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Abstract

We further elaborate on the solvability of stochastic partial differential equations (SPDEs).
We shall discuss non-autonomous partial differential equations with an abstract realization
of the stochastic integral on the right-hand side. Our approach allows the treatment of
equations with mixed type, where classical solution strategies fail to work. The approach
extends prior observations in [Süß, A. & Waurick, M. A Solution Theory for a General Class
of SPDEs. Stochastics and Partial Differential Equations: Analysis and Computations, 2017,
5, 278-318], where the respective results were obtained for linear autonomous equations and
(multiplicative) white noise.
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1 Introduction

In this article we discuss the well-posedness of and causality for a class of non-autonomous partial
differential equations/inclusions perturbed with multiplicative noise. Our strategy is based on the
rationale outlined in [15]. In this reference equations of the following type were discussed:

(

∂0M(∂−1
0 ) +A

)

u =

∫ ·

0

σ(u)dB(s), (1.1)

where B is an appropriate (vector-valued) Brownian motion, σ is a Lipschitz continuous mapping,
∂0 is the time derivative, M : z 7→ M(z) ∈ L(H) is an analytic function that allows for defining
M(∂−1

0 ) by means of an appropriate functional calculus, and A is a skew-selfadjoint operator in a
Hilbert space H . It has been shown that many standard stochastic partial differential equations
fit into the framework described by (1.1).

In fact, the stochastic heat and wave equation with multiplicative noise are special cases of
(1.1). In particular, it is also possible to formulate a version of Maxwell’s equation with multi-
plicative noise.

In this article we will enlarge the admissible class of stochastic partial differential equations
towards non-autonomous or even non-linear inclusions, which are subject to a stochastic pertur-
bation of the right-hand side.
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In a nutshell, the strategy outlined in [15], that is, a way to solving (1.1), is to find a Hilbert
space that leads to

u 7→
(

∂0M(∂−1
0 ) +A

)−1
∫ ·

0

σ(u)dB(s),

being a strict contraction. In this exposition, an adapted result can be found in Theorem 5.11
(see also Theorem 5.12). In order to obtain the main result in [15], a key observation is that the

operator
(

∂0M(∂−1
0 ) +A

)−1
is causal, which implies that in the fixed point iteration predictable

processes are mapped to predictable processes, see also Theorem 5.8. The above mapping becomes
a strict contraction as the Hilbert space setting is formulated in such a way that the Lipschitz
constant of u 7→

∫ ·

0 σ(u)dB(s) can be made arbitrarily small, see Proposition 5.5 here.
In comparison to [15], we shall not elaborate so much on the classical notions of solving stochas-

tic partial differential equations, but rather refer the reader instead to standard monographs such
as [13, 14, 18].

We shall describe the plan of this note next. After having exemplified typical applications of the
rational developed in this manuscript, we establish – as a another key ingredient – the time deriva-
tive as a normal and continuously invertible operator in exponentially weighted Hilbert spaces. We
recall the notion of evolutionary mappings and causality and draw some interconnections of these
concepts. The basic fixed point theorem to be applied to stochastic partial differential equations
can be found in Theorem 3.6.

Afterwards, in Section 4, we recall the essentials of the deterministic solution theory for non-
autonomous equations. We shall also mention a non-linear variant of the solution theory at hand
so that non-linear stochastic partial differential inclusions can like-wise be considered.

Section 5 is devoted to the discussion of stochastic evolutionary equations. In Section 5.1, we
will set the stage for the probabilistic solution theory and rephrase the description of stochastic
integration as outlined in [9]. The solution theory for non-autonomous stochastic evolutionary
equations is provided in Section 5.2. More precisely, Theorems 5.11 and 5.12 are the main con-
tributions of this manuscript substantially extending the main result of [15]. In Section 5.3, we
conclude this article by providing some examples, which might be difficult – if not impossible – to
treat with a more classical approach.

2 A glimpse on some particular results

In order to describe particular applications of the well-posedness results in this manuscript, we
need to introduce some operators from vector analysis realised as certain unbounded operators in
Hilbert spaces.

Throughout, let Ω ⊆ R
d be an open set for some integer d > 0.

Definition 2.1. We define

˚grad: H1
0 (Ω) ⊆ L2(Ω) → L2(Ω)d, φ 7→ (∂iφ)i∈{1,...,d},

˚Grad: H1
0 (Ω)

d ⊆ L2(Ω)d → L2
sym(Ω)

d×d,Φ 7→ 1

2
(∇Φ +∇ΦT ),

curl : H(curl,Ω) ⊆ L2(Ω)3 → L2(Ω)3,Ψ 7→
(

∑

j,k∈{1,2,3}

εijk∂jΨk

)

i∈{1,2,3}
,

where H(curl,Ω) is the space of L2-vector fields with distributional curl still being in L2. The
space L2

sym(Ω)
d×d denotes the set of symmetric d-by-d matrices with entries in L2(Ω).

We also put ˚curl := curl∗, div := − ˚grad
∗
, and Div := − ˚Grad

∗
. We note that for Ω with

sufficiently smooth boundary belonging to the domain of ˚curl corresponds to H(curl,Ω)-vector
field with vanishing tangential component at the boundary. The definitions presented, however,
do not require any regularity of the boundary.
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In all the examples to come, we assume that G is a separable Hilbert space and that L ⊆
L(G,H) satisfies the assumptions in 5.7 below for either of the choices

H ∈ {L2(Ω), L2(Ω)3 ⊕ L2(Ω)3, L2(Ω)d},

which will be clear from the context. Moreover, we assume σ : H → L be Lipschitz continuous
with σ(0) = 0. In order to have a concrete example at hand, we shall choose X = W to be the
Wiener process with values in G satisfying W (t) = 0 for all t 6 0. Note that in this case F is
chosen to be the natural filtration ofW as in Example 5.4(a), which leads to α = λ⊗P (λ denoting
the Lebesgue measure on R>0). For the definition of IW,α

ν we refer to Section 5.1; also consult
Corollary 5.10 for IW,α ◦ σ̃.

Also we refer to Section 3 for a definition of ∂0,ν and to Definition 5.2(c) for a definition of
L2
ν,pr(R;L

2(R;H)).

2.1 Standard linear examples

We start out with a first order formulation of the heat equation. Let a : R → L(L2(Ω)d) be
bounded, Lipschitz continuous with a(t) = a(t)∗ > c for all t ∈ R and some c > 0; denote
b(t) := a(t)−1 and by b′ the weak derivative of b.

Theorem 2.2. There exists ν > 0 such that for all f ∈ L2
ν,pr(R;L

2(P;L2(Ω))) we find a uniquely

determined uf ∈ L2
ν,pr(R;L

2(P;L2(Ω)) and qf ∈ L2
ν,pr(R;L

2(P;L2(Ω)d) such that

(

∂0,ν

(

0 0
0 b(m)

)

+

(

1 0
0 −b′(m)

)

+

(

0 div
˚grad 0

)

)

(

uf
qf

)

=

(

∂−1
0,νf + IW,α ◦ σ̃(uf )

0

)

.

Proof. This is a special case of Theorem 5.16 for P = 0, C = ˚grad.

We shall formally rewrite the equation satisfied by (uf , qf ) in Theorem 2.2. We compute using
the second equation,

b(m)∂0,νqf = ∂0,νb(m)qf − b′(m)qf = − ˚graduf .

Hence,
∂0,νqf = −a(m) ˚graduf .

