
ar
X

iv
:1

80
4.

03
78

8v
2 

 [
m

at
h.

A
P]

  2
 J

an
 2

01
9

LINEAR INSTABILITY AND UNIQUENESS OF THE PEAKED PERIODIC

WAVE IN THE REDUCED OSTROVSKY EQUATION

ANNA GEYER AND DMITRY E. PELINOVSKY

Abstract. Stability of the peaked periodic wave in the reduced Ostrovsky equation has re-
mained an open problem for a long time. In order to solve this problem we obtain sharp bounds
on the exponential growth of the L2 norm of co-periodic perturbations to the peaked periodic
wave, from which it follows that the peaked periodic wave is linearly unstable. We also prove
that the peaked periodic wave with parabolic profile is the unique peaked wave in the space of
periodic L2 functions with zero mean and a single minimum per period.

1. Introduction

We address solutions of the Cauchy problem for the reduced Ostrovsky equation [33] written
in the form

(1.1)

{

ut + uux = ∂−1
x u, t > 0,

u|t=0 = u0,

where u0 is a 2π-periodic function with zero mean defined in the Sobolev space Hs
per(−π, π) for

some s ≥ 0, which we simply write as Hs
per. We denote the subspace of 2π-periodic functions

with zero mean in Hs
per by Ḣs

per. The operator ∂−1
x : Ḣs

per → Ḣs+1
per denotes the anti-derivative

with zero mean, which can be defined using Fourier series.
The reduced Ostrovsky equation is also known under the names of Ostrovsky–Hunter and

Ostrovsky–Vakhnenko equation, due to contributions of Hunter [26] and Vakhnenko [43].

Local solutions to the Cauchy problem (1.1) with u0 ∈ Ḣs
per exist for s > 3

2 [39], and we

refer to [32] for a discussion on how the well-posedness in Hs(R) is extended to Ḣs
per. For

sufficiently large initial data, the local solutions break in finite time, similar to the inviscid
Burgers equation [32]. However, if the initial data u0 is suitably small, then the local solutions
for s = 3 are continued for all times [19, 20]. Weak bounded solutions with shock discontinuities
were constructed in [7, 8]. Weak solutions of the Cauchy problem (1.1) as the limiting solution
of the Cauchy problem for the regularized Ostrovsky equation were considered in [6].

The reduced Ostrovsky equation with smooth solutions is completely integrable as it can be
reduced to the integrable Tzizeica equation by a coordinate transformation [29]. This property
enables a construction of a bi-infinite set of conserved quantities in the time evolution [5] and
the inverse scattering transform with the Riemann–Hilbert approach [1]. Two integrable semi-
discretizations of the reduced Ostrovsky equation have been obtained by using bilinear forms
[16].
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Stability of smooth and peaked periodic waves in the reduced Ostrovsky equation has been re-
cently addressed in a number of publications [14, 18, 21, 22, 38]. By using higher-order conserved
quantities the smooth small-amplitude periodic waves were shown in [14] to be unconstrained
minimizers of a higher-order energy function. This result holds for subharmonic perturbations,
that is, perturbations whose period is a multiple of the period of the smooth periodic waves.
Since the higher-order conserved quantities are well-defined in the space Ḣ3

per, where global
well-posedness has been proven [20], it follows from the minimization properties that smooth
small-amplitude periodic waves are both spectrally and orbitally stable. The minimization prop-
erties were confirmed numerically for smooth periodic waves of large amplitude all the way up to
the limiting peaked wave of parabolic profile with maximal amplitude, for which the numerical
results were inconclusive [14].

Spectral stability of smooth periodic waves with respect to co-periodic perturbations, that is,
perturbations with the same period as the period of the periodic wave, was shown in [18] by using
the standard variational formulation of the periodic waves as critical points of energy subject
to fixed momentum. This result holds also for the generalized reduced Ostrovsky equation with
power nonlinearity. Independently, spectral stability of smooth periodic waves in the reduced
Ostrovsky equation was shown in [22] by using a coordinate transformation of the spectral
stability problem to an eigenvalue problem studied earlier in [38].

Regarding the peaked periodic waves, some conflicting results were recently obtained. In [22],
the peaked wave with the parabolic profile was addressed and claimed to be “unstable in the
absence of periodic boundary conditions”. A formal proof of this statement was obtained by
constructing explicit solutions of the spectral stability problem for a positive (unstable) eigen-
value. However, this construction violates the periodic boundary conditions on the perturbation
and hence does not provide an answer to the spectral stability question. In contrast, families
of peaked periodic waves of small amplitude, which were previously unknown in the context
of the reduced Ostrovsky equation, were constructed in [21] and these families were shown to
be spectrally stable with respect to co-periodic perturbations by using the same coordinate
transformation as in [38].

In this paper we give a simple and definite conclusion about existence, uniqueness and stability
of peaked periodic waves in the reduced Ostrovsky equation. This is the first time, to the best of
our knowledge, that linear instability of peaked periodic waves is proven by means of semigroup
theory and energy estimates.

The following theorem presents a summary of the main results of this paper. See Definitions
1, 3 and Lemmas 2, 7 for precise statements.

Theorem 1.

(1) Uniqueness: The peaked periodic wave U∗ with parabolic profile is the unique (up to
spatial translations) peaked travelling wave solution of the reduced Ostrovsky equation

in L̇2
per having a single minimum per period. The solution is Lipschitz continuous and

exists in Ḣs
per with s < 3/2. Moreover, the reduced Ostrovsky equation does not admit

any Hölder continuous solutions.
(2) Instability: The orbit generated by spatial translations of the peaked periodic wave U∗

is linearly unstable with respect to perturbations in X1
per, where

(1.2) X1
per := {v ∈ L̇2

per : (c∗ − U∗)v ∈ H1
per}

and c∗ is the wave speed of the periodic wave U∗.
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Part (1) of Theorem 1 allows us to prove that the families of peaked periodic small-amplitude
waves constructed in [21] do not satisfy the reduced Ostrovsky equation, see Remark 6. Our
analysis relies on Fourier theory and the existence of a first integral. Indeed, the reduced
Ostrovsky equation for smooth periodic waves can be rewritten as a second-order differential
equation with a conserved quantity. Although this equivalence can not be used when dealing
with peaked periodic waves, we can still use a first-order invariant of the second-order differential
equation to analyze the behavior of the smooth parts of the peaked periodic waves together with
sharp estimates of the solution at the singularity, see Remark 4 and Lemma 2.

