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Weighted gradient inequalities and unique

continuation problems

Laura De Carli, Dmitry Gorbachev, and Sergey Tikhonov

Abstract. We use Pitt inequalities for the Fourier transform to prove
the following weighted gradient inequality

‖e−τℓ(·)u
1

q f‖q ≤ cτ‖e
−τℓ(·)v

1

p ∇f‖p, f ∈ C∞

0 (Rn).

This inequality is a Carleman-type estimate that yields unique continua-
tion results for solutions of first order differential equations and systems.

1. Introduction

The main purpose of this paper is to prove that the following weighted
Sobolev gradient inequality holds for every linear function ℓ : Rn → R, every
f ∈ C∞

0 (Rn) and every τ ≥ 0, with suitable weights u, v and exponents
1 < p, q <∞.

(1.1) ‖e−τℓ(·)u
1
q f‖q ≤ cτ‖e

−τℓ(·)v
1
p ∇f‖p

Here, cτ is a finite constant that may depend on τ but does not depend on ℓ

and f . We have denoted with ‖f‖r =
(∫

Rn |f(x)|
r dx

) 1
r the norm in Lr(Rn)

and with 〈x, y〉 = x1y1 + · · · + xnyn and |x| = 〈x, x〉
1
2 the standard inner

product and norm in R
n.

When τ > 0, we prove in Theorem 1.1 that cτ = max (τ−1, 1)C; here
and throughout the paper, C denotes a generic constant that depends only
on non-essential parameters, i.e. C = Cu,v,p,q,n. In particular, cτ = C
when τ ≥ 1. Inequalities like (1.1) are often called Carleman inequalities

in literature. In Sections 3 and 4 we will discuss Carleman inequalities and
their connection with unique continuation problems and we will prove new
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unique continuation results for systems of partial differential equations and
inequalities.

When τ = 0 in (1.1), we obtain a standard weighted Sobolev gradient
inequality (also called weighted Poincaré-Sobolev inequality)

(1.2) ‖u
1
q f‖q ≤ c0‖v

1
p ∇f‖p, f ∈ C∞

0 (Rn).

These inequalities have deep applications in partial differential equations.
For example, the case p = 2 < q of (1.2) arises in Harnack’s inequality
and regularity estimates for degenerate second order differential operators
in divergence form. They also have applications in the study of the stable
solutions of the Laplace and the p-Laplace operators in the Euclidean space,
the Laplace-Kohn operator in the Heisenberg group, the sub-Laplace oper-
ator in the Engel group, etc.; see e.g. [49, 22, 57] and the references cited
in these papers; see also [10].

Conditions on the weights u and v and the exponents p, q for which
(1.2) holds have been investigated by several authors. The most natural
approach to study (1.2) is based on the following pointwise inequality (see
e.g. [19, 46])

|f(x)| ≤ CI1(|∇f |)(x), x ∈ R
n,

where Iαφ(x) =
∫
Rn

φ(y)
|x−y|n−α dy, α < n, is the Riesz potential. This inequal-

ity follows from the classical Sobolev integral representation and is proved
e.g. in [42].

If the weighted inequality

(1.3) ‖u
1
q I1f‖q ≤ C‖v

1
p f‖p

holds for the weights u and v, we also have

‖u
1
q f‖q ≤ C‖u

1
q I1(|∇f |)‖q ≤ C‖v

1
p |∇f |‖p.

E. Sawyer obtained in [48] a complete characterization of the weights u and
v for which the gradient inequality (1.3) holds with p ≤ q. However, in some
cases, the conditions in [48] are difficult to verify. When p = q = 2, a full
characterization of the weights for which (1.2) holds is also in [41], but also
the conditions in this paper are difficult to verify.

H. P. Heinig showed in [25] that weighted norm inequalities for the
Fourier transform (or: Pitt-type inequalities) in the form of

(1.4) ‖f̂ u
1
q ‖q ≤ C‖f w

1
p ‖p, f ∈ C∞

0 (Rn),

can be used to prove weighted gradient inequalities. The Fourier transform

is defined as f̂ (y) =
∫
Rn f(x)e

−i〈x, y〉dx.

To prove (1.2) from (1.4), we observe that Îαf(y) = cα|y|
−αf̂ (y), where

cα is an explicit constant; we can see at once that (1.3) is equivalent to

‖u
1
q (|y|−1f̂ )̌ ‖q ≤ C‖v

1
p f‖p
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where ˇ denotes the inverse Fourier transform. We can apply Pitt’s in-

equality twice (with a suitable weight w and an exponent γ ∈ (1,∞)) to
obtain

‖u
1
q (|y|−1f̂ )̌ ‖q ≤ C‖w

1
γ |y|−1f̂ ‖γ ≤ C‖v

1
p f‖p.

Taking w = |y|γ and γ = q and assuming conditions on the weights that
ensure that both Pitt’s inequalities hold we obtain the main theorem in [25],
which was proved differently; see Theorem 2.1 in Section 2.

1.1. Main results. Throughout this paper, we will often write A . B
when A ≤ CB with a constant C > 0. We will also write A ≍ B when
there exists a constant C > 0, called the constant of equivalence, such that
C−1A ≤ B ≤ CA. As usual, we let g∗ be the non-increasing rearrangement
of g. We let p′ = p

p−1 be the dual exponent of p ∈ (1,∞).

Our main result can be stated as follows.

Theorem 1.1. Let u 6≡ 0 and v 6≡ +∞ be weights on R
n, n ≥ 1.

(a) Let 1 < p ≤ q < ∞. If there exists γ > 0 that satisfies max (p, p′) ≤
γ ≤ q, for which

(1.5)





Aq
u(0) := sup

s>0
s
1−q( 1

γ′
− 1

n
)
u∗(s) <∞, 1

n <
1
γ′ ≤

1
n + 1

q ,

Aq
u(τ) := sup

s>0

∫ s

0
u∗(t) dt

(∫ 1
s

0
(t+ τn)−

γ′

n dt
) q

γ′

<∞, τ > 0,

and

(1.6) Ap
v := sup

s>0
s

p
γ′

−1
(1/v)∗(s) <∞,

the inequality

(1.7) ‖e−τℓ(·)u
1
q f‖q ≤ cτ‖e

−τℓ(·)v
1
p ∇f‖p, f ∈ C∞

0 (Rn),

holds for every τ ≥ 0 and every linear function ℓ(x) = 〈a, x〉 + b, a ∈ R
n,

|a| = 1, b ∈ R, with the constant

(1.8) cτ = CAu(τ)Av,

where C = Cp,q,γ,n is some positive constant. Moreover,

(1.9) Au(τ) ≤ max (τ−1, 1)Au(1), τ > 0.

(b) Let 1 < q < p <∞. If there exists γ > 0 that satisfies
{

n
n−1 < γ ≤ q, τ = 0,

1 < γ ≤ q, τ > 0,

for which (1.5) holds and

Ãr
v :=

∫ ∞

0
s−

r
γ
−1

(∫ s

0
(1/v)∗(t)

1
p−1 dt

) r
p′
ds <∞,
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with 1
r = 1

γ − 1
p , the inequality (1.7) holds with the constant

(1.10) cτ = CAu(τ)Ãv.

Remark 1.1. When τ = 0 and γ = q we obtain Theorem 2.4 in [25]
with simplified conditions on u and v. The proof of Theorem 1.1 shows that
the assumptions 1

γ′ ≤ 1
n + 1

q and p′ ≤ γ are to rule out the trivial weights

u ≡ 0 and v ≡ +∞.

Remark 1.2. For the applications of Theorem 1.1 it is important to have
the uniform boundedness of cτ as τ → ∞. From (1.8), (1.10) and (1.9), we
have cτ ≤ c1 ≍ Au(1) whenever τ ≥ 1; thus, to prove the boundedness of
cτ , it is sufficient to verify that Au(1) <∞.

