and α ≥ d−1
2 , it is well known that Sα

Rf converges to 0 uniformly on

every compact subset of Ω for any f ∈ Lp(Rd) with 1 ≤ p <∞ (see [4] and Chapter
7 of [17]). In higher dimensions d ≥ 2, in the case when α = 0, A. I. Bastis [2] and
P. Sjolin [16] proved a.e. localisation principle for compactly supported functions.
Later, Bastis [3] established the a.e. localisation principle for all functions f ∈
L2(Rd). Around the same time, A. Carbery and F. Soria [6] proved that the a.e.
localisation principle is indeed true for functions f ∈ Lp(Rd) with 2 ≤ p < 2d

d−1 .
Using dilation and translation, and thus assuming without loss of generality that
f is identically 0 in the open ball {|x| < 3}, Carbery-Soria [6] proved their result
on the a.e. localisation principle by showing that for any β < 1, the following
weighted-norm inequality holds:

(1.1)

∫

|x|≤1

sup
R>1

|S0
Rf(x)|2 dx ≤ Cβ

∫

|x|≥3

|f(x)|2
|x|β dx.
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One could observe that the above inequality is stronger in the sense that it gives
the a.e. localisation principle for a larger class of functions, as for any 2 ≤ p < 2d

d−1 ,

one has Lp(Rd\{|x| < 3}, dx) −֒→ L2(Rd\{|x| < 3}, |x|−β dx) for any β > d(1−2/p),
by Hölder’s inequality.

Recently, R. Ashurov [1] proved the a.e. localisation principle for the spectral
sums corresponding to the Laplacian on d-dimensional Torus Td for f ∈ L2(Td).

Let H
d be the Heisenberg group. We consider the positive sub-Laplacian (or

Kohn-Laplacian) L on Hd. It is known that L has a self-adjoint extension on
L2(Hd). Therefore, it admits a spectral resolution of identity such that L =∫∞

0 λdEλ. We define the spectral sums of f corresponding to L as SRf =
∫ R

0 dEλf.
In this article, we study a.e. localisation of these spectral sums SRf.

Before stating our main result, let us also introduce the Bochner Riesz means of
order α ≥ 0, corresponding to the sub-Laplacian L, which include the spectral sums
{SR}R>0 as a special case. As we did in the case of ∆ on Rd, using the functional
calculus of L we define the Bochner Riesz means of order α ≥ 0 for L as

Sα
R =

(
I − 1

R2
L
)α

+

.

Note that α = 0 corresponds to the operator SR (that is, SR = S0
R). When

α > 0, D. Gorges and D. Müller [10] proved that Sα
Rf converges a.e. to f as

R → ∞ for all f ∈ Lp(Hd), Q−1
Q

(
1
2 − α

D−1

)
< 1

p ≤ 1
2 , where Q = 2d + 2 and

D = 2d+ 1.
In this paper we are interested in establishing a.e. localisation principle for the

spectral sums {SR}R>0 associated to L. We show that the following version of
localisation principle holds for compactly supported functions in L2(Hd).

Theorem 1.1. Let f ∈ L2(Hd) be compactly supported. Then, for any γ < 1
2 ,

RγSRf → 0 as R → ∞, almost everywhere off supp(f).

We remark here that our method does not extend to functions in L2(Hd) that
are not necessarily compactly supported. We expect though that the above result
should hold without the assumption of compact support for functions.

Let us also mention some of the important developments on a.e. convergence of
spectral sums associated to the sub-Laplacian on other groups. In [11], the authors
proved a.e. convergence of spectral sums for the right invariant sub-Laplacian L
on a connected Lie Group. In fact, there they proved an analogue of Rademacher-
Menshov theorem [13, 15] for general Lie groups. More precisely, they showed that
SRf → f a.e. as R → ∞ for any f such that log(2 + L)f ∈ L2(G). See also [8] for
a similar result for spectral sums for the standard Laplacian ∆ on Rd.

Organisation of the paper: We recall some preliminaries of the Heisenberg group
in Section 2. In Section 3, we state and prove some sharp weighted estimates for the
spectral sums (Theorem 3.1) from which the a.e. localisation principle (Theorem
1.1) follows immediately. We also state the key lemma (Lemma 3.3) in Section 3
that is required in establishing Theorem 3.1, and the same is proved in Section 4.
In the proof of Lemma 3.3, we make use of an interpolation of certain Besov-type
spaces and we prove it separately in the Appendix (Section 5).

Notation: For A,B > 0, the expression A . B indicates that A ≤ CB for some
C > 0. We write A .β B when the implicit constant C may depend on β. We
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also use the notation A ∼ B if A . B and B . A. The constants appearing in the
inequalities may change from line to line. We only keep track of the dependence of
the constants.

2. Preliminaries

We recall basics of the Heisenberg group. The Heisenberg Group Hd can be
identified with Cd ×R. The Haar measure on Hd is given by the Lebesgue measure
on Cd × R. We denote a point in Hd by (z, t), where z = (z1, z2, . . . , zd) ∈ Cd;
t ∈ R, and zj = xj + iyj; xj , yj ∈ R. It is well known that Hd is a simply connected,
unimodular, two step nilpotent Lie group under the group operation

(z, t)(w, s) = (z + w, t+ s+
1

2
Im(z · w̄)),

where z · w̄ =
∑d

j=1 zjw̄j . The convolution of functions on Hd is given by

f ∗ g(z, t) =
∫

Hd

f((z, t)(w, s)−1)g(w, s) dw ds.

We consider the following left-invariant vector fields on Hd:

Xj =
∂

∂xj
+

1

2
yj
∂

∂t
, Yj =

∂

∂yj
− 1

2
xj
∂

∂t
, T =

∂

∂t
,

for 1 ≤ j ≤ d. These form a basis of the vector space of left invariant vector fields
on Hd. In fact, the Lie algebra of left invariant vector fields on Hd is generated by
taking the Lie brackets and finite linear combinations of {Xj, Yj}dj=1. The operator

L := −
d∑

j=1

(X2
j + Y 2

j ),

is known as the sub-Laplacian (or Kohn-Laplacian) on Hd. It is known that L is
a densely defined positive, hypoelliptic operator and it has a self-adjoint extension
on L2(Hd), and that it also commutes with left translations. The spectrum of L is
well known (see, for example, Section 2.1 of [20]).

The action of L on functions of the form f(z, t) = eiλtg(z), λ 6= 0, leads us to the
following family of operators defined by Lf(z, t) = eiλtL(λ)g(z). More explicitly,

L(λ) = ∆R2d +
1

4
λ2|z|2 + iλ

d∑

j=1

(
xj

∂

∂yj
− yj

∂

∂xj

)
.

These operators are called special Hermite operators and their spectral projec-
tions in L2(Cd) are explicitly known (see, for example, Section 1.3 of [19] and
Section 1.4 of [20]). When λ = 0, L(λ) reduces to ∆ on R2d.

Fix λ 6= 0. Let ϕk denote the Laguerre functions of order d− 1. Then, we know
that

L(λ)ϕk(
√

|λ| ·) = |λ|(2k + d)ϕk(
√

|λ| ·).
If we write Ek,λ(z, t) = eiλtϕk(

√
|λ|z), then using the left invariance of L, it

follows that for f ∈ S(Hd), the space of Schwartz class functions on Hd, we have

L(f ∗ Ek,λ) = f ∗ LEk,λ = |λ|(2k + d)f ∗ Ek,λ.
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In terms of the spectral resolution of identity associated to L, we have that
f ∈ L2(Hd) can be written as

f(z, t) =
1

(2π)d+1

∑

k≥0

∫

R\{0}

f ∗ Ek,λ(z, t)|λ|d dλ

in L2-sense. Note that f → f ∗ Ek,λ + f ∗ Ek,−λ is the spectral projection corre-
sponding to the eigenvalue |λ|(2k + d).

Therefore, it suffices to work on the spectrum

{|λ|(2k + d) : λ ∈ R \ {0}, k ∈ N ∪ {0}}

as λ = 0 corresponds to the set of measure zero in the spectral resolution of L given
above.

Recall that the Bochner Riesz means of order α ≥ 0, corresponding to L are
given by

(2.1) Sα
Rf :=

(
I − 1

R2
L
)α

+

f.

In terms of the spectral projections, the above can be expressed as

(2.2) Sα
Rf(z, t) =

1

(2π)d+1

∫

R\{0}

∑

k≥0

(
1− (2k + d)|λ|

R2

)α

+

f ∗ Ek,λ(z, t)|λ|d dλ,

For any λ ∈ R, we denote by fλ the inverse Euclidean Fourier transform (upto a
constant) of f in the last variable at the point λ, that is, fλ(z) =

∫
R
f(z, t)eiλt dt.

