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Convergence of a Full Discretization for a Second-Order
Nonlinear Elastodynamic Equation in Isotropic
and Anisotropic Orlicz Spaces

A. M. Ruf

Abstract. In this paper, we study a second-order, nonlinear evolution equation with damping aris-
ing in elastodynamics. The nonlinear term is monotone and possesses a convex potential but ex-
hibits anisotropic and nonpolynomial growth. The appropriate setting for such equations is that
of monotone operators in Orlicz spaces. Global existence of solutions in the sense of distributions
is shown via convergence of the backward Euler scheme combined with an internal approximation.
Moreover, we show uniqueness in a class of sufficiently smooth solutions and provide an a priori
error estimate for the temporal semidiscretization.
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1. Introduction

In this paper, we study the following second-order nonlinear hyperbolic elastodynamic equation

∂ttu−∆∂tu−∇ · σ(∇u) = f in Q := Ω× (0, T ) (1.1a)

u = 0 on ∂Ω× (0, T ) (1.1b)

u(·, 0) = u0, ∂tu(·, 0) = v0 in Ω. (1.1c)

We want to show existence of solutions u : Ω × [0, T ] → R, where Ω ⊂ R
d is a bounded Lipschitz

domain, and T > 0. The stress σ : Rd → R
d is assumed to have the potential φ : Rd → R. Such an

equation arises (although as a system) in solid mechanics describing viscoelastic material [20, 21, 30].
In this paper, we will assume that the potential φ is an N -function (see definition 2.1) and is

thus convex. Note that the nonlinearity then is monotone such that

(σ(ξ) − σ(η)) · (ξ − η) ≥ 0 for all ξ, η ∈ R
d.

Moreover, we assume that σ satisfies the following growth condition in terms of the N -function φ and
its conjugate:

φ∗(σ(ξ)) ≤ C(1 + φ(ξ)) for all ξ ∈ R
d. (1.2)

This constitutes a generalization of the current results concerning equation (1.1) since we do not need
to assume polynomial growth of φ.
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Previous results regarding equation (1.1) in higher dimensions were obtained by Gajewski,
Gröger, and Zacharias [17], Clements [6], Friedman and Nec̆as [13], Engler [12], and Rybka [30],
all of which rely either on monotonicity or global Lipschitz continuity of σ. More recent contributions
from Friesecke and Dolzmann [14] and Emmrich and Šǐska [9] have generalized these results in the
sense that they only assume that σ satisfies the Andrews-Ball condition, i.e. there exists λ > 0 such
that

(σ(ξ) − σ(η)) · (ξ − η) ≥ −λ|ξ − η|2 for all ξ, η ∈ R
d,

which is fulfilled if σ is monotone or globally Lipschitz continuous.
On the other hand, all of the contributions listed above critically rely upon σ and its potential

φ satisfying a polynomial growth and coercivity condition, i.e. there exists p ≥ 2 and constants
C1, C2, C3 ≥ 0 such that

φ(ξ) ≥ C1|ξ|p − C2

and |σ(ξ)| ≤ C3(1 + |ξ|)p−1

which, in essence, is the growth condition (1.2) for φ ∼ | · |p and φ∗ = C| · | p

p−1 .
However, in this paper we want to generalize the growth condition and allow for anisotropic and

nonpolynomial growth. The appropriate setting is that of Orlicz spaces, where we demand that the
potential φ is an N -function and therefore convex. Hence, we obtain monotonicity of the nonlinearity
σ. We are aware of the fact that it would be desirable to weaken the monotonicity assumption and
only demand the Andrews-Ball condition, although we are not yet able to prove convergence under
those assumptions.

The polynomial growth and coercivity assumption leads to an Lp-setting where the Lebesgue
space Lp(Q) over the space-time cylinder is isometrically isomorphic to the Bochner-Lebesgue space
Lp(0, T ; Lp(Ω)) for p < ∞. This assumption allows us to reduce the partial differential equation
to an operator differential equation for functions in time taking values in an appropriate Banach
space of functions in space. However, the Orlicz space Lφ(Q), generated by the N -function φ, is only
isometrically isomorphic to the Orlicz space Lφ(0, T ; Lφ(Ω)) if φ is equivalent to some power function
(see [7, Proposition 1.3 on p. 218]). This fact poses a main difficulty in our approach.

Our main result, which will be presented in Theorem 4.1, provides global existence of a solution.
The proof shows the convergence of a subsequence of the sequence of approximate solutions, generated
by a discretization in time by the backward Euler scheme and in space by a suitable Galerkin scheme.

Qualitative studies and numerical results in the case of polynomial growth conditions have been
performed by Ball, Holmes, James, Pego and Swart [3], Friesecke and McLeod [15, 16], and Carstensen
and Dolzmann [5]. Additionally, Prohl considered a finite element based full discretization of the
equation

∂ttu− ε∆∂tu−∇ · σ(∇u) = 0

for ε > 0, as well as for ε = 0 and presents numerical experiments [28]. The limit case ε = 0 constitutes
the elastodynamic equation

∂ttu−∇ · σ(∇u) = f (1.3)

for which one cannot expect smooth solutions even for smooth initial data (see [2, 26]). For an excellent
survey of the literature concerning equation (1.3) see [8].

The remainder of this paper is structured as follows: In Section 2, we introduce the necessary
notation, give a brief introduction to Orlicz spaces and compare the growth condition (1.2) with the
restrictive ∆2-condition. The description of the numerical method we employ, the construction of the
Galerkin scheme, the proof of existence and uniqueness of the numerical solution, and the derivation
of a priori estimates for the fully discrete solution and the discrete time derivative follow in Section
3. Finally, in Section 4 we show convergence towards and, thus, existence of an exact solution, as well
as its uniqueness (under additional regularity assumptions) and an error estimate for the temporal
semidiscretization. The appendix contains an elementary lemma concerning the separability of the
space for wich we want to construct the Galerkin scheme.
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2. Notation and Preliminaries

After a brief survey of the notation we employ, this section provides a quick introduction to the theory
of Orlicz spaces and the specific results that are needed for the rest of this paper.

2.1. General Notation

We keep the usual notation for function spaces. Let Ω ⊂ R
d be a bounded domain. By Lp(Ω) (p ∈

[1,∞]), we denote the Lebesgue space, for R
d-valued functions, we write Lp(Ω;Rd), both equipped

with the standard norm ‖·‖p,Ω. Moreover, we rely upon the usual notation for Sobolev spaces. In

particular, we have W1,p(Ω) = {w ∈ Lp(Ω)|∇w ∈ Lp(Ω;Rd)} (with H1(Ω) = W1,2(Ω)), and W1,p
0 (Ω)

(p ∈ [1,∞)) denotes the closure of C ∞
c (Ω) with respect to the W1,p-norm (with H1

0(Ω) = W1,2
0 (Ω)).

Here C∞
c (Ω) denotes the space of infinitely times differentiable functions with compact support in Ω.

Similarly, by Hr(Ω) we denote higher Sobolev spaces consisting of elements of L2(Ω) for which the
derivatives up to order r are again in L2(Ω).

With Lp(0, T ;X) (p ∈ [1,∞]), we denote the usual Bocher-Lebesgue space, where X denotes
a Banach space. We recall that Lp(0, T ; Lp(Ω)) = Lp(Q) if p < ∞. Here, we identify the abstract
function u : [0, T ] → Lp(Ω) with the function u : Q→ R via [u(t)](x) = u(x, t). The standard norm is
then denoted by ‖·‖p,Q. The space of functions in L1(0, T ;X) whose distributional time derivative is

again in L1(0, T ;X) is denoted by W1,1(0, T ;X) and equipped with the standard norm. Analogously
we define W1,2(0, T ;X). By C ([0, T ];X), A C ([0, T ];X) and Cw([0, T ];X), we denote the usual spaces
of uniformly continuous, absolutely continuous and demicontinuous (i.e. continuous with respect to
the weak topology in X) functions u : [0, T ] → X , respectively (see also [17] for details). By 〈·, ·〉, we
denote the duality pairing. We will use the notation X →֒ Y and X

c→֒ Y to indicate that a Banach
space X is continuously respectively compactly embedded in a Banach space Y . Finally, C denotes a
generic positive constant.

2.2. Orlicz Spaces

In this section, we provide the definition and basic properties of Orlicz spaces. For an introduction to
Orlicz spaces, refer to [23], as well as [1, 18, 22, 31, 32, 34]. Since we want to include nonlinearities
with anisotropic growth, we rely upon anisotropic Orlicz classes and spaces defined by N -functions
with vector-valued arguments, as presented in [31, 32, 7].

Definition 2.1 (N -function). A function φ : Rd → R is said to be an N -function if it satisfies the
following conditions:

(i) φ is continuous, φ(ξ) = 0 if and only if ξ = 0, φ(−ξ) = φ(ξ) for all ξ ∈ R
d;

(ii) φ is convex;

(iii) φ has superlinear growth such that lim|ξ|→∞
φ(ξ)
|ξ| = ∞, and lim|ξ|→0

φ(ξ)
|ξ| = 0.

