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Abstract

We introduce a discrete delayed exponential depending on sequence of matrices. This discrete

matrix gives a representation of a solution to the Cauchy problem for a discrete linear system with

pure delay with sequence of matrices. We discard the commutativity condition used in recent works

related to the representation of solutions for discrete delay linear systems.
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1 Introduction

For given a, b ∈ Z∪ {±∞}, a < b, we set Zb
a := {a, a+ 1, ..., b}. We study a discrete linear delay system

with sequence of matrices of the form:

{

x (k + 1) = Ax (k) +Bkx (k −m) + f (k) ,
x (k) = ϕ (k) ,

(1)

where m ≥ 1 is a fixed integer, k ∈ Z∞
0 , A = (aij) , detA 6= 0 and Bk =

(

bkij
)

are a constant n × n

matrices, f : Z∞
0 → Rn , ϕ : Z0

−m → Rn, ∆x(k) = x(k + 1) − x(k). Solution x : Z∞
−m → Rn of initial

value problem is defined as an infinite sequence {ϕ (−m) , ϕ (−m+ 1) , ..., ϕ (0) , x (1) , ..., x (k) , ...} such
that for any k ∈ Z∞

0 , (1) holds.
Substituting in (1) z (k) := A−kx (k) , Dk := A−k−1BkA

k−m, k ∈ Z∞
−m, we get an equivalent discrete

linear system of the form

z (k + 1) = z (k) +Dkz (k −m) + A−k−1f (k) , k ∈ Z∞
0 , (2)

z (k) = A−kϕ (k) , k ∈ Z0
−m. (3)

Recently, Dibĺık and Khusainov presented in [1], [2] a solution of difference equations with linear parts
with constant coefficients given by permutable matrices and constant delay via a discrete matrix delayed
exponential. Advantage of discrete delayed exponential matrix is to help transferring the classical idea
to represent the solution of linear ordinary differential equations into linear delay discrete equations.
Although there are many continued contributions in a discrete linear system with pure delay with per-
mutable matrices, to stability theory [5], [6], [7], [9], [11], controllability theory [12], [13], [10], delay
oscillating systems [14], discrete linear system with two delays [3], [4], Fredholm integral equations [15],
no results were obtained for such systems with non permutable matrices. It should be mentioned that
recently non permutable case for the contiunous delay linear systems was considered in [8].

We introduce a discrete delayed exponential depending on sequence of matrices D = {D1, D2, ...} and
give a representation of solution to linear system of difference equations with delay parts with nonconstant
coefficients given by non permutable matrices. We discard the commutativity condition used in recent
works related to representation of discrete delay linear system. In particular the results are new even for
the case when matrices Bk does not depend on k, that is, Bk = B.
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2 Main results

In order to drop the commutativity condition, we introduce the following matrix

PD (k, d) :=



















I, l = d = 0,
k−1
∑

j1=(d−1)(m+1)

Dj1

j1
∑

j2=(d−1)(m+1)

Dj2−m−1...

jd−1
∑

jd=(d−1)(m+1)

Djd−(d−1)(m+1), k ∈ Z
l(m+1)
(d−1)(m+1)+1,

l ∈ Z∞
1 , 1 ≤ d ≤ l.

We state and prove our first result. Note that in the proof of Lemma 1 and Theorem 2 we follow the idea
of the proofs of statetmens in [1].

Lemma 1 For any l ∈ Z∞
1 , 1 ≤ d ≤ l, k ∈ Z

l(m+1)
(d−1)(m+1)+1, the following relation holds

PD (k + 1, d)− PD (k, d) = DkP
D (k −m, d− 1) . (4)

Proof. We will prove the lemma in two cases.

Case 1: (d− 1) (m+ 1) + 1 ≤ k < l (m+ 1): In this case k −m ∈ Z
(l−1)(m+1)
(d−2)(m+1)+1 and by definition

PD (k −m, d− 1) =
k−m−1
∑

j1=(d−2)(m+1)

Dj1

j2
∑

j2=(d−2)(m+1)

Dj2−(m+1)...

jd−2
∑

jd−1=(d−2)(m+1)

Djd−1−(d−2)(m+1), 2 ≤ d ≤ l,

PD (k −m, 0) = I.

