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Abstract

In this paper, we present a criterion for pitchfork bifurcations of smooth vector
fields based on a topological argument. Our result expands Rajapakse and Smale’s
result [15] significantly. Based on our criterion, we present a class of families of stable
and non-symmetric vector fields undergoing a pitchfork bifurcation.

1 Introduction

In this paper we consider the bifurcation of the isolated equilibria of the locally defined
vector fields in R

n. This well studied subject has recently had some fresh observations by
Rajapakse and Smale [15] concerning the pitchfork bifurcation and its relevance for biology.
It is our intention to expand their treatment by showing that there are significantly new
subtleties.

A phenomenon is called observable if it is stable under small perturbation. The dogma
of bifurcation theory reasonably asserts that the dynamics of the vector fields and their
bifurcations used to explain the observable phenomenon should be stable as well. It is known
that the only generic and stable simple non-hyperbolic bifurcation with one-dimensional
parameter is the saddle-node bifurcation, in which zeros of adjacent indices are created
or cancelled. Hence the pitchfork bifurcation known as the transition from a single stable
equilibrium to two new stable equilibria separated by a saddle is not generally stable.

While the pitchfork bifurcation is not generally stable, it is stable under certain addi-
tional hypothesis such as symmetry (namely equivariant branching) or the vanishing of a
certain second derivative at the bifurcation point ([11];Theorem 7.7, [7],etc.). The stability
and the symmetry of the pitchfork bifurcation is usually expressed in terms of its normal
form u̇ = uε−u3. This family of vector field is invariant under the involution u → −u. Ra-
japakse and Smale [13, 14, 15] are most interested in the case when one stable equilibrium
gives rise to two new stable equilibria after the bifurcation and without symmetry. They
argue that if the state of a cell is modeled as a stable equilibrium, then the cellular division
should give rise to two new stable equilibria after division. They model this phenomenon
with a non-symmetric pitchfork bifurcation in which one stable equilibrium gives rise to
three, two new stable and one unstable. We generalize their results significantly and supply
complete proofs.

∗This work is partially supported by the Smale institute.
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Consider an one-parameter family of C2 vector fields in R
n given by ẋ = V (x, ε) where

ε ∈ R
1. A point (x0, ε0) is simple non-hyperbolic ifDxV (x0, ε0) has a simple eigenvalue λ = 0

and all other eigenvalues are not on the imaginary axis. A fixed point (x, ε) = (x0, ε0) is
said to undergo a 1 → many bifurcation, if the flow has one and only one fixed point in
a neighborhood of x0 for any sufficient close ε ≤ ε0 while the flow has many fixed points
around x0 for any sufficient close ε > ε0. A fixed point (x, ε) = (x0, ε0) is said to undergo
a many → 1 bifurcation, if the flow has many fixed points in a neighborhood of x0 for
any sufficient close ε ≤ ε0 while the flow has one and only one fixed point around x0 for
any sufficient close ε > ε0. We say that the bifurcation is of pitchfork-type if there is a
neighborhood of x0 such that x0 is the unique non-hyperbolic zero in the neighborhood for
any sufficient cloase ε ≤ ε0, x0 continues smoothly xε as one of the equilibrium points for
any sufficient close ε > ε0 and the number of the equilibrium points for any sufficient close
ε > ε0 is greater than or equals to three. Moreover it is called a pitchfork bifurcation if the
number of new equilibrium for pitchfork-type bifurcation is exactly three.

In the literature, the hypotheses to guarantee the existence of a pitchfork bifurcation
generally contain one of the following two types assumptions:
Type a. The set of zeros (xt, , εt) consists of one stable equilibrium of index −1 for t < 0
which continue smoothly to (xt, εt) of index 1 for t > 0, i.e. an eigenvalue at the zeros
changes from negative to positive. See [3, 4, 2, 15, 8].
Type b. The equation has some symmetry which is frequently exhibited by a normal form
with respect to a center manifold which is assumed to be explicitly known. See Chapter 7
in [7], Chapter 19 in [17] and references therein.

In this paper, we assume neither of these scenarios. We work with n-dimensional vector
fields and prove that Type a follows from our hypotheses. Our hypotheses are much easier
to check compared with the hypotheses of Type a or Type b. We also give examples without
symmetry and examples to show that all of the hypotheses are necessary for the existence
of pitchfork-type and pitchfork bifurcations.

An essential part of our treatment relies on a topological argument. We refer to [6, 9, 12,
16] for some work in the literature using topological approaches in dealing with bifurcation
problems. Here we consider under which conditions the bifurcation of an isolated simple
non-hyperbolic equilibrium with non-zero index gives rise to many equilibria with non-zero
index. We are interested in the bifurcation of stable equilibria which are interior to the
basin of attraction. Our criteria for the bifurcation are multidimensional (See (P0)-(P2)
below) and are expressed in terms of the derivative at the bifurcation point. We do not
invoke the explicit form of a reduction to the center manifold, even for (P3). Based on our
criterion, we give an example of a family of vector fields without symmetry which undergoes
a pitchfork bifurcation.

Fix (x0, ε0). Denote by F to be the set of one parameter vector fields V ∈ F such that
it satisfies the following conditions:

(P0) V (x, ε0) has an isolated simple non-hyperbolic equilibrium x0 with non-zero index.

(P1) ∂V
∂ε

|(x0,ε0) ∈ image(DxV );

(P2) there exists ω = (ω1, · · · , ωn+1)
⊤ such that

DV (x0, ε0)ω = 0 and ωn+1 6= 0, and D(det(DxV ))(x0, ε0)ω 6= 0.
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Our conditions are easy to check. Here we make some comments.

• (P0) is immediate if there exists a small ball B(x0) around x0 such that for any ε < ε0
close enough to ε0, there is one and only one zero inside the small ball B(x0) and it
is transversal, i.e., 0 is not an eigenvalue of the determinant. Then the index of the
zero at ε = ε0 is either 1 or −1 (See Section 2.1).

• (P1) is verified if the rank of the derivative DV (x0, ε0) is n− 1.

• In coordinates (x1, · · · , xn) given by the eigenspaces of DxV (x0, ε0) with (1, 0, · · · , 0)

the zero eigenvector, (P2) is true iff ∂2V1

∂x∂ε
6= 0.

Theorem 1.1 (Bifurcation). Every V ∈ F undergoes a pitchfork-type bifurcation, i.e., it
is a 1 → k or k → 1, 3 ≤ k ≤ +∞ bifurcation at (x0, ε0).

Theorem 1.1 implies Rajapakse and Smale’s result.

Corollary 1.2 ([15]). Suppose the following conditions:

1. dx
dt

= V (x, ε), x ∈ X,V (x0, ε) = 0 for ε ≤ ε0 and the determinant of the Jacobian of
V at (x0, ε0) is zero.