Some authors prefer the term generalized N -function in order to emphasize the dependence on
ξ and not only on |ξ|. Note that (i) and (ii) imply φ(ξ) ≥ 0 for all ξ ∈ R

d. Because of the anisotropic
character, the function φ need not be increasing with respect to the components of its vector-valued
argument, e.g. φ(ξ1, ξ2) = ξ21 + ξ22 + (ξ1 − ξ2)

2. For more examples, refer to [11].

For an N -function φ, φ∗ denotes the conjugate function given by the Legendre-Fenchel transform
φ∗(η) = supξ∈Rd(ξ ·η−φ(ξ)), η ∈ R

d. According to [31], the conjugate function is again an N -function,
and φ∗∗ = φ. Let us recall the Fenchel-Young inequality

|ξ · η| ≤ φ(ξ) + φ∗(ξ) for all ξ, η ∈ R
d.

The anisotropic Orlicz class Lφ(Ω;R
d) is the set of all (equivalence classes of almost everywhere

equal) measurable functions ξ : Ω → R
d such that

ρφ,Ω(ξ) :=

∫

Ω

φ(ξ(x)) dx <∞.
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Although Lφ(Ω;R
d) is a convex set, it may not be a linear space, e.g. if d = 1, Ω = (0, 1) and

φ(ξ) = e|ξ| − 1, then ξ = − 1
2 ln ∈ Lφ(Ω;R

d) but ζ = 2ξ 6∈ Lφ(Ω;R
d). The mapping ρφ,Ω is a modular

in the sense of [23, p. 208].
Since the function φ is continuous, ξ = ξ(x) ∈ L∞(Ω;Rd) implies x 7→ φ(ξ(x)) ∈ L∞(Ω), which

shows that L∞(Ω;Rd) ⊆ Lφ(Ω;R
d).

The anisotropic Orlicz space Lφ(Ω;R
d) is defined as the linear hull of Lφ(Ω;R

d). It is a Banach
space with respect to the Luxemburg norm

‖ξ‖φ,Ω := inf

{
λ > 0

∣∣∣∣
∫

Ω

φ

(
ξ(x)

λ

)
dx ≤ 1

}
,

where the infimum is attained if ξ 6= 0. Let us emphasize that, in general, Lφ(Ω;R
d) is neither separable

nor reflexive. Note that ρφ,Ω(ξ) ≤ ‖ξ‖φ,Ω if ‖ξ‖φ,Ω ≤ 1 and ρφ,Ω(ξ) ≥ ‖ξ‖φ,Ω if ‖ξ‖φ,Ω > 1 for all

ξ ∈ Lφ(Ω;R
d). Thus

‖ξ‖φ,Ω ≤ ρφ,Ω(ξ) + 1.

Because of the superlinear growth of φ we have Lφ(Ω;R
d) ⊆ L1(Ω;Rd) as shown in [11, p. 1167].

By definition, the anisotropic Orlicz class and space coincide with the isotropic Orlicz class and
space, respectively, if the N -function φ is a radial function.

Let us denote by Eφ(Ω;R
d) the closure with respect to the Luxemburg norm of the set of bounded

measurable functions defined on Ω. It turns out that Eφ(Ω;R
d) is the largest linear space contained

in the Orlicz class Lφ(Ω;R
d) such that

Eφ(Ω;R
d) ⊆ Lφ(Ω;R

d) ⊆ Lφ(Ω;R
d)

with, in general, strict inclusions. From the equivalence of the Luxemburg and the Orlicz norm

‖ξ‖Oφ,Ω := sup

{∫

Ω

ξ · η dx
∣∣∣∣ η ∈ Lφ∗(Ω,Rd) with ρφ∗,Ω(η) ≤ 1

}
,

one findes that L∞(Ω;Rd) is continuously embedded in Eφ(Ω;R
d).

The space Eφ(Ω;R
d) is separable and C ∞

c (Ω;Rd) is dense in Eφ(Ω;R
d). The space Lφ(Ω;R

d) is
the dual of Eφ∗(Ω;Rd), and the duality pairing is given by

〈ξ, η〉 =
∫

Ω

ξ · η dx ξ ∈ Lφ(Ω;R
d), η ∈ Eφ∗(Ω;Rd).

At this point, we may recall the generalized Hölder inequality
∫

Ω

ξ · η dx ≤ 2 ‖ξ‖φ,Ω ‖η‖φ∗,Ω for all ξ ∈ Lφ(Ω;R
d), η ∈ Lφ∗(Ω;Rd),

which shows that ξ · η ∈ L1(Ω) if ξ ∈ Lφ(Ω;R
d) and η ∈ Lφ∗(Ω;Rd). The factor 2 in the Hölder

inequality is due to the use of the Luxemburg norm instead of the Orlicz norm.

2.3. Growth Conditions in Orlicz Spaces

If the N -function φ satisfies the so-called ∆2-condition, i.e., if there exists C > 0 such that

φ(2ξ) ≤ Cφ(ξ) for all ξ ∈ R
d,

then Eφ(Ω;R
d) = Lφ(Ω;R

d) = Lφ(Ω;R
d) (see [32, Theorem 2.2]). The ∆2-condition, however, restricts

the growth significantly. For the isotropic case, it is known that the ∆2-condition is not fulfilled if the
N -function φ grows faster than a polynomial as shown in [23, Remark 3.4.6].

The following proposition illustrates the connection between the ∆2-condition and other growth
conditions.

Proposition 2.2. Let φ be a differentiable N -function. Then the following two statements are equivalent:

(i) φ satisfies the ∆2-condition.
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(ii) There exists a constant C > 0 such that

φ∗(φ′(ξ)) ≤ Cφ(ξ)

for all ξ ∈ R
d.

Proof. According to [31, Theorem 5.1], we have equality in the Fenchel-Young inequality if η = φ′(ξ).
Thus φ∗(φ′(ξ)) = φ′(ξ) · ξ − φ(ξ) and it suffices to show that the ∆2 condition is equivalent to the
existence of a constant C > 0 such that

φ′(ξ) · ξ
φ(ξ)

≤ C + 1

which follows from [31, Theorem 3.2]. �

2.4. Orlicz Spaces Over the Space-Time Cylinder

In this article, we also consider Orlicz classes and spaces over the space-time cylinder Q; the definitions
and results introduced earlier are the same with Ω replaced by Q. We emphasize that Lφ(Q;Rd) 6=
Lφ(0, T ; Lφ(Ω;R

d)), except for the case when φ is equivalent to a power function as proven in [7,
Proposition 1.3 on p. 218].

3. Full Discretization

In this section, we describe the numerical approximation of (1.1). We consider an equidistant time
grid: for N ∈ N, let τ = T/N and tn = nτ (n = 0, 1, . . . , N). In addition to the time discretization,
we consider an internal approximation (Vm)m∈N of the space

V := {w ∈ H1
0(Ω)|∇w ∈ Eφ(Ω;R

d)}, ‖w‖V := ‖∇w‖2,Ω + ‖∇w‖φ,Ω
so that Vm ⊆ W1,∞(Ω), which we will construct in the next subsection. With respect to the right-
hand side, we consider the following restriction to the time grid: for n = 1, 2, . . . , N , let fn =
1
τ

∫ tn

tn−1

f(·, t) dt. The numerical method we consider now reads as follows: for given u0, v0 ∈ Vm

and f ∈ L1(0, T ; L2(Ω)), find (un)Nn=1, (v
n)Nn=1 ⊂ Vm such that for n = 1, . . . , N

∫

Ω

vn − vn−1

τ
ψ +∇vn · ∇ψ + σ(∇un) · ∇ψ dx =

∫

Ω

fnψ dx for all ψ ∈ Vm, (3.1a)

where

un − un−1

τ
= vn, (3.1b)

that is, un = u0+τ
∑n

j=1 v
j . Note that σ(∇un) is in L1(Ω) because un ∈ W1,∞(Ω) and σ is continuous.

The scheme (3.1) can also be written as
∫

Ω

un − 2un−1 + un−2

τ2
ψ +

∇un −∇un−1

τ
· ∇ψ + σ(∇un) · ∇ψ =

∫

Ω

fnψ

for all ψ ∈ Vm for n = 1, 2, . . . , N , where u−1 := u0 − τv0.

3.1. Construction of the Galerkin Scheme

Next, we construct a special Galerkin scheme which provides stability that we will later employ to
bound the discrete second time derivative. Let r ∈ N be sufficiently big such that

Hr−1(Ω;Rd) →֒ L∞(Ω;Rd) →֒ Eφ(Ω;R
d).

Consequently, the space Hr := Hr(Ω) ∩ H1
0(Ω) is densely embedded in V (see Lemma A.1 in the

Appendix). We can then define (·, ·)r as the canonical inner product and ‖·‖r as the induced norm in
the Hilbert space Hr and let

T : L2(Ω) → L2(Ω), f 7→ u
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be the solution operator to the following problem:

For f ∈ L2(Ω) find u ∈ Hr such that (u, v)r = (f, v) for all v ∈ Hr.

The operator T is well-defined (Lemma of Lax-Milgram), selfadjoint, nonnegative, one-to-one and
compact. Similar steps as those in [4, Theorem 6.11 and 9.31] imply the existence of an orthonormal
basis (em)m∈N of L2(Ω) consisting of eigenfunctions of T, i.e.

Tem = µmem with µm > 0, µm → 0 for m→ ∞.