For d = 1 we get 1 ≤ k < l (m+ 1) and

PD (k + 1, 1)− PD (k, 1) =

k
∑

j1=0

Dj1 −

k−1
∑

j1=0

Dj1 = Dk = DkP
D (k −m, 0) .

For 2 ≤ d ≤ l we get

PD (k + 1, d)− PD (k, d)

=
k
∑

j1=(d−1)(m+1)

Dj1

j1
∑

j2=(d−1)(m+1)

Dj2−m−1...

jd−1
∑

jd=(d−1)(m+1)

Djd−(d−1)(m+1)

−
k−1
∑

j1=(d−1)(m+1)

Dj1

j1
∑

j2=(d−1)(m+1)

Dj2−m−1...

jd−1
∑

jd=(d−1)(m+1)

Djd−(d−1)(m+1)

= Dk

k
∑

j2=(d−1)(m+1)

Dj2−m−1...

jd−1
∑

jd=(d−1)(m+1)

Djd−(d−1)(m+1)

= Dk

k−m−1
∑

j1=(d−2)(m+1)

Dj1

j2
∑

j2=(d−2)(m+1)

Dj2−(m+1)...

jd−2
∑

jd−1=(d−2)(m+1)

Djd−1−(d−2)(m+1)

= DkP
D (k −m, d− 1) ,

which proves the lemma for the case 1.

Case 2: k = l(m+ 1): In this case k+ 1 = l(m+1)+ 1 and k−m = l (m+ 1)−m ∈ Z
l(m+1)
(l−1)(m+1)+1.

For d = 1 we have:

PD (l(m+ 1) + 1, 1)−PD (l(m+ 1), 1) =

l(m+1)
∑

j1=0

Dj1−

l(m+1)−1
∑

j1=0

Dj1 = Dl(m+1) = Dl(m+1)P
D (l (m+ 1)−m, 0) .
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For 2 ≤ d ≤ l we get

PD (l(m+ 1) + 1, d)− PD (l(m+ 1), d)

=

l(m+1)
∑

j1=(d−1)(m+1)

Dj1

j1
∑

j2=(d−1)(m+1)

Dj2−m−1...

jd−1
∑

jd=(d−1)(m+1)

Djd−(d−1)(m+1)

−

l(m+1)−1
∑

j1=(d−1)(m+1)

Dj1

j1
∑

j2=(d−1)(m+1)

Dj2−m−1...

jd−1
∑

jd=(d−1)(m+1)

Djd−(d−1)(m+1)

= Dl(m+1)

l(m+1)
∑

j2=(d−1)(m+1)

Dj2−m−1

j2
∑

j3=(d−1)(m+1)

Dj3−2(m+1)...

jd−1
∑

jd=(d−1)(m+1)

Djd−(d−1)(m+1)

= Dl(m+1)

(l−1)(m+1)
∑

j1=(d−2)(m+1)

Dj1

j1
∑

j2=(d−2)(m+1)

Dj2−(m+1)...

jd−2
∑

jd−1=(d−2)(m+1)

Djd−1−(d−2)(m+1)

= Dl(m+1)P
D (l (m+ 1)−m, d− 1) , 2 ≤ d ≤ l.

Using P (k, d) we may define the delayed exponential depending on sequence of matrices:

eDm (k) =



















Θ k ∈ Z−m−1
−∞ ,

I k ∈ Z0
−m,

I +

l
∑

d=1

P (k, d) k ∈ Z
l(m+1)
(l−1)(m+1)+1, l ∈ Z∞

1 .

(5)

Theorem 2 For any k ∈ Z
l(m+1)
(l−1)(m+1)+1, the following relation holds

eDm (k + 1)− eDm (k) = Dke
D

m (k −m) , k ∈ Z
l(m+1)−1
(l−1)(m+1)+1. (6)

Proof. The proof is based on Lemma 1. Let us consider the cases when (l− 1) (m+ 1)+1 ≤ k < l (m+ 1)
and k = l(m+ 1).