This, in turn, leads to, using the first equation,

∂−1
0,νf + IW,α ◦ σ̃(uf ) = uf + div qf = uf − ∂−1

0,ν div a(m) ˚graduf ,

or,
∂0,νuf − div a(m) ˚graduf = f + ∂0,νIW,α ◦ σ̃(uf ),

which is the stochastic heat equation.
Quite similarly, one can deal with the stochastic wave equation. We shall, however, discuss

a different hyperbolic type example next – the stochastic Maxwell’s equations. For this, we let
ε, µ, η : R → L(L2(Ω)3) be bounded, Lipschitz continuous with ε(t) = ε(t)∗, µ(t) = µ(t)∗ > c for
all t ∈ R and some c > 0. In this case ε, µ, η describe the dielectricity, the magnetic permeability,
and the electric conductivity, respectively.

Theorem 2.3. There exists ν > 0 such that for all (J,K) ∈ L2
ν,pr(R;L

2(P;L2(Ω)3 ⊕ L2(Ω)3))
there exists uniquely determined (E,H) ∈ L2

ν,pr(R;L
2(P;L2(Ω)3 ⊕ L2(Ω)3)) such that

(

∂0,ν

(

ε(m) 0
0 µ(m)

)

+

(

η(m) 0
0 0

)

+

(

0 − curl
˚curl 0

)

)

(

E
H

)

=

(

J
K

)

+ IW,α ◦ σ̃((E,H)).
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Proof. The result follows upon applying Theorem 5.11, which in turn prerequisites the validity of
Assumption 4.1 under the setting:

H = L2(Ω)3 ⊕ L2(Ω)3, A =

(

0 − curl
˚curl 0

)

,

M =

(

ε(m) 0
0 µ(m)

)

, M′ =

(

ε′(m) 0
0 µ′(m)

)

,

N =

(

η(m) 0
0 0

)

.

By Lemma 5.13 applied to C = − ˚curl, A is m-accretive. It is also elementary to see that M, M′

and N satisfy the positive definiteness conditions, we refer to Lemma 5.15 for a similar argument.
This concludes the proof.

2.2 A nonlinear example

We conclude this examples section with a stochastic variant of the equations of viscoplasticity
with internal variables. We refer to [1, 17] for a deterministic model.

In the stochastic setting discussed here, we shall assume that the equations governing the
displacement field u are stochastically perturbed and that the nonlinearity is slightly different
from the equations discussed in [1, 17]. Let N ∈ N. The system to be studied reads

∂20,νRu−Div T = f + ∂0,νIW,α ◦ σ̃(u), (2.1)

T = D( ˚Gradu−Bz), (2.2)

(B∗∂−1
0,νT − L∂−1

0,νz, z) ∈ g, (2.3)

where R : R → L(L2(Ω)d), D : R → L(L2
sym(Ω)

d×d), L : R → L(L2(Ω)N ) are bounded, Lipschitz
continuous, R(t) = R(t)∗,L(t) = L(t)∗, D(t) = D(t)∗ with R(t) > c, D(t) > c and L(t) >

c for all t ∈ R and some c > 0. D is the elasticity tensor, f is a given volume force, B ∈
L(L2(Ω)N , L2

sym(Ω)
d×d) describes the inelastic part ep = Bz of the strain tensor e = ˚Gradu;

g ⊆ L2(Ω)N ⊕ L2(Ω)N is a maximal monotone relation with (0, 0) ∈ g. The unknowns of the
above model are the displacement u, the stress tensor T , and the vector of internal variables z,
where the latter assumes values in L2(Ω)N .

We reformulate the system (2.1)–(2.3). For this, we introduce

T̂ := ∂−1
0,νT and w := B∗T̂ − L(m)∂−1

0,νz.

Then (2.1) reads
∂0,νR(m)u −Div T̂ = ∂−1

0,νf + IW,α ◦ σ̃(u).
Furthermore, (2.3) becomes

(w, ∂0,νL
−1(m)(B∗T̂ − w)) ∈ g

and (2.2) yields

∂0,νD
−1(m)T̂ − (D−1)′(m)T̂ = D−1(m)∂0,ν T̂ = ˚Gradu− ∂0,νBL

−1(m)(B∗T̂ − w).

Altogether, we obtain








u
w

T̂



 ,





∂−1
0,νf + IW,α ◦ σ̃(u)

0
0







 ∈ ∂0,νM+N +A.

with

M =





R(m) 0 0
0 L−1(m) −L−1(m)B∗

0 −BL−1(m) D−1(m) +BL−1(m)B∗
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N =





0 0 0
0 0 0
0 0 −(D−1)′(m)



 and

A =





0 0 −Div
0 g 0

− ˚Grad 0 0



 .

By applying a symmetric Gauss-step, it is not difficult to show that the operators M,N satisfy
the assumptions stated in Theorem 5.12 with H = L2(Ω)d ⊕ L2(Ω)N ⊕ L2

sym(Ω)
d×d. Moreover,

note that by [17, p. 64], also the relation A satisfies the assumptions in Theorem 5.12. Thus, we
have shown the following result:

Theorem 2.4. Let M,N and A as above. Then there exists ν > 0 such that for all f ∈
L2
ν,pr(R;L

2(P;L2(Ω)d)) there exists a unique
(

u,w, T̂
)

∈ L2
ν,pr(R;L

2(P;L2(Ω)d⊕L2(Ω)N⊕L2
sym(Ω)

d×d))

satisfying

∂0,νM +N +A ∋
((

u,w, T̂
)

, (∂−1
0,νf + IW,α ◦ σ̃(u), 0, 0)

)

.

We shall now develop the theory in order to properly justify the above results.

3 The time derivative and evolutionary mappings

Let H be a Banach space. For ν ∈ R we define

L2
ν(R;H) := {f ∈ L2

loc(R;H);

∫

R

|f(t)|2H exp(−2νt) dt <∞}

endowed with the obvious norm. It is easy to see that L2
ν(R;H) is a Banach space, as well.

Specializing to H being a Hilbert space, we denote by H1
ν (R;H) the Sobolev space of once weakly

differentiable functions with derivative in L2
ν(R;H). We obtain (see [7, Section 2]), that

∂0,ν : H
1
ν (R;H) ⊆ L2

ν(R;H) → L2
ν(R;H)

f 7→ f ′

is a densely defined, closed and normal linear operator. Moreover, we have ∂∗0,ν = −∂0,ν + 2ν.
In applications to be discussed later on, ∂0,ν will be our realization of the time derivative for ν > 0
‘large enough’. Note that for ν > 0, we obtain that ∂0,ν is continuously invertible with

∂−1
0,νf(t) =

∫ t

−∞

f(τ) dτ,

where the integral is well-defined for all f ∈ L2
ν(R;H) in the Bochner sense and we have ‖∂−1

0,ν‖ =
1/ν, see also [7, Corollary 2.5].

For the treatment of evolutionary equations with non-autonomous coefficients, we will need the
notion of evolutionary mappings. In fact, also in the discussion of stochastic partial differential
equations, this notion proved useful for the abstract description of the stochastic integral.

Definition 3.1. Let H,G be Banach spaces, ν > 0. Let

F : dom(F ) ⊆
⋂

µ>ν

L2
µ(R;H) →

⋂

µ>ν

L2
µ(R;G),

where dom(F ) is supposed to be a vector space. We call F evolutionary (at ν), if for all µ > ν, F
satisfies the following properties

5



(i) F is Lipschitz continuous as a mapping

F0,µ : dom(F ) ⊆ L2
µ(R;H) → L2

µ(R;G), φ 7→ F (φ),

(ii) ‖F‖ev,Lip := lim supµ→∞ ‖Fµ‖Lip < ∞, with Fµ := F0,µ denoting the Lipschitz continuous
extension of F .

The non-negative number ‖F‖ev,Lip is called the the eventual Lipschitz constant of F . We
denote

Lev,ν(H,G) := {F ;F evolutionary at ν}, Lev,ν(H) := Lev,ν(H,H).