Let ϕm :=
√
µmem, m ∈ N then (ϕm)m∈N is an orthonormal basis of Hr. Because of the density of

the embedding of Hr in V , the sequence (ϕm)m∈N is a Galerkin basis of V and the spaces Vm :=
span{ϕ1, . . . , ϕm} form a Galerkin scheme with respect to V .

Now, let Pm : L2(Ω) → L2(Ω) denote the L2-orthogonal projections onto Vm defined by

Pmv =

m∑

j=1

(v, ej)ej =

m∑

j=1

(v, ϕj)rϕj , v ∈ L2(Ω).

In particular we have

(Pmv, vm) = (v, vm) for all vm ∈ Vm

and, since the ej are eigenfunctions of the operator T , Pm is Hr-orthogonal. Therefore, we have for
all v ∈ Hr

‖Pmv‖2r = (Pmv, Pmv)r = (v, Pmv)r ≤ ‖Pmv‖r ‖v‖r
and thus,

sup
v∈Hr\{0}

‖Pmv‖r
‖v‖r

≤ 1

for all m ∈ N.

3.2. Existence of Approximate Solutions

To demonstrate that the numerical scheme (3.1) has a unique solution we use Brouwer’s fixed point
theorem.

Theorem 3.1. Let u0, v0 ∈ Vm and f ∈ L1(0, T ; L2(Ω)) be given. Then there exists a unique solution
(un)Nn=1, (v

n)Nn=1 to the numerical scheme (3.1).

The proof of existence of solutions to the numerical scheme is based on the following auxiliary
result, which is a direct consequence of Brouwer’s fixed point theorem (see [17]).

Lemma 3.2. For some R > 0, let h : B(0, R) → R
m be continuous, where B(0, R) ⊂ R

m denotes the
closed ball of radius R with origin 0 with respect to some norm ‖·‖

Rm on R
m. If

h(v) · v ≥ 0 for all v ∈ R
m with ‖v‖

Rm = R

then there exists v∗ ∈ B(0, R) such that h(v∗) = 0.

Proof of theorem 3.1. We construct a one-to-one mapping between Vm = span{ϕ1, . . . , ϕm} and R
m

as follows:

w = [w1, . . . , wm] ∈ R
m ↔ Vm ∋ w =

m∑

j=1

wjϕj ,

and ‖w‖
Rm := ‖w‖2,Ω defines a norm. Existence and uniqueness are now shown step by step. Let

us assume that un−1, un−2 ∈ Vm are given. We show that there exists un ∈ Vm corresponding to
un ∈ R

m being a zero of the mapping h = [h1, . . . , hm] : Rm → R
m defined by

hj(w) :=

∫

Ω

(
w − 2un−1 + un−2

τ2
ϕj +

∇w −∇un−1

τ
· ∇ϕj + σ(∇w) · ∇ϕj − fnϕj

)
dx,
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for j = 1, 2, . . . ,m. The continuity of h : Rm → R
m is a consequence of the continuity of σ together

with the fact that Vm ⊂ W1,∞(Ω). With the Cauchy-Schwarz inequality and the monotonicity of σ
(note that σ(0) = 0 which follows from the properties of φ), we obtain

h(w) ·w =

∫

Ω

(
w − 2un−1 + un−2

τ2
w +

∇w −∇un−1

τ
· ∇w + σ(∇w) · ∇w − fnw

)
dx

≥ 1

τ2
‖w‖22,Ω − 1

τ2

∥∥un−1
∥∥
2,Ω

· ‖w‖2,Ω − 1

τ

∥∥vn−1
∥∥
2,Ω

· ‖w‖2,Ω

+
1

τ
‖∇w‖22,Ω − 1

τ

∥∥∇un−1
∥∥
2,Ω

· ‖∇w‖2,Ω − ‖fn‖2,Ω · ‖w‖2,Ω

=
1

τ
‖w‖2,Ω

(
1

τ
‖w‖2,Ω − 1

τ

∥∥un−1
∥∥
2,Ω

−
∥∥vn−1

∥∥
2,Ω

− τ ‖fn‖2,Ω
)

+
1

τ
‖∇w‖2,Ω

(
‖∇w‖2,Ω −

∥∥∇un−1
∥∥
2,Ω

)
.

Choosing R = ‖w‖2,Ω sufficiently large and incorporating the Poincaré-Friedrichs inequality allows us

to apply Lemma 3.2, providing existence of a zero of h and thus a solution to (3.1) at level n.

Let w1, w2 be two solutions of (3.1) at level n. Then, in view of the monotonicity of σ (and
σ(0) = 0), we have

1

τ2
‖w1 − w2‖22,Ω +

1

τ
‖∇w1 −∇w2‖22,Ω

=

∫

Ω

((
w1 − 2un−1 + un−2

τ2
− w2 − 2un−1 + un−2

τ2

)
(w1 − w2)

+

(∇w1 −∇un−1

τ
− ∇w2 −∇un−1

τ

)
· (∇w1 −∇w2)

)
dx

= −
∫

Ω

(σ(∇w1)− σ(∇w2)) · (∇w1 −∇w2) dx ≤ 0

which proves uniqueness. �

3.3. A Priori Estimates

The following a priori estimates are the essential prerequisite for the proof of convergence.

Theorem 3.3 (discrete a priori estimate I). The discrete solutions (un)Nn=1, (v
n)Nn=1 from theorem 3.1

satisfy the following a priori estimate for n = 1, 2, . . . , N :

‖vn‖22,Ω +

n∑

j=1

∥∥vj − vj−1
∥∥2
2,Ω

+ 2τ

n∑

j=1

∥∥∇vj
∥∥2
2,Ω

+ 2

∫

Ω

φ(∇un) dx

≤ C

(∥∥v0
∥∥2
2,Ω

+

∫

Ω

φ(∇u0) dx+ ‖f‖2L1(0,T ;L2(Ω))

)
. (3.2)

Proof. We test the first equation of (3.1) with ψ = vn and employ the convexity inequality, the
Cauchy-Schwarz inequality and the identity

(A−B) ·A =
1

2
(A2 −B2 + (A−B)2), (3.3)

which holds true for all A,B ∈ R as well as A,B ∈ R
d. We find

1

2τ

(
‖vn‖22,Ω −

∥∥vn−1
∥∥2
2,Ω

+
∥∥vn − vn−1

∥∥2
2,Ω

)
+ ‖∇vn‖22,Ω +

1

τ

∫

Ω

(φ(∇un)− φ(∇un−1)) dx

≤ ‖fn‖2,Ω ‖vn‖2,Ω .
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Summation then implies for all n = 1, 2, . . . , N

‖vn‖22,Ω +

n∑

j=1

∥∥vj − vj−1
∥∥2
2,Ω

+ 2τ

n∑

j=1

∥∥∇vj
∥∥2
2,Ω

+ 2

∫

Ω

φ(∇un) dx

≤
∥∥v0
∥∥2
2,Ω

+ 2

∫

Ω

φ(∇u0) dx+2τ

n∑

j=1

∥∥f j
∥∥
2,Ω

∥∥vj
∥∥
2,Ω

. (3.4)

Taking n such that ‖vn‖2,Ω = maxj=1,2,...,N

∥∥vj
∥∥
2,Ω

=: X and using

τ

N∑

j=1

∥∥f j
∥∥
2,Ω

≤ ‖f‖L1(0,T ;L2(Ω)) ,

results in the quadratic inequality

X2 ≤
∥∥v0
∥∥2
2,Ω

+ 2

∫

Ω

φ(∇u0) dx+2 ‖f‖L1(0,T ;L2(Ω))X,

implying

X ≤
∥∥v0
∥∥
2,Ω

+
√
2

(∫

Ω

φ(∇u0) dx
) 1

2

+ 2 ‖f‖L1(0,T ;L2(Ω)) .

Going back to (3.4) proves the assertion. �

Theorem 3.4 (discrete a priori estimate II). The discrete solutions (un)Nn=1, (v
n)Nn=1 from Theorem

3.1 satisfy the following a priori estimate for n = 1, 2, . . . , N :

τ

N∑

n=1

∥∥∥∥
vn − vn−1

τ

∥∥∥∥
(Hr)∗

≤ C

(∥∥v0
∥∥
2,Ω

+

∫

Ω

φ(∇u0) dx+ ‖f‖L1(0,T ;L2(Ω)) + max
n=1,...,N

‖σ(∇un)‖φ∗,Ω

)
.

(3.5)

Proof. Since vn and vn−1 are in Vm ⊂ V ⊂ L2(Ω) and due to the Hr-orthogonality of the projection
Pm, we have

∥∥∥∥
vn − vn−1

τ

∥∥∥∥
(Hr)∗

= sup
v∈Hr\{0}

1

‖v‖r

(
vn − vn−1

τ
, v

)

r

= sup
v∈Hr\{0}

1

‖v‖Hr

‖Pmv‖Hr

‖Pmv‖Hr

(
vn − vn−1

τ
, Pmv

)

L2(Ω)

.