Part (2) of Theorem 1 gives a definite conclusion on linear instability of the peaked periodic
wave with parabolic profile with respect to co-periodic perturbations. We do not make any
claims regarding the spectral stability problem related to the peaked periodic wave, see Remark
19. Instead, we prove linear instability of the peaked periodic waves by obtaining sharp bounds
on the exponential growth of the L2 norm of the co-periodic perturbations in the linearized
time-evolution problem in X1

per, see Lemma 7. Note that Ḣ1
per is continuously embedded into

X1
per but is not equivalent to X1

per, see Remark 8.
It is interesting to compare peaked periodic waves in the reduced Ostrovsky equation with

peaked waves in other related nonlinear dispersive equations such as the Whitham equation and
the Camassa–Holm equation. The existence of smooth periodic travelling waves in the Whitham
equation has recently been established by [4, 10, 11, 12], where it was shown that the family
of smooth periodic waves terminates at the highest, peaked wave, similarly to what happens
for the reduced Ostrovsky equation. It was shown numerically in [36] that smooth periodic
waves of small amplitude are stable while smooth waves of large amplitude become unstable,
even before reaching the highest wave. This is different from the reduced Ostrovsky equation,
where all smooth periodic waves are stable even for large amplitudes up to the peaked wave, see
[14], whereas the peaked periodic wave is unstable. For the Camassa-Holm equation, both the
smooth periodic waves of all amplitudes and the limiting peaked periodic wave are stable, see
[30, 31] and the earlier result [9] on peakons. It is an open question to understand which precise
mechanisms govern these surprisingly different stability behaviours.

The paper is organized as follows. Section 2 contains the proof that the peaked wave with
parabolic profile is unique up to spatial translations in the space of functions in L̇2

per with a
single minimum per period. Section 3 gives the proof of linear instability of the peaked periodic
wave with respect to co-periodic perturbations.

2. Peaked periodic wave

The periodic travelling waves in the reduced Ostrovsky equation are given by

u(x, t) = U(x− ct),

where c is the wave speed and U is a bounded 2π-periodic wave profile with zero mean. The
wave profile U is to be found from the boundary-value problem

(2.1)

{

[c− U(z)]U ′(z) + (∂−1
z U)(z) = 0, for every z ∈ (−π, π) such that U(z) 6= c,

U(−π) = U(π),
∫ π
−π U(z)dz = 0,

where z = x− ct is the travelling wave coordinate. If U ∈ L̇2
per, then ∂−1

z U ∈ Ḣ1
per. By Sobolev’s

embedding, it follows that ∂−1
z U ∈ Cper so that the anti-derivative ∂−1

z U with zero mean can be
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expressed by the pointwise formula

(2.2) (∂−1
z U)(z) =

∫ z

0
U(z′)dz′ − 1

2π

∫ π

−π

∫ z

0
U(z′)dz′dz, z ∈ [−π, π].

In what follows, we assume that U is at least continuous on [−π, π], that is, we assume that
U ∈ Cper. For α ∈ (0, 1), let Cα

per be the space of α-Hölder 2π-periodic continuous functions
such that

(2.3) |U(x)− U(y)| ≤ K|x− y|α, for all x, y ∈ [−π, π],

for some K ∈ R. We will adopt the following definition of single-lobe periodic waves.

Definition 1. We say that U ∈ Cper is a single-lobe periodic wave if there exists z0 ∈ (−π, π)
such that U is non-increasing on [−π, z0] and non-decreasing on [z0, π].

Remark 1. Due to the condition U(−π) = U(π) and the symmetry of the equation

(c− U(z))U ′(z) +

∫ z

0
U(z′)dz′ − 1

2π

∫ π

−π

∫ z

0
U(z′)dz′dz = 0

with respect to the reflection z 7→ −z, the single-lobe periodic waves in Definition 1 have even
profile U with z0 = 0. In this case, (∂−1

z U)(z) =
∫ z
0 U(z′)dz′ is odd.

A family of smooth 2π-periodic waves to the boundary-value problem (2.1) satisfying U(z) < c
for every z ∈ [−π, π] was constructed in our previous work [18] in an open interval of the speed
parameter c. By Theorem 1(a) and Lemma 3 in [18], we have the following result.

Lemma 1. There exists c∗ > 1 such that for every c ∈ (1, c∗), the boundary-value problem (2.1)

admits a unique smooth periodic wave in the sense of Definition 1 with the profile U ∈ Ḣ∞
per

satisfying U(z) < c for every z ∈ [−π, π].

Remark 2. For the smooth periodic waves U ∈ Ḣ∞
per to the boundary-value problem (2.1), the

periodic boundary conditions are satisfied for all derivatives of U .

At c = c∗, the periodic wave with parabolic profile has been known since the original work
of Ostrovsky [33]. It is easy to check that the boundary-value problem (2.1) is satisfied by
U(z) = (z2 − 3c)/6, whereas the zero mean condition is satisfied if c = c∗ := π2/9. This yields
the exact expression for the peaked periodic wave with zero mean

(2.4) U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

periodically continued beyond [−π, π]. Note that U∗(±π) = π2/9 = c∗ and ±U ′
∗(±π) = π

3 . The
peaked periodic wave (2.4) can be represented by the Fourier cosine series

U∗(z) =
∞
∑

n=1

2(−1)n

3n2
cos(nz),

which is well defined in Ḣs
per for s < 3/2.

Remark 3. The enclosed angle at the peak of the wave is steeper than the maximal 120◦ angle of
the Stokes wave of greatest height, see [41, 42]. Indeed, for peaked periodic waves of the reduced
Ostrovsky equation the enclosed angle is ϕ = π − 2 arctan(π/3), whereas for the Stokes wave it
is ϕ = π − 2π/3.
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Remark 4. The peaked periodic wave (2.4) belongs to solutions of the boundary-value problem

(2.1) with profile U∗ ∈ Ḣ1
per satisfying U∗(z) < c for every z ∈ (−π, π) and U∗(±π) = c. The

first derivative of U∗ ∈ Ḣ1
per has a finite jump singularity across the end points z = ±π. More

precisely, the profile U∗ is Lipschitz continuous at ±π, that is, there exist constants 0 < c1 < c2
such that

c1|z − π| ≤ |U∗(z)− c∗| ≤ c2|z − π| for |z − π| ≪ 1,

which can be easily checked in view of the explicit expression (2.4).

The next result states that the only single-lobe periodic wave with profile U ∈ Cper satisfying
the boundary-value problem (2.1) and having a singularity in the derivative at z = ±π is the
peaked periodic wave U∗ given in (2.4).

Lemma 2. For every c ∈ R, the boundary-value problem (2.1) does not admit single-lobe periodic
waves in the sense of Definition 1 which are Cα

per with α ∈ [0, 1). The only periodic wave with
a singularity in the derivative at z = ±π is the peaked wave with parabolic profile (2.4), which
exists for c = c∗ = π2/9 and is Lipschitz at the peak.

Proof. Let U ∈ L̇2
per∩Cper be a single-lobe periodic wave solution of the boundary-value problem

(2.1). By Remark 1, U ∈ L̇2
per is even, ∂−1

z U ∈ Ḣ1
per is odd, and ∂−1

z U is represented by the

Fourier sine series which converges absolutely and uniformly, so that (∂−1
z U)(±π) = 0.

