
ar
X

iv
:1

80
4.

03
81

2v
1 

 [
m

at
h.

A
P]

  1
1 

A
pr

 2
01

8

Existence of multiple solutions to an elliptic problem

with measure data

Amita Soni and D. Choudhuri

Abstract

In this paper we prove the existence of multiple nontrivial solutions of the fol-

lowing equation.

−∆pu = λ|u|q−2u+ f(x, u) + µ in Ω,

u = 0 on ∂Ω;

where Ω ⊂ R
N is a smooth bounded domain with N ≥ 3, 1 < q′ < q < p− 1;

λ, and f satisfies certain conditions, µ > 0 is a Radon measure, q′ = q
q−1 is the

conjugate of q.

Keywords: p-laplacian, Cerami sequence, Ekeland Variational principle, Radon

measure.

1. Introduction

For many years now, the problem

−∆pu = g(x, u), in Ω

u = 0, on ∂Ω,
(1.1)

has been studied extensively using the celebrated critical point theory which was in-

troduced by Ambrosetti & Rabinowitz in the Mountain pass theorem [1]. In order

to apply the Mountain pass theorem one needs the Ambrosetti-Rabinowitz (AR) type

condition on the nonlinear term g which is as follows.

For θ > p, R > 0, we have

0 < θG(x, t) ≤ g(x, t)t (1.2)

∀|t|≥ R a.e. in Ω, where G(x, t) =
∫ t

0
g(x, s)ds. The (AR) condition also implies that

there exists positive constants a, a1, a2 such that G(x, t) ≥ a1|t|
a−a2, ∀(x, t) ∈ Ω×R.
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Thus g is p-superlinear at infinity, in the sense that lim|t|→∞
G(x,t)
|t|p

= ∞.

Of late, the problem in (1.1) has been tackled without the AR condition by [7, 14,

16, 19, 20, 21, 23, 24] and the references therein. Miyagaki [21] studied (1.1) with a

Laplacian by using the following condition on g: ∃t0 > 0 such that g(x,t)
t

is increasing for

t ≥ t0 and decreasing for t ≤ −t0 ∀x ∈ Ω. The author in [21] guaranteed the existence

of a nontrivial solution by using the Mountain Pass theorem with the Palais-Smale

condition. Li et al [20] have extended this result, due to Miyagaki [21], by replacing

−∆ with −∆p. In Li [20], the authors needed the following subcritical growth condition

|g(x, t)|≤ C(1 + |t|r−1) ∀ t ∈ R and for almost all x in Ω, r ∈ [1, p∗), if 1 < p < N

and p∗ = ∞ if p ≥ N . A further generalized subcritical type growth condition was

introduced by Lan [17, 18], where r = p∗, to prove the existence of atleast one nontrivial

weak solution to (1.1) using the Mountain Pass theorem but without using the AR

condition.

Motivated by the work due to Chung et al [6] who have studied the existence of multiple

solution for the problem

−∆pu = λ|u|q−2u+ f(x, u) in Ω,

u = 0 on ∂Ω;
(1.3)

with concave-convex nonlinearities in bounded domains, we consider the following prob-

lem.

(P ) : −∆pu = λ|u|q−2u+ f(x, u) + µ in Ω,

u = 0 on ∂Ω,
(1.4)

where 1 < q′ < q < p − 1 < p∗, p∗ = Np
N−p

is the Sobolev conjugate of p, µ > 0 is a

Radon measure. We will prove the existence of multiple nontrivial weak solutions to

the problem (1.4). The conditions we assume on the continuous function f : Ω̄×R → R

- is slightly different from that assumed in [6] - are as follows.

(f0) lim
|t|→∞

f(x,t)

|t|p
∗−1 = 0 uniformly a.e. x ∈ Ω.

(f1) Let F be the primitive of f . There exists a positive constant t̄ > 0 such that

F (x, t) ≥ 0 a.e. x ∈ Ω and all t ∈ [0, t̄], where F (x, t) =
∫ t

0
f(x, s)ds.

(f2)lim sup
|t|→0

F (x,t)
|t|p

< λ1 uniformly a.e. x ∈ Ω , λ1 being the first eigenvalue of −∆p.

(f3) lim
|t|→∞

F (x,t)
|t|p

= ∞ uniformly a.e. x ∈ Ω.

(f4) There exists t̃ > 0 such that for any x ∈ Ω, the function t 7→ f(x,t)

|t|p−2t
is increasing

if t ≥ t̃ and decreasing if t ≤ −t̃ , ∀ x ∈ Ω.

We will denote the Sobolev space as W 1,p
0 (Ω) := {u : ∇u ∈ Lp(Ω), u|∂Ω= 0} equipped
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with the norm ‖.‖1,p which is defined as ‖u‖p1,p =
∫

Ω
|∇u|pdx. We will denote ‖.‖1,p as

‖.‖ throughout this manuscript. We now state the main result of the paper which is

as follows.

Theorem 1.1. Suppose that (f0) − (f4) hold. Then problem (P ) in (1.4) possesses

more than one nontrivial weak solution.

2. Preliminary definitions

We now discuss a few definitions, notations and essential results which will be used in

this paper.

Definition 2.1. (Cerami condition) A functional Φ is said to satisfy the Cerami

condition at a level c ∈ R if any sequence (un) ⊆ X such that Φ(un) → c and

(1 + ‖un‖)Φ
′(un) → 0 has a convergent subsequence.

In critical point theory, there are some situations in which a Palais-Smale sequence

does not lead to a critical point, but a Cerami sequence can lead to a critical point.

This whole thing based on the concept of ‘linking’ (refer [22]), for more details and ex-

amples. Cerami condition implies Palais-Smale condition and hence Cerami condition

is a weaker condition than Palais-Smale.

