arXiv:1804.03934v5 [math.DG] 24 Feb 2022

A VECTOR BUNDLE VERSION OF THE MONGE-AMPERE
EQUATION

VAMSI PRITHAM PINGALI

ABSTRACT. We introduce a vector bundle version of the complex Monge-
Ampere equation motivated by a desire to study stability conditions involv-
ing higher Chern forms. We then restrict ourselves to complex surfaces,
provide a moment map interpretation of it, and define a positivity condi-
tion (MA-positivity) which is necessary for the infinite-dimensional symplec-
tic form to be Kahler. On rank-2 bundles on compact complex surfaces,
we prove two consequences of the existence of a “positively curved” solu-
tion to this equation - Stability (involving the second Chern character) and a
Kobayashi-Liibke-Bogomolov-Miyaoka-Yau type inequality. Finally, we prove
a Kobayashi-Hitchin correspondence for a dimensional reduction of the afore-
mentioned equation.

1. INTRODUCTION

The Kobayashi-Liibke-Bogomolov-Miyaoka-Yau (KLBMY) inequality for Mum-
ford stable bundles on Kéhler manifolds (and its cousin the Bogomolov-Miyaoka-
Yau inequality for anti-Fano Kéhler manifolds)

(r—1)cEw]" 2 = 2reaw]”2 <0

has many complex-geometric applications (see [I7, [T1] for instance). It is natural to
ask whether we can produce similar inequalities for higher Chern classes conditioned
on more complicated stability conditions. Alternatively, one can attempt to discover
Partial Differential Equations whose solvability implies such inequalities. As far as
we know, the only result in this direction is due to Collins-Xie-Yau [4].

Theorem 1.1 (Collins-Xie-Yau). Let (M,w) be a compact Kihler 3-manifold and L
is a holomorphic line bundle over it. Consider the deformed Hermitian- Yang-Mills
(dHYM) equation for a metric h on L whose curvature is F

(1.1) Arg (M> =90,

w3

where 6 € (Z,31) is a constant. Suppose there exists a solution to[Ld. Then

(1.2) 2/ /ch3 <3/ chg(L)/\w/ chy (L) A

In two dimensions the dHYM equation can be written as a Monge-Ampeére equa-
tion [TI0]. In higher dimensions one can get existence results by either treating it
directly [3], or in some special cases, by rewriting it as a generalised Monge-Ampere
equation [12].

To extend Theorem [I.I] to vector bundles, one approach would be to consider a
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naive generalisation of the dHYM equation by replacing the curvature form with the
curvature endomorphism. Since the simplest of this flavour of fully nonlinear PDE
is the usual complex Monge-Ampere equation, we propose to study the following
vector bundle Monge-Ampere (vbMA) equation for a metric A on a holomorphic
vector bundle F over a compact complex n-dimensional manifold M :

i9n\"
(1.3) ( 271-) =nld
where Oy, is the curvature of the Chern connection of (E, k) and 7 is a given volume
form.

Note that on Riemann surfaces (n = 1) is just the Hermitian-Einstein equa-
tion and hence can be solved if and only if F is Mumford polystable. For line
bundles on general manifolds, it is equivalent to the Calabi Conjecture which can
be solved if the bundle is ample. Hence it is reasonable to expect that for to
have a solution, one needs some positivity condition on 10}, in addition to a stability
condition. We observe that on a general vector bundle, it is not even clear whether
there is a solution to for some n > 0 (as opposed to any given > 0). In
fact, even if h has Nakano-positive curvature (the strongest positivity assumption),
@ may not be a positive-definite endomorphism.

Our first result (Theorem 2] in Section [2]) is a moment map interpretation of
the vbMA equation. The corresponding infinite-dimensional symplectic form in
Theorem 211 is a Kahler form near a connection if and only if the curvature of the
connection satisfies a positivity condition that we call MA-positivity.

Definition. Let (E, h) be a Hermitian holomorphic vector bundle on an n-dimensional
complex manifold M. An endomorphism-valued (1,1)-form © is said to be MA-
positively curved if for every non-vanishing endomorphism-valued (0, 1)-form a, the
following inequality holds at all points on M where a # 0.