• Let us first consider the case where U(z) 6= c for every z ∈ (−π, π) and U(±π) = c. Let
α ∈ (0, 1). We assume to the contrary that there exists a solution U of the boundary-value
problem (2.1) with U ∈ Cα

per. If U ∈ Cα
per with α ∈ (0, 1), then ∂−1

z U ∈ C1
per. Since U(±π) = c

and (∂−1
z U)(±π) = 0 we find that c − U(z) ∼ (π − z)α and (∂−1

z U)(z) ∼ (π − z) at z = ±π.
Since U satisfies the boundary value problem (2.1) we have that

(2.5) U ′(z) = −(∂−1
z U)(z)

c− U(z)
, z ∈ (−π, π)

which yields U ′(z) ∼ (π − z)1−α at z = ±π. Equation (2.5) also implies that U ′ ∈ C1(−π, π) so
we find that U ′ ∈ C1−α

per . Since 1− α ∈ (0, 1) we conclude that U ∈ C1
per in contradiction to the

assumption that U ∈ Cα
per with α ∈ (0, 1). The case α = 0, which refers to solutions U ∈ Cper

in view of Definition 1, can be proven in exactly the same way.
We now show that the only peaked periodic solution with peak at U(±π) = c is the solution

with the parabolic profile (2.4). Since U(z) 6= c for every z ∈ (−π, π) and U ∈ C1(−π, π), the
first-order invariant

E =
1

2
[c− U(z)]2

[

U ′(z)
]2

+
c

2
U(z)2 − 1

3
U(z)3

=
1

2

[

(∂−1
z U)(z)

]2
+

c

2
U(z)2 − 1

3
U(z)3,(2.6)

holds for z ∈ (−π, π). Since (∂−1
z U)(z) is continuous in z = ±π with (∂−1

z U)(±π) = 0, E is
continuous and constant up to the boundary at z = ±π and we have E|z=±π = c3/6 =: Ec. For
c > 0, the level with E = Ec (see the bold curve in Figure 1) gives rise to a peaked periodic
wave solution with parabolic profile U(z) < c. We claim that this peaked wave is exactly the
solution (2.4) with speed c = c∗. Indeed, from the level set with E = Ec we have that

1
2(c− U)2(U ′(z))2 = c3

6 − c
2U

2 + 1
3U

3 = 1
6 (c− U)2(c+ 2U)
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U

U’

−2 −1 0 1 2 3 4
−4

−2

0

2

4

Figure 1. Phase plane portrait obtained from level curves of the first-order
invariant (2.6) for some c > 0. The dashed black line indicates the singularity
line U = c. The solid black curve to the left of the singular line corresponds to
the parabolic profile (2.4).

and hence

U ′(z) = 1√
3

√
c+ 2U > 0 for z ∈ (0, π)

subject to the boundary condition U ′(0) = 0. By separation of variables we can solve this
equation uniquely to find that U(z) = 1

6(z
2 − 3c). In view of the condition U(π) = c, this

implies that c = π2

9 = c∗ which proves the claim.

• Let us now analyze the situation where there exists z1 ∈ (0, π) such that U(±z1) = c and
equation (2.5) holds separately for z ∈ (0, z1) and for z ∈ (z1, π). Let us assume that U(z) < c
for z ∈ (0, z1). If U(z) > c for z ∈ (0, z1), the proof is analogous. There are two possibilities,
either (∂−1

z U)(±z1) = 0 or (∂−1
z U)(±z1) 6= 0.

If (∂−1
z U)(±z1) = 0, then by the same argument as above the first-order invariant E is

continuous and constant on [−z1, z1] with E|z=±z1 = Ez1 .
For z ∈ (z1, π] the solution corresponding to the level set E = Ez1 can either be continued

uniquely from the region with U(z) < c into the region with U(z) > c , or z = z1 represents
a turning point (a local maximum for U) and the solution can be continued uniquely into the
region with U(z) < c for z & z1

1. However, U(z) > 0 for c > 0 and U(z) < 0 for c < 0 in the
interval z ∈ (z1, π]. Therefore, the first variant implies that (∂−1

z U)(z) =
∫ z
0 U(z′)dz′ 6= 0 for

every z ∈ (z1, π] which contradicts (∂−1
z U)(π) = 0. The second continuation is possible but does

not belong to the class of single-lobe periodic waves, see Remark 5.

1The notation z & z1 means that 0 < z − z1 < ε for some small ε > 0, and equivalently for the reverse
inequality.
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If (∂−1
z U)(±z1) 6= 0, then the contradiction arises from the fact that, since (∂−1

z U)(z) is
continuous at z1 and equation (2.5) holds separately for z ∈ (0, z1) and for z ∈ (z1, π), the
change of the sign of U ′(z) across z1 is determined by the change of the sign of c− U(z) across
z1. Indeed, if U(z) < c both for z . z1 and z & z1, then it follows from (2.5) that the sign
of U ′(z) remains the same for z ∈ (0, z1) and z ∈ (z1, π). But this is impossible since U ′(z)
must change sign for z . z1 and z & z1 if U(z) < c on both sides of z1. If on the other hand
U(z) < c for z . z1 and U(z) > c for z & z1, then it follows again from (2.5) that the sign of
U ′(z) changes, in contradiction with the monotone increase of U(z) for all z ∈ (0, π). Hence,
both possibilities with (∂−1

z U)(±z1) 6= 0 yield a contradiction.

Combing all these arguments we find that the only single-lobe peaked periodic wave has
parabolic profile (2.4), which is Lipschitz at the peak U(±π) = c. �

Remark 5. There is a simple way to obtain other peaked periodic waves in the boundary-value
problem (2.1). One can flip the periodic wave with parabolic profile at a point z0 ∈ (0, π) and
pack two such waves over one period. This possibility is allowed in the proof of Lemma 2, but
not in the class of single-lobe periodic waves. Similarly, one can pack three and more periods of
the peaked wave with parabolic profiles. Definition 1 eliminates this type of non-uniqueness of
the peaked periodic wave in the boundary-value problem (2.1).

Remark 6. With the following formal transformation

(2.7) U(z) = u(ζ), z =

∫ ζ

0
(c− u(ζ ′))dζ ′,

smooth periodic waves with profile U satisfying the quasilinear second-order equation2

(2.8)
d

dz
[c− U(z)]

dU

dz
+ U = 0

are related to smooth periodic waves with profile u satisfying the semi-linear second-order equa-
tion

(2.9)
d2u

dζ2
+ (c− u)u = 0.

Although all periodic solutions of (2.9) are smooth, the coordinate transformation (2.7) fails to
be invertible if u(ζ) = c for some ζ. Such points generate singularities in the periodic solutions
of the quasi-linear equation (2.8) since

U ′(z) =
u′(ζ)

c− u(ζ)
.

In [21], small-amplitude peaked periodic waves of (2.8) with c < 0 were constructed from small-
amplitude smooth periodic waves of (2.9) with a coordinate transformation similar to (2.7). The
corresponding profile U for such peaked periodic waves has a square root singularity of the form

(2.10) U(z) = c+O(
√

π2 − z2) as z → ±π.

2The quasi-linear equation (2.8) is a derivative of the first equation in the boundary-value problem (2.1) in z,
which is justified for smooth periodic waves in Lemma 1.
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Our analysis in the proof of Lemma 2 shows3 that such solutions cannot exist, since the expansion

(2.10) implies that U ∈ C
1/2
per . We conclude that the small-amplitude peaked periodic waves

constructed in [21] are artefacts of the construction method and do not satisfy the boundary-
value problem (2.1).