It is easy to verify that (f ∗ g)λ = fλ ×λ g
λ, where ×λ is called the λ−twisted

convolution on Cd and is defined by

F ×λ G(z) =

∫

Cd

F (z − w)G(w)ei
λ
2
Im(z·w̄) dw,

for any F,G ∈ L1(Cd).
For each k ∈ N and λ ∈ R \ {0}, let us consider the operator Pk,λ defined on

L1 ∩ L2(Cd) by

Pk,λ(F )(z) = F ×−λ ϕk(
√
|λ|·)(z) =

∫

Cd

F (z − w)ϕk(
√
|λ|(w))e−i λ

2
Im(z·w̄) dw.

It is known (see Section 2.1, page 53 in [20]) that each of (2π)−d|λ|dPk,λ ex-
tends to L2(Cd) as an orthonormal projection, and for F ∈ L2(Cd), we have
F = (2π)−d

∑
k≥0 |λ|dPk,λ(F ) in L2-sense. In fact, (2π)−d|λ|dPk,λ is the spectral

projection of L(λ) corresponding to the eigenvalue (2k + d)|λ|.
Writing ek(z, t) =

∫
R
|λ|dEk,λ(z, t) dλ =

∫
R
|λ|dϕk(

√
|λ|z)eiλt dλ, one can verify

that

(2.3) f ∗ Ek,λ(z, t) = (f ∗ ek)−λ(z)eiλt = Pk,λ(f
−λ)(z)eiλt|λ|d.

Therefore, one could also express Sα
R as follows:

Sα
Rf(z, t) =

1

(2π)d+1

∫

R\{0}

∑

k≥0

(
1− (2k + d)|λ|

R2

)α

+

Pk,λ(f
−λ)(z)eiλt|λ|d dλ.
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By abuse of notation, we write S0
R as SR. It is then clear from the above that

(2.4)

SRf(z, t) =
1

(2π)d+1

∫

R\{0}

∑

k≥0

χ
{
√

(2k+d)|λ|≤R}
((2k+d)|λ|)Pk,λ(f

−λ)(z)eiλt|λ|d dλ.

Before proceeding further, let us also recall certain functional identities which
will be required in the proofs later.

Define φα,β(z) = (π(z, 0)Φα,Φβ), the special Hermite functions on Cd. Here
{Φα}α∈Nd are the Hermite functions defined on Rd and π is the Schrödinger rep-
resentation of the Heisenberg group. It is well known that the system {Φα}α∈Nd

forms an orthonormal basis of L2(Rd). Using the properties of the Schrödinger

representation one can show that |λ|d/2φα,β(
√
|λ|·) form an orthonormal basis of

L2(Cd) (see, for example, Theorem 1.3.2 on page 16 in [19]). We note the following
identities:

ϕk(
√

|λ|z) = (2π)d/2
∑

|α|=k

φα,α(
√

|λ|z),(2.5)

and

φµ,ν(
√

|λ| ·)×λ φα,β(
√

|λ| ·) = (2π)d/2|λ|−dφµ,β(
√
|λ| ·)δν,α.(2.6)

The above identities can be found in [19] (Proposition 1.3.2 on page 21 and
identity (1.3.42) on page 22). In Theorem 1.3.6 of [19], the above mentioned identity
(2.6) is proved for λ = 1 only. For λ 6= 0, one can make a change of variables to
reduce it to the case of λ = 1.

3. Proof of theorem 1.1

Let ‖ · ‖ be the homogeneous Cygan-Korányi norm on Hd which is given by

‖(z, t)‖ =
(
|z|4 + 16|t|2

)1/4
=

((∑d
j=1 |zj|2

)2
+ 16|t|2

)1/4

. It is known that

‖ · ‖ is subadditive on Hd (see, for example, [9]). We write the corresponding
left invariant distance function dK((z, t), (w, s)) := ‖(z, t)−1(w, s)‖. We also de-
fine the non-isotropic dilations {δr}r>0 on Hd as δr(z, t) = (rz, r2t), where rz =
(rz1, rz2, . . . , rzd) for z ∈ Cd. It is easy to verify that ‖δr(z, t)‖ = r‖(z, t)‖.

We denote by dCC the Carnot-Carathéodory metric on Hd, which is also referred
to as the control distance. It is well known (see, for example, Proposition 5.1.4 on
page 230 and Theorem 5.2.8 on page 235 in [5]) that dK and dCC are equivalent,
that is, there exists a constant A > 1 such that

A−1dCC((z, t), (w, s)) ≤ dK((z, t), (w, s)) ≤ AdCC((z, t), (w, s)).

Note that for studying localisation principle, using non-isotropic dilation and left
translation, one may assume without loss of generality that f is identically 0 in the
open ball {(z, t) : ‖(z, t)‖ < 3}.

Let 0 ≤ ψ ≤ 1 be an even and smooth function on R such that ψ ≡ 1 on the
interval [− ǫ0

2 ,
ǫ0
2 ] and support of ψ is contained in the interval [−ǫ0, ǫ0], for some

0 < ǫ0 < 1, which will be chosen later. Denote the characteristic function of the
interval [−R,R] on R by χR. Then, in L

2-sense, we have

χR(
√
η) =

2

π

∫ ∞

0

sin(Rρ)

ρ
cos(

√
ηρ) dρ.
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Using the above expression for χR in (2.1) (for α = 0) one can see that for any
f ∈ S(Hd) we have

SRf(z, t) =
2

π

∫ ∞

0

sin(Rρ)

ρ
cos(ρ

√
L)f(z, t) dρ(3.1)

=
2

π

∫ ∞

0

ψ(ρ)
sin(Rρ)

ρ
cos(ρ

√
L)f(z, t) dρ

+
2

π

∫ ∞

0

(1− ψ(ρ))
sin(Rρ)

ρ
cos(ρ

√
L)f(z, t) dρ.

Note that cos(ρ
√
L)f is the solution to the wave equation for the sub-Laplacian

L with initial data f and initial speed 0. Since f is identically 0 on the ball {(z, t) :
dCC((z, t), e) < 3A−1}, where e is the identity element of Hd, it follows from the
finite speed of propagation of the wave equation for L on Hd (see [12] and Theorem

6.2 in the appendix of [14]), that cos(ρ
√
L)f(z, t) ≡ 0 on {(z, t) : dCC((z, t), e) <

3A−1 − ρ} for any 0 ≤ ρ ≤ 3A−1. As a consequence, choosing ǫ0 = A−1, we get

that cos(ρ
√
L)f ≡ 0 on {(z, t) : ‖(z, t)‖ < 2A−2} for any 0 ≤ ρ ≤ ǫ0.

Hence, for f ≡ 0 on the set {‖(z, t)‖ < 3}, choosing ǫ0 = A−1, it suffices to study

BRf(z, t) =

∫ ∞

0

(1− ψ(ρ))
sin(Rρ)

ρ
cos(ρ

√
L)f(z, t) dρ,(3.2)

for (z, t) such that ‖(z, t)‖ < 2A−2.
In order to prove our result, we further break BR into simpler operators and

analyse each piece separately. Let Ψ be an even and smooth function on R sup-
ported in the interval [−2, 2], further with the property that 0 ≤ Ψ ≤ 1 and that it
is identically 1 on the interval [−1, 1]. Restricting Ψ on [0,∞), it is easy to verify
that on [0,∞) one has

1 =

∞∑

j=1

ψ̃j(ρ) + Ψ(ρ),

where ψ̃j(ρ) = Ψ(2−jρ) − Ψ(2−j+1ρ), for j ≥ 1. Clearly, each ψ̃j ∈ C∞
c ([0,∞))

with support in [2j−1, 2j+1]. From this, we have

1− ψ(ρ) =
∞∑

j=1

(1− ψ(ρ)) ψ̃j(ρ) + (1− ψ(ρ))Ψ(ρ).

Therefore, for any f ∈ S(Hd), we get

BRf(z, t) =
∑

j≥1

∫ ∞

0

(1− ψ(ρ)) ψ̃j(ρ)
sin(Rρ)

ρ
cos(ρ

√
L)f(z, t) dρ

+

∫ ∞

0

(1− ψ(ρ)) Ψ(ρ)
sin(Rρ)

ρ
cos(ρ

√
L)f(z, t) dρ.

Now, since 1−ψ(ρ) ≡ 1 on [ǫ0,∞), and is identically 0 on (0, ǫ0/2], it suffices to
analyse

∑
j≥1BR,jf(z, t), where

BR,jf(z, t) =

∫ ∞

0

(1− ψ(ρ)) ψ̃j(ρ)
sin(Rρ)

ρ
cos(ρ

√
L)f(z, t) dρ.

In fact, we can handle
∫ ∞

0

(1− ψ(ρ)) Ψ(ρ)
sin(Rρ)

ρ
cos(ρ

√
L)f(z, t) dρ
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in a similar manner since (1− ψ(ρ)) Ψ(ρ) is compactly supported away from 0.
For each j ≥ 1, we define

mR,j(η) =

∫ ∞

0

(1− ψ(ρ)) ψ̃j(ρ)
sin(Rρ)

ρ
cos(ρη) dρ.

Using the above expression for mR,j , we can rewrite BR,jf(z, t) as

BR,jf(z, t) = mR,j(
√
L)f(z, t)

= cd

∫

R\{0}

∑

k≥0

mR,j

(√
(2k + d)|λ|

)
Pk,λ(f

−λ)(z)eiλt|λ|d dλ.