Case 1: (l − 1) (m+ 1) + 1 ≤ k < l (m+ 1): By Lemma 1,

eDm (k + 1)− eDm (k) =
l
∑

d=1

PD (k + 1, d)−
l
∑

d=1

PD (k, d) = Dk

l
∑

d=1

PD (k −m, d− 1)

= Dk

l−1
∑

d=0

PD (k −m, d) = Dke
D

m (k −m) . k −m ∈ Z
(l−1)(m+1)
(l−2)(m+1)+1.

Case 2: k = l(m+ 1): By Lemma 1,

eDm (k + 1)− eDm (k) =

l+1
∑

d=1

PD (l(m+ 1) + 1, d)−

l
∑

d=1

PD (l(m+ 1), d)

=

l
∑

d=1

(

PD (l(m+ 1) + 1, d)− PD (l(m+ 1), d)
)

+ PD (l(m+ 1) + 1, l + 1)

= Dl(m+1)

l
∑

d=1

PD (l (m+ 1)−m, d− 1) +Dl(m+1)D(l−1)(m+1)...D0

= Dl(m+1)

(

I +
l−1
∑

d=1

PD (l (m+ 1)−m, d) + PD (l (m+ 1)−m, l)

)

= Dl(m+1)e
D

m (k −m) .
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Here we used the following formula

PD (l(m+ 1) + 1, l+ 1) =

l(m+1)
∑

j1=l(m+1)

Dj1

j1
∑

j2=l(m+1)

Dj2−m−1...

jl
∑

jl+1=l(m+1)

Djl+1−l(m+1)

= Dl(m+1)

l(m+1)
∑

j2=l(m+1)

Dj2−m−1...

jl
∑

jl+1=l(m+1)

Djl+1−l(m+1)

= Dl(m+1)D(l−1)(m+1)...D0.

Now using the matrix delayed exponential we can solve the following linear matrix equation:

Φ (k + 1) = AΦ (k) +DkΦ (k −m) , k ∈ Z∞
0 ,

X (k) = Ak, k ∈ Z0
−m. (7)

Theorem 3 The matrix

Φ (k) =























Θ if k ∈ Z−m−1
−∞ ,

Ak if k ∈ Z0
−m,

Ak



I +

l
∑

j=1

P (k, j)



 if k ∈ Z
l(m+1)
(l−1)(m+1)+1.

solves the problem (7).

Remark 4 It can be shown that

k−1
∑

j1=(d−1)(m+1)

j1
∑

j2=(d−1)(m+1)

...

jd−1
∑

jd=(d−1)(m+1)

1 =

(

k − (d− 1)m
d

)

, k ∈ Z
l(m+1)
(d−1)(m+1)+1.

If Bk does not depend on k, Bk = B and matrices A and B are permutable (AB = BA), then Dk =
A−k−1BAk−m = A−1BA−m =: D and

PD (k, d) = A−dBdA−dm

k−1
∑

j1=(d−1)(m+1)

j1
∑

j2=(d−1)(m+1)

...

jd−1
∑

jd=(d−1)(m+1)

1 = A−dBdA−dm

(

k − (d− 1)m
d

)

.

In this case

eDm (k) =



















Θ k ∈ Z−m−1
−∞ ,

I k ∈ Z0
−m,

I +

l
∑

d=1

A−dBdA−dm

(

k − (d− 1)m
d

)

, k ∈ Z
l(m+1)
(l−1)(m+1)+1,

and coincides with the discrete matrix delayed exponential defined in [1].

