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On the abundance of SRB measures

Yongluo Cao Zeya Mi Dawei Yang∗

April 11, 2018

Abstract

We prove the abundance of Sinai-Ruelle-Bowen measures for diffeomorphisms
away from ones with a homoclinic tangency. This is motivated by conjectures of
Palis on the existence of physical (Sinai-Ruelle-Bowen) measures for global dynam-
ics. The main novelty in this paper is that we have to deeply study Gibbs cu-states
in different levels. Note that we have to use random perturbations to give some
upper bound of the level of Gibbs cu-states.
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1 Introduction

The SRB theory was established by Sinai, Ruelle and Bowen in the last seventies to
characterize chaotic properties of hyperbolic dynamics in a statistical way [32, 29, 7, 8].
It is a completely beautiful description such that after them, dynamicists want to use
similar philosophy to understand dynamics beyond uniform hyperbolicity. In this
work, we study the abundance of SRB measures for a large class of diffeomorphisms.
This is related to the Palis program for physical (SRB) measures.

The program of Palis [24, Page 493] is to characterize global dynamics. As mentioned
by Jean-Christophe Yoccoz [36]: “Boardly speaking, the goal of the theory of dynamical
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systems is, as it should be, to understand most of the dynamics of most systems”. In [24,
Section 2], Palis has conjectured that most dissipative diffeomorphisms have finitely
many physical (SRB) measures whose basins cover full Lebesgue measure set in the
ambient manifold. See also [31, Page 500].

There are several definitions of SRB measures from different aspects of interests. We
take the one as in Ruelle [30, Page 8].

Definition 1.1. For a C1 diffeomorphism f , an invariant measure µ of f is said to satisfy the
Pesin’s entropy formula if either µ has no positive Lyapunov exponents, or it has positive
Lyapunov exponents and the entropy of µ equals to the integral of the sum of positive Lyapunov
exponents of µ; an invariant measure µ is an Sinai-Ruelle-Bowen measure if it satisfies the
Pesin’s entropy formula and has positive metric entropy.

The SRB measures in Definition 1.1 may not be physical. However, in many cases,
for example in the setting of Theorem C, a physical measure is an SRB measure as in
Definition 1.1. The two notions are very related, and some relationship was studied by
Tsujii [33].

SRB measures are usually obtained for systems with some hyperbolicity. Newhouse
phenomenon [21, 22, 23], which is very related to a homoclinic tangency of a hyperbolic
periodic orbit, can prevent global hyperbolicity in some robust way. A diffeomorphism
f is said to have a homoclinic tangency if f has a hyperbolic periodic orbit, whose stable
manifolds and unstable manifolds have some non-transverse intersection. Homoclinic
tangencies are usually involved in the conjectures of Palis, see [24, 27, 11, 13] for a
partial list of references. Let Diffr(M) be the space of Cr diffeomorphisms of M. Our
main theorem is the following:

Theorem A. In Diff1(M), any diffeomorphism can be accumulated by one of the following
three classes:

— diffeomorphisms with a homoclinic tangency;

— essentially Mores-Smale diffeomorphisms (there exist finitely many sinks such that the
union of the basins of these sinks is an open dense set in M);

— diffeomorphisms with SRB measures.

Note that the measure supported on a sink satisfies the Pesin’s entropy formula
automatically, one has the following corollary:

Corollary B. In Diff1(M), any diffeomorphism can be accumulated by one of the following two
classes:

— diffeomorphisms with a homoclinic tangency;

— diffeomorphisms with measures satisfying the Pesin’s entropy formula.

For understanding diffeomorphisms away from ones with a homoclinic tangency,
one has to consider a weak form of hyperbolicity, which is called a “dominated split-
ting”. LetΛ be a compact invariant set of a C1 diffeomorphism f . For two D f -invariant
bundles E, F ⊂ TM|Λ, we say that E dominates F or F is dominated by E if there are constants
C > 0 andλ ∈ (0, 1) such that for any point x ∈ Λ, we have ‖D f n|F(x)‖.‖D f−n|E( f n(x))‖ ≤ Cλn.
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Denote the fact that E dominates F by E ⊕≻ F. We say that a compact invariant set Λ
admits a dominated splitting if there is a D f -invariant splitting TM|Λ = E⊕≻F such that
E dominates F.

For a compact invariant set Λ, a D f -invariant bundle F is contracted (by D f ) if there
are constants C > 0 and λ ∈ (0, 1) such that for any point x, we have ‖D f n|F(x)‖ ≤ Cλn;
a D f -invariant bundle F is expanded (by D f ) if it is contracted for f−1. We say a
compact invariant set Λ is partially hyperbolic if there is a D f -invariant splitting TM|Λ =
Eu ⊕≻ Ec

1
⊕≻ · · · ⊕≻ Ec

k
⊕≻ Es such that Eu is expanded and Es is contracted. Among

partially hyperbolic dynamics, we are more interested in a special type: one requires
that each center bundle is one-dimensional. A diffeomorphism f is partially hyperbolic if
the chain recurrence set of f can be split into finite compact invariant sets such that each
set admits a partially hyperbolic splitting whose center bundles are one-dimensional.
It has been proved by Crovisier, Sambarino and Yang [13] that any diffeomorphism can
be either accumulated by ones with a homoclinc tangency, or accumulated by partially
hyperbolic diffeomorphisms.

We will manage to prove the existence of Sinai-Ruelle-Bowen measures on a par-
tially hyperbolic attracting set with one-dimensional dominated center bundles of a C2

diffeomorphism. Note that a compact invariant setΛ is attracting if there is a neighbor-

hood U of Λ such that f (U) ⊂ U and ∩n∈N f n(U) = Λ.

Theorem C. Assume that Λ is an attracting set of a C2 diffeomorphism f . If Λ admits a
partially hyperbolic splitting TM|Λ = Eu ⊕≻ Ec

1
⊕≻ · · · ⊕≻ Ec

k
⊕≻ Es, where dimEc

i
= 1, for every

1 ≤ i ≤ k, k ≥ 1, then there exists some ergodic SRB measure supported on Λ.

The proof of Theorem A is mainly based on Theorem C. The main tool to prove
Theorem C is to study Gibbs cu-states. Gibbs u-states were defined and studied for
partially hyperbolic attractors from Pesin and Sinai [26]. It turns out that Gibbs u-
states have many good properties [26, 6]. In contrast to Gibbs u-states, Gibbs cu-states
are defined in the non-uniform case, thus lose some compact property. Moreover, in
Theorem C, there are many center sub-bundles. We have to study Gibbs cu-states in
different levels. We remark that we have to use random perturbation to give some
upper bound of the level of some Gibbs cu-states.

Note that the case k = 1 of Theorem C has been proved in [9] by using random
perturbation and the entropy formula. Liu and Lu [19] obtained SRB measures in a
similar philosophy as in [9].

Acknowledgements. We are grateful to J. Buzzi, S. Crovisier, S. Gan, H. Hu, P. Liu, L. Wen,
X. Wen and J. Xie for their suggestions and discussions. J. Buzzi and S. Crovisier helped us to
check and improve the proof carefully.

2 Typical dynamics in the C1 topology

In this section, we will manage to prove Theorem A by using Theorem C. Usually
one can obtain SRB measures on some sets with attracting properties. Chain transitivity
is a weak form of recurrence. A compact invariant setΛ of f is chain transitive, if for any
ε > 0, for any x, y ∈ Λ, there are points x = x0, x1, · · · , xn = y such that d( f (xi), xi+1) < ε
for any 0 ≤ i ≤ n − 1. A chain-transitive set Λ is a quasi attractor if there is a decreasing
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sequence of attracting set {Λn} such that Λ = limn→∞Λn. For generic diffeomorphisms,
we have the following result for quasi attractors, see [5, Proposition 1.7] and [20].

Lemma 2.1. There is a dense Gδ set R ⊂ Diff1(M) such that for any f ∈ R, there is a residual
set R ⊂M such that for any x ∈ R, the omega-limit set of x w.r.t. f is a quasi attractor.

Crovisier, Sambarino and Yang [13] has proved that for generic diffeomorphisms
away from ones with a homoclinic tangency, any chain recurrent class admits a partially
hyperbolic splitting whose center bundle can be split into one-dimensional dominated
sub-bundles. For quasi attractors, they have more precise information:

Theorem 2.2. There is a dense Gδ set R ⊂ Diff1(M) such that for any f ∈ R, if f is away
from ones with a homoclinic tangency, then for any quasi attractor Λ of f , when Λ is not
reduced to be a single periodic orbit, we have that Λ admits a partially hyperbolic splitting
TM|Λ = Eu⊕≻Ec

1
⊕≻ · · ·⊕≻Ec

k
⊕≻Es, where Eu is non-trivial and dimEc

i
= 1, for every 1 ≤ i ≤ k.

In fact, the main theorem of Crovisier, Pujals and Sambarino [12] gives some infor-
mation of one-dimensional bundle in a dominated splitting.

Theorem 2.3. [Crovisier-Pujals-Sambarino] There is a dense Gδ set R ⊂ Diff1(M) such that
for any f ∈ R, if a chain transitive set Λ of f admits a dominated splitting TM|Λ = E ⊕≻ F
satisfying dim E = 1, and ifΛ is not reduced to be a singular periodic orbit, then E is uniformly
expanded. Moreover, if f cannot be accumulated by ones with a homoclinic tangency, then f
has only finitely many sinks and sources.

Theorem 2.2 can be deduced from Theorem 2.3 and [13, Theorem 1.1]. This is
because by [13, Theorem 1.1], there is a dense Gδ set R ⊂ Diff1(M) such that for any
f ∈ R, if f is away from ones with a homoclinic tangency, any chain transitive set Λ
admits a partially hyperbolic splitting TM|Λ = Eu⊕≻Ec

1
⊕≻ · · ·⊕≻Ec

k
⊕≻Es with dim Ec

i
= 1

for 1 ≤ i ≤ k; then by Theorem 2.3, when Λ is not reduced to be a single periodic orbit,
we have that Eu is not trivial.

One can also present a proof of Theorem 2.2 from the techniques in [13].