Remark 7. In [40] several different types of travelling wave solutions to the reduced Ostrovsky
equation were constructed by means of phase plane analysis. Three types of solitary waves (see
Fig. 9 in [40]) were found for c < 0. One of them is a loop soliton, given by a multi-valued
function, which is studied in many publications [15, 43, 44]. The other two solutions have
points of infinite slope (cusps), either at the maximum or at the inflection points. The cusped
solitary waves were also constructed in [38] by using the transformation (2.7). By using similar
arguments as in the proof of Lemma 2, the existence of the cusped waves as weak solutions to
the reduced Ostrovsky equation can be disproved.

3. Linear instability of the peaked periodic wave

We add a co-periodic perturbation v to the travelling wave U , that is, a perturbation with
the same period 2π. Truncating the quadratic terms and moving with the reference frame of
the travelling wave yields the linearized evolution problem in the form

(3.1)

{

vt + ∂z [(U(z)− c)v] = ∂−1
z v, t > 0,

v|t=0 = v0.

The linearized evolution equation can be formulated in the form vt = ∂zLv defined by the
self-adjoint operator

(3.2) L = P0

(

∂−2
z + c− U(z)

)

P0 : L̇2
per → L̇2

per,

where P0 : L2
per → L̇2

per is the projection operator that removes the mean value of 2π-periodic
functions. The form vt = ∂zLv is related to the formulation of the reduced Ostrovsky equation
in the travelling wave coordinate z = x− ct as a Hamiltonian system defined by the symplectic
operator ∂z and the conserved energy function Hc(u) = H(u) + cQ(u), where

(3.3) H(u) =

∫ π

−π

[

−(∂−1
z u)2 − 1

3
u3
]

dz, Q(u) =

∫ π

−π
u2dz

are the conserved energy and momentum functionals for the reduced Ostrovsky equation (1.1).
The periodic wave u = U is a critical point of Hc(u) and the self-adjoint operator L is the
Hessian operator of the energy function Hc(u) at the periodic wave u = U .

Thanks to the translational invariance of the boundary-value problem (2.1), L∂zU = 0, where

∂zU ∈ L̇2
per, holds for both the smooth periodic waves of Lemma 1 and the peaked periodic wave

(2.4) in Lemma 2. Associated to the translational eigenvector is the symplectic orthogonality
constraint 〈U, v〉 = 0. This constraint is used to study both the evolution of the Cauchy problem
(3.1) and the spectrum of the linearized operator

(3.4) ∂zL : X1
per ⊂ L̇2

per → L̇2
per,

3Solutions of [21] have nonzero mean value, hence Lemma 2 does not apply directly. However, the arguments
in the proof lead to the same conclusion also for solutions with nonzero mean. Indeed, if U has a non-zero mean,
∂−1
z U(z) may not be zero at z = ±π. However, if we translate the solution by half a period so that the singularity

is placed at z = 0, then ∂−1
z U(0) = 0 by oddness of ∂−1

z U and we can use the same contradiction as the one
obtained from (2.5).
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where X1
per = {v ∈ L̇2

per : (c− U)v ∈ H1
per} is the maximal domain of ∂zL. See [3, 24, 34].

Remark 8. For smooth periodic waves we have c − U(z) > 0 for every z ∈ [−π, π] so that

X1
per ≡ Ḣ1

per. For the peaked periodic wave U∗ with speed c∗, the space Ḣ1
per is continuously

embedded into X1
per since U∗ is bounded, but Ḣ1

per is not equivalent to X1
per. Indeed, if a

perturbation v to U∗ is piecewise C
1
per with a finite jump-discontinuity at z = ±π, then v /∈ Ḣ1

per

but v ∈ X1
per since (c∗ − U∗)v ∈ Ḣ1

per in view of the fact that U∗(±π) = c∗.

In what follows, 〈·, ·〉 and ‖v‖L2
per

denote the inner product and the L2 norm with integration

over [−π, π], respectively. In the case of the peaked periodic wave U∗ with the speed c∗, we
equip X1

per with the norm

(3.5) ‖v‖X1
per

:= ‖v‖L2
per

+ ‖∂z [(c∗ − U∗)v ]‖L2
per

.

We distinguish two concepts of stability of 2π-periodic waves with respect to linearization.

Definition 2. The travelling wave U is said to be spectrally stable if σ(∂zL) ⊂ iR in L̇2
per.

Otherwise, it is said to be spectrally unstable.

Definition 3. The travelling wave U is said to be linearly stable if for every v0 ∈ X1
per satisfying

〈U, v0〉 = 0, there exists C > 0 and a unique global solution v ∈ C(R,X1
per) to the Cauchy

problem (3.1) such that

(3.6) ‖v(t)‖X1
per

≤ C‖v0‖X1
per

, t > 0.

Otherwise, it is said to be linearly unstable.

In [18], we have proved that the smooth periodic waves of Lemma 1 are spectrally stable in
the sense of Definition 2. Here we intend to show that the peaked periodic wave U∗ of Lemma
2 given in (2.4) is linearly unstable in the sense of Definition 3. The linear instability is due to
the sharp exponential growth of the unique global solution to the Cauchy problem (3.1) with
U = U∗ :

(3.7) C‖v0‖L2
per

eπt/6 ≤ ‖v(t)‖L2
per

≤ ‖v0‖L2
per

eπt/6, t > 0,

for some C ∈ (0, 1). We will obtain these bounds in two steps. In the first step, carried out in
Section 3.1, we apply the method of characteristics to the truncated linearized equation (3.1)
without the dispersive term ∂−1

z v and obtain the sharp bounds (3.7) for all initial conditions
v0 ∈ X1

per satisfying the constraint

(3.8)

∫ π

−π
zv0(z)

2dz = 0.

In the second step, carried out in Section 3.2, we will show that the bounds (3.7) remain true
in the full linearized equation (3.1) for a subset of initial conditions v0 ∈ X1

per satisfying the
constraint (3.8) and the additional constraint

(3.9)

∫ π

−π
z2v0(z)dz = 0,

which arises due to the orthogonality condition 〈U, v〉 = 0 in Definition 3 and the zero-mean
condition on v0. Regarding spectral stability or instability of the peaked periodic wave (2.4),

we will show in Section 3.3 that σ(L) in L̇2
per is given by a continuous spectrum on [0, π2/6],
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which includes the embedded eigenvalue λ0 = 0 with the eigenvector ∂zU , and a simple negative
eigenvalue λ1 < 0. As a result, no spectral gap appears between λ0 = 0 and the continuous
spectrum, hence it is impossible to solve the spectral stability problem by applying the standard
methods from [3, 24, 34].

3.1. Linear instability of truncated evolution. For the peaked periodic wave (2.4), we
obtain the simple expression

(3.10) U∗(z)− c∗ =
1

6
(z2 − π2), z ∈ [−π, π].