We now study the following weighted bound estimate for
∑

j≥1BR,jf .

Theorem 3.1. Let K ⊂ Hd be compact. For any q < 1, and 0 < η < 1, the

following estimate holds:

(3.3)

∫

‖(z,t)‖<2A−2

sup
R>1

Rq

∣∣∣∣∣∣
∑

j≥1

BR,jf(z, t)

∣∣∣∣∣∣

2

dz dt .K,q,η

∫

‖(z,t)‖≥3

|f(z, t)|2
‖(z, t)‖η dz dt,

for any f ∈ L2(Hd \ {‖(z, t)‖ < 3}, ‖(z, t)‖−η dz dt) such that supp(f) ⊂ K.

Using standard density arguments, Theorem 1.1 follows immediately from The-
orem 3.1. In order to prove Theorem 3.1, we need to first estimate mR,j ’s and their
derivatives.

Remark 3.1. In [6], the authors proved an estimate similar to that in Theorem 3.1
above for q = 0 without any assumption on the support of f (See Theorem 2.2 in
[6]). However, for compactly supported functions, the inequality (3.3) allows us to
put a factor of Rq, for any q < 1, in front of SRf and we still get an a.e. localisation
principle. If we restrict only to compactly supported functions in Theorem 2.2 [6],
we would get a similar inequality as (3.3) above.

Lemma 3.2. For any l, k ∈ N ∪ {0}, there exists a constant Cl,k > 0 such that
∣∣∣∣
dl

dRl
mR,j(η)

∣∣∣∣ ≤ Cl,k
2jl

(1 + 2j|R− η|)k ,

for all η ≥ 0 and j, R ≥ 1.

Proof. Recall that

mR,j(η) =

∫ ∞

0

(1− ψ(ρ)) ψ̃j(ρ)
sin(Rρ)

ρ
cos(ρη) dρ.

Now, since 1− ψ(ρ) ≡ 1 on [ǫ0,∞), we have (1− ψ(ρ)) ψ̃j(ρ) = ψ̃j(ρ), for every
j ≥ 1 (for sufficiently small ǫ0 > 0). A further simplification gives us that

mR,j(η) =
1

2

∫ ∞

0

ψ̃j(ρ)
sin ((R + η)ρ) + sin ((R− η)ρ)

ρ
dρ

=
1

2

∫ ∞

0

(Ψ(ρ)−Ψ(2ρ))
sin
(
(R+ η)2jρ

)
+ sin

(
(R− η)2jρ

)

ρ
dρ.

Recalling that Ψ(ρ)−Ψ(2ρ) is supported in [ 12 , 2], the usual integration by parts
gives us the desired estimates for mR,j and it’s derivatives. �
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We next move to a key estimate, which in essence is the analogue of Lemma 2.3
of [6], and this will be used further in the proof of Theorem 3.1. For this, we define
the operator Tǫ as

Tǫf(z, t) =

∫

R\{0}

∑

k≥0

χ
{|1−

√
|λ|(2k+d)|<ǫ}

((2k + d)|λ|)Pk,λ(f
−λ)(z)eiλt|λ|d dλ,

for suitable functions. We have the following estimate for the operator Tǫ.

Lemma 3.3. For any 0 ≤ β < 1, and ǫ > 0, we have

(3.4)

∫

Hd

|Tǫf(z, t)|2 dz dt .β





ǫβ
∫
Hd |f(z, t)|2‖(z, t)‖2β dz dt when 0 < ǫ < 1;

ǫ4β
∫
Hd |f(z, t)|2‖(z, t)‖2β dz dt when ǫ ≥ 1.

for any f ∈ L2(Hd, ‖(z, t)‖2β dz dt). Moreover, ǫβ‖(z, t)‖2β on the R.H.S of the

inequality above cannot, in general, be replaced by ǫβ‖(z, t)‖γ for any γ < 2β.

We postpone the proof of Lemma 3.3 to the next section.

Remark 3.2. If we compare the above inequality with the one in Lemma 2.3 in [6]
(for the Laplacian ∆ on Rd), there it was shown that

∫

||ξ|−t|≤δ

|h(ξ)|2dξ ≤ cαδ
2α

∫

Rn

|ĥ(ξ)|2|ξ|2αdξ,

whenever 0 ≤ α < 1/2, t > 0 and 0 < δ < 2t. Here ĥ is the Euclidean Fourier
transform of h on Rn. The powers of δ and the weight function |ξ| on the R.H.S. of
the inequality above are the same. However, in Lemma 3.3 above, because of the
non-isotropic homogeneity of the Cygan-Korányi norm on H

n, we do not get the
same power in ǫ and the weight function ‖(z, t)‖.

Remark 3.3. As a consequence of Lemma 3.3, we get a refinement when f is a
compactly supported function. More precisely, given a compact set K ⊂ Hd, for
any 0 ≤ β < 1 and η < β,
(3.5)

∫

Hd

|Tǫf(z, t)|2 dz dt .K,β,η





ǫβ
∫
Hd |f(z, t)|2‖(z, t)‖2η dz dt when 0 < ǫ < 1;

ǫ4β
∫
Hd |f(z, t)|2‖(z, t)‖2η dz dt when ǫ ≥ 1.

for any f ∈ L2(Hd, ‖(z, t)‖2η dz dt) such that supp(f) ⊂ K.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Fix a β ∈ (0, 1) and 0 < η < β. Define 2µ = β − η. Let
ω ∈ C∞(R) be such that 0 ≤ ω ≤ 1 on R, ω(R) ≡ 1 when R ≥ 1 and ω(R) ≡ 0
when R ≤ 1

2 . For convenience, we work with the operator ω(R)BR,j . Now,
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sup
R>1

R2µ

∣∣∣∣∣∣
∑

j≥1

BR,jf(z, t)

∣∣∣∣∣∣

2

≤ sup
R∈R

R2µ

∣∣∣∣∣∣
ω(R)

∑

j≥1

BR,jf(z, t)

∣∣∣∣∣∣

2

(3.6)

.γ

∫

R

∣∣∣∣∣∣
∑

j≥1

Dγ (Rµω(R)BR,jf(z, t))

∣∣∣∣∣∣

2

dR

.γ


∑

j≥1

(∫

R

|Dγ (Rµω(R)BR,jf(z, t))|2 dR
)1/2




2

,

for any 1
2 < γ < 1, where the second last estimate follows from Sobolev inequality,

with Dγ denoting the fractional derivative in R-variable defined by the Euclidean
Fourier multiplier as

D̂γg(τ) = |τ |γ ĝ(τ).(3.7)

Therefore, by Minkowski’s inequality



∫

‖(z,t)‖<2A−2

sup
R>1

R2µ

∣∣∣∣∣∣
ω(R)

∑

j≥1

BR,jf(z, t)

∣∣∣∣∣∣

2

dz dt




1/2

(3.8)

.γ

∑

j≥1

(∫

‖(z,t)‖<2A−2

∫

R

|Dγ (Rµω(R)BR,jf(z, t))|2 dR dz dt
)1/2

.

We will now analyse terms corresponding to each index j separately. Let us first
consider the case γ = 0. Note that

BR,jf(z, t) = (f ∗KR,j) (z, t),

where

KR,j(z, t) =

∫ ∞

0

(1− ψ(ρ))ψ̃j(ρ)
sin(Rρ)

ρ
cos(ρ

√
L)δ(z, t) dρ,

where δ denotes the Dirac distribution at origin in Hd. We claim that KR,j is
compactly supported in {‖(z, t)‖ ≤ 2j+1A}. This claim follows from the fact that

cos(ρ
√
L)δ is compactly supported in {‖(z, t)‖ ≤ ρA}, because of the finite speed

of propagation of the wave equation (as discussed in the beginning of this section),

and ψ̃j(ρ) is supported in the interval [2j−1, 2j+1]. For a large enough c > 0, it
follows directly from the definition of convolution on Hd that

(
χ{‖·‖>c2j}f

)
∗KR,j(z, t) = 0,

for all (z, t) with ‖(z, t)‖ < 2A−2 and for all j. As a consequence, we may assume
without loss of generality that f is supported in the ball ‖(z, t)‖ ≤ c2j, and we shall
shortly make use of this assumption.
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Now, as also done in [6], it is enough to show that
∫

Hd

∫ ∞

0

R2µω(R)2|f ∗KR,j(z, t)|2‖(z, t)‖−η dz dt dR(3.9)

.β,η 2−jβ2−j

∫

Hd

|f(z, t)|2 dz dt.

By duality, the above is equivalent to proving
∫

Hd

∣∣∣∣
∫ ∞

0

fR ∗KR,j(z, t)ω(R) dR

∣∣∣∣
2

dz dt(3.10)

.β,η 2−jβ2−j

∫

Hd

∫ ∞

0

ω(R)2|fR(z, t)|2‖(z, t)‖ηR−2µ dR dz dt.