2. the eigenvalue of the Jabobian matrix satisfy

real(λi) < 0, i > 1;λ1 = 0 and
dλ1

dε
|(x0,ε0) > 0.

3. the multiplicity of V (x, ε0) at x0 is three and the Poincarè-Index is (−1)n relative to
a disk Bn

r about x0.

These are sufficient conditions for the pitchfork bifurcation.

The condition (P1) is trivial in Corollary 1.2 since x0 is the only zero points for any ε ≤
ε0. Conditions (P0) and (P2) are also trivial in Corollary 1.2. The multiplicity assumption
in Corollary 1.2 implies the bifurcation given in Theorem 1.1 is exactly one to three. Hence
Theorem 1.1 is much more general. We refer to Section 2 for an example where P0,P1,P2 are
not trivial while Theorem 1.1 applies. Moreover, corollary 1.2 may be false if the conditions
are not satisfied (see section 3).

As one may have noticed that one of the key points in Theorem 1.1 is that we consider
the derivative of the determinant of DV , instead of V,DV,D2V as the classical argument
goes. The proof of theorem 1.1 goes in two steps. Here is an outline:
Step 1. From the fact that the equilibrium is a simple non-hyperbolic point, it follows the
there is a center manifold normally hyperbolic associated to it. Moreover, it is shown that
the index property can be reduced to the index restricted to the center manifold.
Step 2. P0 and P1 guarantee a continuation of the zero to any parameter value near the
bifurcation parameter. This follows from considering the dynamics of vector fields along
the center manifolds and then proving the fact that P0 and P1 are carried over to the
dynamics along the center manifold. Moreover, P2, i.e., the condition on the derivative of
the determinant implies that the bifurcation is of pitchfork-type, meaning that at least two
new zeros with different indices arise after the bifurcation.
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A natural question is to consider how many equilibria appear in Theorem 1.1. The
following theorem gives a criterion for the existence of a pitchfork bifurcation which doesn’t
depend on the multiplicity hypothesis in Corollary 1.2. Let G ⊂ F be such that any V ∈ G

is of the form:

{

u̇ = F (u, y, ε)

ẏ = My +G(u, y, ε)
where u ∈ R

1 and y ∈ R
n−1, the square matrix M

has eigenvalues with only non-zero real parts and

F (0, 0, 0) = 0,DF (0, 0, 0) = 0, G(0, 0, 0) = 0,DG(0, 0, 0) = 0,

satisfy one extra condition:

(P3) Duu detDV |(0,0,0) −Dy(detDV )(M−1Guu)|(0,0,0) 6= 0.

We give a comment here about (P3).

• In the case that the center manifold is explicitly known and in the presence of condi-
tions P0,P1, P2, (P3) is equivalent to the usual hypotheses that the third derivative of
V restricted to the center manifold is not zero. But we re-emphasis that (P3) doesn’t
require knowledge of the center manifold which might be difficult to compute.

Theorem 1.3 (Pitchfork Bifurcation). Every V ∈ G undergoes a 1 → 3 or 3 → 1 bifurca-
tion.

Endow F with the usual topology of C∞ maps. Based on Theorem 1.3, we obtain the
genericity of the pitchfork bifurcation.

Theorem 1.4. The set of vector fields with pitchfork bifurcation is open and dense in F .

It is worth noting that there is a Banach space version of these theorems where index
refer to index in the finite dimensional center manifold.

This paper is organized as follows. In Section 2, we give some examples: one of them
shows the lack of stability of the pitchfork bifurcation under the general perturbation and
one shows the existence of pitchfork bifurcation without symmetry. In Section 3, we provide
examples that show if any of the assumptions fail, there may be not pitchfork bifurcation
and therefore show the necessity of our assumptions. In Section 4, we introduce some
preliminaries. As a preparation for the proof of Theorem 1.1, we give some discussion on
the index of fixed points in Section 5. Then in Section 6 we deliver some observations for
the one-dimensional case. In Section 7, we present Theorem 1.1 based on center reduction
techniques and the product property of the index of fixed points. We also give the proof of
Corollary 1.2. In Section 8, we give the proof of Theorem 1.3 and Theorem 1.4 based on
an analysis of graph transform.

To finish the introduction, we note that the conditions we are proposing are more general
(less restrictive) to the ones available in the literature. We give sufficient and necessary
conditions for the existence of stable pitchfork bifurcations in terms of the Taylor expansion
of V only at the point (x0, ε0). This makes the conditions significantly easier to check. In the
previous studies of the pitchfork bifurcation, for instance the one provided by Crandall and
Rabinowitz (see [3, 4]) and explained in section 6.6 of the book “Methods of bifurcation” by
Shui-Nee Chow and Jack Hale (see [2]) it is explicitly assumed that for any parameter nearby

4



the bifurcation one there is at least one zero, that is, there is a branch of solutions through
(0, 0). In particular, that hypothesis is not assumed in our paper. Moreover, it is shown in
example 3.3 that even assuming there is a branch of solutions, if the other condition (P2)
is not satisfied then it could happen that there is no bifurcations. Also, example 3.2 shows
that the conditions provided in [13] is not enough to guarantee a bifurcation if the zero of
the initial vector field is allowed to move.

2 Examples

In this section, we will use our method to detect bifurcations. Compared with the classical
method–normal form, our method tends to be more efficient. We also give a construction
of a one-parameter family of vector fields without symmetry which undergoes a pitchfork
bifurcation.

Example 2.1 (Revisiting the Rajapakse-Smale example). Consider

{

ẋ = y2 − (ε+ 1)y − x,

ẏ = x2 − (ε+ 1)x− y.

near the equilibrium point (x, y) = (0, 0) at the bifurcation parameter ε = 0. We use
Theorem 1.1 to verify the existence of bifurcation: for ε < 0, around (0, 0) there is one
and only one real equilibriums: (x0, y0) = (0, 0). Moreover, det(DV ) = 1 − (2x − (ε +

1))(2y − (ε + 1)). Then
∂

∂ε
det(DxV )|((x,y),ε)=((0,0),0) = −2. Now let’s verify the condition

(P2): ∂V
∂ε

(0, 0) = (0, 0). Hence we have all of the conditions in Theorem 1.1 for Example 2.1.
Since the multiplicity of (0, 0) is three (one zero far away from (0, 0)), we have a pitchfork
bifurcation.

Here we also give the argument using the classical method, Normal form, as a compar-

ison. Under the change of coordinates

{

u = x− y

v = x+ y
, we get

{

u̇ = εu− uv,

v̇ = −(2 + ε)v + u2+v2

2 .