Definition 2.2. Let (µn) be a bounded sequence of measures in M(Ω). We say that

(µn) converges to a measure µ ∈ M(Ω) in the sense of measure if

∫

Ω

φdµn →

∫

Ω

φdµ ∀ φ ∈ C0(Ω̄).

We denote this convergence by µn −⇀ µ. The topology defined via this weak convergence

is metrizable and a bounded sequence with respect to this topology is pre-compact.

Definition 2.3. (Ekeland Variational Principle) Let Φ be a lower semicontinuous

bounded below function from a Banach space X into R ∪ {+∞}. For every ǫ > 0,

there is x0 ∈ X such that Φ(x) ≥ Φ(x0)− ǫ‖x− x0‖ for every x ∈ X (refer [8]).

Throughout the article, we will denote the measure of a set E in the sigma algebra

of Ω as where |E| and the absolute value of any real number, say a, as |a|. We will

use the Marcinkiewicz space M q(Ω) [11] (or the weak Lq(Ω) space) defined for every

0 < q < ∞, as the space of all measurable functions f : Ω → R such that the

corresponding distribution satisfy an estimate of the form

|{x ∈ Ω : |f(x)|> t}|≤
C

tq
, t > 0, C <∞.
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For bounded Ω we have M q ⊂ M q̄ if q ≥ q̄, for some fixed positive q̄. We recall here

the following useful continuous embeddings

Lq(Ω) →֒ M q(Ω) →֒ Lq−ǫ(Ω), (2.1)

for every 1 < q <∞ and 0 < ǫ < q − 1.

We first consider a sequence of problems (Pn) which are as follows

−∆pu = λ|u|q−2u+ f(x, u) + µn in Ω,

u = 0 on ∂Ω,
(2.2)

where µn ⇀ µ in measure. From here onwards we will denote
∫

Ω
fdx =

∫

Ω
f . The

corresponding energy functional of the sequence of problems (Pn) is written as

In(u) =
1

p

∫

Ω

|∇u|pdx−
λ

q

∫

Ω

|u|qdx−

∫

Ω

F (x, u)dx−

∫

Ω

udµn (2.3)

and its Fréchet derivative is defined as

< I ′n(u), v >=

∫

Ω

|∇u|p−2∇u∇vdx−λ

∫

Ω

|u|q−2
uvdx−

∫

Ω

f(x, u)vdx−

∫

Ω

µnvdx (2.4)

∀u, v ∈ T where T = W 1,p(Ω) ∩ C0(Ω̄), C0(Ω̄) = {ϕ ∈ C(Ω̄) : ϕ|∂Ω= 0} and C(Ω̄)

will denote the space of continuous functions over Ω̄. We now define the corresponding

energy functional of the problem (P ) as

I(u) =
1

p

∫

Ω

|∇u|pdx−
λ

q

∫

Ω

|u|qdx−

∫

Ω

F (x, u)dx−

∫

Ω

udµ (2.5)

and its Fréchet derivative is defined as

< I ′(u), v >=

∫

Ω

|∇u|p−2∇u∇vdx− λ

∫

Ω

|u|q−2
uvdx−

∫

Ω

f(x, u)vdx−

∫

Ω

vdµ (2.6)

for every u, v ∈ T .

Definition 2.4. u ∈ S = {u ∈ W
1,s
0 (Ω) : ||u||p∗= 1}, s < N(p−1)

N−1
, is said to be a weak

solution of the problem (P ) if

∫

Ω

|∇u|p−2∇u∇ϕdxdy − λ

∫

Ω

|u|q−2uϕdx−

∫

Ω

f(x, u)ϕdx−

∫

Ω

ϕdµ = 0,

∀ ϕ ∈ T .
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3. Existence Results

In order to prove the main result of this paper, given in the form of Theorem (1.1),

we first prove a few lemmas related to the mountain pass theorem and the Cerami

condition. We first develop the necessary tools for the mountain pass theorem. Observe

that In’s are C
1 functionals defined over W 1,p

0 (Ω).

Lemma 3.1. There exists λ′ such that for all λ ∈ (0, λ′), we can choose ρ > 0, η > 0

with In(u) > η ∀ u ∈ W
1,p
0 (Ω) and ‖u‖= ρ.

Proof. From the assumption (f2) we have, ∀ ǫ > 0 ∃ δ > 0 such that F (x, t) ≤

(λ1 − ǫ)|t|p, ∀|t|< δ. Hence,

In(u) =
1

p

∫

Ω

|∇u|pdx−
λ

q

∫

Ω

|u|qdx−

∫

Ω

F (x, u)dx−

∫

Ω

udµn

≥
1

p
‖u‖p −

λc1

q
‖u‖q −

(λ1 − ǫ)

p
‖u‖pp − c2‖u‖p‖µn‖p′

≥
1

p
‖u‖p −

λc1

q
‖u‖q −

(λ1 − ǫ)

pλ1
‖u‖p − c2‖u‖

p∗‖µn‖p′

=

[

ǫ

pλ1
−

{

λc1

q
‖u‖q−p + c2‖u‖

p∗−p‖µn‖p′

}]

‖u‖p,

where we have used the Rayleigh constant λ1 = min
u∈W 1,p

0 (Ω)
u 6=0

{∫
Ω
|∇u|pdx

∫
Ω
|u|pdx

}

. Consider a

continuous function τλ : (0,∞) → R defined as τλ(t) = λc1
q
|t|q−p + c2‖µn‖p′|t|

p∗−p.