(1.4) kZ:Jitr(aT (g)k a (g)nkl) >0,

where af is the adjoint of a with respect to h and an (n,n)-form is considered to
be positive if it is a volume form.

In the case of surfaces, this condition implies Griffiths positivity and is implied
by Nakano-and-dual-Nakano positivity (Lemma 24). It turns out that CP? with
the Fubini-Study metric is MA-positive but not Nakano positive (and in fact CP"
cannot have a Nakano positive metric).

Now we define a slope involving higher Chern characters.

Definition. Let E denote a coherent torsion-free sheaf over a smooth projective
variety M of dimension n. Define the Monge-Ampere slope as 4 (E) = W
where the Chern character class is defined using the Whitney product formula and

a finite resolution (a Syzygy) of E by vector bundles.

The Monge-Ampere slope defined above can be computed for coherent sub-
sheaves of vector bundles using only subbundles via resolution of singularities. This
strategy is used in Section Bl There is also a corresponding stability condition.

Definition. A holomorphic vector bundle E over a smooth projective variety M of
dimension n is defined to be Monge-Ampere stable (MA-stable) if for every coherent
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saturated subsheaf S C E the following inequality holds.
para(S) < para(E).

We have the following consequence of solvability of the vbMA equation (proved
in Section [B]) :

Theorem 1.2. Let E be a holomorphic rank-2 vector bundle on a smooth projective
surface M. Assume that n > 0 is a given volume form. If there exists a smooth
metric h such that (i©)? = nld and 1Oy, is Griffiths positive, then the following
hold.

(1) Stability : If E is indecomposable then E is MA-stable.

(2) Chern class inequality :

(1.5) c}(E) — 4ca(E) <0
with equality holding if and only if © is projectively flat.

In Section ] we look at a few examples where we produce solutions for some 7 -
TCP", Mumford stable bundles, and Vortex bundles. Our last example deals with
bundles originally studied by Garcfa-Prada [8]. In this example, we dimensionally
reduce Equation to an equation (the Monge-Ampere Vortex equation) for a
single function on a Riemann surface and prove a Kobayashi-Hitchin correspondence
for it. This theorem may be viewed as the main result of this paper.

Theorem 1.3. Let (L, hg) be a holomorphic line bundle over a compact Riemann
surface X such that its curvature ¢ defines a Kdhler form ws = i©g over M.
Assume that the degree of L is 1. Let r1,r9 > 2 be two integers, and ¢ € HO(X, L)
which is not identically 0. Then the following are equivalent.
(1) Stability : m1 > 7.
(2) Existence : There exists a smooth metric h on L such that the curvature Oy,
of its Chern connection V}, satisfies the Monge-Ampére Vortex equation.

pws + iV, 0 A VO gt
(2r2 + |9[7) (2 + 272 — [9]})’

where p = 2(ra(r1 + 1) +7r1(ra+1)) and ¢ is the adjoint of ¢ with respect
to h when ¢ is considered as an endomorphism from the trivial line bundle
to L.

Moreover, if a solution h to[L8 satisfying |¢|3 < 1 exists, then it is unique.

(1.6) On = (1-1¢l3)

The existence part of Theorem [[3]is proved using the method of continuity. Sur-
prisingly enough, it turns out that the openness of the continuity path as well as
uniqueness are the most delicate parts of the proof. Both results use the maximum
principle for an appropriately chosen function.

It turns out that MA-stability of the corresponding rank-2 Vortex bundle implies
r1 > ro in Theorem[I3] This observation lends evidence to the following conjecture.

The vbMA equation admits a smooth solution if and only if the bundle is MA-
stable.
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Another observation is that the Vortex bundle is actually Mumford-stable when
r1 > ro. This fact “explains” the KLMBY-type inequality [[.L5l Putting this remark
and the Griffiths Conjecture (which states that Hartshorne ample bundles admit
Griffiths positively curved metrics) together, one is tempted to conjecture the fol-
lowing.