For ε near 0, we reduce this vector field to a parametrized equation along the local cen-
ter manifold, that is, u̇ = εu − uh(u, ε), where v = h(u, ε) satisfies that h(0, 0) = 0,

D(u,ε)h(0, 0) = 0, and ∂uh(u, ε)[εu−uh(u, ε)] = −(2+ ε)h(u, ε)+ u2+(h(u,ε))2

2 . Taking ε = 0,

and expanding h(u, 0) = h2u
2 +O(u3), we get h2 =

1
4 . Therefore, we obtain u̇ = εu− 1

4u
3.

By Lemma 6.4, this vector field experiences a pitchfork bifurcation.

Even though Example 2.1 doesn’t have (x, y) → (−x,−y) symmetry, it does have center
symmetry, i.e. (x, y) → (y, x). Here we would like to add a small perturbation of the
Rajapakse-Smale example to destroy the symmetry. We recall the definition of symmetry
for a vector field.

Definition 2.2 (P278, [7]). We say the vector field ẋ = V (x, ε), x ∈ R
n, ε ∈ R, has symmetry

if there exists a matrix transformation R : x 7→ Rx satisfies:

RV (x, ε) = V (Rx, ε), R2 = I.
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Example 2.3 (Pitchfork bifurcation without symmetry.). Consider the 2-D ODE

{

ẋ = y2 − (ε+ 1)y − x,

ẏ = x2 − (ε+ 1)x− y + ε2.

near the equilibrium point (x, y) = (0, 0) at the bifurcation parameter ε = 0. We note here
that Corollary 1.2 doesn’t apply to this example. We use Theorem 1.1 to verify the pitchfork
bifurcation: for a < 1, there are only one equilibrium: (x0, y0) = (0, 0) in a neighborhood
of (0, 0). Moreover, det(DV ) = 1 − (2x − (ε + 1))(2y − (ε + 1)). Hence det(DV ) = 0 at

((0, 0), 0) and
∂

∂ε
det(DxV )|((x,y),ε) = −2. Hence we have all of the conditions in Theorem

1.1 for Example 2.3. Since the multiplicity of (0, 0) is three (one zero far away from (0, 0)),
the pitchfork bifurcation follows.

Example 2.4 (Perturbation of the pitchfork bifurcation). Consider the following family of
vector fields:

{

ẋ = y2 − (ε+ 1)y − x;

ẏ = (1 + ε0)x
2 − (ε+ 1)x− y.

Let y2− (ε+1)y−x = 0 and (1+ ε0)x
2− (ε+1)x− y = 0. Then we have x = y2− (ε+1)y.

Plugging it into the second one at ε = 0 gives (1 + ε0)(y
2 − y)2 − (y2 − y) − y = 0, i.e.

y2((1 + ε0)y
2 − 2(1 + ε0)y+ ε0) = 0. Hence as long as ε0 6= 0, we have four zeros y = 0, y =

0, y = 1+ε0±
√
1+ε0

1+ε0
. Hence the vector field can only undergo a saddle-node bifurcation at

(0, 0) while for ε0 = 0, we already know it undergoes a pitchfork bifurcation. We can view
this as the perturbation of the Rajapakse and Smale example. As long as ε0 6= 0, the vector
fields undergoes a saddle-node bifurcation which maybe hard to see numerically. When
ε0 = 0, it undergoes a pitchfork bifurcation. This shows clearly that pitchfork bifurcation
is not stable. Moreover, it can’t be because the derivative at the bifurcation point in (x, ε)
has two dimensional kernel so the bifurcation can not be transversal to the zero section
which is also clearly visible from the fact that the zero set is not locally a manifold.

3 Necessity of the conditions provided

In the present section, we show through examples that if any of our conditions are not
satisfied then there is not pitchfork bifurcation.

Example 3.1 (Missing (P0): 3 → 0 → 3 bifurcation). The vector fields

ẋ = εx+ x2 + x3

has 3 → 0 → 3 bifurcation. The zeros are given by x = 0 and x = −1±
√
1−4ε

2 . We miss (P0)
because the index of x = 0 is zero. Even though the other conditions (P1),(P2) and (P3)
are all satisfied, we don’t have pitchfork bifurcation in this example.

Example 3.2 (Missing (P1): No bifurcation). The vector fields

ẋ = ε− εx+ x3

6



has no bifurcation. It is easy to see that (P0), (P2) and (P3) all hold, but (P1) does not.
There is only one solutions for small ε. This is because if (P1) does not hold, then the zeros
lie on a smooth curve through (x0, ε0). So there is no bifurcation. In this example, the
eigenvalue of the zeros go from positive to zero to positive.

Example 3.3 (Missing (P2): A moving center manifold. ). Consider
{

ẋ = xε+ 2xy + x3

ẏ = 2y + ε
.

We have ∂V
∂ε

= (0, 1) which is transversal to the center direction (1, 0). However, this

is not enough. Also ∂det(DV )
∂ε

(0, 0) = ∂(ε+2y+3x2)
∂ε

= 2 6= 0. However, there is no bifur-
cation. The only equilibrium is (0,− ε

2 ). This is because the (P2) condition is not satis-
fied: the kernel of DV is generated by (1, 0, 0) and (0,−1

2 , 1). So D(detDV )(0, 1, 0) =
0,D(detDV )(0,−1

2 , 1) = 0.

Example 3.4 (Missing (P3): 1 → k, k > 3 bifurcation). Consider the vector fields:

ẋ = x(ε− x2 sin2
1

x
− x4).

We claim that this example satisfies the conditions in our Main Theorem. Now let’s prove
this claim. When ε = 0, V (x, 0) = −x3 sin2 1

x
− x5. Since x2 sin2 1

x
+ x4 > 0,∀x 6= 0, we

have V (x, 0) = −x(x2 sin2 1
x
+ x4) < 0,∀x > 0. Similarly, we have V (x, 0) > 0,∀x < 0.

Hence the index of (0, 0) is −1. We have: ∂V (x,ε)
∂ε

(0, 0) = 0, and ∂V (x,ε)
∂x

= (ε − x2 sin2 1
x
−

x4) + x(4x3 − 2 sin 1
x
cos 1

x
+ 2x sin2 1

x
). Hence ∂V (x,ε)

∂x
(0, 0) = 0, and ∂2V (x,ε)

∂ε∂x
= 1 6= 0. So it

satisfies (P0),(P1) (P2) but not (P3). It undergoes a 1 → k, k > 3 bifurcation. One direct
way to prove it is the compute the zeros for the vector field numerically.

Example 3.5 (Missing “Half of (P3)”: 1 → k, k > 3 bifurcation). Consider
{

ẋ = 2x3 − xy + xy2 − 4x5 + x(ε− x4 sin2 1
x
− x6)

ẏ = 2y − 4x2
.