Since, 1 < q < p < p∗, so it can be seen that lim
t→∞

τλ(t) = lim
t→0+

τλ(t) = +∞. Hence, it

is possible to find a ‘t∗’ such that 0 < τλ(t∗) = min
t∈(0,∞)

τλ(t). On solving for t∗ such that

τ ′λ(t∗) = 0, we get t∗ =
[

λc1(p−q)
qc2(p∗−p)‖µn‖p′

]
1

p∗−q

. This implies

τλ(t∗) = kλ
p∗−p

p∗−q → 0 as λ→ 0. (3.1)

Thus, by choosing ‖u‖= ρ and from (3.1) there exists a λ′ such that ∀λ ∈ (0, λ′) we

have In(u) > η.

The following lemma guarantees the existence of a function v such that In(v) < 0.

Lemma 3.2. There exists e1 ∈ W
1,p
0 (Ω), ‖e1‖ > 0, such that In(te1) < 0 for sufficiently

large t.
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Proof. Let e1 ∈ W
1,p
0 (Ω) with ‖e1‖ > 0. From the assumption (f3), we have ∀ M >

0, ∃ k(M) > 0 such that F (x, t) ≥ M |t|p − k(M) a.e. in Ω, ∀t ∈ R.

In(te1) =
1

p

∫

Ω

|∇(te1)|
p
dx−

λ

q

∫

Ω

|te1|
q
dx−

∫

Ω

F (x, te1)dx−

∫

Ω

(te1)µndx

≤
|t|p

p
‖e1‖

p −
λ|t|q

q

∫

Ω

|e1|
q
dx−M |t|p

∫

Ω

|e1|
p
dx+ k(M)|Ω| − t

∫

Ω

e1µndx

Choose M large enough such that the whole quantity becomes negative. Hence,

In(te1) < 0 for t sufficiently large.

Lemma 3.3. There exists e2 ∈ W
1,p
0 (Ω), ‖e2‖> 0 such that In(te2) < 0; ∀t > 0 in a

small neighborhood of 0.

Proof. Let e2 ∈ W
1,p
0 (Ω) with ‖e2‖ > 0. From the assumption in (f1), we have,

∀t ∈ [0, t̄] and x ∈ Ω a.e., F (x, t) ≥ 0. So, for t ∈
(

0, t̄
‖e2‖L∞(Ω)

)

, we have

In(te2) =
1

p

∫

Ω

|∇(te2)|
p
dx−

λ

q

∫

Ω

|te2|
q
dx−

∫

Ω

F (x, te2)dx−

∫

Ω

(te2)µndx

≤
tp

p
‖e2‖

p −
λtq

q

∫

Ω

|e2|
q
dx− t

∫

Ω

e2µndx

≤
tp

p
‖e2‖

p −
λtq

q

∫

Ω

|e2|
q
dx.

We need to find a t > 0 for which In(te2) is less than 0. For this we consider,

0 >
tp

p
‖e2‖

p −
λtq

q

∫

Ω

|e2|
q
dx

= tq
[

tp−q

p
‖e2‖

p −
λ

q

∫

Ω

|e2|
q
dx

]

.

Thus,

tp−q

p
‖e2‖

p
<
λ

q

∫

Ω

|e2|
q
dx

and so

t <

(

λp
∫

Ω
|e2|

q
dx

q‖e2‖
p

)

1
p−q

.

Thus, if 0 < t < min

{

(

λp
∫
Ω |e2|

qdx

q‖e2‖
p

)
1

p−q

, t̄
‖e2‖L∞(Ω)

}

then In(te2) < 0.

Lemma 3.4. The functional In satisfies the Cerami condition.
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Proof. Let (um,n) be a sequence inW
1,p
0 (Ω) such that In(um,n) → c, (1+‖um,n‖)‖I

′
n(um,n)‖ →

0 as m → ∞, where ‖I ′n(um,n)‖ = sup
{

|< I ′n(um,n), φ >|: φ ∈ W
1,p
0 (Ω), ‖φ‖ = 1

}

. We

first show that (um,n) is bounded. For if not, i.e. ‖um,n‖ → ∞ as m → ∞, define

vm,n = um,n

‖um,n‖
so that ‖vm,n‖ = 1. Since, W 1,p

0 (Ω) is a reflexive space, so (vm,n) has

a weakly convergent subsequence in W
1,p
0 (Ω). Let vm,n ⇀ v0 in W

1,p
0 (Ω). Due to the

compact embedding we have

vm,n → v0 in L
r(Ω) for r ∈ [1, p∗) and hence upto a subsequence (3.2)

vm,n(x) → v0(x) a.e. in Ω as m→ ∞. (3.3)

We now have two cases.

Case (i): When v0 6= 0.

Let Ω′ = {x ∈ Ω : v0(x) 6= 0}. If x ∈ Ω′, then

|um,n(x)|= |vm,n(x)|‖um,n‖ → ∞ a.e. in Ω′. (3.4)

Since, In(um,n) → c, we have In(um,n)
‖um,n‖

p → 0. Hence, as m→ ∞

o(1) =
1

p
−
λ

q

∫

Ω

|um,n|
q

‖um,n‖
pdx−

∫

Ω′

F (x, um,n)

‖um,n‖
p dx−

∫

Ω\Ω′

F (x, um,n)

‖um,n‖
p dx−

∫

Ω

um,nµn

‖um,n‖
pdx.

Using the Rayleigh constant λ1 = min
um,n∈W

1,p
0 (Ω)

um,n 6=0

{ ∫
Ω
|∇um,n|

pdx
∫
Ω
|um,n|

pdx

}

, we get
∫

Ω
|um,n|

p ≤

‖um,n‖
p

λ1
. This implies that c

∫

Ω
|um,n|

q ≤ ‖um,n‖
p

λ1
, since q < p.