By removing the term ∂−1
z v from the linearized evolution problem (3.1) and using the explicit

expression (3.10), we can write the truncated evolution problem in the form

(3.11)

{

vt +
1
6∂z

[

(z2 − π2)v
]

= 0, t > 0,
v|t=0 = v0,

where the initial data v0 is taken in X1
per. The evolution problem can be solved by the method

of characteristics along the family of characteristic curves z = Z(s, t), where s ∈ [−π, π] is a
parameter for the initial data and t ≥ 0 is the evolution time. Defining

(3.12)

{

d
dtZ(s, t) = 1

6

[

Z(s, t)2 − π2
]

, t > 0,
Z(s, 0) = s,

and setting V (s, t) := v(Z(s, t), t) yields the evolution problem in the form

(3.13)

{

d
dtV (s, t) = −1

3Z(s, t)V (s, t), t > 0,
V (s, 0) = v0(s).

The family of characteristic curves is obtained by integrating the differential equation (3.12)
with the parameter s ∈ [−π, π]. Because Z = ±π are critical points of the differential equation
(3.12), the family of characteristic curves remain inside the invariant region [−π, π] for every
t ≥ 0. The family of characteristic curves can be obtained in the explicit form

(3.14) Z(s, t) = π
s cosh(πt/6) − π sinh(πt/6)

π cosh(πt/6)− s sinh(πt/6)
, s ∈ [−π, π], t ∈ R.

For later use of the chain rule we compute

(3.15) e
1
3

∫
t

0 Z(s,t′)dt′ =
∂

∂s
Z(s, t) =

π2

[π cosh(πt/6)− s sinh(πt/6)]2
, s ∈ [−π, π], t ∈ R.

The explicit solution for V in characteristic variables is obtained by integrating the differential
equation (3.13) with respect to the parameter s ∈ [−π, π]:

V (s, t) = v0(s)e
− 1

3

∫
t

0 Z(s,t′)dt′ .

In view of (3.15), the explicit solution is given by

(3.16) V (s, t) =
1

π2
[π cosh(πt/6)− s sinh(πt/6)]2v0(s), s ∈ [−π, π], t ∈ R.

Remark 9. Since Z(±π, t) = ±π for every t ∈ R, we have V (±π, t) = e∓πt/3v(±π, t), hence
V (−π, t) = V (π, t) for t 6= 0 if and only if v0(±π) = 0, in which case V (±π, t) = 0 for every

t ∈ R. Therefore, V (·, t) /∈ Ḣ1
per for t 6= 0 if v0 ∈ Ḣ1

per with v0(±π) 6= 0.
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By using the explicit solutions (3.14) and (3.16), we are able to state and prove the following
linear instability result for the truncated evolution problem (3.11).

Lemma 3. For every v0 ∈ X1
per, there exists a unique global solution v ∈ C(R,X1

per) to the
Cauchy problem (3.11) satisfying the upper bound

(3.17) ‖v(t)‖L2
per

≤ ‖v0‖L2
per

eπt/6, t > 0.

If
∫ π
−π sv0(s)

2ds = 0, then the global solution satisfies the lower bound

(3.18)
1

2
‖v0‖L2

per
eπt/6 ≤ ‖v(t)‖L2

per
, t > 0.

Proof. Existence of a global solution in the explicit form (3.14) and (3.16) is obtained from the
method of characteristics. By using the chain rule and (3.15), we verify that the mean-zero
constraint is preserved by the time evolution:

∫ π

−π
v(z, t)dz =

∫ π

−π
V (s, t)

∂Z

∂s
ds =

∫ π

−π
v0(s)ds = 0.

The explicit expression (3.16) implies that V (·, t) ∈ X1
per if v0 ∈ X1

per and t ∈ R. On the other
hand, the explicit expression (3.14) implies that for every τ > 0, there exists Cτ > 0 such that

∂

∂s
Z(s, t) ≥ Cτ , s ∈ [−π, π], t ∈ [−τ, τ ].

Hence, the chain rule implies that v(·, t) ∈ X1
per if v0 ∈ X1

per and t ∈ R. Uniqueness of such
global solutions follows by standard theory (see Theorem 3.1 in [2]).

It remains to prove the sharp exponential growth in the bounds (3.17) and (3.18). By the
chain rule, we obtain

∫ π

−π
v(z, t)2dz =

∫ π

−π
V (s, t)2

∂Z

∂s
ds =

1

π2

∫ π

−π
[π cosh(πt/6) − s sinh(πt/6)]2v0(s)

2ds.

From here, we have the upper bound

‖v(t)‖2L2
per

≤ eπt/3‖v0‖2L2
per

and the lower bound under the additional condition
∫ π
−π sv0(s)

2ds = 0:

‖v(t)‖2L2
per

= cosh(πt/6)2‖v0‖2L2
per

+
1

π2
sinh(πt/6)2‖sv0‖2L2

per
≥ 1

4
eπt/3‖v0‖2L2

per
.

Taking the square root of these bounds yields (3.17) and (3.18). �

Remark 10. By the chain rule, we also have
∫ π

−π

[

∂z(π
2 − z2)v(z, t)

]2
dz =

1

π2

∫ π

−π
[π cosh(πt/6) − s sinh(πt/6)]2

[

∂s(π
2 − s2)v0(s)

]2
ds,

from which the sharp exponential growth with the same growth rate as in the bounds (3.17)
and (3.18) can be established for the second term in the X1

per norm given by (3.5).

Remark 11. The global solution in Lemma 3 remains bounded in L1. This follows from the
chain rule:

∫ π

−π
|v(z, t)|dz =

∫ π

−π
|V (s, t)|∂Z

∂s
ds =

∫ π

−π
|v0(s)|ds.
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Since

(3.19) ‖v0‖L1
per

≤ (2π)1/2‖v0‖L2
per

,

hence v0 ∈ L̇2
per implies v0 ∈ L1. Extending this bound to the time-dependent solution,

(3.20) ‖v(t)‖L1
per

≤ (2π)1/2‖v(t)‖L2
per

, t > 0,

shows that the L1 norm of the global solution v(t) may remain bounded even if the L2 norm of
this solution grows exponentially.

Remark 12. Truncating a quadratic form associated with the self-adjoint operator L in (3.2)
and using the chain rule yield the energy conservation for the truncated evolution (3.11):

∫ π

−π
(π2 − z2)v(z, t)2dz =

∫ π

−π

[

π2 − Z(s, t)2
]

V (s, t)2
∂Z

∂s
ds =

∫ π

−π
(π2 − s2)v0(s)

2ds.

The energy conservation shows that the truncated evolution leads to the exponential growth of
‖v(t)‖2L2

per
and ‖zv(t)‖2L2

per
but the difference between the two squared norms remains bounded.

Remark 13. For the smooth periodic waves of Lemma 1 satisfying U(z) < c for every z ∈ [−π, π],
the truncated energy

∫ π
−π(c−U)v2dz is coercive in the L2 norm, hence the energy conservation
∫ π

−π
[c− U(z)] v(z, t)2dz =

∫ π

−π
[c− U(z)] v0(s)

2ds

implies a global time-independent bound on ‖v(t)‖2L2
per

, where v(t) is a solution of the truncation

of the linear evolution equation (3.1) without the ∂−1
z v term.