After applying Euclidean Plancherel theorem in the t-variable and orthogonality
of the special Hermite projections, we can write
∫

Hd

∣∣∣∣
∫ ∞

0

fR ∗KR,j(z, t)ω(R) dR

∣∣∣∣
2

dz dt

= cd

∫

R2d+1

∑

k

∣∣∣∣
∫ ∞

0

mR,j(
√

(2k + d)|λ|)Pk,λ(f
λ
R)(z)|λ|dω(R) dR

∣∣∣∣
2

dλ dz.

By Lemma 3.2, it is easy to see that

|mR,j(
√
(2k + d)|λ|)| .L

∑

n

2−nLχ
{2j |

√
(2k+d)|λ|−R|≤2n}

((2k + d)|λ|),

for L > 0 large enough. So, it is enough to look at
∫

R2d+1

∑

k

∣∣∣∣
∫ ∞

0

χ
{2j |

√
(2k+d)|λ|−R|≤2n}

((2k + d)|λ|)Pk,λ(f
λ
R)(z)ω(R) dR

∣∣∣∣
2

|λ|2d dλ dz.

Now, we apply Cauchy Schwarz inequality to get
∣∣∣∣
∫ ∞

0

χ
{2j |

√
(2k+d)|λ|−R|≤2n}

((2k + d)|λ|)Pk,λ(f
λ
R)(z)ω(R) dR

∣∣∣∣
2

≤ 2n−j

∫ ∞

0

χ
{2j |

√
(2k+d)|λ|−R|≤2n}

((2k + d)|λ|)|Pk,λ(f
λ
R)(z)|2ω(R)2 dR.

We now consider the following two cases:

Case 1. When 2n−j

R < 1.
Using the non-isotropic dilation (z, t) → δR(z, t) for a fixed R > 0, it is easy to

see that by putting ǫ = 2n−j

R in the inequality (3.5) of Remark 3.3 we get
∫

R2d

∫

R\{0}

∑

k

∣∣∣∣
∫ ∞

0

χ
{2j |

√
(2k+d)|λ|−R|≤2n}

((2k + d)|λ|)Pk,λ(f
λ
R)(z)ω(R) dR

∣∣∣∣
2

|λ|2d dλ dz

≤ 2n−j

∫ ∞

0

∫

R2d

∫

R\{0}

χ
{2j |

√
(2k+d)|λ|−R|≤2n}

((2k + d)|λ|)|Pk,λ(f
λ
R)(z)|2ω(R)2 dz dt dR

.β,η 2n−j2β(n−j)

∫

Hd

∫ ∞

0

ω(R)2|fR(z, t)|2‖(z, t)‖ηRη−β dz dt dR,

for any 0 ≤ β < 1 and η < 2β, which is clearly satisfied as we have chosen η < β.

Case 2. When 2n−j

R ≥ 1 .



LOCALISATION OF SPECTRAL SUMS 11

Once again, we put ǫ = 2n−j

R , and apply the non-isotropic dilation (z, t) →
(Rz,R2t) for a fixed R > 0 in the inequality (3.5) of Remark 3.3, and we have

∫

R2d

∫

R\{0}

∑

k

∣∣∣∣
∫ ∞

0

χ
{2j |

√
(2k+d)|λ|−R|≤2n}

((2k + d)|λ|)Pk,λ(f
λ
R)(z)ω(R) dR

∣∣∣∣
2

|λ|2d dλ dz

≤ 2n−j

∫ ∞

0

∫

R2d

∫

R\{0}

χ
{2j |

√
(2k+d)|λ|−R|≤2n}

((2k + d)|λ|)|Pk,λ(f
λ
R)(z)|2ω(R)2|λ|2d dλ dz dR

.β,η 2n−j24β(n−j)

∫

Hd

∫ ∞

0

ω(R)2|fR(z, t)|2‖(z, t)‖ηRη−4β dz dt dR

.β,η 2n−j24β(n−j)

∫

Hd

∫ ∞

0

ω(R)2|fR(z, t)|2‖(z, t)‖ηRη−β dz dt dR,

for any 0 ≤ β < 1 and η < β. The last inequality follows from the fact that ω
is supported on [1/2,∞). We can choose L large enough to make the above sum
convergent in n and take the maximum over weight function in R and the constant
in the inequality as well. Thus, we have

∫

Hd

∫ ∞

0

R2µω(R)2|BR,jf(z, t)|2‖(z, t)‖−η dz dt dR

.β,η 2−j−βj

∫

Hd

|f(z, t)|2 dz dt

∼β,η 2−j−βj

∫

‖(z,t)‖≤c2j
|f(z, t)|2 dz dt

.β,η,δ 2
−j−δj

∫

‖(z,t)‖≤c2j
|f(z, t)|2‖(z, t)‖−(β−δ) dz dt

.β,η,δ 2
−j−δj

∫

Hd

|f(z, t)|2‖(z, t)‖−(β−δ) dz dt

for any 0 < β < 1, and δ > 0 such that β − δ > 0. In the above estimation, we
made use of the fact that f is supported in the ball ‖(z, t)‖ ≤ c2j .

When γ = 1, denoting by D1 the distributional derivative in R-variable d
dR , one

could use similar method as above to prove that

∫

Hd

∫ ∞

0

∣∣∣∣
d

dR
(Rµω(R)BR,jf(z, t))

∣∣∣∣
2

‖(z, t)‖−η dz dt dR

.β,η,δ 2
j−δj

∫

Hd

|f(z, t)|2‖(z, t)‖−(β−δ) dz dt.

And then for 0 < γ < 1, one could apply interpolation theorem for weighted Lp

spaces (see 5.3 of Section 5, Chapter 5 of [17] with p0 = p1 = 2). In particular, we
have

∫

Hd

∫

R

|Dγ (Rµω(R)BR,jf(z, t))|2 ‖(z, t)‖−η dz dt dR

.β,η,δ,γ 2−j−δj+2γj

∫

Hd

|f(z, t)|2‖(z, t)‖−(β−δ) dz dt.
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Finally, given δ > 0, one could choose 1
2 < γ < 1 such that 1+ δ− 2γ > 0. Using

these estimates in inequality (3.8), we have

∫

‖(z,t)‖<2A−2

sup
R>1

R2µ|
∑

j≥1

BR,jf(z, t)|2 dz dt

.β,δ,γ


∑

j≥1

(∫

‖(z,t)‖<2A−2

∫

R

|Dγ (Rµω(R)BR,jf(z, t))|2 dR dz dt
) 1

2




2

.β,δ,γ


∑

j≥1

(
2−j−δj+2γj

∫

Hd

|f(z, t)|2‖(z, t)‖−(β−δ) dz dt

) 1
2




2

.β,δ,γ

∫

Hd

|f(z, t)|2‖(z, t)‖−(β−δ) dz dt.

Since 0 < δ < β is arbitrary, this completes the proof of Theorem 3.1. �

4. Technical Lemmas

We will prove Lemma 3.3 in this section. For convenience, we state it again.

Lemma 3.3. For any 0 ≤ β < 1, and ǫ > 0, we have

(3.4)

∫

Hd

|Tǫf(z, t)|2 dz dt .β





ǫβ
∫
Hd |f(z, t)|2‖(z, t)‖2β dz dt when 0 < ǫ < 1;

ǫ4β
∫
Hd |f(z, t)|2‖(z, t)‖2β dz dt when ǫ ≥ 1.

for any f ∈ L2(Hd, ‖(z, t)‖2β dz dt). Moreover, ǫβ‖(z, t)‖2β on the R.H.S of the

inequality above cannot, in general, be replaced by ǫβ‖(z, t)‖γ for any γ < 2β.

Proof. We would like to first remark that when ǫ is away from 0, the estimate of

the lemma holds true easily. To see this, let ǫ ≥ 1, then
∣∣∣1−

√
|λ|(2k + d)

∣∣∣ < ǫ

implies |λ|(2k + d) < 4ǫ2. In this case one could use Plancherel theorem for the
Euclidean space in last variable and the orthogonality of Pk,λ’s in L

2(Cd) to have

∫

Hd

|Tǫf(z, t)|2 dz dt ≤ Cβǫ
4β

∫

R\{0}

∑

k≥0

1

(|λ|(2k + d))2β
‖Pk,λ(f

−λ)‖2L2(Cd)|λ|2d dλ
(4.1)

= Cβǫ
4β

∫

Hd

|L−βf(z, t)|2 dz dt

.β ǫ
4β

∫

Hd

|f(z, t)|2‖(z, t)‖2β dz dt,

where the last inequality follows from the Hardy-Sobolev inequality on the Heisen-
berg group (see Section 3 in [7]).



LOCALISATION OF SPECTRAL SUMS 13

Let us now assume that 0 < ǫ < 1. Again, using the Plancherel theorem for the
Euclidean space in the last variable and orthogonality of Pk,λ’s in L

2(Cd), we get

∫

Hd

|Tǫf(z, t)|2 dz dt

= cd

∫

R\{0}

∑

k≥0

χ
{|1−

√
|λ|(2k+d)|<ǫ}

((2k + d)|λ|)‖Pk,λ(f
−λ)‖2L2(Cd)|λ|2d dλ

.