This vector field has the same zeros as ẋ = x(ε − x4 sin2 1
x
− x6) which undergoes a 1 to

k, k > 3 bifurcation. Even though it satisfies Duu(detDV )(0) = 8 is positive definite, it
doesn’t satisfy (P3). This is because (0,−M−1Guu(0)) = (0, 4) and D(det(D(x,y)V (0))) =

(0,−2). Hence Duu(detDV )(0) +Dy(det(D(x,y)V )))(0,−M−1Guu(0))
⊤ = 0.

4 Preliminaries

4.1 An index property for vector fields

Given a map φ : Sn → Sn, the degree of φ denoted by degφ is the unique integer such that
for any x ∈ HnS

n, φ∗(x) = deg φ · x. Here φ∗ is the induced homomorphism in integral
homology. Suppose that x0 is an isolated zero of the vector field V . Pick a closed disk D

centered at x0, so that x0 is the only zero of V in D. Then we define the index of x0 for
V , indx0

(V ), to be the degree of the map φ : ∂Dn → Sn−1, φ(x) = V (z)
|V (z)| . The following

theorem is a well known result on the index of vector fields, see for example [1].

7



Theorem 4.1. Consider a smooth vector field dx
dt

= V (x). If D is a disk containing finitely

many zeros x1, · · · , xk of V , then the degree of V (x)
‖V (x)‖ on ∂D is equal to the sum of the

indices of V at the xi. Moreover, when xi are all non-degenerate, then

∑

V (x)=0,x∈D
sign(det(J))(x) = Q,

where J is the Jacobian of V at x and Q is the degree of the map V (x)
‖V (x)‖ from the boundary

of D to the n− 1 sphere.

4.2 Center manifold

Theorem 4.2 (Hirsch, Pugh and Shub, [10];P16,[5] ). Let E be an open subset of R
n

containing the origin and consider the non-linear system ẋ = V (x), i.e.,

{

ẋ = Cx+ F (x, y)

ẏ = My +G(x, y)
(4.1)

where the square matrix C has c-eigenvalues with zero real parts and the square matrix M

has eigenvalues with only non-zero real parts and

F (0, 0) = 0,DF (0, 0) = 0;G(0, 0) = 0,DG(0, 0) = 0.

Then there exists a δ > 0 and a function h ∈ Cr(Bδ(0)), h(0) = 0,Dh(0) = 0 that defines
the local center manifold

W c
loc(0) = {(x, y) ∈ R

c × R
s × R

u|y = h(x), for‖x‖ ≤ δ}

and satisfies Dh(x)[Cx+ F (x, h(x)]−Mh(x)−G(x, h(x)) = 0, |x| ≤ δ and the flow on the
center manifold W c(0) is defined by u̇ = Cu+ F (x, h(u)).

Theorem 4.3 (P155, [7]). The flow given by the vector field (4.1) is locally topologically
equivalent near the origin to the product system

{

ẋ = Cx+ F (x, h(x))

ẏ = My,
(4.2)

i.e., there exists a homeomorphism h mapping orbits of the first system onto orbits of the
second system, preserving the direction of time.

5 The index of the fixed points

As a preparation for the proof of Theorem 1.1, in this section we present a product property
for the index of the fixed points. Let’s consider the vector field ẋ = V (x), with V (x0) = 0
and the eigenvalues of DV (x0) have non-zero real part except for one eigenvalue. Here we
assume x0 is an isolated zero point for V . Let U ⊂ R

n be a small neighborhood of x0 such
that V (x) 6= 0. Let Dn be a homeomorphic image of n-ball with the natural orientation
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and x0 ∈ Dn ⊂ Dn ⊂ U . According to the definition of the index at x0 of V , the index of
the zero x0 for V is given by the degree of the map ξV (x) =

V (x)
‖V (x)‖ , x ∈ ∂Dn where ∂Dn is

a ball around x0.
The following lemma builds a relation between the index of the fixed points x0 for the

vector field V and the index of x0 as a zero for the map V (x).

Lemma 5.1. The index of the zero point x0 of V equals the index of x0 as a fixed point of
the locally defined flow φt for t > 0 sufficiently small.

Proof. Let U ⊂ R
n be a small neighborhood of x0 such that V (x) 6= 0 and φt(x) 6= x for all

x ∈ U\{x0}. Let Dn be a homeomorphic image of n-ball with the natural orientation and
x0 ∈ Dn ⊂ Dn ⊂ U . According to the definition of the index at x0 of V , it suffices to prove

ξV (x) =
V (x)

‖V (x)‖ , x ∈ ∂Dn and φφt(x) = x−φt(x)
‖x−φt(x)‖ , x ∈ ∂Dn have the same degree. Denote

by
δ := min{inf{‖V (x)‖|x ∈ ∂Dn}, inf{‖x− φt(x)‖|x ∈ ∂Dn}}.

Since the eigenvalues of DV (x0) have non-zero real part except for one eigenvalue, there is
no small periodic orbits in U . Hence δ > 0. As long as t is sufficiently small, we have

‖V (x)− x− φt(x)‖ = ‖V (x)− x− φt(x)‖ ≤ ‖V (x)− tV (x)‖ ≤ (1− t)δ

on ∂Dn, since φt is differentiable at x0 and V (x) is its differential. Hence ξV and φφt are

never antipodal, hence straight-line homotopic via
tξV +(1−t)φ

φt

‖tξV +(1−t)φφt‖
. Thus deg ξV = deg φφt .

We note here that the vector fields V and A−1V (A) have the same index at the fixed
point x0 and A−1x0 respectively, where A is a linear isomorphism. This follows immediately
from the independence of the definition of index on the coordinates. Please refer to Chapter
7 in [1] for a proof. Under suitable coordinates, we assume the vector field V can be

written as

{

ẋ = Cx+ F (x, y)

ẏ = My +G(x, y)
where the square matrix C has c-eigenvalues with zero

real parts and the square matrix M has eigenvalues with only non-zero real parts and
F (0, 0) = 0,DF (0, 0) = 0;G(0, 0) = 0,DG(0, 0) = 0. By Theorem 4.2, there exists a δ > 0
and a function h ∈ Cr(Bδ(0)), h(0) = 0,Dh(0) = 0 such that the vector field on the center
manifold is defined by

u̇ = V c := Cu+ F (x, h(u)).

Lemma 5.2. The product property indV (0) = indV c(0) × (−1)♯{i|λi>0} holds, where λi are
the non-zero eigenvalues for DV .