Remark 14. For the smooth periodic waves of Lemma 1, the characteristic curves reach the
boundaries z = ±π in finite time because z = ±π are not critical points of the differential
equations for the characteristic curves. On the other hand, for the peaked periodic wave (2.4),
the characteristic curves reach the boundaries z = ±π in infinite time. The latter property
induces exponential growth of the global solutions to the Cauchy problem (3.11) as is shown in
Lemma 3.

3.2. Linear instability of full evolution. Here we consider the full linearized evolution prob-
lem (3.1) with (3.10) and rewrite the evolution problem in the form

(3.21)

{

vt +
1
6∂z

[

(z2 − π2)v
]

= ∂−1
z v, t > 0,

v|t=0 = v0,

where the initial data v0 is taken in X1
per.

Lemma 4. For every v0 ∈ X1
per there exists a unique global solution v ∈ C(R,X1

per) of the
Cauchy problem (3.21).

Proof. By Lemma 3, the Cauchy problem (3.11) with v0 ∈ X1
per has a unique global solution

v ∈ C(R,X1
per). In the framework of semigroup theory, the evolution equation (3.11) can be

written in the form vt = A0v, where

A0 :=
1

6
∂z(π

2 − z2)v.
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Existence of a unique global solution v ∈ C(R,X1
per) implies that the operator A0 with domain

D(A0) = X1
per is the infinitesimal generator of a strongly continuous semigroup (S0(t))t≥0 on

L̇2
per. Since ∂−1

z : L̇2
per → L̇2

per is a bounded operator, the Bounded Perturbation Theorem (see
Theorem III,1.3 on p. 158 in [13]) implies that the operator

A := A0 + ∂−1
z

with the same domain D(A) = D(A0) = X1
per also generates a strongly continuous semigroup

(S(t))t≥0 on L̇2
per. Therefore, the evolution equation in the Cauchy problem (3.21) can be viewed

as a bounded perturbation of the evolution equation in the Cauchy problem (3.11). The assertion
of the Lemma then follows by Proposition 6.2 on p. 145 in [13]. �

In what follows, we obtain bounds on the global solution v ∈ C(R,X1
per) to the Cauchy

problem (3.21). First, we note the following upper bound on the growth of the global solution.

Lemma 5. A global solution v ∈ C(R,X1
per) to the Cauchy problem (3.21) in Lemma 4 satisfies

the upper bound

(3.22) ‖v(t)‖L2
per

≤ ‖v0‖L2
per

eπt/6, t > 0.

Proof. Note the following integration yields
∫ π

−π
v(∂−1

z v)dz =
1

2
(∂−1

z v)2|z=π
z=−π = 0,

since ∂−1
z v ∈ H1

per and hence ∂−1
z v ∈ Cper by Sobolev’s embedding. Integrating by parts yields

the following balance equation

d

dt

1

2
‖v(t)‖2L2

per
=

1

6

∫ π

−π
v∂z

[

(π2 − z2)v
]

dz = −1

6

∫ π

−π
(π2 − z2)v∂zvdz = −1

6

∫ π

−π
zv2dz.

Hence
d

dt
‖v(t)‖2L2

per
≤ π

3
‖v(t)‖2L2

per

and Gronwall’s inequality yields the desired bound (3.22). �

In order to obtain the lower bound on the L2 norm of the global solution to the Cauchy
problem (3.21), we use the generalized method of characteristics and treat ∂−1

z v(z, t) as a source
term in (3.11). This term satisfies the following useful bound (also proven in [32]).

Lemma 6. If g := ∂−1
z v ∈ Ḣ1

per, then

(3.23) ‖g‖L∞

per
≤ ‖v‖L1

per
.

Proof. By Sobolev embedding of H1
per into Cper, g is a continuous 2π-periodic function with zero

mean. Therefore, there exists ζ ∈ [−π, π] such that g(ζ) = 0. For every z ∈ [−π, π], we can
write

g(z) =

∫ z

ζ
v(z′)dz′,

from which bound (3.23) follows. Note that L2 is continuously embedded into L1 because of the
bound (3.19). �
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By using the family of characteristic curves z = Z(s, t) with s ∈ [−π, π] and t ≥ 0, where
Z is defined by the same initial-value problem (3.12), and setting V (s, t) := v(Z(s, t), t) and
G(s, t) := g(Z(s, t), t), we obtain the evolution problem in the form

(3.24)

{

d
dtV (s, t) = −1

3Z(s, t)V (s, t) +G(s, t), t > 0,
V (s, 0) = v0(s).

The family of characteristic curves Z is still given by the same explicit form (3.14). Integrating
the differential equation (3.24) with an integrating factor yields the explicit solution for V in
the form

(3.25) V (s, t) =

[

v0(s) +

∫ t

0
G(s, t′)e

1
3

∫
t
′

0
Z(s,t′′)dt′′dt′

]

e−
1
3

∫
t

0
Z(s,t′)dt′

By using the explicit solution (3.25), we are able to prove the linear instability result for the
Cauchy problem (3.21).

Lemma 7. There exists v0 ∈ X1
per and C > 0 such that the unique global solution v ∈ C(R,X1

per)
to the Cauchy problem (3.21) in Lemma 4 satisfies the lower bound

(3.26) ‖v(t)‖L2
per

≥ C‖v0‖L2
per

eπt/6, t > 0.

Proof. By the chain rule, the explicit expression (3.25) with the help of (3.15) yields the following
equation:

∫ π

−π
v(z, t)2dz =

∫ π

−π
V (s, t)2

∂Z

∂s
ds

=
1

π2

∫ π

−π
[π cosh(πt/6) − s sinh(πt/6)]2

×
[

v0(s) +

∫ t

0

π2G(s, t′)

[π cosh(πt′/6)− s sinh(πt′/6)]2
dt′
]2

ds.

Let us assume the same constraint
∫ π
−π sv0(s)

2ds = 0 as in Lemma 3. Neglecting positive terms
in the lower bound, we obtain

‖v(t)‖2L2
per

≥ 1

4
eπt/3‖v0‖2L2

per
(3.27)

−2

∫ π

−π

∫ t

0
|v0(s)||G(s, t′)| [π cosh(πt/6)− s sinh(πt/6)]2

[π cosh(πt′/6)− s sinh(πt′/6)]2
dt′ds.

Let us define for any t > 0,

K(t, t′, s) :=
π cosh(πt/6) − s sinh(πt/6)

π cosh(πt′/6) − s sinh(πt′/6)
, t′ ∈ [0, t], s ∈ [−π, π].

We prove that for every 0 ≤ t′ ≤ t,

(3.28) sup
s∈[−π,π]

K(t, t′, s) = eπ(t−t′)/6.