∫

R\{0}

∑

k≥0

χ{|1−|λ|(2k+d)|<3ǫ}((2k + d)|λ|)‖Pk,λ(f
−λ)‖2L2(Cd)|λ|2d dλ

=

∫

R\{0}

∑

1−3ǫ
|λ|

<2k+d< 1+3ǫ
|λ|

‖Pk,λ(f
−λ)‖2L2(Cd)|λ|2d dλ

= I1,ǫ + I2,ǫ,

where,

I1,ǫ :=

∫

R\{0}

∑

1−3ǫ
|λ|

<2k+d< 1+3ǫ
|λ|

⌊6ǫ/|λ|⌋≥1

‖Pk,λ(f
−λ)‖2L2(Cd)|λ|2d dλ,

I2,ǫ :=

∫

R\{0}

∑

1−3ǫ
|λ| <2k+d< 1+3ǫ

|λ|

⌊6ǫ/|λ|⌋=0

‖Pk,λ(f
−λ)‖2L2(Cd)|λ|2d dλ.

Now, using the fact that

∑

k≥0

‖Pk,λ(f
−λ)‖2L2(Cd)|λ|2d = Cd‖fλ‖2L2(Cd),

we get

I1,ǫ .β ǫ
β

∫

R\{0}

1

|λ|β ‖f
λ‖2L2(Cd) dλ,

for every β ≥ 0. Restricting β in the open interval (0, 1), we invoke Hardy’s
inequality for fractional derivatives in λ-variable to have

∫

R\{0}

1

|λ|β
∣∣fλ(z)

∣∣2 dλ .β

∫

R

∣∣∣Dβ/2fλ(z)
∣∣∣
2

dλ = Cβ

∫

R

|f(z, t)|2|t|β dt,(4.2)

where Dβ/2 denotes the fractional derivative in λ-variable (as in (3.7)).
Therefore, for any β ∈ [0, 1),

I1,ǫ .β ǫβ
∫

Hd

|f(z, t)|2|t|β dz dt.
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On the other hand, using relation (2.3), we have that

I2,ǫ =

∫

R\{0}

∑

1−3ǫ
|λ|

<2k+d< 1+3ǫ
|λ|

⌊6ǫ/|λ|⌋=0

‖Pk,λ(f
−λ)‖2L2(Cd)|λ|2d dλ

= cd

∫

Cd

∫

R\{0}

∑

1−3ǫ
|λ|

<2k+d< 1+3ǫ
|λ|

⌊6ǫ/|λ|⌋=0

|(f ∗ ek)−λ(z)|2 dλ dz

.

∫

Cd

∑

2k+d≤ 1
3ǫ

∫

1−3ǫ
2k+d

≤|λ|≤ 1+3ǫ
2k+d

|(f ∗ ek)−λ(z)|2 dλ dz.

For 0 ≤ β < 1, using Lemma 2.3 of [6] in the above estimate, one gets

I2,ǫ .β ǫ
β

∑

2k+d≤ 1
3ǫ

∫

Hd

|(f ∗ ek)(z, t)|2(2k + d)−β |t|β dz dt

.β ǫ
β
∑

k≥0

∫

Hd

|(f ∗ ek)(z, t)|2(2k + d)−β |t|β dz dt,

If we could show that for any 0 ≤ β < 1,

(4.3)
∑

k≥0

∫

Hd

|(f ∗ ek)(z, t)|2(2k + d)−β |t|β dz dt .β

∫

Hd

|f(z, t)|2‖(z, t)‖2β dz dt,

then that would complete the proof of inequality (3.4) as stated in Lemma 3.3.
In fact, the following estimate holds true

∑

k≥0

∫

Hd

|(f ∗ ek)(z, t)|2(2k + d)−β |t|β dz dt

(4.4)

.β

∫

Hd

|f(z, t)|2|t|β dz dt+
∫

Cd

∫

R\{0}

∣∣fλ(z)
∣∣2

|λ|β dλ dz +

∫

Cd

∫

R\{0}

|z|β
∣∣fλ(z)

∣∣2

|λ|β/2 dλ dz,

for any 0 ≤ β ≤ 2. We shall prove inequality (4.4) later in this section (Lemma
4.1).

Assuming inequality (4.4) for now, and by restricting β in the open interval (0, 1),
we can once again invoke Hardy’s inequality for fractional derivatives in λ-variable
(see (4.2)). Thus, for 0 ≤ β < 1, inequality (4.4) implies

∑

k≥0

∫

Hd

|(f ∗ ek)(z, t)|2(2k + d)−β |t|β dz dt .β

∫

Hd

|f(z, t)|2(|z|β |t|β/2) + |t|β) dz dt

.β

∫

Hd

|f(z, t)|2‖(z, t)‖2β dz dt.

This completes the proof of the inequality (4.3) and hence of (3.4).
Finally, we shall show that ǫβ‖(z, t)‖2β which appears on the right hand side of

inequality (3.4) in the statement of Lemma 3.3 cannot, in general, be replaced by
ǫβ‖(z, t)‖γ for any γ < 2β. To show this, let us assume on contrary that there exists
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some γ < 2β such that for all 0 < ǫ < 1, we have

(4.5)

∫

Hd

|Tǫf(z, t)|2 dz dt .β,γ ǫ
β

∫

Hd

|f(z, t)|2‖(z, t)‖γ dz dt,

for all f such that the right hand side of the above inequality is finite.
Consider now a function f such that fλ(z) = ĝ(λ)χB(0,η)(z), where g is a

Schwartz class function on R, η a fixed positive real number, and B(0, η) the open
ball in Cd centred at the origin and of radius η.

By definition of the operator Tǫ, for any 0 < ǫ < 1, we have
∫

Hd

|Tǫf(z, t)|2 dz dt

=

∫

R\{0}

∑

k≥0

χ
{|1−

√
|λ|(2k+d)|<ǫ}

((2k + d)|λ|)‖Pλ
k (f

−λ)‖2L2(Cd)|λ|2d dλ

≥
∫

R\{0}

∑

k≥0

χ{|1−|λ|(2k+d)|<ǫ}((2k + d)|λ|)‖Pλ
k (f

−λ)‖2L2(Cd)|λ|2d dλ

≥
∫

R\{0}

χ{|1−d|λ||<ǫ}((2k + d)|λ|)‖Pλ
0 (f

−λ)‖2L2(Cd)|λ|2d dλ

= C

∫

|1−d|λ||<ǫ

∣∣∣∣
∫

Cd

f−λ(z)e
−|λ||z|2

2 dz

∣∣∣∣
2

|λ|d dλ.

In particular, for our choice of f , the following holds:

∫

|1−d|λ||<ǫ

∣∣∣∣
∫

Cd

χB(0,η)(z)e
−|λ||z|2

2 dz

∣∣∣∣
2

|ĝ(−λ)|2|λ|d dλ

.β ǫ
β

∫

Hd

|g(t)|2χB(0,η)(z)‖(z, t)‖γ dz dt.

For ǫ > 0 small, |λ| ∼ d−1 in the integral on the L.H.S. of the above inequality.
Using this fact, we get that

∫

|1−d|λ||<ǫ

|ĝ(λ)|2 dλ .β,η ǫ
β

(
ηγ
∫

|t|≤η2

|g(t)|2 dt+
∫

|t|≥η2

|g(t)|2|t| γ2 dt
)
.

By change of variables, it is easy to see that for R > 1, the last inequality implies
that

∫

||λ|−R|<ǫ

|ĝ(λ)|2 dλ(4.6)

.β,η
ǫβ

Rβ

(
ηγ
∫

|t|≤η2

R

|g(t)|2 dt+R
γ
2

∫

|t|≥η2

R

|g(t)|2|t| γ2 dt
)
.

Let us now choose g such that ĝ(λ) = φ(λ−R), for some φ ∈ C∞
c (R) with φ ≡ 1

on |λ| ≤ 1
2 . It is easy to see that g(t) = eitRφ̂(−t). For the above choice of g, it is

straightforward to verify that
∫

||λ|−R|<ǫ

|ĝ(λ)|2 dλ ≥
∫

|λ−R|<ǫ

|ĝ(λ)|2 dλ = 2ǫ.
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Therefore, inequality (4.6) implies that

ǫ .β,η
ǫβ

Rβ

(
ηγ
∫

|t|≤η2

R

|φ̂(−t)|2 dt+R
γ
2

∫

|t|≥η2

R

|φ̂(−t))|2|t| γ2 dt
)
.

As we take R → ∞, the right hand side of the above inequality goes to 0 because
by assumption γ

2 < β. But ǫ > 0, and therefore we arrive at a contradiction. This
proves the sharpness of the exponent of the weight in the inequality (3.4) as stated
in Lemma 3.3, and completes the proof of Lemma 3.3. �

We had claimed estimate (4.4) in the proof of Lemma 3.3, and we establish it
below.