Since (vn)Nn=0 satisfies the first equation in equation (3.1) and Pmv ∈ Vm, we obtain
∥∥∥∥
vn − vn−1

τ

∥∥∥∥
(Hr)∗

= sup
v∈Hr\{0}

‖Pmv‖Hr

‖v‖Hr

·
∫
Ω(f

n · Pmv −∇vn · ∇Pmv − σ(∇un) · ∇Pmv) dx

‖Pmv‖Hr

Employing the Cauchy-Schwarz inequality and the generalized Hölder inequality, we find
∫

Ω

(fn·Pmv −∇vn · ∇Pmv − σ(∇un) · ∇Pmv) dx

≤ C
(
‖fn‖2,Ω · ‖Pmv‖2,Ω + ‖∇vn‖2,Ω · ‖∇Pmv‖2,Ω + ‖σ(∇un)‖φ∗,Ω · ‖∇Pmv‖φ,Ω

)

≤ C ‖Pmv‖V
(
‖fn‖2,Ω + ‖∇vn‖2,Ω + ‖σ(∇un)‖φ∗,Ω

)
.

Since the continuity of the embedding Hr →֒ V implies 1
‖Pmv‖

Hr
≤ C 1

‖Pmv‖
V

for v 6= 0, together with

the stability of the projections Pm we obtain
∥∥∥∥
vn − vn−1

τ

∥∥∥∥
(Hr)∗

≤ C
(
‖fn‖2,Ω + ‖∇vn‖2,Ω + ‖σ(∇un)‖φ∗,Ω

)
.
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Multiplying by τ and summing from n = 1 to N yields

τ
N∑

n=1

∥∥∥∥
vn − vn−1

τ

∥∥∥∥
(Hr)∗

≤ C

(
τ

N∑

n=1

‖fn‖2,Ω + τ
N∑

n=1

‖∇vn‖2,Ω + max
n=1,...,N

‖σ(∇un)‖φ∗,Ω

)
.

The claim now follows from τ
∑N

n=1 ‖fn‖2,Ω ≤ ‖f‖L1(0,T ;L2(Ω)) and the previous a priori estimate in

Theorem 3.2. �

4. Existence via Convergence of Approximate Solutions

In the following, let us consider sequences (ml)l∈N and (Nl)l∈N of positive integers such that ml, Nl →
∞ as l → ∞. The discrete solution to (3.1) corresponding to the discretization parameters ml, Nl

(with τl := T/Nl) shall be denoted by (unl )
Nl

n=0, (v
n
l )

Nl

n=0, where u
0
l ∈ Vml

and v0l ∈ Vml
denote the

approximate initial values. We do not explicitly denote the dependence of tn = nτl on l.
Regarding the approximation of the initial values, we assume that

u0l → u0 in V and v0l → v0 in L2(Ω) as l → ∞. (4.1)

From the discrete solution, we construct approximate solutions defined on the whole time interval as
follows: let ul denote the piecewise constant function such that

ul(·, t) = unl if t ∈ (tn−1, tn] (n = 1, 2, . . . , Nl), ul(·, 0) = u1l ,

and let ûl denote the linear spline interpolating (t0, u
0
l ), (t1, u

1
l ), . . . , (tNl

, uNl

l ), i.e.

ûl(t) = un−1
l +

unl − un−1
l

τl
(t− tn−1)

=
tn − t

τl
un−1
l +

t− tn−1

τl
unl for t ∈ [tn−1, tn] (n = 1, 2, . . . , Nl).

In an analogous way, we define vl and v̂l, as well as the piecewise constant function fl.
The primary result of this paper can be summarized by the following theorem.

Theorem 4.1. Let u0 ∈ V , v0 ∈ L2(Ω) and f ∈ L1(0, T ; L2(Ω)). Further, let σ satisfy the growth
condition

φ∗(σ(A)) ≤ C(1 + φ(A))

for all A ∈ R
d. Then there exists a weak solution u ∈ Cw([0, T ]; H

1
0(Ω)) with ∂tu ∈ Cw([0, T ]; L

2(Ω)),
∇u ∈ Lφ(Q;Rd) and σ(∇u) ∈ Lφ∗(Q;Rd) to (1.1) in the sense of distributions, that is,

∫

Q

(−∂tu∂tw +∇∂tu · ∇w + σ(∇u) · ∇w) dx dt =
∫

Q

fw dx dt

for all w ∈ C ∞
c (Q), with u(·, 0) = u0 in V , and ∂tu(·, 0) = v0 in L2(Ω).

This solution is the limit of a subsequence, denoted by l throughout this paper, of approximate
solutions constructed from (3.1) in the following sense: The piecewise constant and piecewise linear
temporal interpolation ul and ûl converge weakly* in L∞(0, T ; H1

0(Ω)) and strongly in C ([0, T ]; L2(Ω)),
respectively, towards u. The piecewise constant temporal interpolation vl of the discrete time deriva-
tives converges weakly* in the space L∞(0, T ; L2(Ω)) and weakly in L2(0, T ; H1

0(Ω)) towards ∂tu and
the piecewise linear in time interpolation v̂l converges strongly in L2(Q) towards ∂tu. Moreover, ∇ul
converges weakly in Lφ(Q;Rd) towards ∇u and σ(∇ul) converges weakly* in Lφ∗(Q;Rd) towards
σ(∇u).
Lemma 4.2 (Convergence of subsequences I). Let u0 ∈ V , v0 ∈ L2(Ω) and f ∈ L1(0, T ; L2(Ω)) and let
the approximations of the initial values (u0l ) and (v0l ) satisfy (4.1). Then there exists a subsequence,
still denoted by l, and some u ∈ Cw([0, T ]; H

1
0(Ω)) with ∂tu ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1

0(Ω)) and
∇u ∈ Lφ(Q;Rd), as well as ξ ∈ H1

0(Ω) and ζ ∈ L2(Ω) such that, as l → ∞,

(I) ul
∗−⇀ u in L∞(0, T ; H1

0(Ω)),
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(II) ûl − ul → 0 in L2(0, T ; H1
0(Ω)),

(III) ûl → u in C ([0, T ]; L2(Ω)),

(IV) vl
∗−⇀ ∂tu in L∞(0, T ; L2(Ω)),

(V) v̂l − vl → 0 in L2(Q),
(VI) vl −⇀ ∂tu in L2(0, T ; H1

0(Ω)),

(VII) ∇ul ∗−⇀ ∇u in Lφ(Q;Rd),
(VIII) ûl(T ) −⇀ ξ in H1

0(Ω) and v̂l(T ) −⇀ ζ in L2(Ω).

Remark 4.3. Under the assumptions of Theorem 4.2, a subsequence of (ul) converges strongly in
L∞(0, T ; L2(Ω)) towards u because

‖ul − ûl‖L∞(0,T ;L2(Ω)) ≤ τl ‖vl‖L∞(0,T ;L2(Ω)) → 0 as l → ∞.

Moreover, if X is an intermediate Banach space between L2(Ω) and H1
0(Ω) in the sense of Lions and

Peetre [25] such that there exists C > 0 and θ ∈ (0, 1) with

‖w‖X ≤ C ‖∇w‖θ2,Ω ‖w‖1−θ
2,Ω for all w ∈ H1

0(Ω),

then (ûl) is a Cauchy sequence and thus converges strongly in C ([0, T ];X) towards u. As before, (ul)
converges strongly in L∞(0, T ;X) towards u.

Proof of Theorem 4.2. In view of (4.1), the right hand side in the a priori estimate (3.2) is bounded.

Because unl = u0l + τl
∑n

j=1 v
j
l , we find

‖∇unl ‖2,Ω ≤
∥∥∇u0l

∥∥
2,Ω

+ τl

n∑

j=1

‖∇vnl ‖2,Ω ≤
∥∥∇u0l

∥∥
2,Ω

+ C


τl

n∑

j=1

∥∥∥∇vjl
∥∥∥
2

2,Ω




1

2

.

Thus, as a consequence of the discrete a priori estimate (3.2), the sequences (ul)l∈N, (ûl)l∈N are bounded
in L∞(0, T ; H1

0(Ω)) and also (vl)l∈N, (v̂l)l∈N are bounded in L∞(0, T ; L2(Ω)). Thus, there are a subse-
quence, still denoted by l, and elements u, û ∈ L∞(0, T ; H1

0(Ω)), v, v̂ ∈ L∞(0, T ; L2(Ω)) such that

ul
∗−⇀ u, ûl

∗−⇀ û in L∞(0, T ; H1
0(Ω)),

vl
∗−⇀ v, v̂l

∗−⇀ v̂ in L∞(0, T ; L2(Ω)).

In view of (3.2)

‖ûl − ul‖2L2(0,T ;H1

0
(Ω)) =

τ3l
3

Nl∑

n=1

‖∇vnl ‖2L2(Ω) → 0,

we find that ûl − ul → 0 in L2(0, T ; H1
0(Ω)) and thus û = u. Similarly,

‖v̂l − vl‖2L2(Q) =
τl
3

Nl∑

n=1

∥∥vnl − vn−1
l

∥∥2
L2(Ω)

→ 0,

and thus v̂ = v. Because by definition vl = ∂tûl, we immediately find v = ∂tu.
The sequence (ûl) ⊂ C ([0, T ]; L2(Ω)) is equicontinuous because (∂ûl) = (vl) is bounded in

L∞(0, T ; L2(Ω)) and (ûl(t)) ⊂ H1
0(Ω) is bounded in H1

0(Ω) and hence relatively compact in L2(Ω) for
every t ∈ [0, T ]. An application of Arzelà-Ascoli’s theorem implies strong convergence in the space
C ([0, T ]; L2(Ω)) of a subsequence (again still denoted by l), and the limit can only be the weak*-limit u.
We have seen that u ∈ L∞(0, T ; H1

0(Ω)) with ∂tu ∈ L∞(0, T ; L2(Ω)) such that u ∈ A C ([0, T ]; L2(Ω)),
and in view of [24, Lemma 8.1 on p. 297] u ∈ Cw([0, T ]; H

1
0(Ω)).