Indeed, K(t, t′, s) = eπ(t−t′)/6M(t, t′, s), where

M(t, t′, s) :=
(π − s) + (π + s)e−πt/3

(π − s) + (π + s)e−πt′/3
,
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and M is monotonically decreasing since ∂sM(t, t′, s) ≤ 0 for every t′ ∈ [0, t] and s ∈ [−π, π].
Therefore, M has a maximum at s = −π, where M(t, t′,−π) = 1.

By using (3.27) and (3.28), we obtain

‖v(t)‖2L2
per

≥ 1

4
eπt/3‖v0‖2L2

per
− 2‖v0‖L1

per

∫ t

0
‖g(t′)‖L∞

per
eπ(t−t′)/3dt′

≥ 1

4
eπt/3‖v0‖2L2

per
− 2‖v0‖L1

per

∫ t

0
‖v(t′)‖L1

per
eπ(t−t′)/3dt′

≥ 1

4
eπt/3‖v0‖2L2

per
− 2

√
2π‖v0‖L1

per
‖v0‖L2

per
eπt/3

∫ t

0
e−πt′/6dt′,

where (3.20), (3.22), and (3.23) have been used in the last two inequalities. Hence,

‖v(t)‖2L2
per

e−πt/3 ≥ ‖v0‖L2
per

(

1

4
‖v0‖L2

per
− 12

√
2√

π
‖v0‖L1

per

)

and since ‖v0‖L2
per

can be much larger than ‖v0‖L1
per

by the bound (3.19), there exist v0 ∈ X1
per

and C2 ∈ (0, 1/4) such that

(3.29) ‖v0‖L1
per

≤
√
π(1− 4C2)

48
√
2

‖v0‖L2
per

,

and hence

‖v(t)‖2L2
per

e−πt/3 ≥ C2‖v0‖2L2
per

.(3.30)

This yields the desired bound (3.26). �

Remark 15. Let us show that there exist functions v0 ∈ X1
per satisfying the constraints (3.8),

(3.9), and (3.29). Indeed, if v0 is odd, then v20 is even, hence the two constraints (3.8) and (3.9)
are satisfied simultaneously. From the class of odd initial data we need to pick functions in X1

per

that satisfy the inequality (3.29) for a fixed C2 ∈ (0, 1/4). For example, we can consider the

following odd function in Ḣ1
per ⊂ X1

per

(3.31) v0(x) =
x(π2 − x2)

1 + a2x2
, x ∈ [−π, π],

where a > 0 is a parameter. We obtain by direct computation,

‖v0‖L1
per

=

(

π2

a2
+

1

a4

)

log(1 + π2a2)− π2

a2

and

‖v0‖2L2
per

=
1

a3

[(

π4 +
6π2

a2
+

5

a4

)

arctan(πa)− π(15 + 13π2a2)

3a3

]

.

Since ‖v0‖L1
per

= O(log(a)a−2) decays to zero as a → ∞ faster than ‖v0‖L2
per

= O(a−3/2),

inequality (3.29) can be satisfied for sufficiently large a.

Remark 16. If v0(±π) = 0 like in the example (3.31), then v0 ∈ Ḣ1
per and the truncated linearized

evolution (3.11) preserves the constraint v(±π, t) = 0 for every t ∈ R, see Remark 9. However,
the integral term ∂−1

z v in the full linearized evolution (3.21) does not generally preserve the
same constraint because it is uniquely defined from the condition that ∂−1

z v has zero mean. As
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a result, the full linearized equation does not generally admit a solution v ∈ C(R, Ḣ1
per) even if

v0 ∈ Ḣ1
per.

Remark 17. In the presence of the source term G, we are not able to show that ‖v(t)‖L1
per

remains bounded as t → ∞, see Remark 11. By using the integral
∫ π

−π

π2

[π cosh(πt′/6) − s sinh(πt′/6)]2
ds = 2π, t′ ∈ [0, t],

we obtain the bound

‖v(t)‖L1
per

≤ ‖v0‖L1
per

+ 2π

∫ t

0
‖g(t′)‖L∞

per
dt′,

in view of (3.15) and (3.25). Thanks to the bound (3.23), the inequality is closed as follows:

‖v(t)‖L1
per

≤ ‖v0‖L1
per

+ 2π

∫ t

0
‖v(t′)‖L1

per
dt′.

By Gronwall’s inequality, this bound gives the fast exponential growth

‖v(t)‖L1
per

≤ ‖v0‖L1
per

e2πt,

which cannot be sharp because ‖v(t)‖L1
per

is bounded by a slowly growing exponential function

that follows from the bounds (3.20) and (3.22).

Remark 18. There exists a conserved energy for the Cauchy problem (3.21), see Remark 12,
which is given by

(3.32) 〈Lv(t), v(t)〉 = 〈Lv0, v0〉,
where the self-adjoint operator L is defined by (3.2). However, the conserved quantity (3.32)
does not prevent ‖v(t)‖L2

per
from growing exponentially fast as t → ∞ because the bounded

operator L is not coercive under the constraint (3.9), see Lemma 8.

3.3. Spectrum of the linear self-adjoint operator L. Here we consider the spectrum σ(L)
of the linear self-adjoint operator L defined by (3.2). We will prove that σ(L) consists of the
continuous spectrum on [0, π2/6], which includes the embedded eigenvalue λ0 = 0 with the
eigenvector ∂zU , and a simple negative eigenvalue λ1 < 0. No spectral gap appears between
λ0 = 0 and the continuous spectrum. The following lemma gives the corresponding result.

Lemma 8. The spectrum of the self-adjoint operator L given by (3.2) is

(3.33) σ(L) = {λ1} ∪
[

0,
π2

6

]

,

where λ1 < 0 is the unique zero of the transcendental equation

(3.34) (π2 + 3λ) log

√
π2 − 6λ+ π√
π2 − 6λ− π

− 3π
√

π2 − 6λ = 0, λ < 0.

Proof. By the spectral theorem (see, e.g., Definition 8.39, Theorem 8.70, and Theorem 8.71 in

[35]), the spectrum of the self-adjoint operator L in L̇2
per denoted by σ(L) may consist of only

two disjoint sets on the real line: the point spectrum of eigenvalues with eigenvectors in L̇2
per

denoted by σp(L) and the continuous spectrum denoted by σc(L), where the resolvent operator
exists but is unbounded.
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The self-adjoint operator L in (3.2) is given by the sum of a bounded operator L0 and a
compact operator K given by

(3.35) L0 :=
1

6
P0

(

π2 − z2
)

P0 : L̇2
per → L̇2

per

and

(3.36) K := P0∂
−2
z P0 : L̇2

per → L̇2
per.

Moreover, the compact operator is in the trace class since
∑∞

n=1 n
−2 < ∞. By Kato’s Theorem

[27] (see Theorem 4.4 on p. 540 in [28]), σc(L) = σc(L0). We show that [0, π2/6] ⊆ σc(L0) by

considering the odd functions in L̇2
per, which can be represented by the Fourier sine series. Let

us denote the space of odd functions in L̇2
per by L2

per,odd. Then,

L0f =
1

6
(π2 − z2)f, ∀f ∈ L2

per,odd.