Remark 1.3. It is interesting to compare our weighted gradient inequal-
ities with those proved by G. Sinnamon in [53]. In that paper, a weighted
norm inequality in the form of

(1.11) ‖fu
1
q ‖q ≤ C‖〈∇f, x〉w

1
p ‖p, f ∈ C∞

0 (Rn)

is considered. If we denote with ∂rf = 〈 x
|x| , ∇f〉 the radial derivative of f ,

the inequality (1.11) is equivalent to

‖fu
1
q ‖q ≤ C‖ |x|w

1
p∂rf‖p, f ∈ C∞

0 (Rn),

and implies (1.2) with v = |x|pw.
In [53, Theorem 4.1], (1.11) is only proved for p = q and q < p under

some conditions on u, w; moreover, in [53, Theorem 3.4] it is proved that
when 1 ≤ p < q < ∞ and the weight w is locally integrable on R

n, the
inequality (1.11) holds for every f ∈ C∞

0 (Rn) if and only if u ≡ 0 a.e.
When f is radial, ∇f(x) = x

|x| ∂rf(x), and so |∇f(x)| = |∂rf(x)|. Thus,

our Theorem 1.1 yields (1.11) for radial functions with a nontrivial weight u

and with w = |x|−pe−pτℓ(x)v. We proved in Corollary 1.2 below that we can

consider piecewise power weights v = |x|(β1, β2), with 0 ≤ β1 ≤ n
( p
γ′ −1

)
(see

definition (1.13)). For example, if β1 = n
( p
γ′ −1

)
, then w is locally integrable

for 1
n <

1
γ′ because −p + β1 > −n. We remark that the counterexample in

[53, Theorem 3.4] is not radial.

Remark 1.4. The inequality (1.7) is equivalent to

(1.12) ‖u
1
q f‖q ≤ cτ‖v

1
p (τaf +∇f)‖p.

To see this, it is enough to use the substitution f1 = e−τℓ(·)f and
∇(eτℓ(·)f1) = eτℓ(·)(τaf1 +∇f1).

Let β1, β2 ∈ R; we define the piecewise power function t 7→ t(β1,β2) as
follows:

(1.13) t(β1,β2) :=

{
tβ1 , 0 < t ≤ 1,

tβ2 , t ≥ 1.
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In the following corollary of Theorem 1.1 we consider the important case of
piecewise power weights.

Corollary 1.2. Let 1 < p ≤ q < ∞; let γ > 0 that satisfies

max (p, p′) ≤ γ ≤ q and 1
n <

1
γ′ ≤

1
n + 1

q .

With the notation and the assumptions of Theorem 1.1 (a), the inequality

(1.7) holds with u(x) = |x|(−α1,−α2), v(x) = |x|(β1,β2), with αj, βj ≥ 0,
provided that

(1.14) α1 ≤ n
(
1−

q

γ′
+
q

n

)
,

{
α2 ≥ n

(
1− q

γ′ +
q
n

)
when τ = 0,

α2 ≥ 0 when τ > 0,

(1.15) β1 ≤ n
( p
γ′

− 1
)
, β2 ≥ n

( p
γ′

− 1
)
.

In particular, for power weights u(x) = |x|−α, v(x) = |x|β the inequality

(1.7) holds if



α = n

(
1− q

γ′ +
q
n

)
≥ 0 when τ = 0,

0 ≤ α ≤ n
(
1− q

γ′ +
q
n

)
when τ > 0,

β = n
( p
γ′

− 1
)
≥ 0.

Moreover, the conditions

(1.16)





α
q + β

p = n
(
1
q −

1
p

)
+ 1 when τ = 0,

α
q + β

p ≤ n
(
1
q −

1
p

)
+ 1 when τ > 0,

are necessary for the validity of (1.7).

Letting τ = α = β = 0, 1 < p < n, and γ = q in (1.16), we obtain
q = np

n−p and Corollary 1.2 yields the classical Sobolev inequality ‖f‖q ≤

C‖∇f‖p; see also [25, Corollary 2.5].
When τ = 0, we obtain the inequality

(∫

Rn

|f |q|x|(−α1,−α2) dx
) 1

q
≤ C

(∫

Rn

|∇f |p|x|(β1,β2) dx
) 1

p
,

which was proved by Maz’ya [42] and Caffarelli, Kohn, and Nirenberg [3]
for power weights. In [42, Sect. 2.1.6] it was proved that if 1 < p < n,

p ≤ q ≤ pn
n−p , and −α

q = β
p − 1 + n

(
1
p − 1

q

)
> −n

q , then

(1.17)
(∫

Rn

|f |q|x|−α dx
) 1

q
≤ C

(∫

Rn

|∇f |p|x|β dx
) 1

p
.

In [28, Lemma 2.1], this inequality was proved for n ≥ 2, 1 < p < +∞,

0 ≤ 1
p − 1

q = n
(
1− β

p − α
q

)
and −n

q < −α
q ≤ β

p . Note that the conditions

in [42] and [28] are the same, except for the extra condition p < n in [42].
From Corollary 1.2 with τ = 0 we have that α = n

(
1 − q

γ′ +
q
n

)
≥ 0,

β = n
( p
γ′ − 1

)
≥ 0, where max (p, p′) ≤ γ ≤ q and 1

n < 1
γ′ ≤

1
n + 1

q . These
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inequalities imply 1
p − 1

q = n
(
1 − β

p − α
q

)
, −n

q < −α
q ≤ β

p , but we also have

to assume α ≥ 0, β ≥ 0 because of our method of the proof.
It is interesting to observe that the best constant in the inequality (1.17)

has been evaluated in [57] and also in [22] for special values of α and β.

1.2. Unique continuation. Our Theorem 1.1 can be used to prove
unique continuation results for weak solutions (also called solutions in dis-

tribution sense) of systems of differential equations and inequalities; see
Section 3 for definitions and preliminary results.

We consider solutions in weighted Sobolev spaces of distributions: given
a domain D ⊂ R

n, we let Wm,p,v
0 (D) be the closure of C∞

0 (D) with respect
to the norm

‖f‖Wm,p,v(D) =

m∑

|α|=0

‖v
1
p∂αx f‖Lp(D)

where α = (α1, . . . , αn) ∈ N
n and the ∂αx f = ∂α1

x1
· · · ∂αn

xn
f are the partial

derivatives of f . In Section 3 we prove the following

Theorem 1.3. Let p, q, γ, u and v be as in Theorem 1.1 (a). Let
1
r = 1

p − 1
q . Let f ∈W 1,p,v

0 (Rn) be a solution of the differential inequality

(1.18) |∇f | ≤ V |f |

with V ∈ Lr(supp f, v
r
pu

− r
q dx). If, for some linear function ℓ : Rn → R, we

have that supp f ⊂ {x : ℓ(x) ≥ 0}, necessarily f ≡ 0.

Note that the condition V ∈ Lr(supp f, v
r
pu

− r
q dx) follows from ei-

ther V ∈ Lr(Rn, v
r
pu

− r
q dx) if supp f is unbounded, or from V ∈

Lr
loc(R

n, v
r
pu

− r
q dx) if f has compact support. In particular, for power

weights u, v as in Corollary 1.2, the differential inequality (1.18) does not
have solutions with compact support if V ≍ |x|−1+ǫ for some ǫ > 0; see
Remark 3.1.

To prove Theorem 1.3 we use a method developed by T. Carleman in [4].
A brief discussion on unique continuation problems and Carleman’s method
is in Sections 3 and 4.

When D is measurable and v is a suitable weight we consider the Dirich-
let problem

(1.19)

{
− div (v∇f |∇f |p−2) = v V f |f |p−2,

f ∈W 1,p,v
0 (D),

where div ((g1, . . . , gn)) = ∂x1g1 + · · · + ∂xngn and the potential V is in
a suitable Lr space. The operator div (v∇f |∇f |p−2) is known as weighted

p-Laplacian in the literature (see e.g. [23, 31]) and is denoted by ∆p when
v ≡ 1. The weighted p-Laplacian is nonlinear when p 6= 2 and is linear when
p = 2.
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When v ≡ 1, (1.19) can be compared to the Sturm-Liouville problem
in the form of −∆pf = (λm − V )f |f |p−2 (see e.g. [8]). When n = 1 and
p = 2 we have −(vf ′)′ = vV f . This problem is related to the classical
Sturm-Liouville problem −(vf ′)′ = (λw − q)f . See [40].