If, in addition, Fµ leaves dom(Fµ) = dom(F )
L2

µ
invariant (µ > ν), then we call F invariant

evolutionary (at ν). A mapping F , which is evolutionary at ν, is called densely defined, if, for all
µ > ν, dom(F ) ⊆ L2

µ(R;H) is dense.

Next, we introduce the concept of causality, as it has been introduced in [19] as a particular
concept for (nonlinear) mappings in Banach spaces. In the applications to follow, we will mainly
focus on Lipschitz continuous Hilbert space valued mappings, see also [21, Definition 2.2.2 and
Remark 2.2.3].

Definition 3.2. (a) Let H be a Banach space. A family R = (Rt)t∈R is called resolution of the
identity (in H), if for all t ∈ R

Rt = R2
t ∈ L(H) and 2 lim

t→±∞
Rt = 1± 1,

where the limit is in the strong operator topology of L(H). The pair (H,R) is called resolution
space.

(b) Let (H,R), (K,Q) be resolution spaces and let F : dom(F ) ⊆ H → K, D ⊆ K ′. We call
F causal on D, if for all r > 0, t ∈ R, φ ∈ D, the mapping

(BF (0, r), |Rt(· − ·)|) → (K, |〈Qt(· − ·), φ〉|), x 7→ F (x)

is Lipschitz continuous, where BF (0, r) := {x ∈ dom(F ); |x|2 + |F (x)|2 < r}; if D = K ′, we call F
causal.

Proposition 3.3 ([19, Theorem 1.7] and [21, Theorem 2.2.4]). Let (H,R), (K,Q) be resolution
spaces, F : dom(F ) ⊆ H → K densely defined and Lipschitz continuous, D ⊆ K ′ separating for
K. Then the following conditions are equivalent:

(i) F is causal on D,

(ii) F is causal,

(iii) for all t ∈ R,
(dom(F ), |Rt(· − ·)| → (K, |Qt(· − ·)|), x 7→ F (x)

is Lipschitz continuous.

(iv) for all t ∈ R, we have Qt ◦ F = Qt ◦ F ◦Rt.

Proof. The implication (ii)⇒(i) is trivial, both the implications (iii)⇒(ii) and (iv)⇒(iii) are easy
to obtain. Thus, it suffices to prove that (i) is sufficient for (iv). For this, let t ∈ R and φ ∈ D.
For ψ ∈ dom(F ) we find ψn ∈ dom(F ) such that ψn → Rtψ in H as n→ ∞. By the boundedness
of (ψn)n in H , and by causality of F on D, we find C > 0 such that for all n ∈ N, we obtain

|〈QtF (ψ)−QtF (ψn), φ〉| 6 C|Rtψ −Rtψn|.

Letting n→ ∞ in the latter inequality and using that R2
t = Rt, we deduce that

|〈QtF (ψ)−QtF (Rtψ), φ〉| 6 C|Rtψ −R2
tψ| = 0.

6



Thus, since D is separating for K, we infer

QtF (ψ) = QtF (Rtψ) (ψ ∈ dom(F )).

By continuity, we obtain Qt ◦ F = Qt ◦ F ◦Rt.

We recall a variant of [15, Lemma 2.13]. As the assumptions vary slightly from the ones used
in [15, Lemma 2.13], we carry out the proof.

Lemma 3.4. Let F be evolutionary at ν > 0. Assume that dom(F ) ∩ dom(Fχ(−∞,a]) is dense in
dom(F ) with respect to the L2

µ(R;H)-norm for all a ∈ R and µ > ν. Then Fη|dom(Fη)∩dom(Fµ) =
Fµ|dom(Fη)∩dom(Fµ) for all η > µ > ν.

Proof. Let φ ∈ dom(Fη)∩dom(Fµ). By assumption, we can choose a sequence (φn)n in dom(F )∩
dom(Fχ(−∞,a]) such that φn → φ in L2

µ(R;H) as n → ∞. Moreover, we deduce that dom(F ) ∋
χ(−∞,a]φn → χ(−∞,a]φ in both L2

η(R;H) and L2
µ(R;H) as n → ∞. In particular, we obtain

χ(−∞,a]φ ∈ dom(Fµ) ∩ dom(Fη) and

Fµ(χ(−∞,a]φ) = lim
n→∞

Fµ(χ(−∞,a]φn)

= lim
n→∞

F (χ(−∞,a]φn)

= lim
n→∞

Fη(χ(−∞,a]φn) = Fη(χ(−∞,a]φ).

Next, we note that χ(−∞,a]φ → φ as a → ∞ in L2
η(R;H) and L2

µ(R;H) since φ ∈ L2
η(R;H) ∩

L2
µ(R;H). Hence, Fµ(φ) = Fη(φ).

We shall further point out another consequence of evolutionarity and the condition on the
domain in the previous result. In fact, this is a combination of the arguments used for [7, Theorem
4.5] and [21, Remark 2.1.5]. For this, from now on and throughout the whole manuscript, we shall
use Rt = Qt = χ(−∞,t] as the standard resolution of the identity, and thus (L2

ν(R;H), (χ(−∞,t])t)
as resolution space.

Lemma 3.5. Let F be evolutionary at ν > 0. Assume that dom(F ) ∩ dom(Fχ(−∞,a]) is dense in
dom(F ) with respect to the L2

µ(R;H)-norm for all a ∈ R and µ > ν. Then Fµ is causal for all
µ > ν.

Proof. Let µ > ν. We apply Proposition 3.3 and prove Qt◦F = Qt◦F ◦Qt for all t ∈ R. Note that
this implies (iv) in Proposition 3.3 as both the left- and the right-hand side are densely defined in
dom(Fµ). So, let t ∈ R, φ ∈ C̊∞(R;G′) and ψ ∈ dom(F )∩dom(Fχ(−∞,t]). We compute for η > µ

|〈Qt(F (ψ)− F (Qtψ)), φ〉L2(R;G),L2(R;G′)|
= |〈(F (ψ) − F (Qtψ)), Qtφ〉L2(R;G),L2(R;G′)|
6 ‖Fη‖Lip‖ψ −Qtψ‖L2

η
‖Qtφ‖L2 exp(ηt).

We compute further

‖ψ −Qtψ‖2L2
η
exp(2ηt) =

∫

R

|ψ(s)(1 − χ(−∞,t](s))| exp(−2η(s− t)) ds

=

∫

R

|ψ(s+ t)(1− χ(−∞,t](s+ t))| exp(−2ηs) ds

=

∞
∫

0

|ψ(s+ t)| exp(−2ηs) ds→ 0 (η → 0),

and thus, we deduce that Qt(F (ψ)− F (Qtψ)) = 0, as desired.
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We conclude this section with a perturbation result, which we need for a solution theory for
non-autonomous stochastic partial differential equations.

Theorem 3.6 (see also [15, Corollary 2.15]). Let H be a Banach space, ν > 0, S, F ∈ Lev,ν(H),
F invariant evolutionary. Let S be densely defined, ‖S‖ev,Lip‖F‖ev,Lip < 1, and Sµ[dom(Fµ)] ⊆
dom(Fµ) for all µ > ν. Then for all f ∈ dom(Fµ) the mapping

Φµ(f) : dom(Fµ) → dom(Fµ)

u 7→ Sµf + Sµ(Fµ(u))

admits a unique fixed point uf as long as µ > ν is large enough, that is, a unique solution uf of
the problem

uf − Sµ(Fµ(uf )) = Sµ(f). (3.1)

The mapping f 7→ uf is evolutionary. If S and F are causal, then so is f 7→ uf . If dom(F ) ∩
dom(Fχ(−∞,a]) is dense in dom(F ) with respect to L2

µ(R;H) for all sufficiently large µ, then
f 7→ uf does not depend on µ in the sense of Lemma 3.4.