Thus,

o(1) ≤
1

q
−
λ

q

∫

Ω

|um,n|
q

‖um,n‖
pdx−

∫

Ω′

F (x, um,n)

‖um,n‖
p dx−

∫

Ω\Ω′

F (x, um,n)

‖um,n‖
p dx−

∫

Ω

um,nµn

‖um,n‖
pdx

≤
1

q
max

{

1, 1−
λ

cλ1

}

−

∫

Ω′

F (x, um,n)

‖um,n‖
p dx−

∫

Ω\Ω′

F (x, um,n)

‖um,n‖
p dx−

∫

Ω
um,nµn

‖um,n‖
p dx

≤
1

q
max

{

1, 1−
λ

cλ1

}

−

∫

Ω′

F (x, um,n)

‖um,n‖
p dx−

∫

Ω\Ω′

F (x, um,n)

‖um,n‖
p dx+

∣

∣

∣

∣

∫

Ω
um,nµn

‖um,n‖
p dx

∣

∣

∣

∣

≤
1

q
max

{

1, 1−
λ

cλ1

}

−

∫

Ω′

F (x, um,n)

‖um,n‖
p dx−

∫

Ω\Ω′

F (x, um,n)

‖um,n‖
p dx+

‖µn‖p′‖um,n‖p
‖um,n‖

p

≤
1

q
max

{

1, 1−
λ

cλ1

}

−

∫

Ω′

F (x, um,n)

‖um,n‖
p dx−

∫

Ω\Ω′

F (x, um,n)

‖um,n‖
p dx+

‖µn‖p′‖um,n‖(λ1)
−1
p

‖um,n‖
p

(3.5)
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Also,

F (x, um,n)

‖um,n‖
p =

F (x, um,n)

|um,n(x)|
p .

|um,n(x)|
p

‖um,n‖
p

=
F (x, um,n)

|um,n(x)|
p .|vm,n(x)|

p

Since lim
|t|→∞

F (x,t)
|t|p

= ∞ and vm,n → v0 in Lp(Ω) with v0(x) 6= 0, then F (x,um,n)
‖um,n‖

p → ∞ a.e.

in Ω′. Using the Fatou’s lemma, we have lim
m→∞

∫

Ω′

F (x,um,n)
‖um,n‖

p dx = ∞.

From the assumption in (f3), lim
|t|→∞

F (x, t) = ∞ uniformly in Ω̄ and hence, there exists

two positive constants t̄ and M such that F (x, t) ≥ M for every x ∈ Ω̄ and for all t

such that |t|> t̄. Since F is continuous on Ω̄× R, so |F (x, t)|≤ c1 for every x ∈ Ω̄ and

|t|≤ t̄. Therefore, there exists a k such that

F (x, t) ≥ k for any (x, t) ∈ Ω̄× R. (3.6)

By our assumption that ‖um,n‖ is unbounded in W 1,p
0 (Ω) and using (3.5),

lim
m→∞

∫

Ω\Ω′

F (x,um,n)
‖um,n‖

p dx ≥ lim
m→∞

k|Ω\Ω′|
‖um,n‖p

= 0. The last term in (3.5) converges to 0 owing to

p > 1. This yields a contradiction that 0 ≤ −∞. Hence, ‖um,n‖ is bounded inW 1,p
0 (Ω).

Case(ii): When v0 = 0.

Since, t 7→ In(tum,n) is continuous in t ∈ [0, 1], hence for each m there exists tm ∈ [0, 1]

such that In(tmum,n) = max
t∈[0,1]

In(tum,n). For any k ∈ N, choose rk,n = (2p‖ul,n‖
p)

1
p

such that rk,n‖um,n‖
−1 ∈ (0, 1) for any fixed big integer k. Using the dominated con-

vergence theorem and the fact that v0 = 0, we get lim
m→∞

∫

Ω
|rk,nvm,n(x)|

q
dx = 0 and

lim
m→∞

∫

Ω
|rk,nvm,n(x)|

p
dx = 0. Since, vm,n(x) → v0(x) a.e. Ω and F is continuous so

F (x, rk,nvm,n(x)) → F (x, rk,nv0(x)) a.e. in Ω.

From (f0) ∀ǫ > 0, ∃ c(ǫ) > 0 such that |F (x, t)|≤ ǫ
c1
|t|p

∗

+ c(ǫ), ∀ t ∈ R, a.e. in Ω. Us-

ing the dominated convergence theorem,
∫

Ω
F (x, rk,nvm,n(x)) → 0 as m→ ∞, ∀ k ∈ N
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since F (x, 0) = 0.

In(tmum,n) ≥In(rk,n‖um,n‖
−1
um,n)

=In(rk,nvm,n)

=
1

p

∫

Ω

|∇rk,nvm,n|
p
dx−

λ

q

∫

Ω

|rk,nvm,n|
q
dx−

∫

Ω

F (x, rk,nvm,n)dx−

∫

Ω

rk,nvm,nµndx

≥
1

p

∫

Ω

(‖uk,n‖
p(2p)|∇vm,n|

p) dx−
λ

q

∫

Ω

|rk,nvm,n|
q
dx−

∫

Ω

F (x, rk,nvm,n)dx

−

∫

Ω

|rk,nvm,nµn|dx

≥2‖uk,n‖
p‖vm,n‖

p −
λ

q

∫

Ω

|rk,nvm,n|
q
dx−

∫

Ω

F (x, rk,nvm,n)dx− ‖µn‖p′‖rk,nvm,n‖p

Since the last three term tends to zero as n→ ∞ so

In(tmum,n) ≥ ‖uk,n‖
p (3.7)

As ‖uk,n‖→ ∞ as k → ∞ so In(tmum,n) → ∞ as m→ ∞ for any large integer k. Since

In(um,n) → c and In(0) = 0. So, for tm ∈ (0, 1), I ′n(tmum,n) = 0 for any n ∈ N and

〈I ′n(tmum,n), tmum,n〉 = tm
d
dt
|t=tm In(tum,n) = 0.