Sketch of the proof of Theorem 2.2. Under the assumptions of Theorem 2.2, from [13, Corol-
lary 1.6], one knows that the quasi attractorΛ is a homoclinic class H(p). By [13, Theorem
1.1], Λ = H(p) admits a partially hyperbolic splitting

TM|Λ = Eu ⊕≻ Ec
1 ⊕≻ · · · ⊕≻ Ec

k ⊕≻ Es, dim Ec
i = 1, ∀1 ≤ i ≤ k,

and the minimal unstable dimension of periodic orbits in H(p) is dim Eu or dim Eu + 1.
Now we argue by contradiction, and assume that Eu = {0}. Thus, the minimal

unstable dimension of periodic orbits in H(p) is 0 or 1. Since Λ = H(p) is not reduced
to be a single periodic orbit, one knows that the minimal unstable dimension is 1;
moreover, there are periodic orbits in H(p) such that they are weak along Ec

1
, i.e., their

Lyapunov exponents along Ec
1

are arbitrarily close to 0. Thus under some generic
assumptions, there is a period point q in H(p) such that the unstable dimension of q
is 1 and its unstable manifold intersect the basin of a sink. Since the sink cannot be
contained inΛ, one has that the unstable manifold of p cannot be completely contained
inΛ. This gives a contradiction to the fact thatΛ is a quasi attractor because the unstable
set of any point in a quasi attractor is always contained in the quasi attractor. �
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Now we are ready to prove Theorem A.

Proof of Theorem A. Take a dense Gδ set R ⊂ Diff1(M) having the properties as in
Lemma 2.1, Theorem 2.3, Theorem 2.2.

Since R is dense in Diff1(M), it suffices to prove that any f ∈ R has the properties
stated in the theorem. To conclude, one can assume that f cannot be accumulated by
ones with a homoclinic tangency, and f is not essentially Morse-Smale. We will prove
that in this case, f can be accumulated by ones with an SRB measure.

By Lemma 2.1, there is a dense Gδ set R ⊂ M such that for any point x ∈ R, ω(x) is a
quasi attractor. We have two cases:

• either, for any point x ∈ R, ω(x) is a trivial quasi-attractor, i.e., it is reduced to be
a periodic orbit.

• or, there is a point x ∈ R such that ω(x) is not a trivial quasi attractor.

Now we consider the first case. Note that ω(x) is a periodic sink. By Theorem 2.3,
f has only finitely many sinks. We have that ∪x∈Rω(x) contains finite sinks and f is
essentially Morse-Smale. We get a contradiction.

In the second case, f has a non-trivial quasi attractor. By Theorem 2.2, the quasi
attractor admits a partially hyperbolic splitting Eu⊕≻Ec

1
⊕≻ · · ·⊕≻Ec

k
⊕≻Es with dim Ec

i
= 1,

where Eu is non-trivial. By the continuity of the dominated splitting, there is a C2

diffeomropbhism g arbitrarily close to f and an attracting set Λ of g such that TM|Λ =
Eu ⊕≻ Ec

1
⊕≻ · · · ⊕≻ Ec

k
⊕≻ Es with dim Ec

i
= 1, where Eu is non-trivial. By Theorem C, g

admits an SRB measure on Λ.
�

3 Gibbs u-states and Gibbs cu-states

In the setting of partial hyperbolicity, a powerful tool to study SRB measures is the
Gibbs u-states which were defined by Pesin-Sinai [26]. For a compact invariant setΛwith
a partially hyperbolic splitting TM|Λ = Euu ⊕≻ Ecs, an invariant measure µ, supported
on Λ is said to be a Gibbs u-state (associated to this splitting) if the disintegration along
the unstable foliation is absolutely continuous with respect to the Lebesgue measures
of these sub-manifolds.

We give a list of properties of Gibbs u-states.

Proposition 3.1. Assume that f is a C2 diffeomorphism and Λ is a compact invariant set of f
with a partially hyperbolic splitting TM|Λ = Euu ⊕≻ Ecs. Then one has the following properties.

• The ergodic components of any Gibbs u-state are Gibbs u-states.

• The set of Gibbs u-states is compact.

Proof. One can see [6, Lemma 11.13 and Remark 11.15] for instance. �

In this paper, we also have to study a conception called Gibbs cu-states. Since there
are several sub-bundles in this paper, we will use the terminology Gibbs E-state, for
some invariant sub-bundle E.
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Definition 3.2. Assume that Λ is a compact invariant set of f and E ⊂ TM|Λ is an invariant
sub-bundle. A plaque family of E, which is denoted by {WE(x)}x∈Λ, is a family of embedded
sub-manifolds of dimension dim E satisfying that each sub-manifold is diffeomorphic to the unit
ball in Rdim E, and has the following properties:

• For any point x ∈ Λ, one has TWE(x)|x = E(x);

• For any neighborhood U ⊂ WE( f (x)) of f (x), there is a neighborhood V of x in WE(x)
such that f (V) ⊂ U.

Denote by WE
ε (x) the ε-neighborhood of x in WE(x). The second property can be represented as:

for any ε > 0, there is δ > 0 such that for any x ∈ Λ, one has f (WE
δ (x)) ⊂WE

ε ( f (x)).

For dominated splittings, one has the following plaque family theorem [14, Theorem
5.5]:

Theorem 3.3. Assume that Λ is a compact invariant set with a dominated splitting TM|Λ =
E ⊕≻ F. Then there are plaque families of E and F.

One has the existence of unstable manifolds in the dominated case.

Lemma 3.4. Assume that Λ is a compact invariant set with a dominated splitting TM|Λ =
E ⊕≻ F. Given ℓ ∈N and λ ∈ (0, 1), there is δ = δ(ℓ, λ) > 0 such that for any point x ∈ Λ, if

n−1∏

i=0

‖D f−ℓ|E( f−iℓ(x))‖ ≤ λ
n, ∀n ∈N,

then WE
δ (x) is contained in the unstable manifold of x.

Assume that µ is an ergodic measure supported on Λ. Assume that all Lyapunov exponents
of µ along E are positive. Then there is a positive µ-measurable function δ(x) for µ-almost every
point x such that WE

δ(x)
(x) is contained in the unstable manifold of x.

Lemma 3.4 is a special case of Lemma 6.4 in Section 6.

Using Lemma 3.4, one can define a measurable partition µ-subordinate to WE,u,
where WE,u is the unstable manifold tangent to E, i.e., WE,u(x) =WE(x) ∩Wu

loc
(x).

Definition 3.5. Assume that Λ is a compact invariant set with a dominated splitting TM|Λ =
E ⊕≻ F. Assume that µ is an invariant measure satisfying the Lyapunov exponents along E
of µ-almost every point x are positive. A measurable partition ξ is said to be µ-subordinate
to WE,u if for µ-almost every point x, ξ(x) is an open set contained in WE

δ(x)
(x), where δ is the

measurable function as in Lemma 3.4.

Definition 3.6. Assume that f ∈ Diff2(M) has an attractor Λ with dominated splitting
TM|Λ = E ⊕≻ F. We say an f -invariant (not necessarily ergodic) measure µ supported on Λ is
a Gibbs E-state if

1. For µ-almost every point, its Lyapunov exponents along E are all positive.

2. the conditional measures of µ are absolutely continuous with respect to Lebesgue measures
for any measurable partition that is µ-subordinate to WE,u.
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Proposition 3.7. Let f ∈ Diff2(M) and Λ is an attracting set with a dominated splitting
TM|Λ = E ⊕≻ F. If µ is a Gibbs E-state supported on Λ, then almost every ergodic component
of µ is a Gibbs E-state.

Proof. Since the Lyapunov exponents of µ-almost every point along E are all positive,
one has that the Lyapunov exponents along E of any ergodic component ν of µ are all
positive.

Consider an ergodic component ν of µ. From [18, Chapter IV, Remark 2.1], it suf-
fices to prove that there is one measurable partition ν-subordinate to WE,u such that
the conditional measures of ν are absolutely continuous with respect to Lebesgue mea-
sures. Any measurable partition µ-subordinate to WE,u gives such kind of measurable
partitions of ν. Moreover, by the Birkhoff ergodic theorem, there is a set R with full
µ-measure such that the intersection of R with almost every unstable manifold WE,u is
the set of typical points for one ergodic component of µ. Thus, the conditional measures
of ν are absolutely continuous with respect to Lebesgue measures. See also [17, Section
6]. �

Notation. Let Λ be a compact invariant set with a partially hyperbolic splitting TM|Λ =
Eu ⊕≻ Ec

1
⊕≻ · · · ⊕≻ Ec

k
⊕≻ Es, dim Ec

i
= 1 for 1 ≤ i ≤ k. For any ergodic measure µ supported

on Λ, denote by λc
i
(µ) the Lyapunov exponent of µ along Ec

i
for 1 ≤ i ≤ k.

For the splitting in Theorem C, one can define some index for Gibbs cu-states.
Assume that Λ is an attracting set of a C2 diffeomorphism f with a partially hyperbolic
splitting TM|Λ = Eu ⊕≻ Ec

1
⊕≻ · · · ⊕≻ Ec

k
⊕≻ Es, dim Ec

i
= 1 for 1 ≤ i ≤ k. Given 0 ≤ i ≤ k,

denote by Gi the set of Gibbs Eu ⊕≻ Ec
1
⊕≻ · · · ⊕≻ Ec

i
-states. By convention, G0 is the set of

Gibbs u-states.
As a direct consequence of Proposition 3.7, one has the following corollary, whose

proof is omitted.

Corollary 3.8. Given 0 ≤ i ≤ k, if µ ∈ Gi, then ν ∈ Gi for any ergodic component ν of µ.

By using some absolute continuity of unstable sub-foliation, one has the following
result, whose proof is contained in Appendix A.

Proposition 3.9. We have that G0 ⊃ G1 ⊃ · · · ⊃ Gk.

The limit measure of a sequence of measures in Gi may not be contained in Gi if
i > 0. However, one has the following criterion, whose proof is given in Section 6.4.

Theorem 3.10. Assume that Λ is an attracting set of a C2 diffeomorphism f with a partially
hyperbolic splitting TM|Λ = Eu ⊕≻ Ec

1
⊕≻ · · · ⊕≻ Ec

k
⊕≻ Es with dim Ec

i
= 1, 1 ≤ i ≤ k. Assume

that {µn} ⊂ Gi is a sequence of ergodic measures and limn→∞ µn = µ. If there is α > 0 such that
for λc

i
(ν) ≥ α > 0 for any ergodic component ν of µ, then µ ∈ Gi.

Definition 3.11. For the measure µ ∈ G0, denote by I(µ) the maximal i such that µ ∈ Gi. One
can call this I(µ) is disintegration index of µ, although we will not mention it again.