Proof. Let µ > ν such that ‖Sµ‖Lip‖Fµ‖Lip < 1. Then it is easy to see that Φµ(f) defines a
strict contraction. By standard a posteriori estimates, we deduce that we find C > 0 such that
‖f 7→ uf‖Lip 6 1/(1− ‖S‖ev,Lip‖F‖ev,Lip) + C.

It remains to prove causality of the fixed point mapping. For this it suffices to observe that
Φµ(f) is causal. This, however, follows from the fact that composition of causal mappings is still
causal.

The independence of µ is a consequence of Lemma 3.4.

In applications, the mapping Sµ will be the solution operator of an abstract deterministic
partial differential equation and thus, the solution uf in (3.1) turns out to be the solution of this
deterministic PDE perturbed by an additional mapping Fµ, which will be our stochastic integral
operator.

4 The deterministic solution theory

In this section we will review the solution theory for a class of (non-autonomous) linear partial
differential equations which has its roots in the autonomous version presented in [11]. Later on,
this has been generalized to non-autonomous or non-linear equations, see e.g. [16, 12, 17, 20].
To keep this article conveniently self-contained, we shall summarize the well-posedness theorem
outlined in [21, Theorem 3.4.6]. However, we will also present the main results of [17], in order to
obtain a non-linear variant for stochastic partial differential equations.

The main hypothesis for the linear case is presented next.

Assumption 4.1 ([21, Hypothesis 3.4.4]). Let H be a Hilbert space, ν > 0, M,M′,N ∈
Lev,ν(H). Assume that C̊∞(R;H) ⊆ dom(M) ∩ dom(M′) ∩ dom(N ). Let A : dom(A) ⊆ H → H
be densely defined and m-accretive. Assume that

∀µ > ν : M∂0,µ ⊆ ∂0,µMµ −M′
µ,

∃c > 0 ∀µ > ν, t ∈ R : ℜ〈Qt (∂0,µM+N )φ, φ〉0,µ > c〈φ,Qtφ〉0,µ
(φ ∈ C̊∞(R;H)).

With the latter set of assumptions, we can show the following well-posedness theorem covering
a large class of linear non-autonomous evolutionary equations:

Theorem 4.2 ([21, Theorem 3.4.6]). Impose Assumption 4.1. Then the operator

B := ∂0,νM+N +A

is densely defined and closable. Moreover, its closure is onto and continuously invertible in
L2
µ(R;H) for all µ > ν. Furthermore, S := B−1 is evolutionary at ν, densely defined and causal.
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Lemma 4.3. Let G be a Hilbert space, B : dom(B) ⊆ G → G a densely defined linear operator.
Assume there exists c > 0 with the property that

ℜ〈Bφ, φ〉 > c〈φ, φ〉, (4.1)

as well as
ℜ〈B∗ψ, ψ〉 > c〈ψ, ψ〉, (4.2)

for all φ ∈ dom(B) and ψ ∈ dom(B∗). Then B is closable and B
−1

exists as an element of L(G),

the space of bounded linear operators on G and ‖B−1‖ 6 1/c.

Proof. Before we come to the proof of the assertion, we need some preparations. Note that for
λ > 0 the operator 1 + λB is one-to-one by (4.1). Moreover, by (4.2) we infer that its adjoint
1+λB∗ is one-to-one, as well, and hence, (1+λB)−1 is densely defined. Again, (4.1) implies that
(1 + λB)−1 is bounded with norm less than or equal to 1. Thus, its closure is an element in L(G)
with the same norm.
For φ ∈ dom(B) we obtain

(1 + λB)−1φ− φ = −(1 + λB)−1λBφ → 0 (λ→ 0) (4.3)

and since dom(B) is dense and the family
(

(1 + λB)−1
)

λ>0
is bounded, we infer that (4.3) holds

for each φ ∈ G.
We now prove the closability of B. For doing so, let (φn)n∈N in dom(B) with φn → 0 and Bφn → y
for some y ∈ G as n→ ∞. Thus, we infer for each λ > 0

(1 + λB)−1y = lim
n→∞

(1 + λB)−1Bφn

=
1

λ
lim
n→∞

(

φn − (1 + λB)−1φn

)

= 0,

and thus, letting λ tend to 0, (4.3) yields y = 0, proving that B is closable. Noting that (4.1) and
(4.2) yield that B−1 is a densely defined bounded linear operator with norm less than or equal to
1
c
, the assertion follows with B−1 = B

−1
.

The crucial part of the proof of Theorem 4.2 is to show that B has dense range. For this, we
will employ the following lemma.

Lemma 4.4. Let H be a Hilbert space, D : dom(D) ⊆ H → H, C : dom(C) ⊆ H → H closed.
Assume that dom(D) ∩ dom(C) ⊆ H is dense. Furthermore, let (Tn)n in L(H) be such that
Tn → 1 in the strong operator topology. Moreover, assume that Tn[dom(D)] ⊆ dom(D) and
ran(Tn) ⊆ dom(C) for each n ∈ N, as well as

[Tn, C], [Tn, D] bounded for all n ∈ N,

[Tn, C], [Tn, D] → 0 (n → ∞),

where the convergence holds in the strong operator topology. Then (C +D)∗ = C∗ +D∗.

Proof. Note that (C + D)∗ ⊇ C∗ +D∗ is clear. So, let φ ∈ dom((C + D)∗) and for n ∈ N we
define φn := T ∗

nφ. At first we show that φn ∈ dom((C +D)∗). For this, let η ∈ dom(C +D). We
compute

〈(C +D)η, φn〉 = 〈(C +D)η, T ∗
nφ〉

= 〈Tn(C +D)η, φ〉
= 〈(C +D)Tnη, φ〉 + 〈[Tn, C]η, φ〉+ 〈[Tn, D]η, φ〉
= 〈η, T ∗

n(C +D)∗φ〉+ 〈η, [Tn, C]∗φ〉+ 〈η, [Tn, D]∗φ〉,

9



which shows that (C+D)∗φn = T ∗
n(C+D)∗φ+[Tn, C]

∗φ+[Tn, D]∗φ. Next, note that CTn ∈ L(H)
by the closed graph theorem and [Tn, C] ∈ L(H) by assumption. Hence, TnC = [Tn, C] + CTn ∈
L(H) as well and thus, we deduce that TnC

∗
= C∗T ∗

n ∈ L(H). In particular, we infer that
T ∗
n maps into dom(C∗). Hence, φn ∈ dom(C∗). Furthermore, for η ∈ dom(D), we have that
Tmη ∈ dom(D) ∩ dom(C) by assumption. Moreover, we have

Tmη → η, and DTmη = [D,Tm]η + TmDη → Dη (m→ ∞).

Thus, dom(C + D) is dense in dom(D) with respect to the graph norm of D. Altogether, we
compute for all η ∈ dom(C +D)

〈Dη, φn〉 = 〈(C +D)η, φn〉 − 〈Cη, φn〉
= 〈η, (C +D)∗φn〉 − 〈η, C∗φn〉,

which proves that φn ∈ dom(D∗) and D∗φn = (C +D)∗φn − C∗φn. Hence,

T ∗
n(C +D)∗φ+ [Tn, C]

∗φ+ [Tn, D]∗φ = (C +D)∗φn = (D∗ + C∗)φn.

Next, we may let n→ ∞ in the latter equality and obtain the assertion.

Proposition 4.5. Impose Assumption 4.1. Then dom(∂0,µ) is a core for (∂0,µM)∗.

Proof. It suffices to observe that dom(∂0,µ) = dom(∂∗0,µ) and (∂0,µM)∗ = M∗∂∗0,µ.

Proof of Theorem 4.2. Let µ > ν. First of all note that B is densely defined, since C̊∞(R; dom(A)) ⊆
dom(B). Moreover, note that

ℜ〈Bφ, φ〉L2
µ
> c〈φ, φ〉L2

µ
(4.4)

by Assumption 4.1. Next, since B is densely defined, we can use [2, Theorem 4.2.5], to deduce
that B is closable. Note that inequality (4.4) remains true for φ ∈ dom(B).