In(tmum,n) =In(tmum,n)−
1

p
〈I ′n(tmum,n), tmum,n〉

=
1

p

∫

Ω

|∇tmum,n|
p
dx−

λ

q

∫

Ω

|tmum,n|
q
dx−

∫

Ω

F (x, tmum,n)dx−

∫

Ω

tmum,nµndx

−

{

1

p

∫

Ω

|∇tmum,n|
p
dx

−
λ

p

∫

Ω

|tmum,n|
q
dx−

1

p

∫

Ω

f(x, tmum,n)(tmum,n)dx−
1

p

∫

Ω

tmum,nµndx

}

=λ

(

1

p
−

1

q

)
∫

Ω

|tmum,n|
q
dx+

1

p

∫

Ω

f(x, tmum,n)(tmum,n)dx−

∫

Ω

F (x, tmum,n)dx

−

(

1−
1

p

)
∫

Ω

tmum,nµndx

This implies

In(tmum,n) + A

∫

Ω

tmum,nµndx ≤
1

p

∫

Ω

f(x, tmum,n)(tmum,n)dx−

∫

Ω

F (x, tmum,n)dx

=
1

p

∫

Ω

F̃ (x, tmum,n)dx,

where A =
(

1− 1
p

)

.

Using the Lemma 2.3 from [19], which states that
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Lemma 3.5. If (f4) holds, then for any x ∈ Ω, F̃ (x, t) is increasing in t ≥ t̄ and

decreasing in t ≤ −t̄, where F̃ (x, t) = f(x, t)t − pF (x, t). In particular, there exists

C1 > 0 such that F̃ (x, s) ≤ F̃ (x, t) + C1 for x ∈ Ω and 0 ≤ s ≤ t or t ≤ s ≤ 0,

we get

1

p

∫

Ω

F̃ (x, tmum,n)dx =
1

p

∫

{um,n≥0}

F̃ (x, tmum,n)dx+
1

p

∫

{um,n<0}

F̃ (x, tmum,n)dx

≤
1

p

∫

{um,n≥0}

[

F̃ (x, um,n) + c1

]

dx+
1

p

∫

{um,n<0}

[

F̃ (x, um,n) + c1

]

dx

=
1

p

∫

Ω

F̃ (x, um,n)dx+
1

p
c1|Ω|

= In(um,n)−
1

p
< I ′n(um,n), um,n > +λ

(

1

q
−

1

p

)
∫

Ω

|um,n|
q
dx

+ A

∫

Ω

um,nµndx+
1

p
c1|Ω|

≤ In(um,n)−
1

p
< I ′n(um,n), um,n > +λ

(

1

q
−

1

p

)
∫

Ω

|um,n|
q
dx

+ A

∫

Ω

|um,nµn|dx+
1

p
c1|Ω|

≤ In(um,n)−
1

p
< I ′n(um,n), um,n > +λ

(

1

q
−

1

p

)
∫

Ω

|um,n|
q
dx

+ A‖µn‖p′‖um,n‖+
1

p
c1|Ω|

≤ In(um,n)−
1

p
〈I ′n(um,n), um,n〉+ λ

(

1

q
−

1

p

)
∫

Ω

|um,n|
q
dx

+ A‖µn‖p′‖um,n‖
q +

1

p
c1|Ω|

≤ In(um,n)−
1

p
〈I ′n(um,n), um,n〉+ c0λ

(

1

q
−

1

p

)

‖um,n‖
q
dx

+ A‖µn‖p′‖um,n‖
q +

1

p
c1|Ω|

Hence

In(tmum,n) + A

∫

Ω

tmum,nµndx ≤ In(um,n)−
1

p
〈I ′n(um,n), um,n〉

+ c0λ

(

1

q
−

1

p

)

‖um,n‖
q
dx+ A‖µn‖p′‖um,n‖

q +
1

p
c1|Ω|.
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This implies

In(tmum,n) ≤ In(um,n)−
1

p
〈I ′n(um,n), um,n〉+ c0λ

(

1

q
−

1

p

)

‖um,n‖
q
dx

+ A‖µn‖p′‖um,n‖
q +

1

p
c1|Ω| − A

∫

Ω

tmum,nµndx

Using (3.7), we get

‖uk,n‖
p ≤ In(um,n)−

1

p
< I ′n(um,n), um,n > +c0λ

(

1

q
−

1

p

)

‖um,n‖
q
dx

+ A‖µn‖p′‖um,n‖
q +

c1

p
|Ω| − A

∫

Ω

tmum,nµndx

(3.8)

Now,
∣

∣

∣

A
∫
Ω
tmum,nµndx

‖uk,n‖
p

∣

∣

∣
≤

Atm
∫
Ω
|um,nµn|dx

‖uk,n‖
p ≤

Atm‖um,n‖p‖µn‖p′

‖uk,n‖
p ≤

Atm‖um,n‖‖µn‖p′

‖uk,n‖
p → 0 as

‖uk,n‖→ ∞ ∀k ≥ m.

Since q < p−1, hence on dividing (3.8) by ‖uk,n‖
p and letting ‖uk,n‖

p → ∞, as k → ∞,

we get 1 ≤ 0 which is a contradiction. Hence, (um,n) is bounded in W 1,p
0 (Ω).

The next step is to show that (um,n) admits a strongly convergent subsequence in

W
1,p
0 (Ω). SinceW 1,p

0 (Ω) is a reflexive space so (um,n) has a subsequence which converges

weakly to un in W 1,p
0 (Ω) and strongly in Lr(Ω) for r ∈ [1, p∗) due to Rellich’s compact

embedding. We also have that ‖um,n‖
p∗

p∗ ≤ c2.