We prove the following

Theorem 1.4. Let f ∈W 1,p,v
0 (D) be a solution of the Dirichlet problem

(1.19). Let V+ = max{V, 0}. Assume that |V |
1
p ∈ Lr(D, v

r
pu−

r
q dx), where

u, v are as in Theorem 1.1 and 1
r = 1

p − 1
q . Then, either

c0‖u
− 1

q v
1
p V

1
p

+ ‖Lr(D) ≥ 1,

where c0 is as in (1.2), or f ≡ 0 in D.

Thus, the Dirichlet problem (1.19) has the unique solution f ≡ 0 if the

weighted Lr norm of V
1
p

+ on D is small enough.

To the best of our knowledge, the method of proof of Theorem 1.4 has
been used for the first time in [13]; it is extensively used in [11] and [17].

2. Proof of Theorem 1.1

In this section we prove our main theorem and a few corollaries.

2.1. Preliminary results. We will use the following theorem due to
Heinig [26], Jurkat-Sampson [34], and Muckenhoupt [43].

Theorem 2.1. Let n ≥ 1. If 1 < p ≤ q < ∞ and the weights u and w
satisfy

sup
s>0

(∫ 1
s

0
u∗(t) dt

) 1
q
(∫ 1

s

0
((1/w)∗(t))

1
p−1 dt

) 1
p′

=: A1 <∞,

or if 1 < q < p <∞, and

sup
s>0

(∫ ∞

0

(∫ 1
s

0
u∗(t)dt

) r
q
(∫ s

0
((1/w)∗(t))

1
p−1 dt

) r
q′
((1/w)∗(s))

1
p−1 ds

) 1
r

(2.1) =: A2 <∞

where r = qp
q−p , then Pitt’s inequality

‖f̂ u
1
q ‖q ≤ Cj‖f w

1
p ‖p, f ∈ C∞

0 (Rn), j = 1, 2,

holds with Cj ≤ Cp,q,jAj .

Recall that the non-increasing rearrangement of a measurable radially
decreasing function f(x) = f0(|x|) is defined as follows: let for λ > 0

µf (λ) = µ{x : |f(x)| > λ} = µ{x : |x| < f−1
0 (λ)} = (f−1

0 (λ))nVn,
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where Vn is the volume of the unit ball Bn = {x ∈ R
n : |x| ≤ 1}. Then for

t > 0

f∗(t) = inf{λ > 0: µf (λ) < t} = f0((t/Vn)
1
n ).

Note that the conditions on u and w are also necessary when u and w
are radial, i.e., u = u0(|x|) and w(x) = w0(|x|), with u0(r) non-increasing
and w0(r) non-decreasing. See [26] and also [12, Theorem 1.2 ] for simpler
and more general necessary conditions on the weight u and w. We should
also mention [38, Theorem 2.1] where a necessary condition similar to that
in [26], with u replaced by a measure dµ, was proved.

We also need the following

Lemma 2.2. Let ψ 6≡ 0 be a non-increasing non-negative function; let

β1, β2 > 0 and let β′2 = min (β2, 1). If either

A = sup
s>0

s(−β1,−β2)

∫ s

0
ψ(t) dt <∞,

or

B = sup
s>0

s(1−β1,1−β′

2)ψ(s) <∞,

then β1 ≤ 1 and A ≍ B.

Proof. Assume A < ∞; then, for every s > 0, we have that∫ s
0 ψ(t) dt ≤ As(β1,β2). Since ψ is non-increasing, sψ(s) ≤

∫ s
0 ψ(t) dt, so

ψ(s) ≤ As(β1−1,β2−1). If β1 > 1, then lim
s→0+

ψ(s) = 0 and consequently

ψ ≡ 0; since we assumed ψ 6≡ 0, necessarily β1 ≤ 1.
Furthermore, from ψ(s) ≤ ψ(1) for s ≥ 1 we can see at once that

ψ(s) . Asβ
′

2−1 and so B . A.

If we assume B <∞, for every s > 0 we have that ψ(s) ≤ Bs(β1−1,β′

2−1)

As above we conclude that β1 ≤ 1. For 0 < s ≤ 1 we have
∫ s
0 ψ(t) dt . Bsβ1.

If s ≥ 1, then
∫ s

0
ψ(t) dt =

∫ 1

0
ψ(t) dt+

∫ s

1
ψ(t) dt . B +B

∫ s

1
tβ

′

2−1 dt . Bsβ
′

2 ≤ Bsβ2 .

Thus, sups≥1 s
−β2

∫ s
0 ψ(t) dt . B and A . B. �

2.2. Proof of Theorem 1.1. We can assume ℓ(x) = 〈a, x〉, |a| = 1,
without loss of generality.

(a) Let p ≤ γ ≤ q.
Step 1. For τ ≥ 0 and ξ ∈ R

n, define

wτ (ξ) = |ξ − iτa|γ = (|ξ|2 + τ2)
γ
2 .

By Theorem 2.1 (a), the inequality

(2.2)
(∫

Rn

|ĝ (x)|qu(x) dx
) 1

q
. Au,wτ

(∫

Rn

wτ (ξ)|g(ξ)|
γ dξ

) 1
γ
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holds with

Au,wτ = sup
s>0

(∫ s

0
u∗(t) dt

) 1
q
(∫ 1

s

0
((1/wτ )

∗(t))
1

γ−1 dt
) 1

γ′
<∞.

The weight wτ is radially increasing, so

(1/wτ )
∗(t) = ((t/Vn)

2
n + τ2)−

γ
2 ≍ (t+ τn)−

γ
n

with the constant of equivalence independent of τ . This implies
∫ 1

s

0
((1/wτ )

∗(t))
1

γ−1 dt ≍

∫ 1
s

0
(t+ τn)−

γ′

n dt, s > 0.

Therefore, for τ ≥ 0,

(2.3) Aq
u,wτ

≍ sup
s>0

∫ s

0
u∗(t) dt

(∫ 1
s

0
(t+ τn)−

γ′

n dt
) q

γ′

= Aq
u(τ).

Since (t + τn)−1 ≤ max (τ−n, 1)(t + 1)−1 for t, τ > 0, from (2.3) we
conclude that

Au(τ) ≤ max (τ−1, 1)Au(1), τ > 0.

We can give a simple expression for Aq
u(0). Observing that I :=

∫ 1/s
0 t−

γ′

n dt is finite when −γ′

n > −1 or, equivalently, n
n−1 < γ, we have

that I ≍ s
γ′

n
−1. Therefore, (2.3) can be rewritten as

(2.4) Aq
u(0) ≍ sup

s>0
s
−q( 1

γ′
− 1

n
)
∫ s

0
u∗(t) dt.

By (2.4) and Lemma 2.2 with β1 = β2 = q( 1
γ′ − 1

n), there holds that

q( 1
γ′ −

1
n) ≤ 1 or 1

γ′ ≤
1
n + 1

q and we can redefine Aq
u(0) as follows.

Aq
u(0) = sup

s>0
s
−q( 1

γ′
− 1

n
)
∫ s

0
u∗(t) dt ≍ sup

s>0
s
1−q( 1

γ′
− 1

n
)
u∗(s).

Step 2. Let g(x) = e−〈τa,x〉f(x). Then g ∈ C∞
0 (Rn) and

(2.5) ĝ (ξ) =

∫

Rn

g(x)e−i〈ξ, x〉 dx =

∫

Rn

f(x)e−i〈ξ, x〉−〈τa, x〉 dx = f̂ (ξ − iτa).