Lemma 4.1. For any 0 ≤ β ≤ 2, we have

∑

k≥0

∫

Hd

|(f ∗ ek)(z, t)|2(2k + d)−β |t|β dz dt

(4.4)

.β

∫

Hd

|f(z, t)|2|t|β dz dt+
∫

Cd

∫

R\{0}

∣∣fλ(z)
∣∣2

|λ|β dλ dz +

∫

Cd

∫

R\{0}

|z|β
∣∣fλ(z)

∣∣2

|λ|β/2 dλ dz.

for functions on Hd for which the right hand side is finite.

Proof. Note that for β = 0, estimate (4.4) reduces to

(4.7)
∑

k≥0

∫

Hd

|(f ∗ ek)(z, t)|2 dz dt .
∫

Hd

|f(z, t)|2 dz dt.

which is true in view of the Plancherel theorem for the Heisenberg group, and in
fact the above estimate holds with equality (upto a constant multiple).

For β = 2, we will prove the estimate (4.4) by analysing each summand of the
left hand side. For this, let us consider the functions ω and ζj on Hd defined by
ω(z, t) = t and ζj(z, t) = zj . Note that

ω(z, t)(f ∗ ek)(z, t)

= t

∫

Hd

f(z − w, t− s− 1

2
Im(z · w̄))ek(w, s) dw ds

=

∫

Hd

(t− s− 1

2
Im(z · w̄))f(z − w, t− s− 1

2
Im(z · w̄))ek(w, s) dw ds

+

∫

Hd

sf(z − w, t− s− 1

2
Im(z · w̄))ek(w, s) dw ds

+
1

2

∫

Hd

Im(z · w̄)f(z − w, t− s− 1

2
Im(z · w̄))ek(w, s) dw ds

= (ωf) ∗ ek(z, t) + f ∗ (ωek)(z, t) +
1

2

∫

Hd

Im(z · w̄)f((z, t)(w, s)−1)ek(w, s) dw ds.

Plugging Im(z · w̄) = − i
2

∑d
j=1 ((zj − wj)w̄j − (z̄j − w̄j)wj) in the last integral

of the above expression, we get the following identity:

(4.8) ω(f ∗ ek) = (ωf) ∗ ek + f ∗ (ωek)−
i

4

d∑

j=1

(
(ζjf) ∗ (ζ̄jek)− (ζ̄jf) ∗ (ζjek)

)
,
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Note that the term i
4

∑d
j=1

(
(ζjf) ∗ (ζ̄jek)− (ζ̄jf) ∗ (ζjek)

)
appears in the iden-

tity (4.8) above due to the non-commutative group structure of Hd.
Therefore,

∫

Hd

|(f ∗ ek)(z, t)|2(2k + d)−2|t|2 dz dt(4.9)

.

∫

Hd

|((ωf) ∗ ek)(z, t)|2(2k + d)−2 dz dt

+

∫

Hd

|(f ∗ (ωek))(z, t)|2(2k + d)−2 dz dt

+

d∑

j=1

∫

Hd

|(ζjf) ∗ (ζ̄jek)(z, t)|2(2k + d)−2 dz dt

+

d∑

j=1

∫

Hd

|(ζ̄jf) ∗ (ζjek)(z, t)|2(2k + d)−2 dz dt.

It is easy to handle the sum (over k ≥ 0) of the first term on the right hand side
of inequality (4.9). In fact,

∑

k≥0

∫

Hd

|((ωf) ∗ ek)(z, t)|2(2k + d)−2 dz dt ≤
∑

k≥0

∫

Hd

|((ωf) ∗ ek)(z, t)|2 dz dt

(4.10)

= cd

∫

Hd

|(ωf)(z, t)|2 dz dt

= cd

∫

Hd

|f(z, t)|2|t|2 dz dt.

To estimate the sum (over k ≥ 0) of the second term of inequality (4.9), we make
use of the recurrence identities for Laguerre polynomials and Laguerre functions
(see Page 92 of [20], and equation (5.1.10) on Page 101 of [18]) to verify that
d
dλ

(
ϕk(
√
|λ|z)|λ|d

)
equals to

(
d

2
ϕk(
√

|λ|z)− k + d− 1

2
ϕk−1(

√
|λ|z) + k + 1

2
ϕk+1(

√
|λ|z)

)
λ

|λ| |λ|
d−1.

Therefore when z 6= 0, we have

(ωek)(z, t) = t

∫

R

eiλtϕk(
√
|λ|z)|λ|d dλ

= i

∫

R

eiλt
d

dλ

(
ϕk(
√
|λ|z)|λ|d

)
dλ

= i

∫

R\{0}

(
d

2
ϕk(
√
|λ|z)− k + d− 1

2
ϕk−1(

√
|λ|z) + k + 1

2
ϕk+1(

√
|λ|z)

)
λ

|λ|
|λ|d−1eiλtdλ.

Then, using the Euclidean Plancherel theorem in t-variable, we have that
∫

R

|(f ∗ (ωek))(z, t)|2 dt
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is equal to a constant multiple of

∫

R\{0}

∣∣∣∣f−λ ×λ

(
d

2
ϕk(
√
|λ|·)− k + d− 1

2
ϕk−1(

√
|λ|·) + k + 1

2
ϕk+1(

√
|λ|·)

)
(z)

∣∣∣∣
2

|λ|2d−2 dλ.

Using (2.5) and (2.6), the above identity implies that
∫

R

|(f ∗ (ωek))(z, t)|2 dt

is equal to a constant multiple of
∫

Cd

∫

R\{0}

d2

4|λ|2
∣∣∣f−λ ×λ ϕk(

√
|λ|·)(z)

∣∣∣
2

|λ|2d dλ dz

+

∫

Cd

∫

R\{0}

(k + d− 1)2

4|λ|2
∣∣∣f−λ ×λ ϕk−1(

√
|λ|·)(z)

∣∣∣
2

|λ|2d dλ dz

+

∫

Cd

∫

R\{0}

(k + 1)2

4|λ|2
∣∣∣f−λ ×λ ϕk+1(

√
|λ|·)(z)

∣∣∣
2

|λ|2d dλ dz.

Hence, we have that

∑

k≥0

∫

Hd

|(f ∗ (ωek))(z, t)|2(2k + d)−2 dz dt(4.11)

.
∑

k≥0

∫

Cd

∫

R\{0}

1

|λ|2
∣∣∣f−λ ×λ ϕk(

√
|λ|·)(z)

∣∣∣
2

dλ dz

= cd

∫

Cd

∫

R\{0}

1

|λ|2
∣∣fλ(z)

∣∣2 dλ dz.

Now, for estimating the sum (over k ≥ 0) of the third term on the right hand
side of the inequality (4.9), it is sufficient to analyse

(4.12)

∫

Hd

|(ζjf) ∗ (ζ̄jek)(z, t)|2 dz dt

for a fixed 1 ≤ j ≤ d, as the estimates for the terms with other j’s follow analogously.
We will now simplify the expression of ζ̄jek(z, t). Using (2.5), we have

ζ̄jek(z, t) =

∫

R

z̄jϕk(
√
|λ|z)|λ|deiλt dλ = (2π)d/2

∑

|α|=k

∫

R

z̄jφα,α(
√
|λ|z)|λ|deiλt dλ.

We first look at z̄jφα,α(
√
|λ|z). It is known (see, for example, equation (1.3.24)

on page 18 in [19]) that

z̄jφα,α(
√
|λ|z) = −i|λ|−1/2

{
(2αj + 2)1/2φα+ej ,α(

√
|λ|z)− (2αj)

1/2φα,α−ej (
√

|λ|z)
}
.

From this, we get that
(
ζ̄jek

)λ
(z) is a constant multiple of

|λ|−1/2
∑

|α|=k

{
(2αj + 2)1/2φα+ej ,α(

√
|λ|z)− (2αj)

1/2φα,α−ej (
√
|λ|z)

}
|λ|d.
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Applying the Plancherel theorem in the t-variable in (4.12) and making use of

the above identity for
(
ζ̄jek

)λ
(z), we get

∫

Hd

|(ζjf) ∗ (ζ̄jek)(z, t)|2 dz dt

= cd

∫

Cd

∫

R

∣∣∣
(
(ζjf) ∗ (ζ̄jek)

)λ
(z)
∣∣∣
2

dz dλ

= cd

∫

Cd

∫

R\{0}

|(ζjf)−λ ×λ (ζ̄jek)
λ(z)|2 dz dλ

.

∫

Cd

∫

R\{0}

∣∣∣∣∣∣
∑

|α|=k

(2αj + 2)1/2(ζjf)
−λ ×λ φα+ej ,α(

√
|λ|·)(z)

∣∣∣∣∣∣

2

|λ|2d−1 dz dλ

+

∫

Cd

∫

R\{0}

∣∣∣∣∣∣
∑

|α|=k

(2αj)
1/2(ζjf)

−λ ×λ φα,α−ej (
√
|λ|·)(z)

∣∣∣∣∣∣

2

|λ|2d−1 dz dλ

. (2k + d)
∑

|α|=k

∫

Cd

∫

R\{0}

∣∣∣(ζjf)−λ ×λ φα+ej ,α(
√
|λ|·)(z)

∣∣∣
2

|λ|2d−1 dz dλ

+ (2k + d)
∑

|α|=k

∫

Cd

∫

R\{0}

∣∣∣(ζjf)−λ ×λ φα,α−ej (
√
|λ|·)(z)

∣∣∣
2

|λ|2d−1 dz dλ,

where the last inequality follows from the identity (2.6) together with the fact that

|λ|d/2φα,β(
√
|λ|·) are orthonormal in L2(Cd).