Consequently, we have proved the first five statements. The sixth follows directly as

‖vl‖2L2(0,T ;H1

0
(Ω)) = τl

Nl∑

n=1

‖∇vnl ‖22,Ω
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and the right hand side is bounded due to the a priori estimate (3.2). Hence, we can extract a
subsequence (still denoted by l) and ṽ ∈ L2(0, T ; H1

0(Ω)) such that vl −⇀ ṽ in L2(0, T ; H1
0(Ω)). As

before, we can show ṽ = ∂tu.
In view of the discrete a priori estimate (3.2) we observe that

∫

Q

φ(∇ul) dx dt = τl

Nl∑

n=1

∫

Ω

φ(∇unl ) dx

is uniformly bounded. However, from the boundedness of the modular boundedness of the Luxemburg
norm follows. Therefore, the sequence (∇ul) is bounded in Lφ(Q;Rd), the dual of the separable space

Eφ∗(Q;Rd). Thus, we can extract a subsequence (still denoted by l) such that ∇ul ∗−⇀ χ in Lφ(Q;Rd)
for some χ. In view of the sequential lower semicontinuity of the modular in L1(Q;Rd) as shown in
[11, Lemma 2.2], we have χ ∈ Lφ(Q;Rd).

Since C ∞
c (Ω;Rd) ⊗ C∞

c (0, T ) ⊆ Eφ∗(Q;Rd) we find for all functions Φ ∈ C∞
c (Ω;Rd) and Ψ ∈

C∞
c (0, T ) with integration by parts and (I)

∫

Q

χ · ΦΨdxdt = lim
l→∞

∫

Q

∇ul · ΦΨdxdt

= − lim
l→∞

∫

Q

ul∇ · ΦΨdxdt = −
∫

Q

u∇ · ΦΨdxdt

and thus χ = ∇u.
Lastly, with the same argument as in (I), the sequence (ûl(·, T ))l∈N (with ûl(·, T ) = uNl

l =
ul(·, T )) is bounded in H1

0(Ω) and the sequence (v̂l(·, T ))l∈N is bounded in L2(Ω). Thus there exist
ξ ∈ H1

0(Ω) and ζ ∈ L2(Ω) and subsequences (still denoted by l) such that û(T ) −⇀ ξ and v̂l(T ) −⇀ ζ in
H1

0(Ω) and L2(Ω), respectively.
�

Lemma 4.4 (Convergence of subsequences II). Let the assumptions of Lemma 4.2 be satisfied and let
σ fulfill the growth condition

φ∗(σ(A)) ≤ C(1 + φ(A)) for all A ∈ R
d.

Additionally, assume that there is a constant C > 0 such that the approximations of the initial value

v0 satisfy τl
∥∥v0l
∥∥2
H1

0
(Ω)

< C for all l ∈ N. Then, there exists α ∈ Lφ∗(Q;Rd) and a subsequence (still

denoted by l) such that

(IX) σ(∇ul) ∗−⇀ α in Lφ∗(Q;Rd) und
(X) v̂l → ∂tu in L2(Q).

Note that the additional assumption τl
∥∥v0l
∥∥2
H1

0
(Ω)

< C is fulfilled by the projections of v0 onto

the spaces Vml
if we couple the time and space discretization parameters appropriately.

Proof. Using the growth condtion, we find
∫

Q

φ∗(σ(∇ul)) dx dt ≤ C

∫

Q

(1 + φ(∇ul)) dx dt

and as seen in the previous proof the right-hand side is bounded. Thus, (σ(∇ul)) is bounded in
Lφ∗(Q;Rd), the dual of the separable space Eφ(Q;Rd). Therefore, we can extract a subsequence (still
denoted by l) such that (σ(∇ul)) converges weakly* towards some α ∈ Lφ∗(Q;Rd). Again, using the
weak sequential lower semicontinuity of the modular in L1(Q;Rd) we find α ∈ Lφ∗(Q;Rd).

For the second statement, recall that the sequence (vl) is bounded in L2(0, T ; H1
0(Ω)). A simple

calculation then shows

‖v̂l‖2L2(0,T ;H1

0
(Ω)) ≤ C

(
τl
∥∥v0l
∥∥2
H1

0
(Ω)

+ τl

Nl∑

n=1

‖vnl ‖2H1

0
(Ω)

)
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and because of the assumption τl
∥∥v0l
∥∥2
H1

0
(Ω)

≤ C and the discrete a priori estimate (3.2), we thus find

that also (v̂l) is bounded in L2(0, T ; H1
0(Ω)).

Considering the time derivative ∂tv̂l using the discrete a priori estimate (3.5), we find

‖∂tv̂l‖2L2(0,T ;(Hr)∗) = τl

Nl∑

n=1

∥∥∥∥
vnl − vn−1

l

τl

∥∥∥∥
2

(Hr)∗

≤ C

(
∥∥v0
∥∥
2,Ω

+

∫

Ω

φ(∇u0) dx+ ‖f‖L1(0,T ;L2(Ω)) + max
n=1,...,N

‖σ(∇un)‖φ∗,Ω

)
.

As seen before (recall that ‖·‖φ∗,Ω ≤ 1 + ρφ∗,Ω(·)) using the growth condition we find that the right-
hand side is bounded. Considering the scale of spaces

H1
0(Ω)

c→֒ L2(Ω) →֒ (Hr)∗ (4.2)

we have seen that the sequence (v̂l) is bounded in the space

Z := {w ∈ L2(0, T ; H1
0(Ω))|∃ ∂tw ∈ L2(0, T ; (Hr)∗)},

equipped with the norm

‖w‖
Z

:= ‖w‖L2(0,T ;H1

0
(Ω)) + ‖∂tw‖L2(0,T ;(Hr)∗) .

The generalized Lions-Aubin lemma (see [29, Lemma 7.7]) implies that Z is compactly embedded in
L2(0, T ; L2(Ω)) = L2(Q). Thus, there exists a subsequence (still denoted by l) that converges strongly.
Because of lemma (4.2) (V), the limit can only be ∂tu. �

Proof of theorem 4.1. Using the piecewise constant and piecewise linear interpolation in time, the
numerical scheme (3.1) can be rewritten as

∫

Ω

(∂tv̂l(·, t)ψ +∇vl(·, t) · ∇ψ + σ(∇ul(·, t)) · ∇ψ) dx =

∫

Ω

fl(·, t)ψ dx, (4.3)

for all ψ ∈ Vml
, which holds almost everywhere as well as in the weak sense on (0, T ), such that
∫

Ω

(v̂l(·, T )ψΨ(T )− v̂l(·, 0)ψΨ(0)) dx

+

∫

Q

(−v̂lψΨ′ +∇vl · ∇ψΨ+ σ(∇ul) · ∇ψΨ)dxdt =

∫

Q

flψΨdxdt,

for all ψ ∈ Vml
and Ψ ∈ C 1([0, T ]). Taking ψ = Rml

w for arbitrary w ∈ V , where Rml
is a restriction

operator such that

Rml
w → w in V as l → ∞ for all w ∈ V (4.4)

(see also [33, pp. 13 ff]), and employing the weak and weak* convergence shown in lemma 4.2 and 4.4,
the strong convergence of fl in L1(0, T ; L2(Ω)) towards f (which follows from standard arguments)
and the strong convergence of v̂l(·, 0) = v0l in L2(Ω) to v0, we obtain the limit equation
∫

Ω

(ζwΨ(T )− v0wΨ(0)) dx+

∫

Q

(−∂tuwΨ′ +∇∂tu · ∇wΨ+ α · ∇wΨ)dx dt =

∫

Q

fwΨdxdt (4.5)

for all w ∈ V and Ψ ∈ C 1([0, T ]). To be precise, we have used that, as l → ∞,

Pml
w → w in L2(Ω),

Pml
wΨ′ → wΨ′ in L1(0, T ; L2(Ω)),

Pml
wΨ → wΨ in L2(0, T ; H1

0(Ω)),

∇Pml
wΨ → ∇wΨ in Eφ(Q;Rd),

Pml
wΨ → wΨ in L∞(0, T ; L2(Ω)).
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The convergences above follow from (4.4) and the definition of the norm in V . Note also that

‖∇Rml
wΨ −∇wΨ‖φ,Ω ≤ max(1, T ) ‖Ψ‖

C ([0,T ]) ‖∇Rml
w −∇w‖φ,Ω .