We apply Lemma 4.3 to the operator B. For this, we compute the adjoint of B. With the
setting C := ∂0,µMµ+Nµ, D := A and Tn := (1+(1/n)∂0,µ)

−1, we employ Lemma 4.4. We check
the hypothesis of Lemma 4.4 next. First of all, note that Tn is well-defined with ‖Tn‖ 6 1 and
that Tn → 1 in the strong operator topology. Clearly, Tn leaves dom(D) invariant and attains
values in dom(C). Moreover, both the operators

TnC ⊆ ∂0,µTnMµ + TnNµ and CTn =
(

∂0,µMµ +Nµ

)

Tn =
(

M′
µ +Mµ∂0,µ +Nµ

)

Tn

are densely defined and bounded. Thus, so is

[Tn, C] = [Tn,Nµ] +
1

n
∂0,µTnM′

µTn.

It is not difficult to see that [Tn, C] → 0 as n→ ∞. Observe that

[Tn, D] ⊆ 0.

So that [Tn, D] = 0 → 0 as n→ ∞. Thus, by Lemma 4.4, we infer

B∗ = (C +D)∗ = C∗ +D∗ = (∂0,µMµ +Nµ)
∗ +A∗.

By the boundedness of Nµ, we deduce that (∂0,µMµ +Nµ)
∗
= (∂0,µMµ)

∗
+ N ∗

µ . Thus, by
Proposition 4.5, dom(∂0,µ) is an operator core for C∗. For φ ∈ dom(∂0,µ) ⊆ dom(C) we compute

ℜ〈C∗φ, φ〉µ = ℜ〈φ,Cφ〉µ > c〈φ, φ〉.

Thus, ℜ〈C∗φ, φ〉 > c〈φ, φ〉 for all φ ∈ dom(C∗). Moreover, since A is densely defined and m-
accretive, A∗ is accretive, as well, see [10]. Thus, altogether ℜ〈B∗φ, φ〉 > c〈φ, φ〉. Therefore,
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Lemma 4.3 implies that B is continuously invertible and has dense range. In particular, we obtain
B−1 is densely defined and has operator norm bounded by 1/c so that B−1 is evolutionary at ν.

For ψ ∈ dom(B−1), φ := B−1ψ we furthermore realize that the inequality

ℜ〈Bφ,Qtφ〉 > c〈Qtφ,Qtφ〉

implies

‖QtB−1ψ‖ 6
1

c
‖Qtψ‖,

which by Proposition 3.3 (iii) is sufficient for causality of B−1
.

Next, we slightly rephrase the main result of [17]. There, a well-posedness result for non-
autonomous differential inclusions is stated, where the operator A is replaced by a maximal mono-
tone relation on a Hilbert space H (for an introduction to maximal monotone relations on Hilbert
spaces we refer to the monograph [3]). As a trade-off, we need to restrict the class of admissible
operators M and N :

Theorem 4.6 ([17, Theorem 3.4]). Let H be a separable Hilbert space, let M,N : R → L(H)
be strongly measurable and bounded mappings. Assume that M(t) is selfadjoint for all t ∈ R, M
Lipschitz continuous, A ⊆ H⊕H a maximal monotone relation with (0, 0) ∈ A. Moreover, assume
that K := ker(M(t)) = ker(M(0)) for all t ∈ R and that there exists c > 0 such that for all t ∈ R

〈M(t)φ, φ〉 > c〈φ, φ〉, ℜ〈N(t)ψ, ψ〉 > c〈ψ, ψ〉

for all φ ∈ K and ψ ∈ K⊥.
Then there exists ν > 0, C > 0 such that for all µ > ν

Sµ := (∂0,µM+N +A)
−1

: L2
ν(R;H) → L2

ν(R;H)

is Lipschitz continuous with ‖Sµ‖Lip 6 C, causal and independent of µ, where M,N denote
the abstract multiplication operators given by (Mφ)(t) = M(t)φ(t) and (Nφ)(t) = N(t)φ(t),
respectively. In particular, Sµ|C̊∞(R;H) is densely defined, causal and evolutionary at ν.

Although the latter theorem is a direct analogue of Theorem 4.2 in the nonlinear setting, its
proof is completely different and rests on perturbation results for maximal monotone relations.
As the proof is quite long and technical, we omit it here and refer to [17] instead.

5 Stochastic evolutionary equations

Similar to the approach outlined in [15], we present the solution theory for stochastic partial
differential equations based on Theorem 3.6. For this we first need to establish a suitable functional
analytic formulation for the stochastic integral. In contrast to [15], where the authors focused on
the case of Hilbert space valued Wiener processes, we shall favor a more axiomatic approach here.
Indeed, this gives us more freedom for the choice of the stochastic processes in the integral. For
this, we will introduce a class of ‘admissible’ processes and corresponding stochastic integrals. We
mainly follow the rationale presented in [9].

5.1 An abstract description of stochastic integration

Throughout, we denote by (Ω,Σ,P) a probability space. Moreover, we fix a filtration F := (Σt)t∈R,
i.e. a family of sub-σ-algebras of Σ satisfying

Σs ⊆ Σt (s 6 t).

Moreover, we fix separable Hilbert spaces G,H and a subspace L ⊆ L(G,H) equipped with a
Banach norm ‖ · ‖L such that

(L, ‖ · ‖L) →֒ (L(G,H), ‖ · ‖).

11



Definition 5.1. We collect some notions, which are needed in the following.

(a) We consider the following collection of sets

{

]s, t]× A ; s, t ∈ R, s < t, A ∈ Σs

}

⊆ P(R× Ω).

The σ-algebra generated by those sets is denoted by BF and is called the σ-algebra of F-
predictable sets.

(b) A mapping X : R× Ω → Z, where Z is a Banach space, is called a stochastic process, if for
each t ∈ R the mapping Xt = X(t, ·) : Ω → Z is measurable.

(c) A stochastic process X : R × Ω → Z is called F-adapted, if Xt is Σt-measurable for each
t ∈ R. X is called F-predictable, if X is BF -measurable. For ν > 0 we define

L2
ν,pr

(

R;L2(P;Z)
)

:= {X ∈ L2
ν

(

R;L2(P;Z)
)

; X predictable},

which is a closed subspace of L2
ν

(

R;L2(P;Z)
)

.

We now fix a stochastic process X attaining values in G. The goal is now to define stochas-
tic integration with respect to this process X . The integrands are suitable stochastic processes
attaining values in L and the integral should be an element in HΩ.

We start by defining

IX(Tχ]s,t]×A) :=

∫

R

Tχ]s,t]×A dX := (ω 7→ χA(ω)T (Xt(ω)−Xs(ω)).

where s < t,A ∈ Σs and T ∈ L. Clearly, this integral operator IX can be extend to a linear
operator on simple F -predictable processes Y : R×Ω → L. We denote this linear extension again
by IX .

Moreover, if Xt ∈ L2(P;G) for each t ∈ R we immediately get that IX attains values in
L2(P;H). The main idea is now to extend this integral operator to a broader class of processes.
For doing so, we need to restrict to a certain class of processes X .

Definition 5.2. Let X : R × Ω → G be such that Xt ∈ L2(P;G) for each t ∈ R. We call X an
L2-primitive, if there exists a measure α : BF → [0,∞] and C > 0 such that

∣

∣

∣IX
(

n
∑

i=0

Tiχ]si,ti]×Ai

)

∣

∣

∣

L2(P;H)
6 C

∣

∣

∣

n
∑

i=0

Tiχ]si,ti]×Ai

∣

∣

∣

L2(α;L)
,

where n ∈ N, si < ti, Ai ∈ Σsi and Ti ∈ L, i ∈ {0, . . . , n}.
In this case, α is called a dominating measure for X . We denote by IX,α the unique extension of
IX to a bounded linear operator

IX,α : L2(α;L) → L2(P;H)

and call it the stochastic integral with respect to X on L2(α;L). For Y ∈ L2(α;L) we also write

∫

R

Y dX := IX,α(Y ).