We have the following simple observation:

Lemma 3.12. Assume that Λ is an attracting set of a C2 diffeomorphism f and Λ admits a
partially hyperbolic splitting TM|Λ = Eu⊕≻Ec

1
⊕≻ · · ·⊕≻Ec

k
⊕≻Ec with dim Ec

i
= 1 for 1 ≤ i ≤ k.

For an invariant measure µ, assume that I(µ) = i. Then we have

7



1. if µ has an ergodic component ν satisfying λc
i+1

(ν) ≤ 0, then ν is an SRB measure.

2. If
∫

log ‖D f |Ec
i+1
‖dµ ≤ 0, then the ergodic components of µ contains an SRB measure

Proof. By Corollary 3.8, if ν is one ergodic component of µ, then we have that I(ν) ≥ I(µ).
Hence by Proposition 3.9, ν ∈ Gi. Thus, if λc

i+1
(ν) ≤ 0, then ν is an SRB measure by the

classical result [17]. Thus the first item is proved.

For the second item, one notices that if
∫

log ‖D f |Ec
i+1
‖dµ ≤ 0, then there is an ergodic

component ν of µ satisfying λc
i+1

(ν) ≤ 0. Thus ν is an SRB measure by the first item. �

One considers a special subset G0
i
⊂ Gi such that µ ∈ G0

i
if and only if µ ∈ Gi,

λc
i+1

(ν) > 0 for any ergodic component ν of µ, and there is a sequence of measures νn

in the ergodic components of µ such that limn→∞ λc
i+1

(νn) = 0. Note that G0
i

may be an
empty set for any 0 ≤ i ≤ k.

Theorem 3.13. Assume that Λ is an attracting set of a C2 diffeomorphism f and Λ admits a
partially hyperbolic splitting TM|Λ = Eu⊕≻Ec

1
⊕≻ · · ·⊕≻Ec

k
⊕≻Ec with dim Ec

i
= 1 for 1 ≤ i ≤ k.

Then we have that either f has an SRB measure supported on Λ, or there is 0 ≤ i ≤ k such that
G0

i
, ∅.

The proof of Theorem 3.13 will use random perturbations, we will give its proof by
Theorem 4.9 and give the proof of Theorem 4.9 in Section 6.4.

Theorem 3.14. 1 Assume that Λ is an attracting set of a C2 diffeomorphism f and Λ admits a
partially hyperbolic splitting TM|Λ = Eu⊕≻Ec

1
⊕≻ · · ·⊕≻Ec

k
⊕≻Ec with dim Ec

i
= 1 for 1 ≤ i ≤ k.

Choose 0 ≤ i ≤ k satisfying G0
i
, ∅ and G0

j
= ∅ for any j < i. For any µ ∈ G0

i
, taking {νn} a

sequence of ergodic components of µ satisfying limn→∞ λc
i+1

(νn) = 0. Then there is an ergodic
component η of ν = limn→∞ νn such that η is an SRB measure.

Proof. By the properties of Gibbs u-states (Proposition 3.1), we know that any νn

and ν = limn→∞ νn are Gibbs u-states, i.e., ν ∈ G0. Thus I(ν) can be defined. Since
limn→∞ λc

i+1
(νn) = 0, we have that

∫
log ‖D f |Ec

i+1
‖dν = 0.

This implies that I(ν) ≤ i.

Claim 3.15. We have that either I(ν) = i, or one ergodic component of ν is an SRB measure.

Proof of the Claim. Assume that the conclusion of this claim is not true, i.e. I(ν) = j < i
and there is no SRB measures in the ergodic components of ν. Thus, by Lemma 3.12,
we have that λc

j+1
(η) > 0 for any ergodic component η of ν.

By the minimality of i, we have that there is a constant α > 0 such that λc
j+1

(η) >

α > 0 for any ergodic component η of ν. Otherwise, we have that G0
j
, ∅ and give a

contradiction to the minimality of i.
By Theorem 3.10, we have that ν ∈ G j+1. This contradicts to the fact that I(ν) = j.

�

1S. Crovisier helped us to clean some ideas of Theorem 3.14.
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Under the condition that I(ν) = i, then by Lemma 3.12, the ergodic components

of ν contains an SRB measure since we have that
∫

log ‖D f |Ec
i+1
‖dν = 0. Thus one can

conclude by applying the above Claim.
�

Proof of Theorem C. Under the setting of Theorem C, by Theorem 3.13, either there is an
SRB measure supported on Λ, or there is i such that G0

i
, ∅.

Now we consider the case thatG0
i
, ∅ for some i. Take a minimal i with this property,

i.e. G0
i
, ∅ but G0

j
= ∅ for any j < i. Then by Theorem 3.14, one can also get an SRB

measure. Thus the proof of Theorem C is complete. �

We will give the proofs of Theorem 3.10 and Theorem 3.13 in next sections. Note
that Theorem 3.10 is used to prove Theorem 3.14.

4 Random dynamical systems and random perturbations

The main issue for proving Theorem C is to do some random perturbation for
a deterministic dynamical system. One can see fundamental knowledge of random
dynamical systems and random perturbations in [15, 16, 18].

Recall that Diffr(M) is the space of Cr diffeomorphisms.

Definition 4.1. Let Ω be a compact metric space, ℓ : Ω → Diff2(M) be a continuous map.
Denote by fω = ℓ(ω) for each ω ∈ Ω.

For each ω = (· · · , ω−1, ω̇0, ω1, · · · ) ∈ Ω
Z, it defines a sequence of diffeomorphisms fω =

{· · · , fω−1
, ˙fω0
, fω1
, · · · }. A point inΩZ ×M is denoted by [ω, x].

One can thus define an extended dynamical system on a compact metric space ΩZ ×M in
the following way:

G : ΩZ ×M −→ ΩZ ×M

[ω , x] 7−→ [σ(ω), fω0
(x)],

where σ is the left shift operator on the spaceΩZ.
We say that G is an extended dynamical system generated by (Ω, ℓ). When there is a

Borel probability ν onΩ, then G is also called a random dynamical system with randomness
ν, or (G, ν) is a random dynamical system generated by (Ω, ℓ, ν).

WhenΩ is reduced to be a point, the extended dynamical system G can be identical
to be the dynamical system of a diffeomorphism.

We will consider stationary measures of a random dynamical system.

Definition 4.2. For a measure ν supported on Ω, a measure µ supported on M is called a
stationary measure of ν if for any Borel set A, we have

µ(A) =

∫
µ( f−1

ω (A))dν(ω).

Remark. The measure µ is in fact said to be the stationary measure of a random process
generated by Ω, ℓ and ν. One can see [15, Chapter I] for the discussion of the random process.
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A Borel set A is called randomly invariant (for ν and µ) if for µ-almost every x, we
have

x ∈ A implies fω(x) ∈ A, ν − a.e. ω;

x < A implies fω(x) < A, ν − a.e. ω.

A stationary measure µ is ergodic if for any randomly invariant set A, we have that
µ(A) = 0 or µ(A) = 1.

Theorem 4.3. Ergodic stationary measure for ν always exists.

Proof. The proof follows from the existence of stationary measures ([15, Lemma 2.2] and
[34, Proposition 5.6]) and the ergodic decomposition theorem of stationary measures
[15, Appendex A.1] and [34, Theorem 5.14]). �

The map ℓ : Ω → Diff2(M) in fact induces a map from Ω ×M to M, which is also
denoted by ℓ:

ℓ : Ω ×M −→ M

(ω , x) 7−→ fω(x).

Thus for any x ∈ M, one obtains a map ℓx : Ω → M. For any measure ν supported on
Ω, one has the measure (ℓx)∗ν on M:

(ℓx)∗ν(A) = ν(ℓ−1
x (A)).

A random dynamical system (G, ν) generated by (Ω, ℓ, ν) is regular if for any x ∈ M,
(ℓx)∗ν is absolutely continuous with respect to the Lebesgue measure. Regular random
dynamical systems have the following good property. The proof is folklore and is
omitted here.

Lemma 4.4. If a random dynamical system is regular, then any stationary measure is absolutely
continuous with respect to Lebesgue.

Definition 4.5. A sequence of random dynamical systems {(G, νn)}n∈N generated by {(Ω, ℓ, νn)}n∈N
is nested if supp(νn+1) ⊂ supp(νn) for any n ∈N. For a diffeomorphism f , a nested sequence
of regular random dynamical systems {(G, νn)}n∈N generated by (Ω, ℓ, νn)} is a random per-
turbation of f if limn→∞ supp(νn) = {ω} such that ℓ(ω) = f .

Theorem 4.6. For any C2 diffeomorphism f , there is a regular random perturbation of f .

The proof of Theorem 4.6 is classical and contained in [9, Page 1120]. The idea
is to find (possibly many) vector fields X1,X2, · · · ,Xk on M such that they span the
tangent space everywhere. Then we take Ω = [−1, 1]d and vn the normalized Lebesgue
measure on [−1/n, 1/n]d. The composition ϕ1

t1
◦ ϕ2

t2
· · · ◦ ϕk

tk
◦ f gives a regular random

perturbation of f , where ϕi is the flow generated by Xi for 1 ≤ i ≤ k.

The following proposition could be seen as an exercise.
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Proposition 4.7. Let {(G, νn)}n∈N be a random perturbation of a diffeomorphism f . If µn is a
stationary measure of (G, νn), then all accumulation points of {µn} are f -invariant measures.
Moreover, if µn is contained in a small neighborhood of Λ, then µ is an invariant measure
supported on Λ.

In this paper, we will consider the limit of a sequence of ergodic stationary measures
of a regular perturbation of f . The limit measure is not necessarily ergodic. However,
we will call it an ergodic limit.

Definition 4.8. For an invariant measure µ of a C2 diffeomorphism f , if there is a regular
random perturbation {(G, νn)}n∈N of f such that there is a sequence of ergodic stationary measure
µn of (G, νn), and

µ = lim
n→∞
µn,

then µ is said to be a randomly ergodic limit.

One has the following extended version of Theorem 3.13.

Theorem 4.9. Assume that Λ is an attracting set of a C2 diffeomorphism f and Λ admits a
partially hyperbolic splitting TM|Λ = Eu ⊕≻ Ec

1
⊕≻ · · · ⊕≻ Ec

k
⊕≻ Es with dim Ec

j
= 1, 1 ≤ j ≤ k.