The limit equation (4.5) shows that

d

dt

∫

Ω

∂tuw dx =

∫

Ω

(fw −∇∂tu · ∇w − α · ∇u) dx for all w ∈ V, (4.6)

in the weak sense on (0, T ). The right-hand side in (4.6) is in L1(0, T ) because f ∈ L1(0, T ; L2(Ω)),
u ∈ L∞(0, T ; H1

0(Ω)) and α ∈ Lφ∗(Q;Rd) ⊆ L1(0, T ; Lφ∗(Ω;Rd)). Since we already know that ∂tu ∈
L∞(0, T ; L2(Ω)), this shows that the mapping t 7→

∫
Ω ∂tu(x, t)w(x) dx is absolutely continuous on

[0, T ] for every w ∈ V . Because V is dense in L2(Ω) and ∂tu ∈ L∞(0, T ; L2(Ω)) the mapping t 7→∫
Ω ∂tu(x, t)w(x) dx is also continuous on [0, T ] for every w ∈ L2(Ω) so that ∂tu ∈ Cw([0, T ]; L

2(Ω)).
For the last step of the proof, it will be crucial to use the limit equation (4.5) not only for test

functions in V ⊗ C 1([0, T ]), but for a more general class of test functions. We will use the following
approximation result almost identical to [10, Lemma 4.3].

Lemma 4.5. Let

w ∈ W := {w ∈ W1,1(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0(Ω))|∇w ∈ Lφ(Q;Rd)}.

Then for any ε > 0, there exists a function wε ∈ V ⊗ C 1([0, T ]) such that

‖wε − w‖W1,1(0,T ;L2(Ω)) < ε ‖wε − w‖L2(0,T ;H1

0
(Ω)) < ε,

and for all η ∈ Lφ∗(Q;Rd) ∣∣∣∣
∫

Q

η · ∇wε −
∫

Q

η · ∇w dx dt

∣∣∣∣ < ε.

For any ε > 0, and any w ∈ W , there is (recalling also the continuous embedding of the space
W1,1(0, T ; L2(Ω)) into C ([0, T ]; L2(Ω))) an element wε ∈ C

1([0, T ])⊗ V such that
∣∣∣∣
∫

Ω

ζ(wε(·, T )− w(·, T )) dx
∣∣∣∣+
∣∣∣∣
∫

Ω

v0(wε(·, 0)− w(·, 0)) dx
∣∣∣∣+
∣∣∣∣
∫

Q

∂tu∂t(wε − w) dx dt

∣∣∣∣

+

∣∣∣∣
∫

Q

∇∂tu · ∇(wε − w) dx dt

∣∣∣∣+
∣∣∣∣
∫

Q

α · ∇(wε − w) dx dt

∣∣∣∣+
∣∣∣∣
∫

Q

f(wε − w) dx dt

∣∣∣∣ < ε.

Therefore,∫

Ω

(ζw(·, T )− v0w(·, 0)) dx+
∫

Q

(−∂tu∂tw +∇∂tu · ∇w + α · ∇w) dx dt =
∫

Q

fw dx dt, (4.7)

for all w ∈ W .
Identification of initial and final values: Since ûl → u in C ([0, T ]; L2(Ω)) as l → ∞ we have in
particular ûl(0) → u(0) in L2(Ω). On the other hand, ûl(0) = u0l → u0 in V as l → ∞ thus u(0) = u0
in L2(Ω). Similarly we can identify u(T ) with ξ.

In order to identify ∂tu(0) and ∂tu(T ) with v0 and ζ respectively we test the limit equation (4.6)
with Ψ(t) = (T − t)/T . Thus, we find for all w ∈ V

d

dt

(
Ψ(t)

∫

Ω

∂tu(·, t)w dx

)
= Ψ′(t)

∫

Ω

∂tu(·, t)w dx+Ψ(t)
d

dt

∫

Ω

∂tu(·, t)w dx

= Ψ′(t)

∫

Ω

∂tu(·, t)w dx

+ Ψ(t)

∫

Ω

(f(·, t)w −∇∂tu(·, t) · ∇w − α(·, t) · ∇w) dx .

Integration over (0, T ) and employing (4.5) yields

−
∫

Ω

∂tu(·, 0)w dx =

∫

Ω

(ζwΨ(T )− v0wΨ(0)) dx = −
∫

Ω

v0w dx .
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Because of the density of V in L2(Ω), we find ∂tu(0) = v0 in L2(Ω). A similar calculation with
Ψ(t) = t/T shows ∂tu(T ) = ζ.
Identification of the nonlinear term: Let us start by taking ψ = ul(·, t)−u0l ∈ Vml

as the test function
in (4.3). After integrating over (0, T ), we have
∫

Q

σ(∇ul) · ∇ul
A

dx dt =

∫

Q

(
fl(ul − u0l )

B

− ∂tv̂l(ul − u0l )
C

−∇vl · (∇ul −∇u0l )
D

+ σ(∇ul) · ∇u0l
E

)
dx dt .

(4.8)
We examine each term A-E seperately:

A For arbitrary η ∈ L∞(Q;Rd) using the monotonicity of σ we find
∫

Q

σ(∇ul) · ∇ul dx dt ≥
∫

Q

σ(∇ul) · ∇ul dxdt−
∫

Q

(σ(∇ul)− σ(η)) · (∇ul − η) dx dt

=

∫

Q

σ(∇ul) · η dxdt+
∫

Q

σ(η) · (∇ul − η) dx dt .

Note that σ(η) is in Eφ∗(Q;Rd) since η ∈ L∞(Q;Rd) and σ is continuous. With the convergence
(IX) and (VII) seen in lemma 4.4 and 4.2 respectively we find, as l → ∞,

∫

Q

α · η dx dt+
∫

Q

σ(η) · (∇u − η) dx dt ≤ lim inf
l→∞

∫

Q

σ(∇ul) · ∇ul dxdt .

B Since ul converges weakly* in L∞(0, T ; H1
0(Ω)) and because of assumption (4.1), ul−u0l converges

weakly* in L∞(0, T ; L2(Ω)). Since fl → f in L1(0, T ; L2(Ω)) we thus obtain
∫

Q

fl(ul − u0l ) dx dt →
∫

Q

f(u− u0) dx dt, as l → ∞.

C Summation by parts yields

∫

Q

∂tv̂l(ul − u0l ) dx dt =

Nl∑

n=1

∫

Ω

(vnl − vn−1
l )(unl − u0l ) dx

=

∫

Ω

vNl

l (uNl

l − u0l ) dx−τl
Nl∑

n=1

∫

Ω

vnl v
n−1
l .

By straightforward computation we further find

τl

Nl∑

n=1

∫

Ω

vnl v
n−1
l =

∫

Q

(v̂l − vl)vl dx dt+

∫

Q

v̂lvl dx dt .

The strong convergence of v̂l − vl in L2(Q) towards zero, the weak convergence of vl, and the
strong convergence of v̂l towards ∂tu in the space L2(0, T ; H1

0(Ω)) and L2(Q) respectively provides
convergence of the right-hand side. Together with the weak convergence of v̂l(T ) towards ∂tu(T )
in L2(Ω) and the strong convergence of ûl(T ) and u

0
l towards u(T ) (in view of lemma 4.2 (III))

and u0 in L2(Ω) and H1
0(Ω) respectively we find, as l → ∞,

∫

Q

∂tv̂l(ul − u0l ) dx dt →
∫

Ω

∂tu(T )(u(T )− u0) dx−
∫

Q

|∂tu|2 dx dt .

D Since
∫

Q

∇vl · ∇ul dx dt =
Nl∑

n=1

∫

Ω

(∇unl −∇un−1
l ) · ∇unl dx ≥ 1

2

(∥∥∥∇uNl

l

∥∥∥
2

2,Ω
−
∥∥∇u0l

∥∥2
2,Ω

)

we find

−
∫

Q

∇vl(∇ul −∇u0l ) dx dt ≤ −1

2

(∥∥∥∇uNl

l

∥∥∥
2

2,Ω
−
∥∥∇u0l

∥∥2
2,Ω

)
+

∫

Q

∇vl · ∇u0l dxdt .
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Because u0l converges strongly towards u0 in H1
0(Ω) and thus strongly in L2(0, T ; H1

0(Ω)), together
with the weak convergence of vl towards ∂tu in L2(0, T ; H1

0(Ω)), the weak convergence of ûl(T )
towards u(T ) in H1

0(Ω) and the weak sequential lower semicontinuity of the norm, we obtain

lim sup
l→∞

−
∫

Q

∇vl(∇ul −∇u0l ) dx dt

≤ − lim inf
l→∞

1

2

∥∥∥∇uNl

l

∥∥∥
2

2,Ω
+ lim

l→∞

1

2

∥∥∇u0l
∥∥2
2,Ω

+ lim
l→∞

∫

Q

∇vl · ∇u0l dx dt

≤ −1

2
‖∇u(T )‖22,Ω +

1

2
‖∇u(0)‖22,Ω +

∫

Q

∇∂tu · ∇u0 dxdt

= −1

2

∫ T

0

d

dt
‖∇u(t)‖22,Ω dt+

∫

Q

∇∂tu · ∇u0 dx dt

= −
∫

Q

∇∂tu · (∇u −∇u0) dx dt .

E Because of assumption (4.1) ∇u0l converges strongly towards ∇u0 in Eφ(Ω;R
d) and since

∥∥∇u0l −∇u0
∥∥
φ,Q

≤ max(1, T )
∥∥∇u0l −∇u0

∥∥
φ,Ω

also in Eφ(Q;Rd). Finally the weak* convergence of the nonlinear term yields convergence in the
last term: ∫

Q

σ(∇ul) · ∇u0l dx dt →
∫

Q

α · ∇u0 dx dt, as l → ∞.