Remark 5.3. We note that in the latter definition the measure α may not be uniquely determined.
Thus, the latter definition allows for the extension of the stochastic integral in various spaces. It
is clear, however, that for two dominating measures α1, α2 we have that the two extension IX,α1

and IX,α2 coincide on the intersection L2(α1;L) ∩ L2(α2;L).

Example 5.4. By [9, Section 2.6] the following processes are L2-primitives.
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(a) Let X satisfy Xt ∈ L2(Ω,Σt,P;G) for each t ∈ R (i.e., X is F -adapted) and assume that

R ∋ t 7→ |Xt|L2(P;G)

is right continuous. Moreover, we assume that X has independent and centered increments,
i.e., for each s, t ∈ R with s < t and each x ∈ G we have that

ω 7→ 〈Xt(ω)−Xs(ω), x〉G

is independent of Σs and
∫

Ω

(

Xt(ω)−Xs(ω)
)

dP(ω) = 0.

Then X is an L2-primitive with dominating measure α = µ ⊗ P, where µ is the Stieltjes
measure associated with the function

t 7→ |Xt|L2(P;G).

In particular, the Hilbert space valued Wiener process W is an L2-primitive, if we choose
Σt := σ(Ws; s 6 t).

(b) More generally, if X : R × Ω → G is an F -martingale, such that Xt ∈ L2(Ω,Σt,P;G) for
each t ∈ R and

t 7→ |Xt|L2(P;G)

is right-continuous, then X is an L2-primitive with dominating measure α = d|X|2G
, the

Doleans-measure of the submartingale |X |2G (see e.g. [9, Section 1.20] or [5]).

Our next goal is to introduce a primitive of an L-valued process Y with respect to a G-valued
process X .

Proposition 5.5. Let X : R×Ω → G be an L2-primitive with dominating measure α. Moreover,
for ν > 0 we define the space L2

ν(α;L) as the space of L-valued, F-predictable processes Y satisfying

∫

R×Ω

|Y (t, ω)|2L exp(−2νt) dα(t, ω) <∞.

For µ > 0 we consider the operator

IX,α : S(α;L) ⊆
⋂

ν>µ

L2
ν(α;L) →

⋂

ν>µ

L2
ν

(

R;L2(P;H)
)

given by
IX,α(Y ) := (t 7→ IX(χR6t

Y )),

where S(α;L) denotes the space of simple L-valued, predictable processes.
Then IX,α is evolutionary at µ and densely defined. More precisely, there exists a constant

C > 0 such that

‖IX,α
ν ‖ 6

C√
2ν

(ν > µ).

Moreover, IX,α
ν is causal and IX,α

ν and IX,α
ν̃ coincide on the intersection L2

ν(α;L) ∩ L2
ν̃(α;L) for

each ν, ν̃ > µ.

Proof. Let Y ∈ S(α;L). First we note that χR6t
Y ∈ S(α;L) for each t ∈ R. Let now ν > µ. We

estimate
∫

R

|IX,α(Y )(t)|2L2(P;H) exp(−2νt) dt
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6 C2

∫

R

∫

R×Ω

|χR6t
(s)Y (s, ω)|2L dα(s, ω) exp(−2νt) dt

= C2

∫

R×Ω

∫

R

χR>s
(t) exp(−2νt) dt |Y (s, ω)|2L dα(s, ω)

=
C2

2ν
|Y |2L2

ν(α;L),

which shows that IX,α is evolutionary at µ and that the norm estimate holds. The causality and
the independence on the parameter ν follows from Lemma 3.5 and Lemma 3.4.

Lemma 5.6. Let X : R×Ω → G be an L2-primitive with dominating measure α and assume that

R ∋ t 7→ Xt(ω)

is weakly left continuous. Moreover, we assume that X is F-adapted. Then for ν > 0 and
Y ∈ L2

ν(α;L) we have that
IX,α(Y ) ∈ L2

ν,pr(R;L
2(P;H)).

Consequently,
IX,α : L2

ν(α;L) → L2
ν,pr(R;L

2(P;H))

is a bounded linear operator.

Proof. It suffices to prove that IX,α(Y ) is predictable. Due to linearity and continuity it suffices
to consider the case Y = χ]s,t]×AT for some s < t,A ∈ Σs, T ∈ L. Then we have

IX,α(Y )(τ, ω) = χ]s,t]×A(τ, ω)T (Xτ(ω)−Xs(ω)) + χ]t,∞]×A(τ, ω)T (Xt(ω)−Xs(ω))

for each τ ∈ R, ω ∈ Ω. Note that IX,α(Y ) is F -adapted and that τ 7→ IX,α(Y )(τ, ω) is weakly
left continuous for each ω ∈ Ω. Thus, by [4, Proposition 3.7] it is F -predictable.

5.2 Solution theory for abstract stochastic evolutionary equations

In the previous section, we have focused on the stochastic part of the evolutionary equation with
stochastic perturbation. We are now in the position to combine the results of the previous sections
in order to provide the desired solution theory. First of all, we state the main assumptions of this
section.

Assumption 5.7. Let G,H be two separable Hilbert spaces and L ⊆ L(G,H) a subspace
equipped with a Banach norm, such that L →֒ L(G,H). Moreover, let (Ω,Σ,P) be a proba-
bility space and F = (Σt)t∈R a filtration. We fix an F -adapted process X : R× Ω → G, which is
an L2-primitive with dominating measure α and we assume that

t 7→ Xt(ω)

is weakly left continuous for each ω ∈ Ω. Moreover, we assume that L2
0,pr(R;L

2(P)) →֒ L2(α).

We first recall the central observation of [15] in a slightly different way.

Theorem 5.8 ([15, Theorem 3.4]). Let ν > 0 andM ∈ L(L2
ν(R;H)) be causal. Then the canonical

extension of M to L2
ν(R;L

2(P;H)) given by

(Mu)(t, ω) :=M(u(·, ω))(t) (t ∈ R, ω ∈ Ω)

leaves the space of predictable processes invariant, that is,

M [L2
ν,pr(R;L

2(P;H))] ⊆ L2
ν,pr(R;L

2(P;H)).
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Before we can come to our main well-posedness result, we need the following lemma.

Lemma 5.9. Let µ > 0, σ : H → L be Lipschitz continuous, σ(0) = 0, and define

σ̃ :
⋂

ν>µ

L2
ν(R;L

2(P;H)) →
⋂

ν>µ

L2
ν(R;L

2(P;L))

by
(σ̃u)(t, ω) := σ(u(t, ω)).

Then σ̃ is evolutionary at µ, σ̃ν is causal and does not depend on the parameter ν. Moreover, for
ν > µ we have that the restriction

σ̃ν : L2
ν,pr(R;L

2(P;H)) → L2
ν(α;L)

is well-defined and Lipschitz continuous, where the smallest Lipschitz constant can be chosen in-
dependent of ν.