Since for g ∈ C∞
0 (Rn) the Fourier inversion formula holds, (2.2) and

(2.3) imply
(∫

Rn

|g(x)|qu(x) dx
) 1

q
. Au(τ)

(∫

Rn

|ξ − iτa|γ |ĝ (ξ)|γ dξ
) 1

γ

= Au(τ)
(∫

Rn

∣∣(ξ − iτa)f̂ (ξ − iτa)
∣∣γ dξ

) 1
γ
.(2.6)

Note that f̂ is entire analytic (and so it is defined at ξ − iτa) because

f has compact support. Since ∇̂f (ξ) = iξf̂ (ξ), from (2.5) with h(x) =
(h1(x), . . . , hn(x)) = e−〈τa,x〉∇f(x) we get

ĥ(ξ) = ∇̂f (ξ − iτa) = i(ξ − iτa)f̂ (ξ − iτa).
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Hence

(∫

Rn

∣∣(ξ − iτa)f̂ (ξ − iτa)
∣∣γ dξ

) 1
γ

=
(∫

Rn

|ĥ(ξ)|γ dξ
) 1

γ
=

(∫

Rn

( n∑

j=1

|ĥ j(ξ)|
2
)γ

2
dξ

) 1
γ

≤
(∫

Rn

( n∑

j=1

|ĥ j(ξ)|
)γ
dξ

) 1
γ
≤

n∑

j=1

(∫

Rn

|ĥ j(ξ)|
γ dξ

) 1
γ
,

where the first inequality holds trivially and the second is Minkowski’s in-
equality.

Let us use Pitt’s inequality with p ≤ γ:

(2.7) ‖f̂ ‖γ ≤ Cp,γA1,v‖f v
1
p ‖p,

where

(2.8) A1,v := sup
s>0

(∫ 1
s

0
dt
) 1

γ
(∫ s

0
(1/v)∗(t)

1
p−1 dt

) 1
p′

<∞.

As in Step 1, we apply Lemma 2.2 with β1 = β2 =
p′

γ . We obtain p′

γ ≤ 1 and

Ap′

1,v ≍ sup
s>0

s−
p′

γ

∫ s

0
(1/v)∗(t)

1
p−1 dt ≍ sup

s>0
s1−

p′

γ (1/v)∗(s)
1

p−1 .

It follows that

Ap
1,v = A

p′(p−1)
1,v ≍ sup

s>0
s

p
γ′

−1
(1/v)∗(s) = Ap

v <∞.

Applying (2.7) with f replaced by hj , j = 1, . . . , n, we gather

(∫

Rn

|ĥ j(ξ)|
γ dξ

) 1
γ
. Av

(∫

Rn

|hj(x)|
pv(x) dx

) 1
p

. Av

(∫

Rn

( n∑

k=1

|hk(x)|
2
) p

2
v(x) dx

) 1
p

= Av

(∫

Rn

|e−〈τa,x〉∇f(x)|pv(x) dx
) 1

p
.(2.9)

This, together with (2.6) proves part (a) of the theorem.

(b) Let 1 < γ ≤ q < p. We proceed as in the proof of part (a) to obtain
(2.2), provided that (2.3) holds. We note that we assume n

n−1 < γ when
τ = 0.
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Analogously, we get (2.9), but instead of (2.8) we use (2.1) with u = 1,
w = v and γ < p. Then we have

Ar
1,v =

∫ ∞

0
s−

r
γ

(∫ s

0
(1/v)∗(t)

1
p−1 dt

) r
γ′
(1/v)∗(s)

1
p−1 ds

≍

∫ ∞

0
s
− r

γ
d

ds

(∫ s

0
(1/v)∗(t)

1
p−1 dt

) r
γ′

+1
ds,

where 1
r = 1

γ − 1
p . After integrating by parts, we get

Ar
1,v ≍

∫ ∞

0
s
− r

γ
−1

(∫ s

0
(1/v)∗(t)

1
p−1 dt

) r
p′
ds = Ãr

v <∞.

This proves part (b) of the theorem.

2.3. Corollaries and remarks. Let us first discuss the conditions on
γ in Theorem 1.1. We recall that in part (a) of Theorem 1.1 we assume
1 < p ≤ q <∞ and max (p, p′) ≤ γ ≤ q; when τ = 0 we assume also 1

n <
1
γ′ .

Note that this extra assumption on γ is not necessary when n ≥ 3.
Indeed, from max (p, p′) ≤ γ ≤ q follows that 2 ≤ γ ≤ q and q′ ≤ γ′ ≤ 2;
thus, 1

n <
1
γ′ whenever n ≥ 3.

When n = 1, the inequality 1
n <

1
γ′ (or: γ >

n
n−1) can never be satisfied

by γ′ and only the case 1
n ≥ 1

γ′ is possible. In fact, the condition max (p, p′) ≤

γ ≤ q always implies 1
2 ≤ 1

γ′ < 1.

If n = 2 we can either have 1
n <

1
γ′ or

1
n ≥ 1

γ′ . Note that 1
2 ≥ 1

γ′ implies

that p = γ = 2.

For applications, it is important to simplify the expression for Aq
u(1) in

(1.5). Recall that, when τ > 0, Au(τ) ≤ max (τ−1, 1)Au(1) (see Remark
1.2). We prove the following

Corollary 2.3. Let 1 < p ≤ q <∞ and let max (p, p′) ≤ γ ≤ q.
(i) If n ≥ 2 and 1

n <
1
γ′ , then

1
γ′ ≤

1
n + 1

q and

Aq
u(1) ≍ sup

s>0
s
(1−q( 1

γ′
− 1

n
), 0)

u∗(s).

(ii) If n = 2 and p = γ = 2, then

Aq
u(1) = sup

s>0

(
ln (s−1 + 1)

)q/2 ∫ s

0
u∗(t) dt.

(iii) If n = 1, then

Aq
u(1) ≍ sup

s>0
s
(0,− q

γ′
)
∫ s

0
u∗(t) dt.

Proof. (i) Recall that

Aq
u(τ) = sup

s>0

∫ s

0
u∗(t) dt

(∫ 1
s

0
(t+ τn)−

γ′

n dt
) q

γ′

, τ > 0.
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For τ = 1 and 1
n <

1
γ′ , we have

(∫ 1
s

0
(t+ 1)−

γ′

n dt
) q

γ′
≍

(
(s−1 + 1)1−

γ′

n − 1
) q

γ′

≍ s
(−q( 1

γ′
− 1

n
),− q

γ′
)
, s > 0.

Hence

Aq
u(1) ≍ sup

s>0
s
(−q( 1

γ′
− 1

n
),− q

γ′
)
∫ s

0
u∗(t) dt,

where q( 1
γ′ −

1
n) > 0 and q

γ′ ≥ 1, since γ′ ≤ 2 ≤ q.

Now we can apply Lemma 2.2 with β1 = q( 1
γ′ −

1
n), β2 = q

γ′ ≥ 1. We

obtain q( 1
γ′ −

1
n) ≥ 1 or 1

γ′ ≤
1
n + 1

q and

Aq
u(1) ≍ sup

s>0
s
(1−q( 1

γ′
− 1

n
), 0)

u∗(s).

Part (ii) is obvious. To prove part (iii), we note that γ′ > 1, which gives
∫ 1

s
0 (t+ 1)−γ′

dt ≍ s(0,−1). �

Proof of Corollary 1.2. Recall that in this corollary u(x) =

|x|(−α1,−α2), v(x) = |x|(β1,β2) with αj, βj ≥ 0. We consider the case when
1 < p ≤ q < ∞ and γ ∈ [max (p, p′), q], with 1

n < 1
γ′ ≤ 1

n + 1
q , and we let

τ = 0 or τ = 1.
Since w∗(s) ≍ w0(s

1
n ), s > 0, for any non-increasing radial weight func-

tion w(x) = w0(|x|) we have

u∗(s) ≍ s(−
α1
n

,−
α2
n
), (1/v)∗(s) ≍ s(−

β1
n
,−

β2
n
).

whenever αj , βj ≥ 0.
The expression (1.5), Corollary 2.3 (i), and (1.6) imply that for s > 0

u∗(s) .

{
s
q( 1

γ′
− 1

n
)−1

, τ = 0,

s
(q( 1

γ′
− 1

n
)−1,0)

, τ = 1,
(1/v)∗(s) . s

1− p
γ′ .