Using Φ (k) we give the representation of solution to the homogeneous delay problem

x (k + 1) = Ax (k) +Bkx (k −m) , k ∈ Z∞
0 , (8)

x (k) = ϕ (k) , k ∈ Z0
−m. (9)

Theorem 5 The solution of the problem (8), (9) can be expressed as

x (k) = Φ (k)A−mϕ (−m) +Am

0
∑

j=−m+1

Φ (k −m− j) (ϕ (j)−Aϕ (j − 1)) . (10)
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Proof. Introduce a new variable z (k) = A−kx (k) , k ∈ Z∞
−m. Then the problem (8), (9) is equivalent to

z (k + 1) = z (k) +Dkz (k −m) , k ∈ Z∞
0 , (11)

z (k) = A−kϕ (k) , k ∈ Z0
−m. (12)

We are looking for the representation of solution of the problem (11), (12) in the form

z (k) = eDm (k)C +

0
∑

j=−m+1

eDm (k −m− j)ω (j) , k ∈ Z∞
−m, (13)

where C ∈ Rn is an unknown vector and ω : Z0
−m → Rn is an unknown discrete function. The represen-

tation (13) is a solution of homogeneous delay equation (11) for any C and ω and for k ∈ Z∞
0 . Indeed,

by the formula (6) we get

∆z (k) = ∆
[

eDm (k)
]

C +

0
∑

j=−m+1

∆
[

eDm (k −m− j)
]

ω (j)

= Dk

[

eDm (k −m)C +

0
∑

k=−m+1

eDm (k − 2m− j)ω (j)

]

= Dkz (k −m) , k ∈ Z∞
0 .

So expression (13) solves (11) for k ∈ Z∞
0 . Now we determine C and ω. By definition, C and ω must

satisfy the initial condition (12) for k ∈ Z0
−m. For k ∈ Z0

−m, (13) leads to relation

z (k) = A−kϕ (k) = eDm (k)C +
0
∑

j=−m+1

eDm (k −m− j)ω (j)

= eDm (k)C +

k
∑

j=−m+1

eDm (k −m− j)ω (j) +

0
∑

j=k+1

eDm (k −m− j)ω (j)

= C +

k
∑

j=−m+1

eDm (k −m− j)ω (j) +

0
∑

j=k+1

eDm (k −m− j)ω (j) , k ∈ Z0
−m.

It follows that

Amϕ (−m) = C, k = −m,

A−kϕ (k) = C +

k
∑

j=−m+1,j≤k

ω (j) , k ∈ Z0
−m+1,

and one can obtain

ω (k) = A−kϕ (k)−A−k+1ϕ (k − 1) , k = −m,−m+ 1, ..., 0,

C = A−mϕ (−m) .

In order to get the formula (10), it remains to insert C and ω into (13). Indeed

x (k) = Akz (k) = Ak



eDm (k)A−mϕ (−m) +

0
∑

j=−m+1

eDm (k −m− j)A−j (ϕ (j)−Aϕ (j − 1))





= Φ(k)A−mϕ (−m) +Ak

0
∑

j=−m+1

A−k+m+jAk−m−jΦ (k −m− j)A−j (ϕ (j)−Aϕ (j − 1))

= Φ (k)A−mϕ (−m) +

0
∑

j=−m+1

Am+jΦ (k −m− j)A−j (ϕ (j)−Aϕ (j − 1)) .

5



Corollary 6 A solution x : Z∞
−m → Rn of initial value problem (1) has a form

x (k) = Φ (k)A−mϕ (−m) +
0
∑

j=−m+1

Am+jΦ (k −m− j)A−j (ϕ (j)−Aϕ (j − 1))

+

k
∑

j=1

Am+jΦ (k −m− j)A−jf (j − 1) . (14)

Remark 7 If Bk does not depend on k, that is, Bk = B and matrices A and B are permutable (AB =
BA), then Dk = A−k−1BAk−m = A−1BA−m =: D then the presentation (14) coincides with the formula
obtained in [1].

Acknowledgement 8 I would like to thank the reviewers for giving constructive comments and sugges-
tions which would help me to improve the quality of the paper.
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[9] M. Posṕı̌sil, Representation and stability of solutions of systems of functional differential equa-
tions with multiple delays. Electronic Journal of Qualitative Theory of Differential Equations 2012:
54.(2012)
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