A rank-2 MA-stable indecomposable Hartshorne ample bundle E over a compact
complex surface is Mumford semistable.
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criticism as well as encouragement. The author is grateful to the anonymous ref-
eree for their comments. This work is partially supported by an SERB grant :
ECR/2016/001356. The author is also grateful to the Infosys foundation for the
Infosys Young Investigator Award. This work is also partially supported by grant
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2. MOMENT MAP INTERPRETATION

In a manner analogous to that considered by J. Fine [7] regarding the Calabi
Conjecture, equation can be obtained as the zero of a moment map associated
to a Hamiltonian action of a certain gauge group on a space of unitary integrable
connections. More precisely, we have the following theorem.

Theorem 2.1. Let (E, hg) be a Hermitian complex vector bundle of rank-r with a
holomorphic structure given by a unitary integrable connection Vo over a compact
complex manifold M of complex dimension n. Let n > 0 be an (n,n)-form on M

|
such that / n= &/ ch,,(E) where ch is the Chern character. Let AY! denote
M rJMm

the space of unitary integrable connections on E. There exists a holomorphic line
bundle Q on an open subset UL C AL with a unitary Chern connection whose
curvature Q is a symplectic form on UYL, Moreover, the unitary gauge group G
acts in a Hamiltonian manner on U with a moment map p. There is a zero
of the moment map in the complex gauge orbit of Vg if and only if the following
vector bundle Monge-Ampere equation is satisfied for an hg-Hermitian smooth gauge
transformation g

2.1) <i(@0+52(:1309))>" = nld,

where Oq is the curvature of V.

Proof. We follow some ideas of |7, [[3]. The tangent space of A1 consists of
endomorphism-valued (0, 1)-forms a such that da = 0. It is clear that the gauge
group G preserves integrability. The Lie algebra T7G of the gauge group consists
of skew-Hermitian matrices iH. For future use we note that the space AY! can
be thought of as a complex manifold by thinking of it as a subset of the complex
vector space (endowed the conjugate of the usual complex structure) of 0 operators
satisfying 9> = 0. The bundle Q will be the Quillen determinant bundle of a virtual
bundle £ on M x Ab1L,
Firstly, we find the “correct” symplectic form (2.
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Lemma 2.1. Let UL © AY! be an open subset consisting of connections A so
that the closed 2-form

o= [ S (o) sy )

(where W > 1 is any integer) is actually a Kdhler form. An equivariant moment
map p corresponding to the symplectic form  is given by the following equation.

(2.2) A(iH) W/ tr( (29“‘) nId)).

Proof. The fact that this form € is closed will follow from a later result that it is
in fact the curvature of a line bundle. Let b be a skew-Hermitian endomorphism.
By definition of the moment map, the variation of u at A along b ought to be
—Q(idaH,b). Indeed,

Q4 \Fidab (10 4\ k-1
Syua(iH) =W Mk 0 <H( ) ( ) >

2 27 27

104 104\ k-1 .
23 =-w [ thr (dAH( = ) 27T( - ) ) = —Q(id4H,b).

Now we prove equivariance. Indeed,

pg A(iH) = /M tr (Hg ((ZS—WA)H - 77[d> g—l)
(2.4) = ua(ig *Hg).
g

It is clear that G preserves U! because O, 4 = u® 4u’ which continues to satisfy
the positivity condition (for endomorphism valued (0, 1)-forms a)

a5 S (05 (5 )
@9 Q/Zw@m@mww%w*vwwﬁo

if and only if © 4 does.

The complexification G acts on @ operators according to v. AO L =940
Ovv™!. This gives rise to a unitary connection v.A = vA%y~! 4 (v~ 1)F AL OvT -
ovv™t + (v HT9v!. Every such v can be written uniquely as v = ug where u
is ho-unitary and g is ho-Hermitian (the polar decomposition). It is easy to see
that v.A is still integrable. The curvature of v.A is (see page 5 of [6] for instance)
Op.a =10 v +v0((97g)"10a(g"g))vt. Therefore, there is a zero of the moment
map in the complex gauge orbit of Vy if and only if there is a solution to the vector
bundle Monge-Ampere equation.

Now take the bundle E equipped with the connection V( and form the following

01 -1 _
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virtual bundle

(2.6)
1 1 1 1 -1 FE
1 2 2 G’ E®2
! n !
E=N[0 0 0 11" ? ) E®?
. . e i :
1 (n+2) ! 3,2) o4 (21)1)! E®(n+2)

where N is a large enough positive integer that clears the denominators. If £ is
equipped with the induced connection, then it is easily seen to satisfy

90\
(2.7) ch(€) = Ntr | — .