It is easy to see that when aj , bj ≥ 0, the inequality s(−a1,−a2) .

s(−b1,−b2), holds if and only if a1 ≤ b1, a2 ≥ b2. It follows that

α1 ≤ n
(
1−

q

γ′
+
q

n

)
,

{
α2 ≥ n

(
1− q

γ′ +
q
n

)
, τ = 0,

α2 ≥ 0, τ = 1,

and

0 ≤ β1 ≤ n
( p
γ′

− 1
)
, β2 ≥ n

( p
γ′

− 1
)

which proves (1.14) and (1.15).

To prove (1.16) we use a standard homogeneity argument. Let us con-
sider (1.12) (which by Remark 1.4 is equivalent to (1.7)) with f = fλ(x) =
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f(λx) for some f ∈ C∞
0 (Rn) and λ > 0. We obtain

‖|x|−
α
q fλ‖q ≤ cτ‖|x|

β
p (τafλ + λ(∇f)λ‖p.

After the change of variables x 7→ λ−1x, we get

(2.10) λ
α
q
−n

q
+β

p
+n

p
−1

‖|x|
−α

q f‖q ≤ cτ‖|x|
β
p (λ−1τaf +∇f)‖p.

The limits of the two sides of the inequality (2.10), as λ→ 0 or as λ→ ∞,
must be the same. If τ = 0 the right-hand side of (2.10) does not depend

on λ, so we must have α
q − n

q + β
p + n

p − 1 = 0.

If τ > 0, we must have

λ
α
q
−n

q
+β

p
+n

p
−1

.

{
λ−1, λ→ 0,

1, λ→ ∞.

so necessarily α
q − n

q + β
p + n

p − 1 ≤ 0.

�

3. Uniqueness problems

In this section and in Section 4 we use the inequality (1.1) to prove
uniqueness questions for solutions of partial differential equations and sys-
tems. First, we state some definitions and preliminary results.

Let α = (α1, . . . , αn) be a vector with non-negative integer components;
we use the notation |α| = α1 + · · ·+ αn and ∂αx f = ∂α1

∂
α1
x1

· · · ∂
αn

∂αn
xn
f .

Let D ⊂ R
n open and connected and let 1 ≤ p < ∞. Recall

that Wm,p
0 (D) is the closure of C∞

0 (D) with respect to the Sobolev norm
‖f‖Wm,p

0 (D) =
∑m

|α|=0 ‖∂
α
x f‖p, When m = 1, and D is bounded in at

least one direction, the classical Poincare’ inequality states that ‖f‖Lp(D) ≤

C‖∇f‖Lp(D) (see e.g. [2]); thus, the Sobolev norm in W 1,p
0 (D) is equivalent

to ‖∇f‖Lp(D).

Given the weight v : D → [0,∞] and 1 ≤ p < ∞, we let Wm,p,v
0 (D)

be the closure of C∞
0 (D) with respect to the norm ‖f‖W 1,p,v

0 (D) =
∑m

|α|=0 ‖v
1
p∂αx f‖p. We use the standard notation Lp,v(D) or Lp(D, v dx)

for the closure of C∞
0 (D) with respect to the norm ‖v

1
p f‖p.

Let P (∂) =
∑m

|α|=0 aα∂
α
x be a linear partial differential operator of

order m > 0 with complex constant coefficients. We let P (−∂)u =∑m
|α|=0 aα (−1)|α|∂αxu.

A weak solution (or: a solution in distribution sense) of the equation
P (∂)f = 0 on a domain D ⊂ R

n is a distribution f ∈Wm,p(D) that satisfies∫
D f(x)P (−∂)φ(x) dx = 0 for every φ ∈ C∞

0 (D). Weak solutions for non
linear partial differential operators can be defined on a case-by-case basis.
See e.g. [18] or other standard textbooks on partial differential equations
for details. We will often consider differential inequalities in the form of
|P (∂)f | ≤ |V f | on a given domain D; by that we mean that the inequality
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|P (∂)f(x)| ≤ |V f(x)| is satisfied a.e. in D, i.e., it is satisfied pointwise with
the possible exception of a set of measure zero.

3.1. Unique continuation and Carleman method. Let P (∂) be a
homogeneous partial differential operator of orderm ≥ 1. Clearly, f ≡ 0 is a
solution of the equation P (∂)f = 0 on any domain D ⊂ R

n. It is natural to
ask whether this equation has also nontrivial solutions, i.e., distributions in
some suitable Sobolev space that satisfy the equation in distribution sense
and are not identically = 0. In particular it is natural to ask whether (1),
(2) or (3) below are satisfied or not on a given domain D.

(1) Uniqueness for the Dirichlet problem. The only solution of the

Dirichlet problem

{
P (∂)f = 0,

f ∈Wm,p
0 (D)

is f ≡ 0.

(2) Weak unique continuation property (or: unique continuation from
an open set). Every solution of the equation P (∂)f = 0 which is
≡ 0 on an open subset of D is ≡ 0.

(3) Strong continuation property (or: unique continuation from a
point). Let x0 ∈ D. Every solution of the equation P (∂)f = 0
that satisfies

lim
r→0

r−N

∫

|x−x0|<r
|f(x)|2 dx = 0

for every N > 0 is ≡ 0.

For other relevant unique continuation problems see the survey pa-
per [55].

Historically, the study of unique continuation originated from the
uniqueness for the Cauchy problem; an equally strong motivation arose from
some fundamental questions in mathematical physics, with the study of the
eigenvalues of the time-independent Schrödinger operator H = −∆+ V as
a notable example. See [50] and [51] and also [36] and the references cited
there.

In 1939 T. Carleman used in [4] a new weighted Sobolev inequality to
show that the Schrödinger operator H = −∆ + V has the strong unique
continuation property when n = 2 and V is bounded. Carleman’s original
idea has permeated the large majority of results on unique continuation.
The weighted Sobolev inequality that he used in his proof has been widely
generalized and applied to a vast array of problems in unique continuation
and control theory.

A Carleman-type inequality for a differential operator P (∂) is a weighted
inequality of the form of

(3.1) ‖ητkf‖q ≤ C‖ητkP (∂)f‖p, f ∈ C∞
0 (D),

where η : D → [0, 1), the sequence {τk}k∈N ⊂ (0,∞) increases to +∞, the
constant C is independent of the sequence of the τk and of f , and 1 ≤ p ≤
q < ∞. If (3.1) holds with a suitable function η, a version of the argument



WEIGHTED GRADIENT INEQUALITIES AND UNIQUE CONTINUATION 15

used in the proof of Theorem 1.3 can be applied to show that the operator
Q(∂) = P (∂) − V (x) has the unique continuation property (2) or (3) (or

some variation of these properties) whenever V ∈ L
pq
q−p (D).

The literature on Carleman inequalities and unique continuation is very
extensive. A sample of references on unique continuation problems for sec-
ond order elliptic operators include the important [32, 33, 35, 52] and the
survey papers [58, 37, 55].

The inequality (1.7) in Theorem 1.1 can be viewed as a weighted
Carleman-type inequality for the operator P (∂)f = |∇f |. To the best
of our knowledge, the inequality (1.7) is new in the literature, even when
u(x) ≍ v(x) ≍ 1.

3.2. Proof of Theorem 1.3. In this section we prove Theorem 1.3
and some corollary.

Proof of Theorem 1.3. Assume for simplicity that f ≡ 0 when xn <
0 (the proof is similar in the general case). It is enough to show that f ≡ 0
also on the strip Sǫ = {x : 0 < xn < ǫ}, where ǫ > 0 will be determined
during the proof. Using Theorem 1.1 (a) with a = (0, . . . , 0, 1), τ ≥ 1 and
cτ ≤ c1 (see Remark 1.2), the differential inequality (1.18) and Hölder’s
inequality with 1

p = 1
q +

1
r , we can write the following chain of inequalities:

‖e−τxnfu
1
q ‖Lq(Sǫ) ≤ c1‖e

−τxn∇fv
1
p ‖Lp(Rn)

≤ c1‖e
−τxn∇fv

1
p ‖Lp(Sǫ) + c1‖e

−τxn∇fv
1
p ‖Lp({xn>ǫ})

≤ c1‖e
−τxnfV v

1
p ‖Lp(Sǫ) + c1e

−τǫ‖∇fv
1
p ‖Lp({xn>ǫ})

≤ c1‖V v
1
pu−

1
q ‖Lr(Sǫ∩supp f)‖e

−τxnfu
1
q ‖Lq(Sǫ) + C ′e−τǫ.