〈I ′n(um,n), um,n − un〉 =

∫

Ω

|∇um,n|
p−2∇um,n · (∇um,n −∇u)dx−

∫

Ω

|um,n|
q−2

um,n(um,n − un)dx

−

∫

Ω

f(x, um,n)(um,n − un)−

∫

Ω

µn(um,n − un)dx

(3.9)

From the assumption in (f0), we have ∀ ǫ > 0 ∃ m(ǫ) > 0 such that |f(x, t)t|≤
ǫ

2c2
|t|p

∗

+ m(ǫ), ∀ t ∈ R, a.e.in Ω. Choose δ = ǫ
2m(ǫ)

> 0, F ⊆ Ω such that µ(F ) < δ

then
∣

∣

∣

∣

∫

F

f(x, um,n)um,ndx

∣

∣

∣

∣

≤

∫

F

|f(x, um,n)um,n| dx

≤

∫

F

m(ǫ)dx+
ǫ

2c2

∫

F

|um,n|
p∗
dx

≤ ǫ

(3.10)

Hence,
{∫

Ω
f(x, um,n)um,ndx : m ∈ N

}

is equiabsolutely continuous and therefore from

the Vitali convergence theorem we get
∫

Ω

f(x, um,n)um,ndx→

∫

Ω

f(x, un)un dx as m→ ∞. (3.11)
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Based on exactly the same line of argument using the assumption in (f0), it can be

shown that,
{∫

Ω
f(x, um,n)un dx : m ∈ N

}

is equiabsolutely continuous and therefore

from the Vitali convergence theorem we get

∫

Ω

f(x, um,n)un dx→

∫

Ω

f(x, un)un dx as m→ ∞ (3.12)

From (3.11) and (3.12), we get

∫

Ω

f(x, um,n)(um,n − un)dx→ 0 as m→ ∞ (3.13)

Again by using the Hölder’s inequality and compact embedding results, we have

∫

Ω

|um,n|
q−2

um,n(um,n − un)dx ≤

∫

Ω

| |um,n|
q−2

um,n(um,n − un) | dx

=

∫

Ω

|um,n|
q−1|um,n − un|dx

≤

(
∫

Ω

|um,n|
q
dx

)
q−1
q
(
∫

Ω

|um,n − un|
q
dx

)
1
q

→ 0 as m→ ∞

(3.14)

Since, um,n → un in Lp(Ω), so

∫

Ω

(um,n − un)µn ≤ ‖um,n − un‖p‖µn‖p′ → 0 as m→ ∞. (3.15)

We know that, 〈I ′n(um,n), um,n − un〉 → 0 as m → ∞. Hence, from (3.13), (3.14) and

(3.15) we obtain

∫

Ω

|∇um,n|
p−2∇um,n · (∇um,n −∇un)dx→ 0 as m→ ∞.

This implies that (um,n) converges strongly to un in W
1,p
0 (Ω). Thus we have proved

that the functional In satisfies the Cerami condition.

By the lemmas in Lemma 3.1, 3.2, 3.3, we can conclude that there exists λ′ such

that for every λ ∈ (0, λ′) the functional In satisfies the assumption of the Mountain-

Pass theorem [10]. Hence, there exists critical point un ∈ {u ∈ W
1,p
0 (Ω) : ‖u‖p∗= 1}

corresponding to each µn such that In(un) = c > 0. So, un will satisfy its weak

formulation, i.e. 〈I ′n(un), v〉 = 0 ∀ v ∈ W
1,p
0 (Ω). This implies

∫

Ω

|∇un|
p−2∇un∇v dx− λ

∫

Ω

|un|
q−2

unv dx−

∫

Ω

f(x, un)v −

∫

Ω

µnv dx = 0 (3.16)
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Proof of Theorem 1.1. We will now show that there exists another distinct nontrivial

solution of the problem using the Ekeland’s variational method. Since In is a C1

functional hence it is bounded below on the ball B̄r(0). We can thus apply Ekeland

variational principle (refer definition 2.3). Applying this principle to In : B̄r(0) → R

we find that to each δ > 0 there exists uδ ∈ B̄r(0) such that In(uδ) < inf
u∈ ¯Br(0)

In(u) + δ

and In(uδ) < In(u) + δ‖u− uδ‖, u 6= uδ. From Lemma 3.1 and 3.3, we know that

inf
u∈∂Br(0)

In(u) ≥M > 0 and inf
u∈B̄r(0)

In(u) < 0.

Choose δ > 0 such that 0 < δ < inf
u∈∂Br(0)

In(u)− inf
u∈B̄r(0)

In(u).

Hence, In(uδ) < inf
u∈∂Br(0)

In(u) and so by the choice of uδ we have uδ ∈ Br(0). We define

another functional Jn : B̄r(0) → R by Jn(u) = In(u) + δ‖u− uδ‖. Due to the Ekeland

variational principle, Definition 2.3, we have that uδ is a minimum point of Jn. So
Jn(uδ+tφ)−Jn(uδ)

t
≥ 0 ∀ t > 0 small and ∀ φ ∈ Br(0).

Hence, In(uδ+tφ)−In(uδ)
t

+ δ‖φ‖ ≥ 0 and 〈I ′n(uδ),−φ〉 ≥ −δ‖φ‖ as t → 0+. Since, −φ ∈

Br(0) we replace φ with −φ to get 〈I ′n(uδ),−φ〉 ≥ −ǫ‖φ‖ and hence 〈I ′n(uδ),−φ〉 ≤

ǫ‖φ‖. This implies that ‖I ′n (uδ) ‖ ≤ δ.

Therefore there exists a sequence (wm,n) ⊂ Br(0) such that

In(wm,n) → c′ = inf
u∈B̄r(0)

In(wn) < 0

and I ′n(wm,n) → 0 in W 1,p
0 (Ω) as m→ ∞. From Lemma 3.4, the sequence (wm,n) → vn

in W 1,p
0 (Ω) as m→ ∞.