Proof. On the one hand, by Theorem 4.3, the index of (0, 0) for the flow φt
V given by V

is the same as the index of (0, 0) for the flow φt
V1
. On the other hand, by Lemma 5.1,

we obtain φt
V and φt

V1
have the same index at (0, 0). Therefore, the two vector fields

V =

{

ẋ = Cx+ F (x, y)

ẏ = My +G(x, y)
and V1 = (Cx + F (x, h(x)),My) have the same index for the

zero (0, 0). Finally, by the fact that the index of a product map is the product of the index
along each direction, we finish the proof.
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6 The observations on one-dimensional case

Before we delve into the proof of Theorem 1.1, let’s turn our attention to the one-dimensional
case first. Theorem 5 and Lemma 5.2 show that the one-dimensional center direction can
reflect the bifurcation properties and the index around the fixed point of an arbitrary-
dimensional vector field. Following this idea, a classical argument will be the method of
center reduction. By doing center reduction, one can change the high-dimensional problems
to be one-dimensional problems. In this section, we study some observations for the one-
dimensional case.

Lemma 6.1. Consider the family of smooth functions V (u, ε), u ∈ R
1, ε ∈ R

1. Let u = 0
be an isolated non-hyperbolic zero with non-zero index for V (u, 0). Assume

∂V

∂ε
(0, 0) = 0 and

∂2V

∂u∂ε
(0, 0) 6= 0.

Then for any ε sufficiently close to zero, we have uε as zeros for V (·, ε) inside Bε1−δ(0), for
any sufficiently small number δ > 0. Moreover, the index of uε for V (·, ε) has the different
sign for ε > 0 and ε < 0.

Proof. We shall use Newton’s method to find the zero point uε. By the assumption that
u = 0 is a non-hyperbolic zero for V (u, 0), we get V (0, 0) = 0, ∂V

∂u
(0, 0) = 0. Since the index

of u = 0 is non-zero, we know the first k such that ∂kV
∂uk (0, 0) 6= 0 should be odd. Hence

∂2V
∂u2 (0, 0) = 0. Fix an arbitrary small number ε. Denote by Vε(u) := V (u, ε). Consider the

following sequence of iterations given in Newton’s argument: un = un−1 −
Vε(un−1)
V ′

ε (un−1)
. Then

the fixed point of the following map will be the zero points for Vε: Fε(u) = u− Vε(u)
V ′

ε (u)
. We

claim that Fε is a contracting map on the disc Bε1−δ(0). Actually, we have

F ′
ε(u) = 1−

V ′
ε(u)

2 − Vε(u)V
′′
ε (u)

V ′
ε(u)

2
=

Vε(u)V
′′
ε (u)

(V ′
ε (u))

2
.

Denote by ∂2V
∂u∂ε

(0, 0) = c 6= 0. The denominator V ′
ε(u) satisfies

|V ′
ε (u)| = |

∂V

∂u
(u, ε) −

∂V

∂u
(0, ε) +

∂V

∂u
(0, ε) −

∂V

∂u
(0, 0)|

≥ −|
∂V

∂u
(u, ε) −

∂V

∂u
(0, ε)| + |

∂V

∂u
(0, ε) −

∂V

∂u
(0, 0)|

≥
∂2V

∂u∂ε
(0, ε̃)ε−

∂2V

∂u2
(ũ, ε)u ≥ C0(|c+ ε̃|)ε− |ũu| ≥ Ccε

on the ball Bε1−δ(0), where C,C0 are constant numbers (in the following argument we shall
use C for all constant numbers). Similarly, the numerator satisfies Vε(u)V

′′
ε (u) ≤ Ccε3−2δ .

Therefore we have

F ′
ε(u) = 1−

V ′
ε(u)

2 − Vε(u)V
′′
ε (u)

V ′
ε(u)

2
=

Vε(u)V
′′
ε (u)

(V ′
ε (u))

2
≤

Ccε3−2δ

Cc2ε2
≤ Cε1−2δ ,

where C is a constant number. Hence we finish the proof of the claim. On the other hand,
since |Fε(u)| ≤ Cε2−3δ ≤ ε1−δ , we have Fε(Bε1−δ (0)) ⊂ Bε1−δ(0) for small δ > 0. It follows
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that there is one and only one fixed point inside Bε1−δ(0). At uε, we have ∂V (uε,ε)
∂u

has the
same sign as cε. Since there is a change of sign for cε with the variation of ε from negative
to positive, there is a change of sign for ∂V (uε,ε)

∂u
with the variation of ε from negative to

positive.

The following lemma shows that the vector field has one and only one equilibrium at
one side of the bifurcation time.

Lemma 6.2 (Uniqueness). Consider the family of one dimensional vector filed: u̇ =
V (u, ε), u ∈ R

1, ε ∈ R
1. Assume u = 0 to be an isolated non-hyperbolic zero with non-

zero index for V (u, 0). Assume

∂V

∂ε
(0, 0) = 0 and

∂2V

∂ε∂u
(0, 0) 6= 0.

Then there exist a neighborhood U ⊂ R
1 of x = 0 and a small number ε0 > 0 such that

there is one and only one zero uε ∈ U for any ε ∈ [0, ε0] or any ε ∈ [−ε0, 0].

Proof. By the implicit theorem and the assumption ∂2V
∂ε∂u

(0, 0) 6= 0, there exists (u, ε(u)) to

be the graph of ∂V
∂u

(u, ε(u)) = 0. We claim that there exists a small neighborhood (−r, r)
such that either ε(u) > 0, for any u ∈ (−r, r) or ε(u) < 0, for any u ∈ (−r, r). Now let’s
prove this claim. Since the index of V (u, 0) at u = 0 is 1 (the argument for the index
−1 case is similar ), there exists a small neighborhood (−r, r) such that V (u, 0) > 0,∀u ∈
(0, r), V (u, 0) < 0,∀u ∈ (−r, 0). Hence by the mean value theorem, for any 0 < r1 < r there

exists u1 ∈ (0, r1) such that ∂V (u,ε)
∂u

|(u1,0) > 0 and u2 ∈ (0, r1) such that ∂V (u,ε)
∂u

|(u2,0) > 0.

On the other hand, the graph of ∂V
∂u

(u, ε) = 0 will cut the (u, ε) space into two connected

region A1 = {(u, ε)|∂V
∂u

(u, ε) > 0} and A2 = {(u, ε)|∂V
∂u

(u, ε) < 0}. Hence the vertical
line ([−r, r], 0)\{(0, 0)} can only lie in A1. So (u, ε(u)) can not go across the vertical line
([−r, r], 0) and that finish the claim.

By the definition of index, we have any zeros of V (u, ε) = 0 lying in A1 has index 1,
any zeros of V (u, ε) = 0 lying in A1 has index −1 and any zeros of V (u, ε) = 0 lying in
(u, ε(u)) can only have index 1,−1 or 0. By Theorem 4.1, we have for sufficiently small |ε|,
∑

V (u,ε)=0 index(u) = 1. If ε(u) > 0, we have for any ε < 0 sufficiently close to zero, there
are no zero points on (u, ε(u)), hence there is one and unique one zero u(ε), for ε < 0. If
ε(u) < 0, we have for any ε > 0 sufficiently close to zero, there is no zero points on (u, ε(u)),
hence there is one and unique one zero u(ε), for ε > 0.