Combining these results, we can pass to the limit in (4.8) and obtain

∫

Q

α · η dx dt+
∫

Q

σ(η) · (∇u − η) dx dt ≤
∫

Q

f(u− u0) dx dt−
∫

Ω

∂tu(T )(u(T )− u0) dx

+

∫

Q

(
|∂tu|2 −∇∂tu · (∇u −∇u0) + α · ∇u0

)
dx dt . (4.9)

We have seen in lemma 4.2 and 4.4 that u ∈ L∞(0, T ; H1
0(Ω)) with ∂tu ∈ L2(Q) so that u ∈

W1,1(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0(Ω)) and additionally ∇u ∈ Lφ(Q;Rd). This means u ∈ W is an

admissable test function in (4.7). Furthermore u0 ∈ V ⊂ H1
0(Ω) and ∇u0 ∈ Eφ(Ω;R

d) and thus, as
seen before, also ∇u0 ∈ Eφ(Q;Rd). Therefore also u0 ∈ W is admissable and going back to (4.7) we
find
∫

Ω

∂tu(T )(u(T )− u0) dx+

∫

Q

(
−|∂tu|2 +∇∂tu · (∇u −∇u0) + α · (∇u−∇u0)

)
dx dt

=

∫

Q

f(u− u0) dx dt .

Using this together with (4.9) yields
∫

Q

α · η dx dt+
∫

Q

σ(η) · (∇u − η) dx dt ≤
∫

Q

α · ∇u dxdt

and thus ∫

Q

(α− σ(η)) · (∇u− η) dx dt ≥ 0. (4.10)

The remaining step is to show that α = σ(∇u). To this end, we use a variant of Minty’s trick
adapted to the case of nonreflexive Orlicz spaces (see also [10, 11, 19, 27]). For k ≥ 0 we define
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Qk := {(x, t) ∈ Q| |∇u(x, t)| > k} and set

η =





0 in Qj ,

∇u in Qk \Qj,

∇u− λη in Q \Qk,

where λ ∈ (0, 1) and η ∈ L∞(Q;Rd) and j > k ≥ 0 are arbitrary. This choice ensures η ∈ L∞(Q;Rd)
and together with (4.10) we find

∫

Qj

(α− σ(0)) · ∇u
A

dx dt+λ

∫

Q\Qk

(α− σ(∇u − λη)) · η
B

dx dt ≥ 0.

A Since α, σ(0) ∈ Lφ∗(Q;Rd) and ∇u ∈ Lφ(Q;Rd) Hölder’s inequality shows (α − σ(0)) · ∇u ∈
L1(Q). Because ∇u ∈ L1(Q;Rd) the measure of Qj goes to zero as j → ∞ and thus

∫

Qj

(α− σ(0)) · ∇u dxdt → 0, as j → ∞.

B The monotonicity of σ gives

σ(∇u − η) · η ≤ σ(∇u − λη) · η ≤ σ(∇u) · η
so that

|σ(∇u − λη) · η| ≤ max{|σ(∇u− η) · η|, |σ(∇u) · η|} ∈ L1(Q \Qk),

because ∇u is bounded on Q \Qk. Since σ is continuous, we thus find with Lebesgue’s theorem
on dominated convergence that

∫

Q\Qk

(α− σ(∇u − λη)) · η dx dt →
∫

Q\Qk

(α− σ(∇u)) · η dx dt, as λ→ 0.

Thus, we obtain ∫

Q\Qk

(α− σ(∇u)) · η dx dt ≥ 0.

With the choice

η =

{
− α−σ(∇u)

|α−σ(∇u)| , if α 6= σ(∇u),
0, otherwise,

we obtain ∫

Q\Qk

|α− σ(∇u)| dx dt = 0.

This shows that α = σ(∇u) almost everywhere in Q \Qk. Finally, because k is arbitrary, the equality
holds almost everywhere in Q. �

4.1. Uniqueness

If the solution is sufficiently regular, we also have uniqueness. Let u and v be two solutions to the
problem with the same data (u0, f). From the proof above, we already know that
∫

Ω

(∂tu(·, T )− ∂tv(·, T ))w(·, T ) dx

+

∫

Q

(−(∂tu− ∂tv)∂tw + (∇∂tu−∇∂tv) · ∇w + (σ(∇u)− σ(∇v)) · ∇w) dx dt = 0 (4.11)

for all w ∈ W . If we assume that u, v ∈ W ∩ W1,2(0, T ; H1(Ω)) and additionally σ(∇u), σ(∇v) ∈
Lφ∗(Q;Rd), then by testing (4.11) with w = (u− v)Ψε,t, where

Ψε,t(t) =





1 if 0 ≤ t ≤ t− ε,
t−t
ε

if t− ε < t ≤ t,

0 otherwise,
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and using the monotonicity of σ, we find

0 ≥
∫ t−ε

0

∫

Ω

((∂tu− ∂tv)(u − v) + (∇∂tu−∇∂tv) · (∇u−∇v)) dx dt

+

∫ t

t−ε

t− t

ε

∫

Ω

((∂tu− ∂tv)(u − v) + (∇∂tu−∇∂tv) · (∇u−∇v)) dx dt .

Employing Lebesgue’s theorem on dominated convergence, as ε → 0 the right-hand side converges
and we end up with

0 ≥
∫ t

0

∫

Ω

((∂tu− ∂tv)(u − v) + (∇∂tu−∇∂tv) · (∇u−∇v)) dx dt

=

∫ t

0

1

2

d

dt

(
‖u− v‖22,Ω + ‖∇u(·, t)−∇v(·, t)‖22,Ω

)
dt

and thus
∥∥u(·, t)− v(·, t)

∥∥
H1(Ω)

= 0

for all t ∈ (0, T ], which shows uniqueness.

4.2. Error Estimate

Although results on additional regularity of a weak solution to the problem (1.1) are not at hand,
one may ask for estimates of the discretization error providing convergence rates in case the exact
solution is smooth. In this section, we make a first step towards error estimates, restricting ourselfs
to the temporal semidiscretization.

Theorem 4.6. Let u0, u
0 ∈ V, v0, v

0 ∈ L2(Ω) and f ∈ L1(0, T ; L2(Ω)). Let further u be a solution of
(1.1) with ∂tu, ∂ttu, ∂tttu ∈ L1(0, T ; L2(Ω)) as well as u(·, t) ∈ V , ∂tu(·, t) ∈ L2(Ω) and σ(∇u(·, t)) ∈
Lφ∗(Ω,Rd) for all t ∈ [0, T ]. Let fn := 1

τ

∫ tn

tn−1

f(·, t) dt and un ∈ V with σ(∇un) ∈ Lφ∗(Ω,Rd) be an

approximation of u(·, tn) such that for n = 1, 2, . . . , N ,

un − un−1

τ
= vn

and

∫

Ω

(
vn − vn−1

τ
v +∇vn · ∇v + σ(∇un) · ∇v

)
dx =

∫

Ω

fnv dx

for all v ∈ V .Then there is a constant C > 0 such that, for n = 1, 2, . . . , N ,

‖u(·, tn)− un‖2,Ω ≤ C

(∥∥u0 − u0
∥∥
2,Ω

+
∥∥v0 − v0

∥∥
2,Ω

+ τ ‖∂ttu‖L1(0,T ;L2(Ω))

+ τ ‖∂tttu‖L1(0,T ;L2(Ω)) +
∥∥f − f

∥∥
L1(0,T ;L2(Ω))

)

where f denotes the piecewise constant in time interpolation of f with respect to (tn)
N
n=1.
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Proof. Let en := ut(·, tn)− vn. Then integration by parts shows
∫

Ω

(
en − en−1

τ
v + ∇en · ∇v + (σ(∇u(·, tn))− σ(∇un)) · ∇v) dx

=

∫

Ω

(
∂tu(·, tn)− ∂tu(·, tn−1)

τ
v +∇∂tu(·, tn) · ∇v + σ(∇u(·, tn)) · ∇v

)
dx

−
∫

Ω

(
vn − vn−1

τ
v +∇vn · ∇v + σ(∇un) · v

)
dx

=

∫

Ω

(
∂tu(·, tn)− ∂tu(·, tn−1)

τ
v − ∂ttu(·, tn)v + (f(·, tn)− fn)v

)
dx

= − 1

τ

∫ tn

tn−1

∫

Ω

(t− tn−1)∂tttu(·, t)v dxdt+
∫

Ω

(f(·, tn)− fn)v dx

for n = 1, 2, . . . , N and all v ∈ V . Testing this equation with v = en and using the relation (3.3) as
well as the monotonicity of σ and the Cauchy-Schwarz inequality, we find

‖en‖22,Ω −
∥∥en−1

∥∥2
2,Ω

≤ 2τ

∫ tn

tn−1

‖∂tttu(·, t)‖2,Ω ‖en‖2,Ω dt+2τ ‖f(·, tn)− fn‖2,Ω ‖en‖2,Ω .