Assume that µ is a randomly ergodic limit supported on Λ, then either there is an ergodic
component ν of µ such that ν is an SRB measure, or there is 0 ≤ i ≤ k such that µ ∈ G0

i
.

One can give the proof of Theorem 3.13 by assuming Theorem 4.9.

Proof of Theorem 3.13. By Theorem 4.6, there is a sequence of regular random perturba-
tion {(G, νn)}n∈N of f . By Theorem 4.3, each (Gn, νn) has an ergodic stationary measure
µn. After a subsequence, one can assume that {µn} converges to a measure µ. By
Proposition 4.7, µ is a randomly ergodic limit supported on Λ. By Theorem 4.9,

• either there is an ergodic component ν of µ such that ν is an SRB measure, thus
there is an SRB measure supported on Λ,

• or µ ∈ G0
i
, in other words, G0

i
, ∅ for some 0 ≤ i ≤ k.

The proof of Theorem 3.13 is complete. �

It remains to prove Theorem 3.10 and Theorem 4.9 in next sections.

5 Good approximations of Pesin blocks

We define some canonical projections on ΩZ ×M:

PM : ΩZ ×M→M, P+ : ΩZ ×M→ ΩN∪{0} ×M.

11



5.1 The lifted measure of a stationary measure

Lemma 5.1. Let G be the extended dynamical system generated by (Ω, ℓ). For any Borel
probability ν and any its stationary measure µ, there is a unique G-invariant Borel probablity
measure µG supported on ΩZ ×M such that (P+)∗µG = νN∪{0} × µ.

Consequenly, we have the following properties:

• µ is an ergodic stationary measure of ν if and only if µG is ergodic for G.

• Assume that µn is the stationary measure of νn for any n ∈N∪ {0} and limn→∞ µn = µ0,
limn→∞ νn = ν0, then limn→∞ µG

n = µ
G
0

.

Proof. By [18, Proposition 1.2 and Proposition 1.3], one knows the existence and unique-
ness of µG, and the fact that µ is an ergodic stationary measure of ν if and only if µG is
an ergodic measure of G.

Assume that limn→∞ νn = ν0, limn→∞ µn = µ0. Assume that η = limn→∞ µG
n . It suffices

to prove that η = µG
0

. Since µG
n is invariant for any n ∈N, one has that η is G-invariant.

By the continuity of the projection P+, one has that

(P+)∗(η) = lim
n→∞

(P+)∗(µ
G
n ) = lim

n→∞
νN∪{0}n × µn = ν

N∪{0}
0

× µ0.

Thus, by the uniqueness of µG
0

, one has that η = µG
0

. �

As a consequence of Lemma 5.1, one has the following result on lifted measures.
The proof is omitted.

Corollary 5.2. Let G be the extended dynamical system generated by (Ω, ℓ). Assume that there
is ω f ∈ Ω such that ℓ(ω f ) = f . One has the following property.

• If {(G, νn)}n∈N is a random perturbation of f , and {µn}n∈N are the stationary measures of
{νn}n∈N, limn→∞ µn = µ, then limn→∞ µG

n = µ
G = δZω f

× µ.

5.2 Dominated splittings for random dynamical systems

We want to present the dynamics of G. For any ω = (· · · , ω−1, ω̇0, ω1, · · · ) ∈ ΩZ and
any x ∈M, one defines

• f n
ω(x) = fωn−1

◦ · · · ◦ fω0
(x), if n ≥ 1,

• f 0 = id,

• f n
ω(x) = f−1

ωn
◦ · · · ◦ f−1

ω−1
(x), if n ≤ −1.

For the presentation, we have

Gn([ω, x]) = [σn(ω), f n
ω(x)], ∀n ∈ Z.

One has to associate a tangent bundle for any compact G-invariant setΛG inΩZ×M
for the extended dynamical system G.
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Definition 5.3. For each [ω, x], we can attach a vector space TM|[ω,x] = TM|PM([ω,x]) = TM|x.
This gives a vector bundle on ΩZ ×M. This vector bundle is also called the tangent bundle,
and is also denoted by TM.

A map DG : TM|ΩZ×M → TM|ΩZ×M can be defined by DG(v) = D fω0
(v) ∈ TM| fω0

(x) for
every v ∈ TM[ω,x].

For a G-invariant set ΛG in ΩZ ×M, a sub-bundle E ⊂ TM|ΛG is said to be invariant or
DG-invariant if DG(E([ω, x])) = E(G([ω, x])) for any [ω, x] ∈ ΛG.

A DG-invariant splitting TM|ΛG = E⊕≻F on a compact G-invariant setΛG is a dominated
splitting if there are constants C > 0 and λ ∈ (0, 1) such that for any [ω, x] ∈ ΛG and any
n ∈N, we have that

‖DGn|F([ω,x])‖‖DG−n|E(Gn([ω,x]))‖ ≤ Cλn.

The following proposition is standard. One can see its proof in [10, Corollary 2.8]
for instance.

Proposition 5.4. Assume that a compact invariant setΛG ⊂ ΩZ×M of G admits a dominated
splitting TM|ΛG = E ⊕≻ F. Then there is a neighborhood UG of ΛG such that the maximal
G-invariant in UG also admits a dominated splitting with the same type of E ⊕≻ F.

We can lift bundles of one diffeomorphism to the extended dynamical system. The
result if folklore.

Lemma 5.5. Let G be the extended dynamical system generated by (Ω, ℓ). Assume that there
is ω f ∈ Ω such that ℓ(ω f ) = f . Then,

• If µ is an f -invariant measure, then µG has the same Lyapunov exponents of G as µ and
f .

• If Λ is a compact invariant set, then ΛG = {ω f }
Z × Λ is a compact invariant set of G.

Moreover, ifΛ admits a dominated splitting TM|Λ = E⊕≻ F with respect to D f , then ΛG

admits a dominated splitting with respect to DG of the same type.

5.3 The Pesin blocks for the extended dynamical systems

Assume that a compact G-invariant set ΛG ⊂ ΩZ ×M and E ⊂ TM|ΛG is an invariant
sub-bundle. We define the following subset of ΛG: given a constant α > 0 and an
integer ℓ ∈N,

ΛG
ℓ (E, α) = {[ω, x] ∈ ΛG :

n−1∏

i=0

‖DG−ℓ|E(G−iℓ([ω,x]))‖ ≤ e−αℓn, ∀n ∈N}.

One can also consider finite pieces of orbits:

ΛG
ℓ,n(E, α) = {[ω, x] ∈ ΛG :

m−1∏

i=0

‖DG−ℓ|E(G−iℓ([ω,x]))‖ ≤ e−αℓn, ∀1 ≤ m ≤ n}.

It is clear that
ΛG
ℓ (E, α) =

⋂

n∈N

ΛG
ℓ,n(E, α).
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When E and F are invariant sub-bundles over ΛG and F is dominated by E, we do
not distinguishΛG

ℓ
(F, α) andΛG

ℓ
(E⊕F, α) although there could be some slight differences

on constants. Note that we do not assume that E ⊕ F = TM|ΛG .
For the extended dynamical systems, one has the following result:

Proposition 5.6. Assume that E is a one-dimensional continuous DG-invariant sub-bundle
over a compact G-invariant setΛG ⊂ ΩZ×M. Assume that η supported onΛG is a G-invariant

measure, and there are constants θ > α > 0 such that
∫

log ‖DG|E‖dζ > θ for any ergodic
component ζ of η.

If {ηn} is a sequence of ergodic measures of G such that limn→∞ ηn = η, then for any ε > 0,
there is ℓ = ℓ(ε) > 0 such that

lim inf
n→∞

ηn(ΛG
ℓ (E, α)) > 1 − ε.

One has to do some preparations. One can find the constant ℓ ∈N by the following
lemma:

Lemma 5.7. Assume that E is a one-dimensional continuous DG-invariant sub-bundle over
a compact G-invariant set ΛG ⊂ ΩZ ×M. Assume that η supported on ΛG is a G-invariant

measure, and there are constants θ > α > 0 such that
∫

log ‖DG|E‖dζ > θ for any ergodic
component ζ of η. Then for any δ > 0, there is ℓ = ℓ(δ) ∈N such that

η(ΛG
ℓ,1(E, α)) > 1 − δ.

Proof. Since dim E = 1 and E is continuous, one has that for η-almost every point [ω, x],

lim
n→∞

1

n

n−1∑

i=0

log ‖DG−1|E(G−i([ω,x]))‖ ≤ −θ.

Thus for any δ > 0, there is ℓ = ℓ(δ) such that

η({[ω, x] :
1

n

n−1∑

i=0

log ‖DG−1|E(G−i([ω,x]))‖ ≤ −α, ∀n ≥ ℓ}) > 1 − δ.

It is clear that {[ω, x] : 1
n

∑n−1
i=0 log ‖DG−1|E(G−i([ω,x]))‖ ≤ −α, ∀n ≥ ℓ} ⊂ ΛG

ℓ,1
(E, α) since

dim E = 1 . Thus one can conclude. �

For the proof of Proposition 5.6, one needs a recent Pliss lemma in [2]. One can see
a proof of Lemma 5.8 in Appendix B.

Lemma 5.8. For any γ1 < γ2 ≤ max{0, γ2} < C, for any ε > 0, there is ρ = ρ(γ1, γ2,C, ε) > 0
with the following property.

For any sequence {an}n∈N ⊂ R satisfying:

• |an| ≤ C,

• there is a subset L ⊂ N satisfying lim infn→+∞
1
n
#{[0, n − 1] ∩ L} > 1 − ρ such that

an ≤ γ1 for any n ∈ L,
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then there is a subset J ⊂ N satisfying lim supn→+∞
1
n
#{[0, n − 1] ∩ J} > 1 − ε such that for

any j ∈ J, one has that
n−1∑

i=0

ai+ j ≤ nγ2, ∀n ∈N.

Proof of Proposition 5.6. We apply Lemma 5.8 to put

γ1 = −(θ + α)/2, γ2 = −α, C = max
[ω,x]∈ΩZ×M

| log ‖DG([ω, x])‖|.

For any ε > 0, take ε′ such that (1 − ε′)2 > 1 − ε and fix ρ = ρ(γ1, γ2,C, ε′) > 0 as in
Lemma 5.8.