From the above inequality, we get
∞∑

k=0

∫

Hd

|(ζjf) ∗ (ζ̄jek)(z, t)|2(2k + d)−2 dz dt(4.13)

.

∞∑

k=0

∑

|α|=k

∫

Cd

∫

R\{0}

∣∣∣(ζjf)−λ ×λ φα+ej ,α(
√

|λ|·)(z)
∣∣∣
2

|λ|2d−1 dz dλ

+
∞∑

k=0

∑

|α|=k

∫

Cd

∫

R\{0}

∣∣∣(ζjf)−λ ×λ φα,α−ej (
√
|λ|·)(z)

∣∣∣
2

|λ|2d−1 dz dλ

∼
∫

Cd

∫

R\{0}

1

|λ| |z|
2
∣∣fλ(z)

∣∣2 dλ dz.

Similar calculations could be performed to estimate the sum (over k ≥ 0) of the
fourth term on the right hand side of the inequality (4.9). Finally, substituting
estimates from (4.10), (4.11) and (4.13) into (4.9), we have

∑

k≥0

∫

Hd

|(f ∗ ek)(z, t)|2(2k + d)−2|t|2 dz dt

(4.14)

.

∫

Hd

|f(z, t)|2|t|2 dz dt+
∫

Cd

∫

R\{0}

∣∣fλ(z)
∣∣2

|λ|2 dλ dz +

∫

Cd

∫

R\{0}

|z|2
∣∣fλ(z)

∣∣2

|λ| dλ dz.

Finally, we claim that for 0 < β < 2, the estimate (4.4) could be proved by
invoking interpolation between the parameters β = 0 and β = 2 in the inequalities
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(4.7) and (4.14). We postpone the proof of this interpolation to the next section
(appendix). This completes the proof of Lemma 4.1. �

5. Appendix

We made use of an interpolation of certain Hilbert spaces while claiming in-
equality (4.4) in the proof of Lemma 4.1. We shall prove the same here. Consider
following Hilbert spaces:

As =
{
f ∈ D′(R2d+1) : ‖f‖2s <∞

}
,(5.1)

for each 0 ≤ s ≤ 1, where D′(R2d+1) is the space of tempered distributions on
R

2d+1 and

‖f‖2s =
∫

R2d×R\{0}

|f(z, t)|2
|t|2s dz dt+

∫

R2d+1

|Dsf(z, t)|2 dz dt

+

∫

R2d×R\{0}

|z|2s
|t|s |f(z, t)|2 dz dt.

Here Ds, for 0 < s < 1, denotes the fractional derivative in t-variable (see (3.7)),
D0 is the identity operator, whereasD = D1 stands for the distributional derivative
in t-variable. Note also that A0 coincides with L2(R2d+1).

For each 0 ≤ s ≤ 1, and k = 0, 1, 2, 3, . . ., let M s
k = L2(Cd × R, ωs

k(z, t) dz dt),
with ωs

k(z, t) = (2k+d)−2s|t|2s, and consider following vector valued Hilbert Spaces:

l2(M
s
k) =



a = (asj)j≥0 : asj ∈M s

k , ‖a‖2l2(Ms
k
) :=

∞∑

j=0

‖asj‖2Ms
k
<∞



 .

Define the linear operator T on A0 +A1 by

Tf = (f̃ ∗ ek)∞k=0,

where f̃(z, t) =
∫
R
f(z, λ)eitλ dλ.

Then, as shown in inequalities (4.7) and (4.14) in the proof of Lemma 4.1, T
maps A0 and A1 boundedly into l2(M

0
k ) and l2(M

1
k ) respectively, that is,

‖Tf‖l2(M0
k
) . ‖f‖0,

‖Tf‖l2(M1
k
) . ‖f‖1.

For each 0 < s < 1, the complex interpolation of the spaces l2(M
0
k ) and l2(M

1
k )

is (see Page 121, Section 1.18.1 of [22]):
[
l2(M

0
k ), l2(M

1
k )
]
s
= l2

([
M0

k ,M
1
k

]
s

)
.

Now, the interpolation of the spaces M0
k and M1

k is well known and follows from
general theory of interpolation of weighted Lp spaces (see, for example, 5.4, Page
241, Chapter 5 of [17]), and for each 0 < s < 1 we have

[
M0

k ,M
1
k

]
s
=M s

k .

Finally, if we could show that As, for 0 < s < 1, is the complex interpolation
space of A0 and A1, then we will have that T is bounded from As into l2(M

s
k ), and

this will complete the proof of the inequality (4.4). We now explain the complex
interpolation of A0 and A1.

Theorem 5.1. Let the Hilbert spaces As, for 0 ≤ s ≤ 1, be as defined in (5.1). For
each 0 < s < 1, the complex interpolation of the pair (A0, A1) is As.
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Proof. We closely follow the proof of [21], and rewrite it to suit to our context. For
each j ∈ Z, consider intervals Ω+

j =
(
2−j−3, 2−j+3

)
, and Ω−

j =
(
−2−j+3,−2−j−3

)
.

Clearly, these intervals have finite overlap, (0,∞) = ∪j∈ZΩ
+
j , and (−∞, 0) =

∪j∈ZΩ
−
j . Choose and fix φ ∈ C∞

c

(
Ω+

0

)
with the property that φ ≡ 1 on the

interval [ 12 , 2], 0 < φ ≤ 1 on the interval (14 , 4), and 0 elsewhere. Now, define

φj(t) = φ
(
2jt
)
for j ∈ Z. Finally, for each j ∈ Z, define

φ̃j(t) =

{ φj(−t)∑
k∈Z

φk(−t) ; for t ∈ (−∞, 0)
φj(t)∑

k∈Z
φk(t)

; for t ∈ (0,∞) .

Clearly, φ̃j ∈ C∞
c

(
Ω+

j ∪ Ω−
j

)
, and

∑
j φ̃j ≡ 1. Moreover, for any t ∈ (0,∞),

φ̃′j(t) =
φ′j(t)

∑
k φk(t)− φj(t)

∑
k φ

′
k(t)

(
∑

k φk(t))
2

=
φ′j(t)

∑j+3
k=j−3 φk(t)− φj(t)

∑j+3
k=j−3 φ

′
k(t)(∑

k∈Z
φk(t)

)2 . 2j.

In the last inequality, we used the fact that
∑

k∈Z
φk is uniformly bounded from

below on (0,∞). In fact,
∑

k∈Z
φk(t) ≥ 1. Similar estimate holds true on (−∞, 0).

For each 0 ≤ s ≤ 1, let us now consider the spaces

W s
2 =

{
f ∈ D′(R2d+1) : ‖f‖2s,∗ <∞

}
,

where ‖f‖2s,∗ is defined to be

∑

j∈Z

∫

R2d+1

(
22js|(φ̃jf)(z, t)|2 + |Ds(φ̃jf)(z, t)|2 + 2js|z|2s|(φ̃jf)(z, t)|2

)
dz dt.

We shall show that

(1) W s
2 is a Banach space.

(2) C∞
c (R2d × R \ {0}) is dense in W s

2 in the ‖ · ‖s,∗ norm.
(3) W s

2 is the completion of C∞
c (R2d × R \ {0}) in the ‖ · ‖s norm. In other

words, the spaces As and W s
2 are identical with norm equivalence.

It is easy to note that W 0
2 is noting but A0 with norm equivalence. So, we only

need to study the case when 0 < s ≤ 1.

(1) W s
2 is a Banach space.

It could be proved using standard arguments, so we omit the proof.

(2) C∞
c (R2d × R \ {0}) is dense in W s

2 in the ‖ · ‖s,∗ norm.



22 RAHUL GARG AND K. JOTSAROOP

Take f ∈ W s
2 , then for any M ∈ N large enough, ‖f − f

∑
|k|≤M+3

φ̃k‖2s,∗ equals to

∑

j

22js‖
∑

|k|>M+3

φ̃kφ̃jf‖2L2(R2d+1) +
∑

j

‖Ds(
∑

|k|>M+3

φ̃kφ̃jf)‖2L2(R2d+1)

+
∑

j

2js‖|z|s
∑

|k|>M+3

φ̃kφ̃jf‖2L2(R2d+1)

=
∑

|j|>M

22js‖
∑

|k|>M+3

φ̃kφ̃jf‖2L2(R2d+1) +
∑

|j|>M

‖Ds(
∑

|k|>M+3

φ̃kφ̃jf)‖2L2(R2d+1)

+
∑

|j|>M

2js‖|z|s
∑

|k|>M+3

φ̃kφ̃jf‖2L2(R2d+1),

using the fact that φ̃j φ̃k = 0 for any j and k with |j − k| > 3. The above estimate
is bounded by

∑

|j|>M

∑

|k−j|≤3

22js‖φ̃kφ̃jf‖2L2(R2d+1) +
∑

|j|>M

∑

|k−j|≤3

‖Ds(φ̃kφ̃jf)‖2L2(R2d+1)

+
∑

|j|>M

∑

|k−j|≤3

2js‖|z|sφ̃kφ̃jf‖2L2(R2d+1).