Corollary 6.3 (Bifurcation). Consider the family of one dimensional vector filed: u̇ =
V (u, ε), u ∈ R

1, ε ∈ R
1. Assume u = 0 to be an isolated non-hyperbolic zero with non-zero

index for V (u, 0). Assume

∂V

∂ε
(0, 0) = 0 and

∂2V

∂ε∂u
(0, 0) 6= 0.

Then V undergoes a 1 → k or k → 1, k ≥ 3 around a neighborhood of (u0, ε0).
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Proof. By Lemma 6.1, there always exists zero xε for V (·, ε). By Lemma 6.2, there exists a
neighborhood U of x = 0 such that either xε is the only zero for V (·, ε), for sufficiently close
to zero negative ε or for sufficiently close to zero positive ε. Assume it holds for negative ε.
By Lemma 6.1 again, the index of uε changes sign when ε varies from negative to positive.
Hence there must be at least two other zeros inside U for ε > 0.

Finally, let’s give a criterion for the 1 → 3 or 3 → 1 bifurcation. The condition
∂3V
∂3u

(0, 0) 6= 0 in the following corollary plays the role of the multiplicity assumption in
Corollary 1.2.

Corollary 6.4 (Pitchfork Bifurcation). Consider the family of one dimensional vector filed:
u̇ = V (u, ε), u ∈ R

1, ε ∈ R
1. Assume u = 0 to be an isolated non-hyperbolic zero with non-

zero index for V (u, 0). Assume

∂V

∂ε
(0, 0) = 0,

∂2V

∂ε∂u
(0, 0) 6= 0, and

∂3V

∂3u
(0, 0) 6= 0.

Then V (x, ε) undergoes a 1 → 3 or 3 → 1 bifurcation around (0, 0).

Proof. Since ∂3V
∂3u

(0, 0) 6= 0, locally the maximal number of zeros is 3. By Corollary 6.3, it
undergoes a 1 → 3 or 3 → 1bifurcation. We finish the proof.

7 The undergoing of bifurcations

In this section, we present the proof of the undergoing of bifurcation under the assumptions
(P0), (P1) and (P2), i.e., the proof of Theorem 1.1. First of all, let’s study the invariance
of (P0),(P1) and (P2) under the change of coordinates. In the following argument, we shall
use an equivalent condition for (P1):

(P1’) vl
∂V
∂ε

= 0, where vlDxV (x0, ε0) = 0.

The following lemma shows that the assumption (P2) makes sense.

Lemma 7.1. For the vector filed V (x, ε) with the conditions (P0) and (P1), there exists
ω = (ω1, · · · , ωn, ωn+1)

⊤ such that DV (x0, ε0)ω = 0 and ωn+1 6= 0.

Proof. Denote by vl and vr the vectors such that

vlDxV (x0, ε0) = 0 and DxV (x0, ε0)vr = 0.

It is straightforward that (vl, 0)DV = 0. Assume the extended vector fields to be ẋ =

V (x, ε), ε̇ = 0. Differentiating the extended vector field, we have

[

DxV DεV

0 0

]

with (vl, 0)

and (0, 1) as two left eigenvectors for the eigenvalue zero. Since the dimension of the left null
space and the right null space are the same, there exists an vector ω = (ω1, · · · , ωn, ωn+1)

⊤

such that DV (x0, ε0)ω = 0 and ωn+1 6= 0.

Lemma 7.2. For a family of vector fields ẋ = V (x, ε), the following conditions:
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(P0) V (x, ε) has an isolated simple non-hyperbolic equilibrium (x0, ε0) with non-zero in-
dex. Denote by vl and vr the unique left eigenvector for the eigenvalue 0, i.e.,
vlDxV (x0, ε0) = 0 and DxV (x0, ε0)vr = 0.

(P1) vl
∂V
∂ε

|(x0,ε0) = 0;

(P2) D(det(DxV ))(x0, ε0)ω 6= 0, for any ω = (ω1, · · · , ωn+1)
⊤ such that

DV (x0, ε0)ω = 0 and ωn+1 6= 0,

are invariant under the linear change of coordinates Ã =

[

A ∗
0 1

]

.

Proof. Consider the following linear change of coordinates: (x̃, ε̃)⊤ = Ã(x, ε)⊤, where

Ã =

[

A ∗
0 1

]

. Denote by Ã−1 the inverse matrix of Ã. Since the inverse of the up-

per triangular matrix are still upper triangular, we have Ã−1 =

[

A−1 ∗
0 1

]

. Under the

new coordinates, the vector field becomes ( ˙̃x)⊤ = AV (Ã−1(x̃, ε̃)⊤) := Ṽ (x̃, ε̃). Denote

by ω1 :=

[

vr
0

]

, ω = (ω1, · · · , ωn, ωn)
⊤ the base for the kernel of D(x,ε)V (x0, ε0). Since

D(x̃,ε̃)Ṽ (x̃0, ε̃0) = ADV (Ã−1(x̃, ε̃)⊤)Ã−1, we have

ADV (Ã−1(x̃, ε̃)⊤)Ã−1Ã

[

vr
0

]

= ADV (Ã−1(x̃, ε̃)⊤)

[

vr
0

]

= 0

and ADV (Ã−1(x̃, ε̃)⊤)Ã−1Ãω = ADV (Ã−1(x̃, ε̃)⊤)ω = 0. Hence the base for the center

direction of the kernel D(x̃,ε̃)Ṽ (x̃0, ε̃0) is {Ãω1 =

[

Avr
0

]

, Ãω}. For the vector field Ṽ , let’s

check the conditions (P0),(P1) and (P2). Assume (x̃0, ε0) to be the fixed points. Actually,
the first condition (P0) index(x̃0) = index(x0) holds, since index is topological invariant.

Let’s verify (P1). First of all, the left eigenvector of Ṽ for the eigenvalue zero is given
by vlA

−1. Hence we have

vlA
−1Dε̃Ṽ |x̃0

= vlA
−1ADε̃(V (Ã−1(x̃, ε))Ã−1(0, 1)⊤ = 0.

Now let’s check the condition (P2) for the vector field Ṽ . For this vector field, we have
Dx̃Ṽ = ADxV (Ã−1(x̃, ε))A−1. Moreover, it follows that

det(Dx̃Ṽ ) = det(ADxV (Ã−1(x̃, ε))A−1) = detDxV (Ã−1(x̃, ε̃)).