Claim. There is ℓ ∈ N such that for any G-invariant measure ηN, which close to η, one also
has that

ηN(ΛG
ℓ,1(E, (θ + α)/2)) > 1 − ρε′.

Proof of the Claim. By Lemma 5.7, there exists ℓ ∈N such that

η(ΛG
ℓ,1(E, (2θ + α)/3)) > 1 − ρε′.

Since ΛG
ℓ,1

(E, (2θ + α)/3) ⊂
{
[ω, x] ∈ ΛG : ‖DG−ℓ|E([ω,x])‖ < e−(θ+α)ℓ/2

}
, one has that

η({[ω, x] ∈ ΛG : ‖DG−ℓ|E([ω,x])‖ < e−(θ+α)ℓ/2}) > 1 − ρε′.

Now for a sequence of G-invariant measures {ηn} such that limn→∞ ηn = η, by the
fact that {[ω, x] ∈ ΛG : ‖DG−ℓ|E([ω,x])‖ < e−(θ+α)ℓ/2} is an open set, one has that

lim inf
n→∞

ηn({[ω, x] ∈ ΛG : ‖DG−ℓ|E([ω,x])‖ < e−(θ+α)ℓ/2})

≥ η({[ω, x] ∈ ΛG : ‖DG−ℓ|E([ω,x])‖ < e−(θ+α)ℓ/2}) > 1 − ρε′.

Since {[ω, x] ∈ ΛG : ‖DG−ℓ|E([ω,x])‖ < e−(θ+α)ℓ/2} ⊂ ΛG
ℓ,1

(E, (θ + α)/2), one can conclude. �

It follows from the Birkhoff ergodic theorem we know for ηN almost every [ω, x] the
limit

ϕ([ω, x]) := lim
n→∞

1

n
#
{
i : 0 ≤ i ≤ n − 1, G−iℓ([ω, x]) ∈ ΛG

ℓ,1(E, (θ + α)/2)
}

exists and ∫
ϕdηN = ηN(ΛG

ℓ,1(E, (θ + α)/2)).

Therefore,
∫
ϕdηN > 1 − ρε′ by the above claim. Let B =

{
[ω, x] : ϕ([ω, x]) > 1 − ρ

}
.

1 − ηN(B) = ηN({[ω, x] : 1 − ϕ([ω, x]) ≥ ρ})

≤

∫
(1 − ϕ)dηN

ρ

<
ρε′

ρ
= ε′.
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Thus ηN(B) > 1 − ε′. For any point [ω, x] ∈ B, set

ai =
1

ℓ
log ‖DG−ℓ|E(G−iℓ([ω,x]))‖, ∀i ≥ 0.

and
L = {i ∈N ∪ {0} : G−iℓ([ω, x]) ∈ ΛG

ℓ,1(E, (θ + α)/2)}

Then we have

• |an| ≤ C for every n ∈N ∪ {0};

• For every i ∈ L, ai < γ1 = −(θ + α)/2 and

• limn→+∞
1
n
#{[0, n − 1] ∩ L} = ϕ([ω, x]) > 1 − ρ.

Thus, by applying Lemma 5.8, there is a subset J ⊂N ∪ {0} such that

• for any j ∈ J, one has that for any n ∈N,

n−1∑

i=0

a j+i ≤ −nα.

• lim supn→∞
1
n
#{[0, n − 1] ∩ J} > 1 − ε′.

In other words, for any j ∈ J,

n−1∏

i=0

‖DG−ℓ|E(G−(i+ j)ℓ([ω,x]))‖ ≤ e−nℓα, ∀n ∈N.

Consequently, by applying the Birkhoff ergodic theorem, for almost every [ω, x] ∈ B we
have

lim
n→∞

1

n
#
{
i : 0 ≤ i ≤ n − 1, G−iℓ([ω, x]) ∈ ΛG

ℓ (E, α)
}
> 1 − ε′.

Therefore, there exists a subset

Bm =

{
[ω, x] ∈ B :

1

m
#{i ∈ {0, · · · ,m − 1} : G−iℓ([ω, x]) ∈ ΛG

ℓ (E, α)} > 1 − ε′
}

such that ηN(Bm) > 1 − ε′. Thus

ηN(ΛG
ℓ (E, α)) =

∫
1

m

m−1∑

i=0

χΛG
ℓ

(E,α)(G
−il([ω, x]))dηN

≥

∫

Bm

1

m

m−1∑

i=0

χΛG
ℓ

(E,α)(G
−il([ω, x]))dηN

=

∫

Bm

1

m
#{i ∈ {0, · · · ,m − 1} : G−iℓ([ω, x]) ∈ ΛG

ℓ (E, α)}dηN

> (1 − ε′)ηN(Bm) > (1 − ε′)2,

where we use the G−ℓ-invariance of ηN in the first equality. By the choice of ε′, one gets

ηN(ΛG
ℓ (E, α)) > (1 − ε′)2 > 1 − ε.

The proof is complete now. �
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5.4 Consequences for one diffeomorphism

As some consequence of Proposition 5.6, one has the following results about the
random perturbation and the ergodic limit for one diffeomorphism.

Proposition 5.9. Assume that an attracting setΛ of a C2 diffeomorphism f admits a dominated
splitting TM|Λ = E ⊕≻ Ec ⊕≻ F with dim Ec = 1. Assume that there is a regular random
perturbation {(G, νn)}n∈N generated by {(Ω, ℓ, νn)}n∈N of f such that

• Each random dynamical system (G, νn) has an ergodic stationary measure µn such that
limn→∞ µn = µ.

If there is a constant α > 0 such that

inf{

∫
log ‖D f |Ec‖dν : ν is an ergodic component of µ} > α,

then for any ε > 0, there is ℓ = ℓ(ε) > 0 such that

lim inf
n→∞

µG
n (ΛG

ℓ (E ⊕ Ec, α)) > 1 − ε.

Proof. Suppose that ℓ(ω f ) = f . Note that µ can be lifted to be a measure on {ω
f
}×M and

we have that µG
n → µ

G as n → ∞ by Corollary 5.2. Moreover, by Proposition 5.4, the
support of µG

n admits the same kind of dominated splitting for n large enough. After
the lift, one has that any ergodic component of µG has its Lyapunov exponent larger
than α. Thus, one can apply Proposition 5.6 to conclude.

�

The following result is some corollary of Proposition 5.6:

Corollary 5.10. Assume that Λ is an attracting set of a C2 diffeomorphism f with a partially
hyperbolic splitting TM|Λ = Eu ⊕≻ Ec

1
⊕≻ · · · ⊕≻ Ec

k
⊕≻ Es with dim Ec

i
= 1, for 1 ≤ i ≤ k.

Assume that {µn} ⊂ G j is a sequence of ergodic measures and limn→∞ µn = µ. If there is α > 0
such that

inf{

∫
log ‖D f |Ec

j
‖dν : ν is an ergodic component of µ} > α,

then for any ε > 0, there is ℓ = ℓ(ε) > 0 such that

lim inf
n→∞

µn(Λℓ(E
c
j, α)) > 1 − ε,

where Λℓ(E
c
j
, α) = {x ∈ Λ :

∏n−1
i=0 ‖D f−ℓ|Ec( f−iℓ(x))‖ ≤ e−αℓn, ∀n ∈N}.

Proof. The dynamics of one diffeomorphism can be embedded into an extended dy-
namical system G generated by (Ω, ℓ) such that ℓ(ω f ) = f . One applies Corollary 5.2
and Proposition 5.6 to take E = Eu⊕≻Ec

1
⊕≻ · · ·⊕≻Ec

i−1
, Ec = Ec

i
and F = Ec

i+1
⊕≻ · · ·⊕≻Ec

k
⊕≻Es

and identify Λℓ(E
c
j
, α) and ΛG

ℓ
(Ec

j
, α) ∩ {ω f }

Z ×M. �
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6 The disintegration along measurable partitions subor-

dinate to unstable manifold

Some definitions and results in Section 3 can be regarded as some special case of this
section since the dynamics of one diffeomorphism can be embedded in the extended
dynamical system G.

6.1 Plaque families for the extended dynamical systems

Definition 6.1. Assume that ΛG ⊂ ΩZ ×M is a compact G-invariant set and E ⊂ TM|ΛG is
an invariant sub-bundle. A plaque family of E, which is denoted by {WE([ω, x])}[ω,x]∈ΛG , is
a family of embedded sub-manifolds of dimension dim E, each one is diffeomorphic to the unit
ball in Rdim E, and has the following properties:

• WE([ω, x]) ⊂ {ω} ×M for any [ω, x] ∈ ΩZ ×M;

• For any point [ω, x] ∈ ΛG, one has TWE([ω, x])|[ω,x] = E([ω, x]);

• For any neighborhood U ⊂ WE(G([ω, x])) of [ω, x] ∈ ΛG, there is a neighborhood V of
[ω, x] in WE([ω, x]) such that G(V) ⊂ U.

Denote by WE
ε ([ω, x]) the ε-neighborhood of [ω, x] in WE([ω, x]). The last property can be

represented as: for any ε > 0, there is δ > 0 such that for any [ω, x] ∈ ΛG, one has
G(WE

δ ([ω, x])) ⊂WE
ε (G([ω, x])).

In fact, one can require some higher regularity along plaque families. Generally,
one can only increase a little bit of the regularity in the dominated case. We will give
a stronger notion called (1 + α)-domination. A dominated splitting E ⊕≻ F on ΛG is said
to be a (1 + α)-dominated splitting if there are constants C > 0 and λ ∈ (0, 1), one has for
any [ω, x] ∈ ΛG and any n ∈N,

‖DGn|F([ω,x])‖
1+α.‖DG−n|E(Gn([ω,x]))‖ ≤ Cλn, ‖DGn|F([ω,x])‖.‖DG−n|E(Gn([ω,x]))‖

1+α ≤ Cλn.

Since the norms of the derivatives are uniformly bounded, one has the following
lemma, whose proof could be an exercise.

Lemma 6.2. If ΛG is a compact G-invariant set with a dominated splitting E ⊕≻ F, then there
is α > 0 (possibly small) such that E ⊕≻ F is a (1 + α)-dominated splitting.

For dominated splittings, one has the following plaque family theorem [14, Theorem
5.5]:

Theorem 6.3. Assume thatΛG ⊂ ΩZ×M is a compact invariant set with a dominated splitting
TM|ΛG = E⊕≻ F. Then there are plaque families tangent to E and F. Moreover, given α ∈ (0, 1),
if the splitting is (1 + α)-dominated, then the plaques WE and WF can be chosen in the class
of C1+α sub-manifolds and varies continuously in the C1+α-topology with respect to the base
points.