Then, σc(L0) in L2
per,odd coincides with the range of the multiplicative function h(z) = 1

6(π
2−z2)

for z ∈ [−π, π], which is [0, π2/6]. Hence, [0, π2/6] ⊆ σc(L0) in L̇2
per.

Let us show that [0, π2/6] ≡ σc(L0) by working with the resolvent equation (L0 − λI)f = g

for given g ∈ L̇2
per and λ /∈ [0, π2/6]. The resolvent equation can be written in the component

form for z ∈ [−π, π]:

1

6
(π2 − 6λ− z2)f(z)− k(f) = g(z), k(f) :=

1

12π

∫ π

−π
(π2 − z2)f(z)dz,

where f ∈ L̇2
per is supposed to satisfy the zero-mean constraint

∫ π
−π f(z)dz = 0. Computing the

solution explicitly,

f(z) =
6

π2 − 6λ− z2
[g(z) + k(f)] ,

and using the zero mean constraint, we can define k(f) in terms of g:

k(f) =

∫ π
−π

g(z)
π2−6λ−z2

dz
∫ π
−π

1
π2−6λ−z2 dz

.

For every λ /∈ [0, π2/6], there exist positive constants Cλ, C
′
λ > 0 such that

sup
z∈[−π,π]

6

|π2 − 6λ− z2| ≤ Cλ,

∣

∣

∣

∣

∫ π

−π

6

π2 − 6λ− z2
dz

∣

∣

∣

∣

≥ C ′
λ.

As a result, we obtain the bound

‖f‖L2
per

≤ Cλ

[

‖g‖L2
per

+ |k(f)|
√
2π
]

≤ Cλ

[

1 + 2π(C ′
λ)

−1Cλ

]

‖g‖L2
per

.

Therefore, the resolvent operator (L0 − λI)−1 : L̇2
per → L̇2

per is bounded for every λ /∈ [0, π2/6]

so that σc(L0) = [0, π2/6].

In order to study σp(L) ∈ R\[0, π2/6], we consider the spectral problem for operator L with
the spectral parameter λ /∈ [0, π2/6]:

(3.37)
1

6
P0

(

π2 − z2
)

w + P0∂
−2
z w = λw, w ∈ L̇2

per.
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Since ∂−2
z w ∈ H2

per, bootstrapping arguments show that w ∈ H2
loc on any compact subset in

(−π, π). Iterations of bootstrapping arguments yield w ∈ H∞
loc. Therefore, the spectral problem

(3.37) can be differentiated twice on a compact subset in (−π, π), after which it is rewritten as
the second-order differential equation

(3.38)
(

π2 − z2 − 6λ
) d2w

dz2
− 4z

dw

dz
+ 4w(z) = 0, w ∈ H∞

loc,

with the two linearly independent solutions for λ ∈ R\[0, π2/6],

w1(z) = z

and

w2(z) =

{

−1 + z2

2(π2−z2−6λ) +
3z

4
√
π2−6λ

log
√
π2−6λ+z√
π2−6λ−z

, λ < 0,

−1 + z2

2(π2−z2−6λ)
− 3z

2
√
6λ−π2

arctan z√
6λ−π2

, λ > π2

6 .

The first solution corresponds to the eigenvector ∂zU of the spectral problem (3.37) for the
eigenvalue λ0 = 0, which is embedded into σc(L) = [0, π2/6]. Since eigenvectors of the self-
adjoint operator for distinct eigenvalues are orthogonal, we are looking for solutions w of the
spectral problem (3.37) such that 〈w,w1〉 = 0. Therefore, we take4 w = w2 and extend it from

H2
loc to L̇2

per. This extension is achieved if and only if w has zero mean, that is,

(3.39) 0 =
1

2π

∫ π

−π
w2(z)dz =

{

−3
4 +

π2+3λ
4π

√
π2−6λ

log
√
π2−6λ+π√
π2−6λ−π

λ < 0,

−3
4 − π2+3λ

2π
√
6λ−π2

arctan π√
6λ−π2

λ > π2

6 .

The piecewise graph of the right-hand side of the zero-mean constraint (3.39) on (−∞, 0) and
(π2/6,∞) is shown on Figure 2. The first line of the zero-mean constraint (3.39) is equivalent
to the transcendental equation (3.34) and it has only one simple zero at λ1 ≈ −0.2262. The
second line of (3.39) does not have any zeros. Hence, λ1 < 0 is the only eigenvalue in σp(L). �

Remark 19. For the smooth periodic waves of Lemma 1, we proved in [18] that σ(L) in L̇2
per

includes a simple negative eigenvalue, a simple zero eigenvalue with the eigenvector ∂zU , and the
rest of the spectrum is positive and bounded away from zero. Hence, the spectral gap is present
in the case of smooth periodic waves. This enabled us in [18] to use Hamilton-Krein index theory
to deduce that σ(∂zL) ⊂ iR and hence to deduce spectral stability of the smooth periodic waves
according to Definition 2. By the standard analysis involving the conserved quantity (3.32),
see [23], this spectral stability result transfers to linear stability of the smooth periodic waves
according to Definition 3. In the spectral problem for the peaked periodic wave, however, this
spectral gap is not present. Therefore, we are not able to deduce spectral instability of the
peaked periodic wave from the spectrum of L.

4. Discussion

We have studied peaked periodic traveling wave solutions of the reduced Ostrovsky equation
(1.1). We found that the peaked periodic wave with parabolic shape U∗ is the unique periodic
traveling wave with a single minimum per period and that the boundary-value problem (2.1)
does not admit Hölder continuous solutions, see Lemma 2. As a consequence, existence of cusped

4Note that 〈w2, w1〉 = 0 because w1 is odd and w2 is even.
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Figure 2. The graph of the right-hand side of the zero-mean constraint (3.39)
on (−∞, 0) and (π2/6,∞) as a function of the spectral parameter λ. Only one
simple zero λ1 < 0 exists.

waves obtained in [40] as well as existence of small-amplitude peaked waves found in [21] was
disproven.

Furthermore, we proved that the peaked periodic wave U∗ is linearly unstable with respect
to co-periodic perturbations in the space X1

per, which is the maximal domain of the linearized
operator ∂zL, see Lemma 7. This result was obtained using sharp exponential bounds on the
L2 norm of perturbations v of U∗ in X1

per satisfying the Cauchy problem (3.1) with the peaked
periodic wave U∗ and for the wave speed c∗.

Passing from linear to nonlinear instability is often a delicate issue. Several authors have
shown that linear instability directly implies nonlinear instability if a part of the spectrum of
the linearized operator is located in the right half of the complex plane, see for instance [17, 37]
and Theorem 5.1.5 in [25]. However, these approaches do not work for the reduced Ostrovsky
equation since the linearized evolution is defined in the space X1

per whereas the nonlinear evo-

lution is defined in Ḣs
per with s > 3/2. It is not clear if the local well-posedness results can be

extended to the space X1
per. It is also unclear how the peaks of the peaked periodic wave move

under the flow of the reduced Ostrovsky equation (1.1). For these reasons, nonlinear instability
of the peaked periodic wave in the reduced Ostrovsky equation remains an open problem for
now.
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