One may check by induction that a2n−a2n−1 ≤ 2τanbn (n = 1, 2, . . .) for (an), (bn) ⊂ R
+
0 , τ > 0, implies

an ≤ a0 + 2τ
∑n

j=1 bj (n = 1, 2, . . .). Thus, together with the estimate τ
∑N

n=1 ‖f(·, tn)− fn‖2,Ω ≤∥∥f − f
∥∥
L1(0,T ;L2(Ω))

we find

‖∂tu(·, tn)− vn‖2,Ω ≤
∥∥v0 − v0

∥∥
2,Ω

+ 2τ ‖∂tttu‖L1(0,T ;L2(Ω)) + 2
∥∥f − f

∥∥
L1(0,T ;L2(Ω))

. (4.12)

Having found an error estimate for the time derivative we now consider the approximation error of u
itself. Recalling that un = u0 + τ

∑n
j=1 v

j , we find

‖u(·, tn)− un‖2,Ω ≤
∥∥u0 − u0

∥∥
2,Ω

+
n∑

j=1

∫ tj

tj−1

∥∥∂tu(·, t)− vj
∥∥
2,Ω

dt

≤
∥∥u0 − u0

∥∥
2,Ω

+
n∑

j=1

(∫ tj

tj−1

‖∂tu(·, t)− ∂tu(·, tj)‖2,Ω dt

+

∫ tj

tj−1

∥∥∂tu(·, tj)− vj
∥∥
2,Ω

dt

)

For the first integral term we can estimate as follows:
n∑

j=1

∫ tj

tj−1

‖∂tu(·, t)− ∂tu(·, tj)‖2,Ω dt ≤
n∑

j=1

∫ tj

tj−1

∫ tj

t

‖∂ttu(·, s)‖2,Ω ds dt

≤ τ
n∑

j=1

∫ tj

tj−1

‖∂ttu(·, s)‖2,Ω ds

≤ τ ‖∂ttu‖L1(0,T ;L2(Ω)) .

Applying the estimate (4.12) to the second integral term in (4.13) proves the statement. �

Appendix A. Separability of V

As in section 3 we let V = {w ∈ H1
0(Ω)|∇w ∈ Eφ(Ω;R

d)} with ‖w‖V = ‖∇w‖2,Ω + ‖∇w‖φ,Ω.
Lemma A.1. The set C∞

c (Ω) is dense in V .

The proof of this result follows [11, Lemma 2.3] very closely.
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Proof. Let w ∈ V and ε > 0. For n ∈ N we define

[Tn(w)](x) =





w(x) if |w(x)| ≤ n

n if w(x) > n

−n if w(x) < −n
and Ωn = {x ∈ Ω| |w(x)| > n}. Since w is measurable so is Ωn and using Chebyshev’s and Poincaré-

Friedrichs’ inequality we have |Ωn| ≤ C
n2 ‖w‖2H1

0
(Ω). An application of Lebesgue’s theorem on dominated

convergence then shows

‖∇Tn(w) −∇w‖22,Ω =

∫

Ωn

|∇w|2 dx → 0 as n→ ∞.

Because ∇w · η ∈ L1(Ω) for any η ∈ Lφ∗(Ω;Rd), the absolute continuity of the integral together with
the argumentation above also shows that∫

Ω

(∇Tn(w) −∇w) · η dx → 0 as n→ ∞.

Thus for n sufficiently large

‖∇Tn(w) −∇w‖2,Ω <
ε

4
and

∣∣∣∣
∫

Ω

(∇Tn(w)−∇w) · η dx
∣∣∣∣ <

ε

4

for all η ∈ Lφ∗(Ω;Rd).

Since Ω is a Lipschitz domain ∂Ω is compact and thus there is a finite number of points x(j) ∈ ∂Ω,
radii rj > 0 and Lipschitz continuous functions λj : R

d−1 → R, j = 1, . . . , J such that – up to a rigid
motion if necessary –

Ω ∩B(x(j), rj) = {y = [y1, . . . , yd−1, yd] ∈ B(x(j), rj)|yd < λj(y1, . . . , yd−1)},
where B(x(j), rj) denotes the open ball of radius rj with origin x(j). For sufficiently small δ0 > 0 we

set Ω0 := {x ∈ Ω| dist(x, ∂Ω) > δ0} and Ωj := B(x(j), rj) für j = 1, . . . , J so that (Ωj)
J
j=0 is an open

cover of Ω. Let (χj)
J
j=1 be a smooth partition of unity for Ω subordinate to this open cover.

We now set wj := χjTn(w), j = 0, . . . , J then Tn(w) =
∑J

j=0 wj , where we extend Tn(w) with
zero outside of Ω. Note that each wj has compact support in Ωj , j = 1, . . . , J , respectively, since
w ∈ V ⊂ H1

0(Ω).
Let

J0(x) :=

{
c0 exp

(
− 1

1−|x|2

)
if |x|2 < 1,

0 otherwise,

where c0 > 0 is such that
∫
Rd J0 dx = 1, and set for sufficiently small δ > 0

Jδ(x) = δ−dJ0(δ
−1x), x ∈ R

d. (A.1)

For any locally integrable function u, the mollification Jδ ∗ u is then a smooth function with compact
support in B(0, δ).

(1) First we consider j = 0. We observe that w0 ∈ H1
0(Ω) with ∇w0 = (∇χ0)Tn(w) + χ0∇Tn(w) ∈

Eφ(Ω;R
d). The mollification is continuous in H1

0(Ω) with respect to the strong convergence and
in Eφ(Ω;R

d) with respect to the weak convergence (see [7, Proposition 1.2 (3)]). There exists,
therefore δ00 > 0 sufficiently small such that

‖∇(Jδ00 ∗ w0)−∇w0‖2,Ω <
ε

8

and for all η ∈ Lφ∗(Ω;Rd)
∣∣∣∣
∫

Ω

(∇(Jδ00 ∗ w0)−∇w0) · η dx
∣∣∣∣ <

ε

8

gilt. Here we also used that ∇(Jδ0 ∗ Tn(w)) = (∇Jδ0 ) ∗ Tn(w) ∈ Eφ(Ω;R
d).



20 A. M. Ruf

(2) Next we consider j 6= 0. Since translation is continuous in H1
0(Ω) with respect to the strong con-

vergence and continuous in Eφ(Ω;R
d) with respect to the weak convergence (see [7, Proposition

1.2 (2)]) and since translation and derivative commute, there exists sufficiently small numbers
δj > 0 such that for the translation

w̃j(x1, . . . , xd−1, xd) := wj(x1, . . . , xd−1, xd + δj)

(where wj is the extension of wj with zero outside of Ω) we have

‖∇w̃j −∇wj‖2,Ω <
ε

16(J + 1)

and for all η ∈ Lφ∗(Ω;Rd)
∣∣∣∣
∫

Ω

(∇w̃j −∇wj) · η dx
∣∣∣∣ <

ε

16(J + 1)
.

As before, there exists sufficiently small numbers δ̃j > 0 such that
∥∥∥∇Jδ̃j ∗ w̃j −∇w̃j

∥∥∥
2,Ω

<
ε

16(J + 1)

and for all η ∈ Lφ∗(Ω,Rd)
∣∣∣∣
∫

Ω

(∇J
δ̃j

∗ w̃j −∇w̃j) · η dx
∣∣∣∣ <

ε

16(J + 1)
.

Setting w̃0 := w0, δ̃0 := δ00 and wε :=
∑J

j=0 Jδ̃j ∗ w̃j we finally find

‖∇wε −∇w‖2,Ω <
ε

2

and for all η ∈ Lφ∗(Ω;Rd) ∣∣∣∣
∫

Ω

(∇wε −∇w) · η dx
∣∣∣∣ <

ε

2

and thus

‖wε − w‖V < ε.

By construction also wε ∈ C∞
c (Ω). �

References

[1] R. A. Adams and J. J. Fournier, Sobolev Spaces, Academic press, Amsterdam, 2005.

[2] G. Andrews, On the existence of solutions to the equation utt = uxxt + σ(ux)x, Journal of Differential
Equations, 35 (1980), pp. 200–231.

[3] J. Ball, P. J. Holmes, R. James, R. Pego, and P. Swart, On the dynamics of fine structure, Journal
of Nonlinear Science, 1 (1991), pp. 17–70.

[4] H. Brezis, Functional Analysis, Sobolev spaces and Partial Differential Equations, Springer, New York,
2011.

[5] C. Carstensen and G. Dolzmann, Time-space discretization of the nonlinear hyperbolic system utt =
div(σ(Du) +Dut), SIAM Journal on Numerical Analysis, 42 (2004), pp. 75–89.

[6] J. Clements, Existence theorems for a quasilinear evolution equation, SIAM Journal on Applied Math-
ematics, 26 (1974), pp. 745–752.

[7] T. Donaldson, Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial value problems, Jour-
nal of Differential Equations, 16 (1974), pp. 201–256.

[8] E. Emmrich and D. Puhst, Survey of existence results in nonlinear peridynamics in comparison with
local elastodynamics, Computational Methods in Applied Mathematics, 15 (2015), pp. 483–496.



Fully discrete scheme in elastodynamics in Orlicz spaces 21

[9] E. Emmrich and D. Šǐska, Evolution equations of second order with nonconvex potential and linear
damping: existence via convergence of a full discretization, Journal of Differential Equations, 255 (2013),
pp. 3719–3746.
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[21] P. Klouček and M. Luskin, Computational modeling of the martensitic transformation with surface
energy, Mathematical and Computer modelling, 20 (1994), pp. 101–121.

[22] M. A. Krasnosel’skii and Y. B. Rutickii, Convex functions and Orlicz spaces, Hindustan Publishing
Corporation, Delhi, 1962.
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