More precisely, for the bundle E, there is a continuous mapΘ : ΛG → Embr(DE, ΩZ×M),
where
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• r = 1 or r = 1 + α depending that we are under the assumption of domination or
(1 + α)-domination, respectively.

• DE is the unit disc contained in RE, Embr(DE, ΩZ ×M) is the space of Cr embeddings
satisfying the image of each embedding is contained in some {ω} ×M.

such that for any [ω, x] ∈ ΛG, one has that WE([ω, x]) = Θ([ω, x])(Du).
One has a similar description for the plaque family of F.

One has the existence of unstable manifolds in the dominated case. Its proof is
almost the same as in the deterministic case. One can see [1, Section 8] for instance.

Lemma 6.4. Assume that ΛG ⊂ ΩZ × M is a compact G-invariant set with a dominated
splitting TM|ΛG = E ⊕≻ F. Given ℓ ∈ N and λ ∈ (0, 1), there is δ = δ(ℓ, λ) > 0 such that for
any point [ω, x] ∈ ΛG, if

n−1∏

i=0

‖DG−ℓ|E(G−iℓ([ω,x]))‖ ≤ λ
n, ∀n ∈N,

then WE
δ
([ω, x]) is contained in the unstable manifold of [ω, x]; more precisely, there are constants

C = C(ℓ, λ) > 0 and λ∗ = λ∗(ℓ, λ) ∈ (0, 1) such that for any [ω, y], [ω, z] ∈WE
δ ([ω, x]), one has

that
d(G−n([ω, y]),G−n([ω, z])) ≤ Cλn

∗ d([ω, y], [ω, z]).

Assume that µ is an ergodic measure of G supported on ΛG, and all Lyapunov exponents
of µ along E are positive. Then there is a positive µ-measurable function δ([ω, x]) for µ-almost
every point [ω, x] such that WE

δ([ω,x])
([ω, x]) is contained in the unstable manifold of [ω, x].

Note that as a consequence of Lemma 6.4, one has the following estimate on the size
of unstable manifolds on a Pesin block. The proof is omitted.

Corollary 6.5. Assume that ΛG is a compact G-invariant set with a dominated splitting
TM|ΛG = E ⊕≻ F. Given ℓ ∈ N and α > 0, there is δ = δ(ℓ, α) > 0 such that WE

δ
([ω, x]) is

contained in the unstable manifold of [ω, x] for any [ω, x] ∈ ΛG
ℓ

(E, α).

6.2 The local foliated chart

Notation. Given δ ∈ (0, 1], denote byDE(δ) = {x ∈ Rdim E, ‖x‖ ≤ δ} andDE = DE(1).

We give some criteria to show the absolutely continuous property of the conditional
measures.

Definition 6.6. Assume that ΛG is a compact G-invariant set with a dominated splitting
TM|ΛG = E ⊕≻ F, and Γ is a compact metric space.

A foliated chart associated to a set Γ is a map Φ : Γ ×DE 7→ ΩZ ×M such that

1. For any p ∈ Γ, Φ induces a map Φp : DE → ΩZ ×M. Φp is a diffeomorphism.

2. Φp(DE) is contained in a plaque tangent to E.

3. Φp is continuous w.r.t. p in the C1 topology.
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4. The imagine of Φp and the imagine of Φq are pairwise disjoint for p , q.

A foliated chart induces a measurable partition, and Lebesgue measures on each element of
the measurable partition. The image the map Φ is also denoted by Φ. For any p ∈ Γ, the image
of the map Φp is also denoted by Φp. The projection from Φ to Γ is denoted by π. Note that π is
continuous.

For any Borel measure µ, denote the quotient measure on Γ by µ̂ = π∗(µ). A family
of conditional measures {µp}p∈Γ is defined for µ̂-almost every p ∈ Γ. See [6, Section C.6]
and [28, Section 1] for more details.

The following Lemma 6.7 gives a criterion for the conditional measures that are
absolutely continuous w.r.t. Lebesgue measures. One can see [35, Proposition 7.3] for
the proof of Lemma 6.7.

Lemma 6.7. For a measurable partition induced by a foliated chart Φ associated to Γ and a
Borel measure µ onΦ, if there is C > 0 such that for any open set A ⊂ DE, one has the following
properties:

• µ(A × ξ) ≤ Cµ̂(ξ)Leb(A), for any open set ξ ⊂ Γ with µ̂(∂ξ) = 0,

then the conditional measures of µ associated to this foliated chart are absolutely continuous
w.r.t. the Lebesgue measures and the densities are bounded by C.

6.3 Gibbs E-states for the extended dynamical system

With the unstable manifold for almost every points, one can define the Gibbs E-states
for the extended dynamical system G. Using Lemma 6.4, one can define a measurable
partition µ-subordinate to WE,u.

Definition 6.8. Assume that ΛG ⊂ ΩZ ×M is a compact G-invariant set with a dominated
splitting TM|ΛG = E ⊕≻ F. Assume that µ is a G-invariant measure satisfying the Lyapunov
exponents along E of µ-almost every point are all positive. A measurable partition ξ is said to
be µ-subordinate to WE,u if for µ-almost every point [ω, x], ξ([ω, x]) is an open set contained
in WE

δ([ω,x])
([ω, x]), where δ is the measurable function as in Lemma 6.4.

A G-invariant (not necessarily ergodic) measure µ supported on Λ is a Gibbs E-state if

1. For µ-almost every point, its Lyapunov exponents along E are all positive.

2. the conditional measures of µ are absolutely continuous with respect to Lebesgue measures
for any measurable partition µ-subordinate to WE,u.

When E is uniformly expanded2 by DG, a Gibbs E-state is also called a Gibbs u-state (as
in the deterministic case).

One has the following result, whose proof is direct and omitted.

2We say that E is uniformly expanded on ΛG, if there are constants C > 0 and λ ∈ (0, 1) such that for
any [ω, x] ∈ ΛG and any n ∈N such that ‖DG−n|E([ω,x])‖ ≤ Cλn.
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Lemma 6.9. Let G be the extended dynamical system generated by (Ω, ℓ). Assume that there is
ω f ∈ Ω such that ℓ(ω f ) = f . Assume that Λ is a compact invariant set of f with a dominated
splitting TM|Λ = E ⊕ F and µ is an invariant measure supported on Λ. Then µ is a Gibbs
E-state if and only if µG is a Gibbs E-state for G.

Recall that

ΛG
ℓ (E, α) = {[ω, x] ∈ ΛG :

n−1∏

i=0

‖DG−ℓ|E(G−iℓ([ω,x]))‖ ≤ e−αℓn, ∀n ∈N}.

The main result in this Section is:

Theorem 6.10. Assume thatη is a G-invariant measure and is supported on a compact invariant
set ΛG ⊂ ΩZ ×M with a dominated splitting TM|ΛG = E ⊕≻ F. Assume that {ηn} is a sequence
of ergodic Gibbs E-states with the following properties:

• limn→∞ ηn = η.

• There is a constant α > 0 such that for any n ∈ N, the Lyapunov exponents of ηn along
E are larger than α > 0.

• For any ε > 0, there is ℓ ∈N such that for any n large enough, one has

ηn(ΛG
ℓ (E, α)) ≥ 1 − ε.

Then η is a Gibbs E-state.

As a direct application of Theorem 6.10 in the uniform case, one has the following
corollary:

Corollary 6.11. Assume that η is a G-invariant measure and is supported on a compact
invariant set ΛG ⊂ ΩZ × M with a dominated splitting TM|ΛG = Euu ⊕≻ F, where Euu is
uniformly expanded by DG. If {ηn} is a sequence of Gibbs u-states of G and limn→∞ ηn = η,
then η is a Gibbs u-state.

Proof. When Euu is uniformly expanded, then it is clear that there is α > 0 such that the
Lyapunov exponents along Euu of any ergodic measure are larger than α. Moreover,
there is ℓ ∈N such that ΛG = ΛG

ℓ
(Euu, α). �

Another consequence of Theorem 6.10 is the following deterministic version.

Corollary 6.12. Assume that f is a C2 diffeomorphism, µ is an f -invariant measure and is
supported on a compact invariant set Λ ⊂ M with a dominated splitting TM|Λ = E ⊕≻ F.
Assume that {µn} is a sequence of ergodic Gibbs E-states with the following properties:

• limn→∞ µn = µ.

• There is a constant α > 0 such that for any n ∈ N, the Lyapunov exponents of µn along
E are larger than α > 0.

• For any ε > 0, there is ℓ ∈N such that for any n large enough, one has

µn(Λℓ(E, α)) ≥ 1 − ε.
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Then µ is a Gibbs E-state.

Proof. Let G be the extended dynamical system generated by (Ω, ℓ). Assume that there
is ω f ∈ Ω such that ℓ(ω f ) = f . Take ηn = µG

n for n ∈N and η = µG. By Corollary 5.2, one
has that limn→∞ ηn = η. By Lemma 5.5, one has that

• for any n ∈ N, ηn and µn has same Lyapunov exponents. Hence the Lyapunov
exponents of ηn along E are all larger than α.

By Lemma 6.9, for any n ∈ N, ηn is a Gibbs E-state for G since µn is a Gibbs E-state for
f . Since ΛG

ℓ
(E, α) ⊃ {ω f }

Z ×Λℓ(E, α), one has that for any ε > 0, there is ℓ ∈N such that
for any n large enough, one has

ηn(ΛG
ℓ (E, α)) ≥ 1 − ε.

By Theorem 6.10, η = µG is a Gibbs E-state. By applying Lemma 6.9 again, one has
that µ is a Gibbs E-state for f . �

We need the following result from Liu and Qian [18, Chapter VI: Proposition 2.2
and Corollary 8.1]. We restate it as the following form.

Theorem 6.13. Assume that ΛG be a compact G-invariant set with a dominated splitting
TM|ΛG = E ⊕≻ F. Let η be a Gibbs E-state supported on ΛG. Denote by

JE([ω, x]) = |DetDG|E([ω,x])|, ∀[ω, x] ∈ ΛG.