Proof. It is obvious, that σ̃ is again Lipschitz continuous with the same Lipschitz constant as σ.
Hence, it is evolutionary at µ. The causality and independence of the parameter follows by Lemma
3.4 and Lemma 3.5. We now come to the second assertion. We first show that σ̃(u) is predictable
if u is predictable. Note that by continuity it suffices to prove this for u =

∑n
i=1 χ]si,ti]×Ai

xi for
si < ti, Ai ∈ Σsi , xi ∈ H , i ∈ {1, . . . , n}. We may assume without loss of generality that the
intervals ]si, ti] are pairwise disjoint. Then

σ̃(u) =

n
∑

i=1

χ]si,ti]×Ai
σ(xi)

and hence, σ̃(u) is predictable. From L2
0,pr(R;L

2(P)) →֒ L2(α) we infer

L2
ν,pr

(

R;L2(P;L)
)

→֒ L2
ν(α;L)

for each ν > 0 where the embedding constant is independent of ν. Thus, as we have shown that

σ̃ν : L2
ν,pr(R;L

2(P;H)) → L2
ν,pr(R;L

2(P;L))

is well-defined and Lipschitz continuous with a Lipschitz constant independent of ν, the assertion
follows.

Corollary 5.10. Let µ > 0, σ : H → L be Lipschitz continuous, σ(0) = 0. Then

IX,α ◦ σ̃ :
⋂

ν>µ

L2
ν,pr(R;L

2(P;H)) ⊆
⋂

ν>µ

L2
ν(R;L

2(P;H)) →
⋂

ν>µ

L2
ν(R;L

2(P;H))

is invariant evolutionary and ‖IX,α ◦ σ̃‖ev,Lip = 0.

Proof. By Proposition 5.5 and Lemma 5.9 we infer that IX,α ◦ σ̃ is evolutionary with ‖IX,α ◦
σ̃‖ev,Lip = 0. The invariance follows by Lemma 5.6 and Lemma 5.9.

We are now in the position to formulate the abstract solution theory, which is based on Theorem
3.6.

Theorem 5.11. Impose Assumption 4.1 and let σ : H → L be Lipschitz continuous, σ(0) = 0.
Then there exists ν > 0 such that for all f ∈ L2

ν,pr(R;L
2(P;H)) there exists a unique uf ∈

L2
ν,pr(R;L

2(P;H)) such that

(∂0,νM +N +A)uf = f + IX,α
ν ◦ σ̃(uf ).

The mapping f 7→ uf is causal and does not depend on ν in the sense of Lemma 3.4.
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Proof. We use Theorem 3.6. For this, we observe that S := (∂0,νM+N +A)
−1

is evolution-
ary, causal and densely defined, by Theorem 4.2. Moreover, since S is causal, we have that
Sµ[dom(Fµ)] ⊆ dom(Fµ) for all µ > ν with F := IX,α ◦ σ̃, by Theorem 5.8. Moreover, by Corol-
lary 5.10, we deduce that F is invariant evolutionary and ‖F‖ev,Lip = 0. Thus Theorem 3.6 is
applicable and we obtain the assertion.

Also in the non-linear setting, we obtain an analogous result with exactly the same proof,
where we use Theorem 4.6 instead of Theorem 4.2.

Theorem 5.12. Let M,N : R → L(H) weakly measurable and M Lipschitz continuous. Let
A ⊆ H ⊗H maximal monotone with (0, 0) ∈ A and σ : H → L Lipschitz continuous, σ(0) = 0.
Moreover, assume that K := ker(M(t)) = ker(M(0)) for all t ∈ R and that there exists c > 0 such
that for all t ∈ R

〈M(t)φ, φ〉 > c〈φ, φ〉, ℜ〈N(t)ψ, ψ〉 > c〈ψ, ψ〉
for all φ ∈ K and ψ ∈ K⊥. Then there exists ν > 0 such that for all f ∈ L2

ν,pr(R;L
2(P;H)) there

exists a unique uf ∈ L2
ν,pr(R;L

2(P;H)) such that

(∂0,νM+N +A) ∋ (uf , f + IX,α
ν ◦ σ̃(uf )).

The mapping f 7→ uf is causal and does not depend on ν in the sense of Lemma 3.4.

5.3 An abstract stochastic heat/wave equation

In this section, we treat an abstract example of an equation of mixed type. For this let H1, H2

be separable Hilbert spaces, C : dom(C) ⊆ H1 → H2 be closed and densely defined. We assume
Assumption 5.7 with H replaced by H1. Let a : R → L(H2) be bounded and Lipschitz continuous
satisfying a(t) = a(t)∗ > c for all t ∈ R and some c > 0; we denote by a(m) the abstract multipli-
cation operator realized as an operator from L2

ν(R;H2) to L
2
ν(R;H2) for all ν > 0. Moreover, let

σ : H1 → L be Lipschitz continuous with σ(0) = 0 and P = P ∗ = P 2 ∈ L(H1).
The problem we are about to study with regards to well-posedness issues reads as follows. Let

f ∈ L2
ν,pr(R;L

2(P;H1)) be given. Then (write ∂0 for the time derivatve) consider the equation

∂20Pu+ ∂0(1− P )u+ C∗a(m)Cu = f + ∂0
(

IX,α ◦ σ̃
)

(u). (5.1)

Note that for the special cases P = 1H1
and P = 0, we recover the respective special cases of an

abstract wave equation and an abstract heat equation.
In applications, for instance if X is a Wiener process, the expression ∂0IX,α ◦ σ̃(u) is often

written as σ(u(t))Ẇ (t). Then
∫ t

0 σ(u(t))Ẇ (t)dt is interpreted as stochastic integral. Here, we

employ the same rationale since ∂−1
0 is integration (see Section 3) so that ∂−1

0 ∂0IX,α◦σ̃ = IX,α◦σ̃.
In order to apply the solution theory outlined in the previous section, we shall reformulate

(5.1). Denote q := ∂−1
0 a(m)Cu. Thus, (5.1) reads

(

∂0

(

P 0
0 b(m)

)

+

(

(1− P ) 0
0 −b′(m)

)

+

(

0 C∗

−C 0

))(

u
q

)

=

(

∂−1
0 f + IX,α ◦ σ̃(u)

0

)

, (5.2)

where b(t) := a(t)−1 for all t ∈ R and b′ is the weak derivative of b.
Identifying x ∈ H1 with x ⊕ 0 ∈ H1 ⊕H2 we realize that Theorem 5.11 applies once we have

shown that Assumption 4.1 is satisfied for the following setting

H = H1 ⊕H2,M =

(

P 0
0 b(m)

)

,N =

(

(1− P ) 0
0 −b′(m)

)

,

A =

(

0 C∗

−C 0

)

,M′ =

(

0 0
0 b′(m)

)

,
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and a suitably chosen ν > 0. The rest of this section is devoted to verify the conditions in
Assumption 4.1.

Lemma 5.13. The operator A is skew-selfadjoint. In particular, ℜ〈Ax, x〉 = 0 for all x ∈
dom(A) = dom(A∗) and ran(A± 1) = H, so that A is m-accretive.

Proof. The claim follows once we realize that for densely defined operators B1, B2 acting in ap-

propriate Hilbert space, we have

(

0 B∗
1

B∗
2 0

)

=

(

0 B2

B1 0

)∗

.

Lemma 5.14. For all ν ∈ R, we have

∂0,νM ⊆ M∂0,ν −M′.

Proof. Let s, t ∈ R. Then we compute

‖b(t)− b(s)‖ = ‖a(t)−1 − a(s)−1‖
= ‖a(t)−1 (a(s)− a(t)) a(s)−1‖

6
1

c2
‖a(s)− a(t)‖ 6

1

c2
‖a‖Lip|s− t|.

Thus, b is Lipschitz continuous and H2 is separable, thus, bφ is weakly differentiable for all
φ ∈ C̊∞(R;H2) and

(bφ)′ = b′φ+ bφ′,

where b′ is the strong derivative defined by the derivative of b′(t)x := (b(·)x)′(t) for almost all
t ∈ R, x ∈ H2, see also [12, Lemma 2.1]. Since P∂0,ν ⊆ ∂0,νP , the claim follows.

A particular observation in the latter proof is that b is Lipschitz continuous and ‖b‖Lip 6
1
c2
‖a‖Lip.