Here, 1
r = 1

p − 1
q and we have let C ′ = c1‖∇fv

1
p ‖Lp({xn>ǫ}). Note that C ′

does not depend on τ .

Since V ∈ Lr(supp f, v
r
pu−

r
q dx) we can chose ǫ > 0 so that

c1‖V v
1
pu

− 1
q ‖Lr(Sǫ∩supp f) <

1
2 . From the chain of inequalities above, fol-

lows that

‖e−τxnfu
1
q ‖Lq(Sǫ) ≤

1

2
‖e−τxnfu

1
q ‖Lq(Sǫ) + C ′e−τǫ.

We gather
1

2
‖eτ(ǫ−xn)fu

1
q ‖Lq(Sǫ) ≤ C ′.

Since ǫ− xn > 0 on Sǫ, if f 6≡ 0 the left-hand side of this inequality goes to
infinity when τ goes to infinity; this is a contradiction because C ′ does not
depend on τ and so necessarily f ≡ 0 in Sǫ. �

Corollary 3.1. Let p, q and γ be as in Theorem 1.1 (a). Let u =

|x|(−α1,−α2) and v = |x|(β1, β2), with 0 ≤ α1 ≤ n
(
1 − q

γ′ +
q
n

)
, α2 ≥ 0 and
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0 ≤ β1 ≤ n
( p
γ′ − 1

)
, β2 ≥ n

( p
γ′ − 1

)
. Let V = |x|(s1,s2), with

(3.2) s1 > −
n

r
−
α1

q
−
β1
p
,

and, if supp f is unbounded,

(3.3) s2 < −
α2

q
−
β2
p

−
n

r
.

Then, every solution of the differential inequality |∇f | ≤ V |f | is ≡ 0.

Proof. The weights u and v are as in Corollary 1.2, so the inequality
(1.7) holds with τ > 0. By Theorem 1.3, every solution of the differential

inequality |∇f | ≤ V |f | is ≡ 0 whenever V v
1
pu

− 1
q ∈ Lr(supp f). We can see

at once that V v
1
pu−

1
q = |x|(t1,t2) ∈ Lr(supp f) if and only if t1 = s1 +

α1
q +

β1

p > −n
r and, if supp f is unbounded, t2 = s2 +

α2
q + β2

p < −n
r , which is

equivalent to (3.2) and (3.3). This concludes the proof. �

Remark 3.1. From the inequalities above and the assumptions on αj ,
βj , and γ

′ (see Corollary 1.2) follows that

t1 ≤ s1 +
n

q

(
1−

q

γ′
+
q

n

)
+
n

p

( p
γ′

− 1
)
= s1 −

n

r
+ 1.

t2 ≥ s2 +
n

p

( p
γ′

− 1
)
= s2 +

n

γ′
−
n

p
> s2 −

n

p
+ 1.

The condition t1 > −n
r yields s1 > −1. We can see at once that t2 < −n

r

yields s2 <
n
q − 1. In particular, V = |x|−1+ǫ with 0 < ǫ < n

q , satisfies the

assumptions of Corollary 3.1. If f has compact support, then we can omit
the condition on t2 and assume only ǫ > 0.

Potentials V (x) = C|x|−s, with s, C > 0 are known as Hardy potentials

in the literature. They appear in the relativistic Schrödinger equations and
in problem of stability of relativistic matter in magnetic fields. See e.g. [27]
and the introduction to [20] and [21], just to cite a few.

It is proved in [16] that when L is the Dirac operator in dimension n ≥ 2
(see Section 4.2) the differential inequality |Lf | ≤ C|x|−1|f | has the strong
unique continuation property from the point x0 = 0 whenever C ≤ 1. We
conjecture that also the differential inequalities |∇f | ≤ C|x|−1|f | has the
strong unique continuation property from the origin when C is sufficiently
small.

3.3. Proof of Theorem 1.4. Recall that the solution f of the Dirichlet
problem (1.19) is intended in distribution sense, i.e., f satisfies

(3.4)

∫

D
〈∇ψ,∇f〉|∇f |p−2 v dx =

∫

D
ψ V f |f |p−2 v dx

for every ψ ∈ C∞
0 (D). To prove Theorem 1.4 we need two important lem-

mas:
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Lemma 3.2. Suppose that the weighted gradient inequality

(3.5) ‖u
1
q f‖q ≤ c0‖v

1
p∇f‖p, f ∈ C∞

0 (D)

holds with exponents 1 ≤ p, q < ∞. Then the space W 1,p,v
0 (D) embeds into

Lq(D,u dx) and ‖f‖Lq(D,u dx) ≤ c0‖∇f‖Lp(D, v dx).

Proof. Fix f ∈ W 1,p,v
0 (D); let {fn}n∈N ⊂ C∞

0 (D) be a sequence that
converges to f in the Sobolev norm ‖ · ‖W 1,p,v

0 (D). Thus, {fn} is a Cauchy

sequence in W 1,p,v
0 (D); for every ǫ > 0 we can chose N > 0 such that

‖fn − fm‖W 1,p,v(D) = ‖v
1
p (fn − fm)‖Lp(D) + ‖v

1
p∇(fn − fm)‖Lp(D) < ǫ

whenever n, m > N ; thus, ‖v
1
p∇(fn − fm)‖Lp(D) < ǫ. By (3.5),

‖u
1
q (fn − fm)‖Lq(D) ≤ c0‖v

1
p∇(fn − fm)‖Lp(D) < c0ǫ.

We have proved that {fn} is a Cauchy sequence in Lq(D, u dx) (which is
complete) and so it converges to f also in Lq(D, u dx). We gather

‖f‖Lq(D,u dx) = lim
n→∞

‖fn‖Lq(D,u dx) ≤ c0 lim
n→∞

‖∇fn‖Lp(D, v dx)

= c0‖∇f‖Lp(D, v dx)

as required. �

Lemma 3.3. Suppose that the weighted gradient inequality (3.5) holds

with 1 < p < q. Let f be a solution to the Dirichlet problem (1.19), with

|V |
1
p ∈ Lr(D, v

r
pu−

r
q dx). We have

∫

D
|∇f |pv dx =

∫

D
V |f |pv dx.

Proof. Let {ψn} be a sequence of functions in C∞
0 (D) that converges

to f , the complex conjugate of f , in W 1,p,v
0 (D). We show first that

limn→∞

∫
D〈∇ψn,∇f〉|∇f |

p−2v dx =
∫
D |∇f |pv dx. Indeed,

∫

D

(
〈∇ψn,∇f〉|∇f |

p−2 − |∇f |p
)
v dx

=

∫

D

(
〈∇ψn,∇f〉|∇f |

p−2 − 〈∇f,∇f〉|∇f |p−2
)
v dx

=

∫

D
〈∇ψn −∇f, ∇f |∇f |p−2〉 v dx

≤‖(∇ψn −∇f)v
1
p ‖p ‖|∇f |

p−1 v
1
p′ ‖p′

= ‖∇(ψn − f)v
1
p ‖p ‖ |∇f | v

1
p ‖

p
p′

p

and limn→∞ ‖∇(ψn − f)v
1
p ‖p = 0, as required.
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In view of (3.4), we have that
∫

D
〈∇ψn,∇f〉|∇f |

p−2v dx =

∫

D
ψn V f |f |

p−2 v dx;

to complete the proof it suffices to show that

lim
n→∞

∫

D
ψn V f |f |

p−2 v dx =

∫

D
V |f |p v dx

when |V |
1
p ∈ Lr(D, v

r
pu

− r
q dx). By Lemma 3.2, ψn converges to f̄ in

Lq(D, u dx). Using Holder’s inequality with p
r +

p
q = 1, we gather

∫

D

(
ψnV f |f |

p−2 − V |f |p
)
v dx ≤

∫

D
|V vu−

p
q | |f |p−1 |ψn − f̄ |u

p
q dx

≤
(∫

D
|vV u

− p
q |

r
p dx

) p
r
(∫

D
|f |

(p−1) q
p |ψn − f̄ |

q
pu dx

) p
q

=
(∫

D
(|V |

1
p v

1
pu

− 1
q )r dx

) p
r
(∫

D
|f |

q
p′ |ψn − f̄ |

q
pu dx

) p
q
.