Hence we haveD(det(Dx̃(Ṽ ))(x̃, ε̃) = D det(DxV )(Ã−1(x̃, ε̃))Ã−1. For any ω̃ = (ω̃0, · · · , ω̃n+1)
⊤,

we have the

ω = Ã−1ω̃ =

[

A−1(ω1, · · · , ωn)
⊤ + ωn+1∗,

ωn+1

]

.

So ωn+1 6= 0 if and only if ω̃n+1 6= 0. On the other hand, we have

D(det(Dx̃Ṽ )(x̃0, ε̃0))ω̃ = D det(DxV )(Ã−1(x̃0, ε̃0))Ã
−1(Ãω − tÃvr)

= D det(DxV )(Ã−1(x̃0, ε̃0))ω

= D det(DxV )(x0, ε0)))ω 6= 0.
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Hence (P2) still holds.

Now we are ready to present the proof of Theorem 1.1.

The proof of Theorem 1.1. By Theorem 4.1, a continuous deformation would not change
the total index in U , that is, index(V (·, ε), U) = index(x0). By Lemma 7.2, we can assume

the vector field V is of the form

{

u̇ = F (u, y, ε)

ẏ = My +G(u, y, ε)
where u ∈ R

1 and y ∈ R
n−1, the

square matrix M has eigenvalues with only non-zero real parts and

F (0, 0, 0) = 0,D(u,y)F (0, 0, 0) = 0, G(0, 0, 0) = 0,DG(0, 0, 0) = 0,

with the conditions (P0),(P1) and (P2). The left center direction for V now is vl = (1, 0).
By (P1), we have vlDεV (0, 0, 0) = DεF (0, 0, 0) = 0. Hence we have DF (0, 0, 0) = 0. So we
can apply Theorem 4.2 to the extended vector field by adding ε̇ = 0 as one direction. By
Theorem 4.2, there exists a smooth function h(u, ε) which represents the center manifold
for V . The vector field along the center becomes u̇ = F (u, h(u, ε), ε). By Lemma 5.2, the
index of (u, y) = (0, 0) for V (u, y, 0) is non-zero if and only if the index of u = 0 is non-
zero for F (u, h(u, 0), 0). Hence by (P0) assumption, it follows that the first k such that
∂kF
∂uk (0, 0) 6= 0 is an odd number and k ≥ 3.

Claim 1: ∂2F
∂u∂ε

(0, 0) 6= 0. First of all, let’s give some discussion on DV . We have

D(u,y)V (u, y, ε) =

[

DuF (u, y, ε) DyF (u, y, ε)
DuG(u, y, ε) M +DyG(u, y, ε)

]

.

By Jacobi’s formula,

∂ det(D(u,y)V (u, 0, 0))

∂u

= tr(adj

[

DuF (u, 0, 0) DyF (u, 0, 0)
DuG(u, 0, 0) M +DyG(u, 0, 0)

] [

DuuF (u, 0, 0) DyuF (u, 0, 0)
DuuG(u, 0, 0) DyuG(u, 0, 0)

]

)

= tr(adj

[

DuF (u, 0, 0) DyF (u, 0, 0)
DuG(u, 0, 0) M +DyG(u, 0, 0)

] [

DuuF (u, 0, 0) DyuF (u, 0, 0)
DuuG(u, 0, 0) DyuG(u, 0, 0)

]

).

Hence at u = 0, we have

∂ det(D(u,y)V (0, 0, 0))

∂u
= tr(adj

[

0 0
0 M

] [

0 DyuF (0, 0, 0)
DuuG(0, 0, 0) DyuG(0, 0, 0)

]

)

= tr(

[

detM 0
0 0

] [

0 DyuF (0, 0, 0)
DuuG(0, 0, 0) DyuG(0, 0, 0)

]

)

= 0.

It is easy to see that the kernel of DV (u, y, ε) has (1, 0, 0) and (0, 0, 1) as a base. Since
along the direction (1, 0, 0), we have

D(u,y,ε) det(D(u,y)V )|(0,0,0)(1, 0, 0)
⊤ =

∂ det(D(u,y)V )

∂u
|(0,0,0)

=
∂ det(D(u,y)V (u, 0, 0))

∂u
|u=0 = 0.
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Hence by assumption (P2), we have

D(u,y,ε) det(D(u,y)V )|(0,0,0)(0, 0, 1)
⊤ =

∂DetDxV

∂ε
|(x0,ε0) 6= 0.

On the other hand, DetD(u,y)V (0, 0, ε) = ∂F
∂u

(0, 0, ε)(Det(M + ∂G
∂y

(0, 0, ε))). Hence

∂DetDxV |(x0,ε0)

∂ε
=

∂2F

∂u∂ε
(0, 0, 0)(Det(M +

∂G

∂y
(0, 0, 0))) =

∂2F

∂u∂ε
· DetM 6= 0.

So we get ∂2F
∂u∂ε

6= 0. We complete the proof of Claim 1. Hence the function V c(u, ε) :=
F (u, h(u, ε), ε) satisfies all of the following conditions in Corollary 6.3. By Corollary 6.3, V
undergoes a 1 → k or k → 1 bifurcation.

Remark 7.3. Fix V ∈ F . For ε > 0, the number of zeros is less than or equal to the first
non-vanishing jet of V (x, 0) restricted to the center manifold.

At the end of this section, we would like to prove Corollary 1.2 from Theorem 1.1.

The proof of Corollary 1.2. Since dλ1

dε
(x0, ε0) > 0, λ1(x0, ε0) = 0, we have λ1(x0, ε) < 0, for

ε < ε0 and close enough to ε0. Hence the index of λ1(x0, ε) 6= 0. By the isolated requirement
on the fixed points (x0, ε) for ε < ε0 and the stability of the index of fixed points, we know
the index of (x0, ε0) is non zero. By λ1(x0, ε0) = 0 again, we know ∂V

∂ε
(x0, ε0) = 0. Then the

condition (P1) follows. By dλ1

dε
(x0, ε0) > 0 and λ1(x0, ε0) = 0, we know Dx(detDxV ) = 0

and Dε(detDxV ) 6= 0. So (P2) holds. Hence we have all of the conditions required in
Theorem 1.1. It follows that there exists 1 to k, k ≥ ∞ bifurcations. By the assumption
on the multiplicity, there are at most three fixed points showing up. So it is pitchfork
bifurcation. We finish the proof of this corollary.

8 Pitchfork bifurcation and its genericity

In this section, we shall prove the criterion for pitchfork bifurcation and its genericity. To
do this, we would like to state an equivalent condition first.

Lemma 8.1. For any vector field V , assume (c1(u), · · · , cn(u)) to be the center manifold.
The following condition

(P3)’ (det(DxV (c1(u), · · · , cn(u))))
′′|u0

6= 0 where u0 is the bifurcation point

is equivalent to

(P3)” (N⊤D2
x det(DxV )N +Dx det(DxV )N ′)|(x0) 6= 0 where N ′ = (c′′1(u), · · · , c

′′
n(u)).