Then there exists the measurable partition ξ that is η-subordinate to WE,u. Moreover, for
any such measurable partition ξ, for µ̂-almost every ξ([ω, x]), one has

ρ([ω, y])

ρ([ω, z])
=

+∞∏

j=1

JE(G− j([ω, z]))

JE(G− j([ω, y]))
, µξ([ω,x]) − almost every [ω, y], [ω, z] ∈ ξ([ω, x]),

where ρ be the density of µξ with respect to the Lebesgue measure on ξ.

Based on Corollary 6.5, one can define the notion “the disintegration of µ on
Wu

loc
(ΛG
ℓ

)”. We first give some construction of the foliated chart. Recall that the plaque
families are given by the map Θ as in Theorem 6.3.

Lemma 6.14. 3 Assume that ΛG is a compact G-invariant set with a dominated splitting
TM|ΛG = E ⊕≻ F. Given ℓ ∈ N and α > 0, there are δ = δ(ℓ, α) > 0 and β = β(ℓ, α) ∈ (0, δ/4)
such that for any [ω, x] ∈ ΛG

ℓ
(E, α), there is a continuous map v : ΛG

ℓ
(E, α) → DE(δ/4) such

that ⋃

[ω′,x′]∈B([ω,x],β+ε)∩ΛG
ℓ

(E,α)

Θ([ω′, x′])(DE(δ/2 + ε) + v([ω′, x′]))

is the image of foliated chart Φ as in Definition 6.6 associated to compact set Γ(δ, β + ε, [ω, x])
for any ε small enough with the following precise properties:

3For a set A ⊂ Rdim E and v ∈ Rdim E, define A + v = {a + v, a ∈ A}.
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• Γ(δ, β + ε, [ω, x]) is chosen as

Γ(δ, β + ε, [ω, x]) = (ΩZ × PM(WF
δ ([ω, x])))

⋂



⋃

[ω′,x′]∈B([ω,x],β+ε)∩ΛG
ℓ

(E,α)

{WE
δ/2([ω′, x′]}


 .

• For any [ω′, x′] ∈ Γ, there is [ω∗, x∗] ∈ ΛG
ℓ

(E, α) such that the image ofΦ[ω′,x′] is contained
in WE

δ
([ω∗, x∗]).

Proof. By Corollary 6.5, there is δ = δ(ℓ, α) > 0 such that for any point [ω, x] ∈ ΛG
ℓ

,
WE
δ ([ω, x]) is contained in the unstable manifold of [ω, x].

Choose β > 0 that is much smaller than δ, one has that for any [ω′, x′] in the β-
neighborhood of [ω, x], WE

δ
([ω′, x′]) intersects {ω′} × PM(WF

δ
([ω, x])) transversely. The

intersection point is denoted by [ω′, y]. Take Γ(δ, β, [ω, x]) to be the union of this kind
of points.

The plaque family theorem (Theorem 6.3) in fact gives the foliated chart Φ. More
precisely, for the map Θ : ΛG → Embr(DE, ΩZ ×M) as given in Theorem 6.3, one has
that WE

δ
([ω′, x′]) = Θ([ω′, x′])(DE(δ)). For β > 0 small enough, one has that [ω′, y] is

close to the center of WE
δ ([ω′, x′]). Assume that [ω′, y] = Θ([ω′, x′])(v([ω′, y]))) for some

v([ω′, y]) ∈ DE close to 0.

Now one takes Φ([ω′, y])(DE(δ/2)) = Θ([ω′, x′])(DE(δ/2) + v([ω′, y])).
Note that one can modify a little bit the size of the plaques and the neighborhood

such that after the modification, it is still a foliated chart. Thus we introduce the small
auxiliary constant ε > 0. �

Definition 6.15. Assume that ΛG is a compact G-invariant set with a dominated splitting
TM|ΛG = E ⊕≻ F. Let µ be a G-invariant measure supported on ΛG. Given ℓ ∈ N and α > 0,
we say that the disintegration of µ on Wu

loc
(ΛG
ℓ

(E, α)) is absolutely continuous w.r.t. Leb
if for µ-almost every [ω, x] ∈ ΛG

ℓ
(E, α), for any foliated box Φ associated to Γ(δ, β, [ω, x]) as

in Lemma 6.14, the conditional measures of µ|Φ along the canonical partition are absolutely
continuous with respect to the Lebesgue measures along the elements of the partition.

Lemma 6.16. Assume thatΛG is a compact G-invariant set with a dominated splitting TM|ΛG =

E ⊕≻ F. Given ℓ ∈N and α > 0, there is L = L(ℓ, α) > 0 such that for any Gibbs E-state µ, for
µ-almost every point [ω, x] ∈ ΛG

ℓ
(E, α), for the foliated chart Φ constructed as in Lemma 6.14,

for the measurable partition ξ induced by the foliated chart Φ, one has that

ρ([ω, y])

ρ([ω, z])
≤ L, µξ([ω,x]) − almost every [ω, y], [ω, z] ∈ ξ([ω, x]),

where ρ is the density of µξ with respect to the Lebesgue measure on ξ.

Proof. This uses the bundles are Hölder and the density estimation before. By Lemma 6.2,
one knows there is αH > 0 such that TM|ΛG = E ⊕≻ F is in fact a (1 + αH)-dominated
splitting. By Theorem 6.3, the tangent spaces of the plaques are uniformly Hölder with
exponentαH. Consequently, there is a constant CH > 0 such that log JE is (CH, αH)-Hölder
along any plaque.
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By Theorem 6.13, the density function ρ of disintegration with respect to the measur-
able partition induced by the foliated chart Φ has the following property: for µ̂-almost
every [ω, x] ∈ Γ, for µ[ω,x]-almost every [ω, y], [ω, z] ∈ Φ[ω,x], we have

ρ([ω, y])

ρ([ω, z])
=

+∞∏

j=0

JE(G− j([ω, z]))

JE(G− j([ω, y]))

By Lemma 6.4, one has the constant C > 0 and λ∗ depending on ℓ and α such that
for any [ω, x] ∈ ΛG

ℓ
(E, α), for any [ω, y], [ω, z] ∈WE

δ ([ω, x]),

d(G−n([ω, y]),G−n([ω, z])) ≤ Cλn
∗ d([ω, y], [ω, z]).

Since the plaques are uniformly Hölder by Theorem 6.3, we have that

+∞∏

j=0

JE(G− j([ω, z]))

JE(G− j([ω, y]))
≤ exp{CH

∞∑

n=0

d(G− j([ω, z]),G− j([ω, y]))αH}

≤ exp{CH

∞∑

n=0

CαH(λαH
∗ )n},

It suffices to take

L = exp{CH

∞∑

n=0

CαH(λαH
∗ )n}.

�

To verify an invariant measure µ is a Gibbs E-states, it suffices to verify this fact for
an increasing sequence of Pesin blocks. The following Lemma 6.17 is folklore.

Lemma 6.17. Assume thatΛG is a compact G-invariant set with a dominated splitting TM|ΛG =

E ⊕≻ F. If a G-invariant measure µ has the following properties:

• limℓ→∞ µ(ΛG
ℓ

(E, α)) = 1,

• The disintegration of µ on Wu
loc

(ΛG
ℓ

(E, α)) is absolutely continuous w.r.t. Leb,

Then µ is a Gibbs E-state.

Proof of Theorem 6.10. The strategy is to apply Lemma 6.17 to conclude. Now we prove
that limℓ→∞ η(Λ

G
ℓ

(E, α)) = 1. By the assumption, for any ε > 0, there is ℓ ∈ N such that
for all n large enough, one has that ηn(ΛG

ℓ
(E, α)) ≥ 1− ε. Since ΛG

ℓ
(E, α) is a compact set,

one has that η(ΛG
ℓ

(E, α)) ≥ lim supn→∞ ηn(ΛG
ℓ

(E, α)) > 1−ε. By the arbitrariness of ε, one
has that limℓ→∞ η(Λ

G
ℓ

(E, α)) = 1.

Claim. There are finitely many foliated charts {Φi}n
i=1

associated to {Γ(δ, β, [ωi, xi])} as in
Lemma 6.14 having the following properties:

• For each 1 ≤ i ≤ n, one has that

η(Φi) > 0, η(∂Φi) = 0.
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• η(ΛG
ℓ

(E, α) \ ∪1≤i≤nΦ
i) = 0.

Proof of the Claim. For any point [ω, x] ∈ ΛG
ℓ

(E, α) contained in the support of µ, one can
construct a foliation chart Φ associated to Γ(δ, β+ ε, [ω, x]). One can modify ε a little bit
such that η(∂Φ) = 0. Since ΛG

ℓ
(E, α) is compact, one can find finitely many {Φi} whose

interiors cover the intersection of ΛG
ℓ

(E, α) and the support of η. �

Now for each Φ ∈ {Φ1,Φ2, · · · ,Φn}, since η(∂Φ) = 0, one has that limn→∞ ηn(Φi) =
η(Φi) > 0. Moreover, since η(∂Φ) = 0, one has that ηn|Φ → η|Φ in the weak-* topology.

Claim. For any open set γ ⊂ Γ whose boundary has zero η̂-measure , one has that

lim sup
n→∞

η̂n(γ) ≤ η̂(γ).

Proof of the Claim. Since the boundary of γ has zero η̂-measure, one has that

η̂(γ) = η̂(γ) = η(Φ(γ ×DE)).

Since γ ×DE is a compact set, one has that

η(Φ(γ ×DE)) ≥ lim sup
n→∞

ηn(Φ(γ ×DE)) = lim sup
n→∞

η̂n(γ) ≥ lim sup
n→∞

η̂n(γ).

Thus one can conclude. �

Choose an open set γ ⊂ Γ satisfying η̂(∂γ) = 0. For any open set A ⊂ DE, one has
that

η(Φ(γ ×A)) ≤ lim inf
n→∞

ηn(Φ(γ × A)).

By Theorem 6.16, one has that there is a constant L depending on ℓ, α, but indepen-
dent of n such that for any n ∈N, one has that

ηn(Φ(γ × A)) ≤ L.̂ηn(γ).Leb(A)

Consequently, by the above claim, one has that

η(Φ(γ × A)) ≤ L.̂η(γ).Leb(A)

By Lemma 6.7, the disintegration of µ for this foliated chart is absolutely continuous
with respect to the Lebesgue measure.

Since limℓ→∞ η(ΛG
ℓ

(E, α)) = 1, by Lemma 6.17, one has that η is a Gibbs E-state. �

6.4 The applications of Theorem 6.10: the proofs of Theorem 3.10 and

Theorem 4.9

We give the proof of Theorem 4.9.