Hence, In(vn) = c′, I ′n(vn) = 0. So, vn is a non-trivial weak solution of the considered

problem. Since, In(un) = c > 0 > c′ = In(vn) so un and vn are distinct nontrivial

solutions of the problem (Pn). Hence, the Theorem 1.1 is proved for the sequence of

problems (Pn).

Choose a test function v = Tk(un), where Tk is a truncation operator defined as

Tk(t) =

{

t, |t|< k

k, |t|≥ k.

Clearly Tk(un) ∈ W
1,p
0 (Ω). Define A = {x : |un(x)|≥ k}. We have

{|∇un|> t} = {|∇un|> t, |un|< k} ∪ {|∇un|> t, |un|≥ k}

⊂ {|∇un|> t, |un|< k} ∪ {|un|≥ k} ⊂ Ω.

Hence, by the subadditivity of Lebesgue measure, we have

|{|∇un|> t}|≤ |{|∇un|> t, |un|< k}|+|{|un|≥ k}|. (3.17)
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Hence we have
∫

Ω

|∇Tk(un)|
p ≤ λ

∫

Ω

|un|
q−2unTk(un) +

∫

Ω

f(x, un)Tk(un) +

∫

Ω

µnTk(un)

≤ kλ|Ω|1/q‖un‖
q/q′

q +ǫ

∫

(|un|>T )

|un|
p∗−1Tk(un) +

∫

Ω×[−T,T ]

f(x, un)Tk(un)

+

∫

Ω

µnTk(un)

≤ C1(λ, q,Ω)k + C2(ǫ,Ω)k + k

∫

Ω

µn

≤ Ck,

where we have used the condition (f0) to bound the second integral and the L1 bound

of the sequence (µn), due to µn ⇀ µ, to bound the third integral. Restricting the above

integral on A1 = {x : |un|< k} we get,
∫

{|un|<k}

|∇Tk(un)|
p =

∫

{|un|<k}

|∇un|
p

≥

∫

{|∇un|>t,|un|<k}

|∇un|
p

≥ tp|({|∇un|> t, |un|< k}|

so that,

|{|∇un|> t, |un|< k}|≤
Ck

tp
∀k ≥ 1.

Therefore, from the Sobolev inequality

λ1

(

∫

Ω

|Tk(un)|
p∗

)

p

p∗

≤

∫

Ω

|∇Tk(un)|
p≤ Ck,

where, λ1 is the first eigen value of the p-laplacian operator. Now, if we restrict the

integral on the left hand side on A2 = {x : |un(x)|≥ k}, on which Tk(un) = k, we then

obtain

kp|{|un|≥ k}|
p
p∗≤ Ck,

so that

|{|un|≥ k}|≤
C

k
N(p−1)
N−p

∀k ≥ 1.

So, (un) is bounded in M
N(p−1)
N−p (Ω). Now (3.17) becomes

|{|∇un|> t}| ≤ |{|∇un|> t, |un|< k}|+|{|un|≥ k}|

≤
Ck

tp
+

C

k
N(p−1)
N−p

, ∀k > 1.
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We then choose k = t
N−p

N−1 and we get

|{|∇un|> t}|≤
C

t
N(p−1)
N−1

∀t ≥ 1,

We have thus shown that (∇un) is bounded in M
N(p−1)
N−1 and hence bounded in W 1,s

0 (Ω)

for s < N(p−1)
N−1

.

From the Definition 2.2 we have µn ⇀ µ. Since (un) is bounded in W
1,s
0 (Ω), which

is a reflexive space, we have a subsequence such that un ⇀ u in W
1,s
0 (Ω). Since

p− 1 < N(p−1)
N−1

always holds and according to the assumption q < p− 1, we have that

un → u in Lq(Ω) by Rellich’s compact embedding. Further, since un → u in Lq(Ω),

hence by the Egoroff’s theorem there exists a subsequence such that un(x) → u(x)

almost everywhere in Ω. Thus, by the continuity of f we have f(x, un(x)) → f(x, u(x))

in Ω almost everywhere. Summing up these results we find that

∫

Ω

λ|un|
q−2un.v →

∫

Ω

λ|u|q−2uv

∫

Ω

f(x, un)v →

∫

Ω

f(x, u)v
∫

Ω

µnv →

∫

Ω

vdµ (3.18)

∀v ∈ W 1,p(Ω) ∩ C0(Ω̄). Since λ|u|q−2u + f(x, u) + µ = µu, say, is a bounded Radon

measure, we look at the following problem

−∆pz = µu, in Ω

v = 0, on ∂Ω. (3.19)

From [4], there exists a solution to (3.19). It can be guaranteed (refer Appendix A)

that the sequence (un) is compact in W
1,s
0 (Ω), for s ∈

[

q,
N(p−1)
N−1

)

. In the course of

the proof we have shown that (∇un(x)) is a Cauchy sequence over Ω (Claim 4.1 in

Appendix A).

∫

Ω

|∇u|p−2∇u.∇v = lim
n→∞

∫

Ω

|∇un|
p−2∇un.∇v

=

∫

Ω

|∇z|p−2∇z.∇v

∀v ∈ C∞
0 (Ω̄). Thus z = u and hence the given problem has a solution. The argument

can be repeated for the sequence of solution (vn) to produce a nontrivial solution, say,

w. Thus we have shown the existence of two nontrivial solutions to the problem in

(1.4).
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4. Appendix A

The proof is motivated from the Lemma 1 in [4].

(un) is bounded in W 1,s
0 (Ω), for s ∈

[

q,
N(p−1)
N−1

)

which implies that there exists a subse-

quence, which we will still denote as (un), un ⇀ u. This further implies that un → u in

Ls(Ω) and hence there exists a subsequence such that un(x) → u(x) almost everywhere

in Ω. This further implies that (un), (∇un) is bounded in L1(Ω).

claim 4.1. ∇un(x) → ∇u(x) in Ω

Given η > 0, ǫ > 0 and set B > 1, k > 0 (n,m ∈ N). Define the following measurable

sets.