We let C =
(∫

D(|V |
1
p v

1
pu−

1
q )r dx

) p
r and we apply Hölder’s inequality (with

1
p +

1
p′ = 1) to the remaining integral. We obtain

∫

D

(
V f |f |p−2ψn − V |f |p

)
v dx

≤ C
(∫

D
|f |qu dx

) p
qp′

(∫

D
|ψn − f̄ |qu dx

) 1
q

= C‖fu
1
q ‖p−1

q ‖(ψn − f̄)u
1
q ‖q.(3.6)

By assumption, limn→∞ ‖(ψn − f̄)u
1
q ‖q = 0; by Lemma 3.2, ‖fu

1
q ‖q < ∞,

and so the right-hand side of (3.6) goes to zero when n→ ∞ as required. �

Proof of Theorem 1.4. Since the weights u and v are as in Theo-
rem 1.1, the weighted gradient inequality (3.5) holds. By Lemma 3.3 and
Hölder’s inequality (with p

q +
p
r = 1) we have the following chain of inequal-

ities

‖fu
1
q ‖pLq(D) ≤ cp0‖∇f v

1
p ‖pLp(D) = cp0

∫

D
v|∇f |pdx

= cp0

∫

D
V v|f |p dx ≤ cp0

∫

D
V+vu

− p
q |f |pu

p
q dx

≤ cp0

(∫

D
V

r
p

+ v
r
pu−

r
q dx

) p
r
(∫

D
|f |qu dx

) p
q

≤ cp0‖V
1
p

+ ‖p
Lr(D, v

r
p u

−
r
q dx)

‖fu
1
q ‖pLq(D).
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We obtain ‖fu
1
q ‖Lq(D)

(
1 − cp0‖V

1
p

+ ‖
Lr(D, v

r
p u

−
r
q dx)

)
≤ 0; this inequality is

possible only if either cp0 ‖V
1
p

+ ‖
Lr(D, v

r
p u

−
r
q dx)

≥ 1 or f ≡ 0 in D. �

4. Linear systems of PDE and the Dirac operator

We use the following notation: If ~p = (p1, . . . , pm) ∈ R
m, we let |~p | =

(p21 + . . .+ p2m)
1
2 . If A is a matrix with rows A1, , . . . , AN , we will let |A| =

(|A1|
2 + . . .+ |AN |2)

1
2 . Note that, by Cauchy Schwartz inequality,

|A~p | = (〈A1, ~p 〉
2 + . . .+ 〈AN , ~p 〉

2)
1
2 ≤ (|A1|

2 + . . .+ |AN |2)
1
2 |~p | = |A| |~p |.

Let ~F = (f1, . . . , fN ) ∈ C∞
0 (Rn, RN). We denote with ∇~F the N × n

matrix whose rows are ∇f1, . . . ,∇fN .
Unless otherwise specified, we assume that p, q, u and v are as in The-

orem 1.1 (a) and that 1
r = 1

p − 1
q .

In this section we use the Carleman inequality (1.1) to prove unique
continuation properties of systems of linear partial differential equations of
the first order.

4.1. Linear systems of PDE. Most of the first order systems consid-
ered in the literature are in the form of

(4.1)

n∑

j=1

Lj(x)∂xj
~F = V (x)~F ,

where ~F = (f1, . . . , fN ) and the Lj(x) and V are M × N matrices defined

in a domain D ⊂ R
n. We let L(x)(~F ) =

∑n
j=1Lj(x)∂xj

~F . Differential
inequalities in the form of

(4.2) |L(x)~F | ≤ |V(x)~F |

are also considered. In some of early papers on the subject, it is proved that
solutions of elliptic systems in the form of (4.1) that vanish of sufficiently
high order at the origin are ≡ 0; see [7, 15, 47] and the references cited in
these papers for definitions of elliptic systems. A classical method of proof
is to reduce the systems to (quasi-) diagonal form; this approach requires
conditions on the regularity and the multiplicity of the eigenvalues of the
system that are often difficult to check; see [9, 24, 29, 56]. The strong
continuation properties of systems of complex analytic vector fields in the

form of ~Lu = 0 defined on a real-analytic manifold is proved in [1].
We have found only a few papers in the literature where the Carle-

man method is used to prove unique continuation properties of first-order
systems. The Carleman method often allows to prove unique continuation
results for the differential inequality (4.2), often with a singular potential V .
In [14, Theorem 4.1] Carleman estimates are used to prove that (4.2) has
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the weak unique continuation property when ~L is a system of vector fields on
a pseudoconcave Cauchy-Riemann (CR) with some specified conditions and
V is bounded. In [44] and [45] T. Okaji considers systems in two indepen-
dent variables, Maxwell’s equations, and the Dirac operator; he proved that
the differential inequalities (4.2) with |V (x)| ≍ |x|−1 has the strong unique
continuation property using sophisticated L2 → L2 Carleman estimates. See
also [54], which improves results in [44].

We prove the following

Theorem 4.1. Let ~F ∈W 1,p,v
0 (Rn, RN ) be a solution of the differential

inequality (4.2). Assume that ~F satisfies also

(4.3) |∇~F | . |L(x)~F |.

If |V| ∈ Lr(supp ~F , u
− r

q v
r
p dx), with 1

p = 1
r +

1
q and ~F vanishes on one side

of a hyperplane, then ~F ≡ 0.

In particular, for power weights u, v as in Remark 3.1, the differential
inequality (4.2) does not have solutions with compact support support that
satisfy also (4.3) if V ≍ |x|−1+ǫ for some ǫ > 0.

Our unique continuation result is weaker than other results in the lit-
erature, but it applies to first-order systems of linear partial differential
equations that satisfy only the assumptions (4.3). Furthermore, we consider
solutions in weighted Sobolev spaces and potential in weighted Lr spaces
that, to the best of our knowledge, have not been considered in other pa-
pers.

Before proving Theorem 4.1 we prove the following Lemma, which is an
easy consequence of Theorem 1.1.

Lemma 4.2. Let A be a N×N invertible matrix. Under the assumptions

of Theorem 1.1 (a), the following inequality holds for all ~F ∈ C∞
0 (Rn, RN )

and τ ≥ 0

(4.4) ‖e−τℓ(x)u
1
q ~F ‖q ≤ cτ,N,A‖e

−τℓ(x)v
1
p A∇~F‖p,

where cτ,N,A = NCAcτ and cτ is the constant in (1.7).

Proof. Using Theorem 1.1 (a), the elementary inequalities

|~F | = (f21 + . . .+ f2N)
1
2 ≤ |f1|+ . . .+ |fN |, |fj| ≤ |~F |,

and Minkowsky’s inequality, we obtain

‖e−τℓ(x)u
1
q ~F ‖q ≤

N∑

j=1

‖e−τℓ(x)u
1
q fj ‖q ≤ cτ

N∑

j=1

‖e−τℓ(x)v
1
p∇fj ‖p

≤ cτN‖e−τℓ(x)v
1
p∇~F ‖p.
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If A is invertible, then, for every ξ ∈ R
n, we have that |A~ξ| ≥ C−1

A
|ξ|

for some CA > 0; thus,

‖e−τℓ(x)u
1
q ~F ‖q ≤ cτNCA‖e

−τℓ(x)v
1
pA∇~F ‖p

as required. �

Proof of Theorem 4.1. We argue as in the proof of Theorem 1.3.