Clearly, the first and third terms of the above sum tend to 0 as M → ∞. For
the second term, we claim that

‖Ds(φ̃kf)‖2L2(R2d+1) . 22ks‖f‖2L2(R2d+1) + ‖Dsf‖2L2(R2d+1).

From these estimates with φ̃jf in place of f , it follows immediately that

lim
M→∞

‖f − f
∑

|k|≤M+3

φk‖s,∗ = 0.

The claimed estimate for Ds(φ̃kf), for s = 1, follows once we apply Leibniz rule

for differentiation and then using estimates of derivatives of φ̃k’s. For 0 < s < 1,
we assume the claimed estimate for now. In fact, in the next step, we estimate the

full sum
∑

k ‖Ds(φ̃kf)‖2L2(R2d+1). In those detailed calculations, one could easily

verify that the claimed estimate for each fixed k also holds. Thus, we have so
far shown that every function f in W 2

s could be approximated by a sequence of
functions supported in sets of the form R2d × K with K compact in R \ {0}.
Finally, one could use standard methods of approximation to complete the claim
that C∞

c (R2d × R \ {0}) is dense in W s
2 in the ‖ · ‖s,∗ norm.

(3) W s
2 is the completion of C∞

c (R2d × R \ {0}) in the ‖ · ‖s norm.
It is straightforward to verify that

∫

R2d×R\{0}

|f(z, t)|2 1

|t|2s dz dt ∼
∑

j

22js
∫

R2d+1

|(φ̃jf)(z, t)|2 dz dt,

and

∫

R2d×R\{0}

|f(z, t)|2 |z|
2s

|t|s dz dt ∼
∑

j

2js
∫

R2d+1

|z|2s|(φ̃jf)(z, t)|2 dz dt.
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Next, writing Ωj = Ω+
j ∪ Ω−

j , we perform following calculations to estimate∑
j ‖Ds(φ̃jf)‖L2(R2d+1). For 0 < s < 1,

∑

j

‖Ds(φ̃jf)‖2L2(R2d+1) = C
∑

j

∫

R2d

∫

R2

|(φ̃jf)(z, t1)− (φ̃jf)(z, t2)|2
|t1 − t2|1+2s

dz dt1 dt2

.
∑

j

∫

R2d

∫

R×Ωj

|(φ̃jf)(z, t1)− (φ̃jf)(z, t2)|2
|t1 − t2|1+2s

dz dt1 dt2,

which is dominated by

∑

j

∫

R2d

∫

Ωj×Ωj

|φ̃j(t1)|2
|f(z, t1)− f(z, t2)|2

|t1 − t2|1+2s
dz dt1 dt2

+
∑

j

∫

R2d

∫

Ωj×Ωj

|φ̃j(t1)− φ̃j(t2)|2
|t1 − t2|1+2s

|f(z, t2)|2 dz dt1 dt2

+
∑

j

∫

R2d

∫

Ωc
j
×Ωj

|φ̃j(t2)|2
|t1 − t2|1+2s

|f(z, t2)|2 dz dt1 dt2

=: I + II + III.

We now estimate sums I, II, and III as follows.

I ≤
∑

j

∫

R2d

∫

Ωj×Ωj

|f(z, t1)− f(z, t2)|2
|t1 − t2|1+2s

dz dt1 dt2

.

∫

R2d

∫

R2

|f(z, t1)− f(z, t2)|2
|t1 − t2|1+2s

dz dt1 dt2

= C‖Dsf‖2L2(R2d+1).

II =
∑

j

∫

R2d×Ωj

(∫

Ωj

|φ̃j(t1)− φ̃j(t2)|2
|t1 − t2|1+2s

dt1

)
|f(z, t2)|2 dz dt2

.
∑

j

22js
∫

R2d×Ωj

|f(z, t2)|2 dz dt2

.

∫

R2d×R\{0}

|f(z, t)|2 1

|t|2s dz dt.

Here we have used the estimate
∫

Ωj

|φ̃j(t1)− φ̃j(t2)|2
|t1 − t2|1+2s

dt1 . 22js

which holds uniformly for t2 ∈ Ωj , and the proof of this estimate is

∫

Ωj

|φ̃j(t1)− φ̃j(t2)|2
|t1 − t2|1+2s

dt1 =

∫

Ωj

∣∣∣∣∣
φ̃j(t1)− φ̃j(t2)

t1 − t2|

∣∣∣∣∣

2

|t1 − t2|1−2s dt1

. ‖φ̃′j‖2∞
∫

Ωj

|t1 − t2|1−2s dt1

∼ 22js.
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Recalling that Ωj = (−2−j+3,−2−j−3) ∪ (2−j−3, 2−j+3), and φ̃j are supported
on [−2−j+2,−2−j−2] ∪ [2−j−2, 2−j+2], one can perform calculations similar to the
above ones to verify that ∫

Ωj

1

|t1 − t2|1+2s
dt1 . 22js,

and thus,

III .
∑

j

22js
∫

R2d×Ωj

|f(z, t2)|2 dz dt2

.

∫

R2d×R\{0}

|f(z, t)|2 1

|t|2s dz dt.

So, we have have shown that for any 0 < s < 1,
∑

j ‖Ds(φ̃jf)‖L2(R2d+1) is

bounded by a multiple of ‖f‖s.
Summarizing the above, we have that for any 0 < s < 1,

‖f‖s,∗ . ‖f‖s.
For s = 1, while analysing ‖f‖1,∗, one could simply apply the Leibniz formula

for differentiation in the first two terms and then make use of the estimates of φ̃j ’s
together with the fact that these are supported in Ωj ’s, and the above analysis for
the fractional differentiation for the third term to easily verify that

‖f‖1,∗ . ‖f‖1.
On the other hand, for 0 < s < 1,∫

R2d+1

|Dsf(z, t)|2 dz dt

=

∫

R2d

∫

R2

|f(z, t1)− f(z, t2)|2
|t1 − t2|1+2s

dz dt1 dt2

.
∑

m

∑

l≥m

∫

R2d

∫

Ωm×Ωl

|∑j(fφ̃j)(z, t1)−
∑

k(fφ̃k)(z, t2)|2
|t1 − t2|1+2s

dz dt1 dt2

=
∑

m

∑

l≥m

∫

R2d

∫

Ωm×Ωl

|
∑m+3

j=m−3(fφ̃j)(z, t1)−
∑l+3

k=l−3(fφ̃k)(z, t2)|2
|t1 − t2|1+2s

dz dt1 dt2.

For each m, one could arrange the summand in the above expression in the
following manner. For m ≤ l ≤ m + 9, write each pair of terms with same index
together and the remaining terms separately. For l > m + 9, there is no common
index, and we write each term separately. Finally, one could apply Cauchy Schwarz
inequality to verify that the above summation is dominated by

∑

m

∫

R2d

∫

Ωm×Ωm

|(fφ̃m)(z, t1)− (fφ̃m)(z, t2)|2
|t1 − t2|1+2s

dz dt1 dt2

+
∑

m

∫

R2d

∫

Ωm×Ωc
m

|(fφ̃m)(z, t1)|2
|t1 − t2|1+2s

dz dt1 dt2

which is further bounded from above by
∑

m

‖Ds(fφ̃m)‖2L2(R2d+1) +
∑

m

22ms‖fφ̃m‖2L2(R2d+1).
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This completes the proof of the fact that for 0 < s < 1,

‖f‖s . ‖f‖s,∗.
Finally, when s = 1, one could directly estimate Df in terms of D(fφ̃m) as

follows :
∥∥∥∥
∂f

∂t

∥∥∥∥
2

L2(R2d+1)

=

∫

R2d+1

∣∣∣∣∣
∑

m

∂(fφ̃m)

∂t
(z, t)

∣∣∣∣∣

2

dz dt

.
∑

m

∫

Ωm

∣∣∣∣∣
∂(fφ̃m)

∂t
(z, t)

∣∣∣∣∣

2

dz dt

≤
∑

m

∥∥∥∥∥
∂(fφ̃m)

∂t

∥∥∥∥∥

2

L2(R2d+1)

.

Hence, for all 0 ≤ s ≤ 1, the two spaces (As, ‖ · ‖s) and (W s
2 , ‖ · ‖s,∗) are identical

with norm equivalence. For any 0 < s < 1, sinceW s
2 is the complex interpolation of

W 0
2 and W 1

2 (see Page 121, Section 1.18.1 of [22]), it follows that As is the complex
interpolation of A0 and A1. This completes the proof of Theorem 5.1. �
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