E1 = {x ∈ Ω : |∇un(x)|> B} ∪ {x ∈ Ω : |∇um(x)|> B} ∪ {x ∈ Ω : |un(x)|> B}

∪ {x ∈ Ω : |um(x)|> B}

E2 = {x ∈ Ω : |un(x)− um(x)|> k}

E3 = {x ∈ Ω : |∇un(x)|≤ k, |∇um(x)|≤ k, |un(x)|≤ k, |um|≤ k, |un(x)− um(x)|≤ k,

|∇(un − um)(x)|≥ η}.

We remark here that {x ∈ Ω : |∇(un − um)|≥ η} ⊂ E1 ∪ E2 ∪ E3. Since (un), (∇un)

is bounded in L1(Ω), hence we can choose a sufficiently large B, independent of n,m,

such that |E1|< ǫ. By the inequality [9]

(|X|p−2X − |Y |p−2Y ).(X − Y ) ≥ Cp|X − Y |p, if p ≥ 2

≥ Cp
|X − Y |2

(|X|+|Y |)2−p
if 1 < p < 2

we have (|∇u|p−2∇u − |∇v|p−2∇v) > 0. So there exists a measurable function γ such

that (|∇u|p−2∇u − |∇v|p−2∇v).(u − v) ≥ γ(x) > 0. Let a(x, s, ξ) = |ξ|p−2ξ. Thus we

have [a(x, s, ξ)−a(x, s, ψ)].(ξ−ψ) ≥ γ(x), ∀s ∈ R, ξ, ψ ∈ R
N such that |s|, |ξ|, |ψ|≤ B,

|ξ − ψ|≥ η, ∀x ∈ Ω.

In fact there exists a set C ⊂ Ω such that |C|= 0 and a(x, s, ξ) is continuous over Ω\C.

Define

K = {(s, ξ, ψ) ∈ R
2N+1 : |s|≤ B, |ξ|≤ B, |ψ|≤ B, |ξ − ψ|≥ η}

which is a compact set in R
2N+1. Then

inf{[a(x, s, ξ)− a(x, s, ψ)].(ξ − ψ) : (s, ξ, ψ) ∈ K} = γ(x) > 0. (4.1)
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by the compactness of K. Thus by (4.1) we have
∫

E3

γ ≤

∫

E3

[a(x, un,∇un)− a(x, un,∇um)].∇(un − um)

≤

∫

E3

[a(x, um,∇um)− a(x, un,∇um)].∇(un − um)

+

∫

E3

[a(x, un,∇un)− a(x, um,∇um)].∇(un − um)

≤

∫

E3

[a(x, um,∇um)− a(x, un,∇um)].∇(un − um) + 2kM (4.2)

where M is the L1 bound of the sequence of measures (|un|
q−2un + f(x, un) + µn).

Due to the continuity of a(x, s, ξ) with respect to (s, ξ) almost everywhere in Ω we

thus have for each ǭ > 0 ∃ δ(x, ǭ) ≥ 0 (with |{x ∈ Ω : δ(x, ǭ) = 0}|= 0) such that

|s − s′|≤ δ(x, ǭ), |s|, |s′|, |ξ|≤ B which implies |a(x, s, ξ) − a(x, s, ψ)|≤ ǭ. We remark

here that lim
k→0

|{x ∈ Ω : δ(x, ǭ)|= 0.

Let δ > 0 be from Lemma 2 of [4] which is as follows.

Lemma 4.2. Let (X,Σ, |.|) be a measurable space such that |X|< ∞. Let f : X →

[0,∞] such that |{x ∈ X : f(x) = 0}|= 0. Then for any ǫ > 0 ∃ δ > 0 such that
∫

A
fdm ≤ δ implies |A|≤ ǫ.

We now choose ǭ such that ǭ < δ
3
and k > 0 such that |E3 ∩ {x : δ(x, ǭ) < k}|< δ

3

and 2kM < δ
3
. Then we finally have

∫

E3

γ < δ. (4.3)

Thus from the Lemma 2 in [4] (stated above in (4.2)) we have |E3|< ǫ independent

of n,m. This guarantess our claim that (∇un) is a Cauchy sequence in Ω. Now since

(∇un) is a Cauchy sequence in Ω we have that ∇un(x) → v(x) almost everywhere

in Ω. Therefore, it is also Cauchy in W
1,2
0 topology and hence convergent to, v, say.

In addition to this, we also have that (un) is weakly convergent in W
1,s
0 (Ω) for s ∈

[

q,
N(p−1)
N−1

)

to u, i.e. ∇un ⇀ ∇u. These two results implies that v = ∇u and therefore,

(un) is compact and ∇un → ∇u in W 1,s
0 (Ω).
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[11] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vazquez, An

L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations,

Ann. Scuola Norm. Sup. Pisa, 22, (1995), 241-273.

[12] B.Ge, Q.Zhou and L.Zu, Positive solutions for nonlinear elliptic problems of p-

Laplacian type on R
N without (AR) condition, Nonlinear Anal., 21(2015), 99-109.

[13] R.K.Giri and D.Choudhuri, A problem involving the p Laplacian operator, Dif-

ferential Equations & Applications, 9(2)(2017), 171-181.

[14] L. Iturriaga, S. Lorca, P. Ubilla, A quasilinear problem without the Ambrosetti-

Rabinowitz type condition, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 391-

398.

http://arxiv.org/abs/1312.6495


19

[15] Kesavan, Topics in Functional Analysis and applications (New age international

pvt. ltd., 2003).
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