Proof of Theorem 4.9. Note thatµ is a randomly ergodic limit. Assume thatµ = limn→∞ µn,
where µn is an ergodic stationary measure of a random dynamical system (G, νn), where
{(G, νn)}n∈N is a regular random perturbation of f .

By Lemma 5.1, for the extended dynamical system G, one has that limn→∞ µG
n = µ

G.
Note also that µG

n are Gibbs u-states as in the proof of [9, Proposition 5].
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Claim. If any ergodic component of µ is not an SRB, then there is i such that any ergodic
component ν of µ, one has that λc

i+1
(ν) ≥ 0 but there is an ergodic component ν− of µ such that

λc
i+2

(ν−) < 0.

Proof of the Claim. We have that µ is a Gibbs u-state by Corollary 6.11. See also [9,
Proposition 5]. Thus, any ergodic component ν of µ is also a Gibbs u-state by Proposi-
tion 3.1. If λc

1
(ν) < 0 for some ergodic component ν of µ, then ν is an SRB measure by

Lemma 3.12. This gives a contradiction. Thus λc
1
(ν) ≥ 0 for any ergodic component ν

of µ. The maximal element of

{ j : λc
j+1(ν) ≥ 0 for any ergodic component ν of µ}

satisfies the property as in the Claim. �

Now one can assume that any ergodic component of µ is not an SRB measure.

By the above claim, one has that λc
i+1

(ν) ≥ 0 for any ergodic component ν of µ.
Thus there is α > 0 (associated to the constant of the dominated splitting) such that
λc

i
(ν) > α > 0 for any ergodic component ν of µ. Thus, the same holds for µG.

Take E = Eu ⊕≻ Ec
1
⊕≻ · · · ⊕≻ Ec

i
. By Proposition 5.9, one has for any ε > 0 there is

ℓ = ℓ(ε) ∈N such that lim infn→∞ µG
n (ΛG

ℓ
(E, α)) > 1−ε. Now one can apply Theorem 6.10

to conclude that µG is Gibbs E-state, hence so is µ by Lemma 6.9. Thus we have proved
that µ ∈ Gi.

There are several cases:

1. λc
i+1

(ν0) = 0 for some ergodic component ν0 of µ.

2. There is α > 0 such that λc
i+1

(ν) > α > 0 for any ergodic component ν of µ.

3. λc
i+1

(ν) > 0 for any ergodic component ν of µ, but there is a sequence of ergodic
components {νn} of µ such that limn→∞ λc

i+1
(νn) = 0.

In Case 1, by Lemma 3.12, one knows that ν0 is an SRB measure. This contradicts to
the fact that we have assumed that no ergodic component of ν of µ is an SRB measure.
Thus Case 1 is impossible.

In Case 2, by following the arguments above, one knows that µ ∈ Gi+1. For com-
pleteness, we repeat the proof. Take E′ = Eu⊕≻Ec

1
⊕≻ · · ·⊕≻Ec

i
⊕≻Ec

i+1
. By Proposition 5.9,

one has for any ε > 0 there is ℓ = ℓ(ε) ∈ N such that lim infn→∞ µG
n (ΛG

ℓ
(E′, α)) > 1 − ε.

Now one can apply Theorem 6.10 to conclude that µG is Gibbs E′-state, hence so is µ
by Lemma 6.9. Thus we have proved that µ ∈ Gi+1. But there is an ergodic component
ν− of µ such that λc

i+2
(ν−) < 0, one has that ν− is an SRB measure by Lemma 3.12. Thus

Case 2 is impossible.

In Case 3, one knows that µ ∈ G0
i

by definition. Thus one can conclude the theorem.
�

We give the proof of Theorem 3.10.

Proof of Theorem 3.10. Take E = Eu ⊕≻ Ec
i
⊕≻ · · · ⊕≻ Ec

i
. By Corollary 5.10, for any ε > 0,

there is ℓ = ℓ(ε) ∈N such that

lim inf
n→∞

µn(Λℓ(E
c
j, α)) > 1 − ε.

Then one can apply Corollary 6.12 directly to conclude. �
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A The absolute continuity of invariant manifolds

Let W be an embedded manifold of M. A foliation F of W is absolutely coninuous if
for any two cross section Σ1 and Σ2 in W that are close and transverse to the foliation
F in W, the holonomy map h : Σ1 → Σ2 defined by the foliation F has the following
property: h∗(LebΣ1

) is absolutely continuous with respect to LebΣ2
.

A fundamental property of an absolutely continuous foliation is the following (one
can see [3, Lemma 3.4] for the proof):

Lemma A.1. Assume that W is an embedded sub-manifold of M and F is an absolutely
continuous foliation of W. Then the conditional measures of the Lebesgue measure of W with
respect to the measurable partition associated toF are absolutely continuous with respect to the
Lebesgue measures of the leaves of F .

About the plaque families, one has the following result (Lemma A.2) on the absolute
continuity. Recall that

Lemma A.2. Assume that f is a C2 diffeomorphism and assume thatΛ is a compact f -invariant
set with a dominated splitting TM|Λ = ∆1 ⊕≻ ∆2 ⊕≻ ∆3. Given ℓ ∈ N and α > 0, there is
δ = δ(ℓ, α) such that for any point x ∈ Λℓ(∆2, α), i.e.,

n−1∏

i=0

‖D f−ℓ|∆2( f−iℓ(x))‖ ≤ e−αℓn, ∀n ∈N

the foliation

{W∆1

δ
(y) : y ∈W∆1⊕∆2(x)}

is an absolutely continuous foliation of W∆1⊕∆2(x).

Proof. We give a sketch of the proof. By relaxing the constants, for any point x ∈
Λℓ(∆2, α), one has that

n−1∏

i=0

‖D f−ℓ|∆1⊕≻∆2( f−iℓ(x))‖ ≤ e−αℓn, ∀n ∈N

Thus, by Lemma 3.4, there is δ = δ(ℓ, α) such that W∆1⊕∆2

δ
(x) is contained in the (expo-

nentially) unstable manifold of x.

Thus, by reducing δ if necessary, for any point y ∈ W∆1⊕∆2

δ
(x), W∆1

δ
(y) is the stronger

unstable manifold in W∆1⊕∆2

δ
(x). The absolutely continuity follows from a similar argu-

ment in [4, Chapter 11]. �

Now we can give the proof of Proposition 3.9.

Proof of Proposition 3.9. It suffices to prove that for any 0 ≤ i ≤ k − 1, one has that
Gi ⊃ Gi+1. We set E = Euu ⊕≻ Ec

1
⊕≻ · · · ⊕≻ Ec

i+1
and ∆ = Euu ⊕≻ Ec

1
⊕≻ · · · ⊕≻ Ec

i
. For any

measure µ ∈ Gi+1, one knows that

1. µ-almost every point has its Lyapunov exponents along E are positive.

2. The conditional measures ofµ along WE,u are absolutely continuous w.r.t. Lebesgue.
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By Item 1, there are ℓ ∈ N and α > 0 such that x ∈ Λℓ(α,E
c
i+1

). By Lemma A.2, the
foliation

{W∆
δ (y) : y ∈WE(x)}

is an absolutely continuous foliation of WE(x). Thus from Lemma A.1, the conditional
measures of the Lebesgue measure on WE(x) along the foliation {W∆

δ
(y) : y ∈ WE(x)}

are Lebesgue measures. By Item 2 and the transitivity of conditional measures, one can
conclude. �

B The proof of the Pliss-like lemma

Proof of Lemma 5.8. For any given ε > 0, take

0 < ρ < min

{
1,

(γ2 − γ1)

2(2C − γ1)
,
γ2 − γ1

C − γ1
ε

}
.

The subset J ⊂N is defined by

J = { j ∈N :

n−1∑

i=0

ai+ j ≤ nγ2, ∀n ∈N}.

We are going to prove that lim supn→∞
1
n
#(J ∩ [1, n]) ≥ 1 − ε. Fix γ = (γ1 + γ2)/2.

Claim. For any L large enough, one has that

L∑

i=1

ai ≤ Lγ.

Proof. Choose a large integer L ∈ L such that ρL > 1. By the property of L, there are
integers G = {n1, n2, · · · , nk} ⊂ [1, L] such that #G ≥ (1 − ρ)L and ani

< γ1. Thus, one has
that

L∑

i=1

ai =
∑

m∈G

am +
∑

m∈[1,L]\G

am ≤ γ1(1 − ρ)L + C(ρL + 1) ≤ ((2C − γ1)ρ + γ1)L ≤ γL

when ρ < (γ2 − γ1)/2(2C − γ1). �

From the above Claim, by the usual Pliss Lemma as in [25], one knows that J is a
non-empty set with infinite cardinality.

To conclude, it suffices to prove that for some large J ∈ J, one has that J ∩ [1, J] ≥
(1 − ε)J. We will prove by contradiction and assume that J ∩ [1, J] < (1 − ε)J for any
large J. [1, J] \ J can be split into finitely many intervals {Iα = [cα, dα)}α∈A such that

•
∑

m∈[cα,dα) am ≥ (dα − cα)γ2 for any α ∈ A.

•
∑
α∈A(dα − cα) ≥ εJ.

Set B = ∪α∈AIα. Since lim infn→+∞
1
n
#{[0, n − 1] ∩ L} > 1 − ρ, for J large enough, one has

that #(L ∩ [1, J]) ≥ (1 − ρ)J.
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Claim. One has the following estimate:

#(B \ L) ≥
γ2 − γ1

C − γ1
#(B) ≥

γ2 − γ1

C − γ1
εJ.

Proof. We have the following two estimates:

•
∑

i∈B ai > (#B)γ2.

•
∑

i∈B ai ≤
∑

i∈B∩L ai+
∑

i∈B\L ai ≤ (#(B∩L))γ1+(#(B\L))C = (#B)γ1+(#(B\L))(C−γ1).

By combining the above two inequalities one obtains that #(B \L) ≥
γ2−γ1

C−γ1
#(B). The last

inequality follows from #B ≥ εJ. �

Consequently, we have that

ρJ ≥ #([1, J] \ L) ≥ #(B \ L)

≥
γ2 − γ1

C − γ1
#(B) ≥

γ2 − γ1

C − γ1
εJ.

This gives a contradiction since ρ < (γ2 − γ1)ε/(C − γ1). �
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