Without loss of generality, we can assume that ~F ≡ 0 when xn < 0 and
A = I, where I is the N ×N identity matrix. For simplicity of notation, we

denote with c1 the constant c1,N, I in Lemma 4.2. We show that ~F ≡ 0 also
on the strip Sǫ = {x : 0 < xn < ǫ}, for some ǫ > 0 to be determined during
the proof.

Using (4.4) with ℓ(x) = xn and τ ≥ 1, the differential inequality (4.3),
Hölder’s inequality and Remark 1.2, we obtain

‖e−τxn ~Fu
1
q ‖Lq(Sǫ)

≤ c1‖e
−τxn∇~F v

1
p ‖Lp(Rn)

≤ c1‖e
−τxn∇~F v

1
p ‖Lp(Sǫ) + c1‖e

−τxn∇~F v
1
p ‖Lp({xn>ǫ})

≤ c1C‖e−τxnL(x)(∇~F ) v
1
p ‖Lp(Sǫ) + c1e

−τǫ‖∇~Fv
1
p ‖Lp({xn>ǫ})

≤ c1C‖e−τxnV ~F v
1
p ‖Lp(Sǫ) + c1e

−τǫ‖∇~Fv
1
p ‖Lp({xn>ǫ})

≤ c1C‖|V| v
1
pu−

1
q ‖Lr(Sǫ∩supp ~F )‖e

−τxn ~Fu
1
q ‖Lq(Sǫ) + C ′e−τǫ,

where we have let C ′ = c1‖∇~F v
1
p ‖Lp({xn>ǫ}).

Since |V| ∈ Lr(supp ~F , u
− r

q v
r
p dx) we can chose ǫ > 0 so that

c1C‖|V| v
1
pu−

1
q ‖Lr(Sǫ∩supp ~F ) <

1
2 . We have obtained

‖e−τxn ~Fu
1
q ‖Lq(Sǫ) ≤

1

2
‖e−τxn ~Fu

1
q ‖Lq(Sǫ) + C ′e−τǫ.

In view of ǫ − xn > 0 on Sǫ, the left-hand side of this inequality goes to

infinity with τ unless ~F ≡ 0 on Sǫ; this is a contradiction because C ′ does

not depend on τ , and so ~F ≡ 0 in Sǫ. �

Let G1(x), . . . ,Gn(x) be N × n matrices defined on a domain D ⊂ R
n.

We consider the operator

G(~F ) = G(f1, . . . , fN ) =

N∑

j=1

Gj(x)fj

with fj ∈ C∞
0 (D).

In [39], systems in the form of ∇F = G~F are considered. These systems
can be used to model linear elasticity (in curvilinear coordinates) of linearly
elastic shells. See [5] and the references cited there. We prove the following
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Theorem 4.3. Let ~F ∈ W 1,p,v
0 (D, RN ) be a solution of the differential

inequality

(4.5) |∇~F | . |G~F |.

If |G| ∈ Lr(supp ~F , u
− r

q v
r
p dx), with 1

p = 1
r +

1
q , and

~F vanishes on one side

of a hyperplane, then ~F ≡ 0.

Proof. Assume for simplicity that ~F ≡ 0 when xn < 0 (the proof

is similar in the general case). We show that ~F ≡ 0 also on the strip
0 < xn < ǫ, for some ǫ > 0 to be determined during the proof. As in
the proof of Theorem 4.1, we use (4.4) with A = I, ℓ(x) = xn and τ ≥ 1.
For each j = 1, . . . , N , we use the differential inequality (4.5) and Hölder’s
inequality in the following chain of inequalities

‖e−τxn ~Fu
1
q ‖Lq(Sǫ)

≤ c1‖e
−τxn∇~F v

1
p ‖Lp(Rn)

≤ c1‖e
−τxn∇~F ~v

1
p ‖Lp(Sǫ) + c1‖e

−τxn∇~F v
1
p ‖Lp({xn>ǫ})

≤ c1C‖e−τxnG~F v
1
p ‖Lp(Sǫ) + c1e

−τǫ‖∇~Fv
1
p ‖Lp({xn>ǫ})

≤ c1C

N∑

j=1

‖e−τxn |Gj |fj v
1
p ‖Lp(Sǫ) + c1e

−τǫ‖∇~Fv
1
p ‖Lp({xn>ǫ})

≤ c1C
N∑

j=1

‖|Gj | v
1
pu−

1
q ‖Lr(Sǫ∩supp ~F )‖e

−τxnfju
1
q ‖Lq(Sǫ) + C ′e−τǫ

≤ c1CN‖|G| v
1
pu−

1
q ‖

Lr(Sǫ∩supp ~F )
‖e−τxn |~F |u

1
q ‖Lq(Sǫ) + C ′e−τǫ,

where we have let C ′ = c1‖∇~F v
1
p ‖Lp({xn>ǫ}).

We chose ǫ > 0 so that c1CN‖|G| v
1
pu−

1
q ‖Lr(Sǫ∩supp ~F ) <

1
2 . We gather

‖e−τxn ~Fu
1
q ‖Lq(Sǫ) ≤

1

2
‖e−τxn ~Fu

1
q ‖Lq(Sǫ) + C ′e−τǫ

which gives

1

2
‖eτ(ǫ−xn) ~Fu

1
q ‖Lq(Sǫ) ≤ C ′,

and we can conclude the proof as in Theorem 4.1. �

Remark 4.1. It is shown in [39] that the W 1,1(D, Rn) solutions of the

system ∇~F = G~F , with G ∈ L1(D,R(n×n)×n), cannot vanish on an open
set. The proof in [39] does not use Carleman inequalities.
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4.2. The Dirac operator. Let αj, j = 0, . . . , n, be N × N matrices
which satisfy the following relations.

(4.6) α∗
j = αj, α2

j = I, αjαk + αkαj = 0, j 6= k

(we also say that the αj form a basis of a Clifford algebra). It is known that

for (4.6) to hold, N must be in the form 2[
n+1
2

]m, with m > 0 integer
The (n-dimensional) Dirac operator associated to the matrices αj is a

matrix value operator, initially defined on C∞
0 (Rn, RN×N ) as follows.

LU = −i
n∑

j=1

αj∂xjU.

Here, ∂xiU is a matrix whose entries are the partial derivative of the en-
tries of U . We can use (4.6) to show that L ◦ LU = −∆U I, where I is
the identity matrix. When U = fI, where f ∈ C∞

0 (Rn), we can see at
once that (L(fI))2 = −I|∇f |2, Thus, a Dirac operators can be viewed as a
generalization of the gradient operator and a square root of the Laplacian.

There is a lot of literature on the Dirac operator and its role in several
domains of mathematics and physics See e.g. [6]. For example, the Dirac
equation which describes free relativistic electrons is represented by

i~∂tψ(t, x) = H0ψ(t, x),

whereH0 is given explicitly by the 4×4 matrix-valued differential expression

H0 = −i~c

3∑

j=1

αj∂xj + α0mc
2.

Here, c is the speed of light, m is a mass of a particle and ~ is the Planck’s
constant.

In [16] is proved that the the differential inequality

(4.7) |LU | ≤ |V U |

where V (x) is a N ×N matrix, has the strong unique continuation property
from the origin whenever V (x) ≤ C|x|−1, with 0 ≤ C ≤ 1. It is also proved
in [16] that the condition C ≤ 1 cannot be improved. See also [30] and the
references cited there. We prove the following

Theorem 4.4. Let f ∈ W 1,p,v
0 (D) be a solution of the differential in-

equality (4.7). If |V| ∈ Lr(supp f, u−
r
q v

r
p dx) with 1

p = 1
r +

1
q and f vanishes

on one side of a hyperplane, then f ≡ 0.

Proof. Since L(fI) · L(fI) = −I|∇f |2, we can see at once that

|∇f | = |L(fI) · L(fI)| ≤ |L(fI)|2

With this observation, the proof of Theorem 4.4 is almost a line-by-line
repetition of the proof of Theorem 4.1. We leave the details to the reader. �
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