Lemma 5.15. There exist k, ν > 0 such that for all t ∈ R and φ ∈ C̊∞(R;H) we have

ℜ〈(∂0,νM+N )φ,Qtφ〉L2
ν
> k〈Qtφ, φ〉L2

ν
.

Proof. Since M,M′,N are diagonal block operator matrices, it suffices to restrict ourselves to test
functions φ in C̊∞(R;H1) and C̊∞(R;H2). We can apply [12, Lemma 2.6] to M0(m) = (1 − P ),
M1(m) = P , A = 0 to obtain for all t ∈ R, ν > 0:

ℜ〈∂0,νPφ+ (1− P )φ,Qtφ〉L2
ν
=

1

2
〈φ(t), Pφ(t)〉H1

e−2νt + 〈νPφ + (1− P )φ,Qtφ〉L2
ν
.

Thus, for all φ ∈ C̊∞(R;H1)

ℜ〈∂0,νPφ+ (1 − P )φ,Qtφ〉L2
ν
> min{ν, 1}〈φ,Qtφ〉L2

ν
.

Next, again by [12, Lemma 2.6] this time applied to M0(m) = b(m), M1(m) = −b′(m), and A = 0,
we compute

ℜ〈∂0,νb(m)φ− b′(m)φ,Qtφ〉L2
ν
=

1

2
〈φ(t), b(t)φ(t)〉H1

e−2νt + 〈νb(m)φ − 1

2
b′(m)φ,Qtφ〉L2

ν
,

where we used that b′(t) is selfadjoint as b(s) is selfadjoint for all s ∈ R. We observe that the non-
negativity of a implies the same for b; more precisely we get b(t) > c

‖a(t)‖2 >
c

supt∈R
‖a(t)‖2 =: c′ > 0.

Moreover, we note that ‖b′(m)‖ 6 ‖b‖Lip, by [12, Lemma 2.1]. Hence, ‖b′(m)‖ 6
1
c2
‖a‖Lip. Thus,

we deduce that

ℜ〈∂0,νb(m)φ− b′(m)φ,Qtφ〉L2
ν
> 〈νb(m)φ− 1

2
b′(m)φ,Qtφ〉L2

ν

17



= 〈(νb(m)− 1

2
b′(m))Qtφ,Qtφ〉L2

ν

>

(

νc′ − 1

c2
‖a‖Lip

)

〈Qtφ,Qtφ〉L2
ν
,

which yields the assertion.

The Lemmas 5.13, 5.14, and 5.15 finally yield the applicability of Theorem 5.11, so that (5.2)
is well-posed. In fact, we have the following result:

Theorem 5.16. There exists ν > 0 such that for all f ∈ L2
ν,pr(R;L

2(P;H1)) we find a uniquely
determined uf ∈ L2

ν,pr(R;L
2(P;H1)) and qf ∈ L2

ν,pr(R;L
2(P;H2)) such that

(

∂0,ν

(

P 0
0 b(m)

)

+

(

1− P 0
0 −b′(m)

)

+

(

0 div
˚grad 0

)

)

(

uf
qf

)

=

(

∂−1
0,νf + IX,α ◦ σ̃(uf )

0

)

.

If f = 0 on (−∞, t] for some t ∈ R, then uf = 0 and qf = 0 on (−∞, t].

Remark 5.17. Using the notion of extrapolation spaces, we can make sense of the expression
σ(u(t))Ẋ(t), which might seem to be quite formal at first glance. For this we define the spaces
L2
ν,pr,−1(R;L

2(P;H)) as the completion of L2
ν,pr(R;L

2(P;H)) with respect to the norm
∣

∣∂−1
0,ν ·
∣

∣

L2
ν(R;L

2(P;H))

and H−1(A) as the completion of H with respect to |(1+A)−1 · |H . Now, fix f and let (u, q) solve
(5.2). Then we have that

(

∂0,ν

(

P 0
0 b(m)

)

+

(

(1− P ) 0
0 −b′(m)

)

+

(

0 C∗

−C 0

)

)

(

u
q

)

=

(

∂−1
0 f + IX,α ◦ σ̃(u)

0

)

as an equation in L2
ν,pr(R;L

2(P;H)) for some large enough ν > 0. Using the continuous extensions

of ∂0,ν and A =

(

0 C∗

−C 0

)

with values in L2
ν,pr,−1

(

R;L2(P;H)
)

and L2
ν,pr

(

R;L2(P;H−1(A))
)

,

respectively, we deduce that the equation satisfied by (u, q) can be written without the closure
bar. Moreover, one can differentiate line by line to obtain

∂20,νPu+ ∂0,ν(1− P )u + C∗∂0,νq = f + ∂0IX,α ◦ σ̃(u)
and

a(m)−1∂0,νq = Cu,

which in turn formally gives back the system one started out with.

We remark that the well-posedness of (5.2) is also covered by Theorem 5.12, as M and N
are given as abstract multiplication operators. Hence, we could generalize (5.2) by replacing the
operator A by a maximal monotone relation. This allows for instance the treatment of certain
hysteresis effects in the theory of plasticity (see [16, 17]) or Section 2.2 above.

Remark 5.18. We shall comment on the limitations of the approach at hand.
(a) First of all, the developed theory is a Hilbert space approach and so certain nonlinear

equations as for instance the ones in [8] cannot be treated right away. In fact, the deterministic
solution theory of evolutionary equations in the form discussed in this manuscript is developed
for the Hilbert space case only, as of yet, that is. We shall on the other hand emphasise that our
considerations do not need any assumptions on the shape of the underlying physical domain. For
some results in the deterministic Banach space case we refer to [22].

(b) The non-autonomous equations discussed here are formulated in a way that the unbounded
operator (relation) is independent of the time variable. Again, this is already visible in the deter-
ministic case. A treatment of spdes viewing the spatial operator being time-dependent focussing
on explicit (stochastic) partial differential equations can be found in [6]. The unbounded operators
are then considered to be of elliptic type. This provides a larger class of equations with elliptic and
time-dependent spatial operator, which is accessible with [6]. On the other hand, that approach
makes it difficult to handle the full Maxwell system, see Section 2.1.
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[15] A. Süß and M. Waurick. A Solution Theory for a General Class of SPDEs. Stochastics and
Partial Differential Equations: Analysis and Computations, 5(2):278–318, 2017.

[16] S. Trostorff. An alternative approach to well-posedness of a class of differential inclusions in
Hilbert spaces. Nonlinear Anal., 75(15):5851–5865, 2012.

[17] S. Trostorff and M. Wehowski. Well-posedness of non-autonomous evolutionary inclusions.
Nonlinear Anal., 101:47–65, 2014.

[18] J. B. Walsh. An Introduction to Stochastic Partial Differential Equations, volume 1180.
Springer, 1986.

19



[19] M. Waurick. A note on causality in Banach spaces. Indagationes Mathematicae, 26(2):404–
412, 2015.

[20] M. Waurick. On Non-Autonomous Integro-Differential-Algebraic Evolutionary Problems.
Mathematical Methods in the Applied Sciences, 38(4):665–676, 2015.

[21] M. Waurick. On the continuous dependence on the coefficients of evolutionary equations.
Habilitation thesis, Technische Universität Dresden, 2016. http://arxiv.org/abs/1606.07731.

[22] M. Wehowski. Well-posedness of degenerate nonlinear Cauchy problems in Hilbert spaces.
PhD thesis, TU Dresden, 2015

20


	1 Introduction
	2 A glimpse on some particular results
	2.1 Standard linear examples
	2.2 A nonlinear example

	3 The time derivative and evolutionary mappings
	4 The deterministic solution theory
	5 Stochastic evolutionary equations
	5.1 An abstract description of stochastic integration
	5.2 Solution theory for abstract stochastic evolutionary equations
	5.3 An abstract stochastic heat/wave equation