Proof. This is basically due to the chain rule. Denote by N = (1, 0, · · · , 0)⊤. It follows
from

(det(DxV (c1(u), · · · , cn(u))))
′′ = (D det(DxV (c1(u), · · · , cn(u)))(c

′
1, · · · , c

′
n)

⊤)′

= (c′1, · · · , c
′
n)D

2 det(DxV (c1(u), · · · , cn(u)))(c
′
1, · · · , c

′
n)

⊤

+D det(DxV (c1(u), · · · , cn(u)))(c
′′
1 , · · · , c

′′
n)

⊤

= (N⊤D2
x det(DxV )N +Dx det(DxV )N ′)|(x0,ε0) 6= 0.
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Lemma 8.2. For the vector field V of the form V :=

{

u̇ = F (u, y, ε)

ẏ = My +G(u, y, ε)
where u ∈ R

1

and y ∈ R
n−1, the square matrix M has eigenvalues with only non-zero real parts and

F (0, 0, 0) = 0,D(u,y)F (0, 0, 0) = 0, G(0, 0, 0) = 0,DG(0, 0, 0) = 0, we have (P3) is equivalent
to

(P3)” (N⊤D2
x det(DxV )N +Dx det(DxV )N ′)|(x0) 6= 0

with the center manifold (u, c2(u), · · · , cn(u)), N = (1, 0, 0) and N ′ = (0, c′′2(u), · · · , c
′′
n(u)).

Proof. First of all, it is easy to see that N = (1, 0, 0) is the center direction at (0, 0). Hence
we can the center manifold for V to be c(u) = (u, c2(u), · · · , cn(u)). Denote by N ′(u) =
(c′′1(u), c

′′
2(u), · · · , c

′′
n(u)). Then N ′ = N ′(u0) where u0 is the point such that c(u0) = 0. By

the local center manifold theorem, we have

V (c(u)) = a(u)c′(u), (8.1)

where a(u) : R1 → R
1 is the scaling. At u = u0, we obtain a(u0) = 0. Differentiating the

equation 8.1, we have

DV (c(u))c′(u) = a′(u)c′(u) + a(u)c′′(u). (8.2)

Hence at u = u0, we have a′(u0) = 0. Moreover, differentiating the equation 8.2, we obtain

c′(u)⊤D2V (c(u))c′(u) +DV (c(u))c′′(u) = a′′(u)c′(u) + a′(u)c′(u) + a′(u)c′′(u) + a(u)c′′′(u).

Hence at u = u0, we obtain N⊤D2V (0)N +DV (0)N ′ = a′′(u0)N. Hence

DV (0)N ′ = a′′(u0)N −N⊤D2V (0)N. (8.3)

Plugging V into equation 8.3, we obtain N ′ = (0,M−1Guu(0)) and

N⊤D2 det(DxV )N = Duu(det(DV )).

Hence we know that (P3) is equivalent to (P3)” .

Now let’s give the proof of Theorem 1.3.

The proof of Theorem 1.3. Due to the conditions (P0),(P1) and (P2), we have

DεV (x0, ε0) = 0 and Dε(det(DxV )(x0, ε0)) 6= 0. (8.4)

Now let’s consider the solution of the implicit function: det(DxV )(x, ε(x)) = 0. By Equation
8.4 and the implicit function theorem, we have

Dx(ε(x0)) = −
Dx(det(DxV )(x0, ε0))

Dε(det(DxV )(x0, ε0))
.

Denote the graph of the center manifold by c(u) = (u, c2(u), · · · , cn(u)). Then the restriction
of (x, ε(x)) to the center manifold becomes: (c(u), ε(c(u))). We claim two facts:
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Claim 1: Du(ε(c(u)))|c(u)=x0
= 0; and Claim 2: D2

u(ε(c(u)))|c(u)=x0
6= 0.

Claim 1 follows from the following equality:

Du(ε(c(u)))|c(u)=x0
= Dx(ε(c(u)))Du(c(u)) =

Dx(det(DxV )(x0, ε0))

Dε(det(DxV )(x0, ε0))
Du(c(u)) = 0,

where the second equality holds because of the index assumption (as Claim 1 in the proof
of Theorem 1.1). Moreover, Claim 2 holds because of Lemma 8.1. By Claim 1 and Claim
2, we know locally the graph of ε(c(u)) satisfies either ε(c(u)) > 0, or ε(c(u)) < 0. Without
lose of generality, we assume ε(c(u)) > 0. Hence for sufficiently small ε > 0,there exist at
most two points on the center manifold such that det(DxV (c(u), ε)) = 0. Moreover, for
sufficiently small ε > 0, there are at most three zeros for V (c(u), ε). Otherwise by the mean
value theorem, there will be more than three points with det(DxV (c(u), ε)) = 0 which is a
contradiction. By Theorem 1.1, there exists at least three points. Hence we have exactly
one to three bifurcation, i.e., pitchfork bifurcation. Hence the proof is complete.

Lemma 8.3. (P3)’ in Lemma 8.1 is invariant under the linear change x = Ax̃.

Proof. Assume the change of coordinates to be x = Ax̃. Then the vector field ẋ = V (x)
becomes ˙̃x = A−1V (Ax̃) := Ṽ (x̃, ε). For this vector field, we have Dx̃Ṽ = A−1DxV (Ax̃)A.
Moreover, it follows that det(Dx̃Ṽ ) = det(A−1DxV (Ax̃, ε)A) = detDxV (Ax̃). Assume
(c1(u), · · · , cn(u)) to be the center manifold for V . Then it follows directly from the in-
variance of center manifold, the center manifold after changing of coordinates becomes
A−1(c1(u), · · · , cn(u)). Hence

det(DxṼ (A−1(c1(u), · · · , cn(u)))) = det(DxV (c1(u), · · · , cn(u))).

So we have (P3)′ is invariant under changing of coordinates.

The proof of Theorem 1.4. Based on Theorem 1.3 and Lemma 8.3, we only need to prove
that the vector fields with the condition (P3) are open and dense inside F . Since (0,M−1Guu(0))
is decided by (DxV,D

2
xV ) (order two terms in the expansion) of the vector field V (x)

at (x0, ε0), where we denote x = (u, y). Besides, Dx(det(DxV ))|(x0,ε0) is also deter-
mined by (DxV,D

2
xV ) at (x0, ε0). On the other hand, since D2

x detDxV (x) is decided by
(DV,D2V,D3V ), we can just perturb V such that we only change D3V such that (P3)
holds. Hence we know the maps with (P3) is open and dense inside F .
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