27
Consider the virtual bundle £ = 71& over M x AV'. Define a connection A(p, A) =
A(p) on &. It is not hard to see that this connection defines an integrable 0 operator
on £. Finally, we have the following lemma that completes the proof of the theorem.

Lemma 2.2. The symplectic form Q is the first Chern form of the Quillen metric
on the Quillen determinant bundle of £ (equipped with the aforementioned holo-
morphic structure).

Proof. By Theorem 1.27 of [2] we see that the first Chern form of the Quillen metric
of the Quillen determinant of £ is given by

(2.8) Q- /M[ch(é)]l’le(M).

Consider a surface full of connections in A"! defined by ® : X x R? — ALl as
®(p,z,y) = A — xa — yb. Therefore, using formulae 2.7 and 2.§ we get

(29) Qm:yzo(a, b) = Qm:yzo(a, b),

thus proving the lemma. ([

Now we have an “openness” result.

Lemma 2.3. If there is a metric h on an indecomposable holomorphic vector bundle
E whose curvature Oy, satisfies the vector bundle Monge-Ampére equation (129; )n =
nld for some n > 0 such that ©y is MA-positive then for all volume forms

sufficiently close n, there exists a smooth solution h, (that is unique up to rescaling

by a constant among all solutions in a neighbourhood of h) to (%)n = ald.

Proof. If we fix a metric hg, then every other metric is h = hgH for some hg-
Hermitian invertible endomorphism H. Let B be the Banach manifold consisting
of C*7 metrics h satisfying / tr(H)w™ = 1 for some fixed Kéhler form w. There-
fore the tangent space at H consists of hg-Hermitian endomorphisms g satisfying

/ tr(g)w™ = 0. Let C be the Banach manifold of C°” top-form valued endomor-

phisms u satisfying r/tr(u) = n! /chn(E). Consider the map T : B — C given
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by T'(h) = (1;)—””)” —nld. We calculate the derivative below at a point hy where hg
is MA-positive.

n—1

(2.10) DT, (g) = Z (z’2@_7ro)ki52[j:g (i;a_ﬂo)n—l—k

Using a = £Id (where € is a (1,0)-form) in the definition of MA-positivity, we see
that the above operator is elliptic. It is clearly symmetric too. Thus, if we prove that
ker(DT)}, is trivial we will be done by the Fredholm alternative. Indeed, suppose
g € ker(DTp). Then, multiplying by g, taking trace, and integrating-by-parts
we see that

(2.11) 0 = Ay, dg),

and hence by the MA-positivity condition, dpg = 0. Since g is Hermitian, Vog = 0.
Diagonalising g we see that since F is indecomposable, g = AI for some real A. By
normalisation \ = 0. (|

Before we proceed further, we recall the various definitions of positivity.

Definition. Let © € AL (End(E)) be the curvature endomorphism of the Chern
connection of a Hermitian metric A on a holomorphic vector bundle F over a com-

plex manifold M. Let p € M be a point. Then ©(p) is said to be
riffiths positive 1 )% VP RtV wiwd > or all vectors v € an
1) Griffiths positive if ©(p)% v hay0 w'@? > 0 for all E, and
w e Tpl’OM, with equality holding iff v*w! = 0V a, .
(2) Nakano positive if G(p)%ﬁawdﬂhm > 0 for all tensors a’? € T3°M © E,,
with equality holding iff a*® = 0 Vi, 3.
(3) dual Nakano positive if @(p)%ﬂajﬁd”ha@ > 0 for all tensors a” € T}OM @

E,, with equality holding iff a’? = 0 V7, 3.

The following lemma sheds a little light on the mysterious MA-positivity condi-
tion.

Lemma 2.4. The following hold when n =2 (on a complex surface).
(1) Nakano-and-dual-Nakano positivity implies MA-positivity.
(2) MA-positivity implies Griffiths positivity.

Proof. Choose a normal holomorphic frame at p. From now onwards we work only
in this frame at this point.

(1) We may write the curvature as i© = Aidz! A dz! + Cidz? A dz? + Bidz! A
dz? + Blidz? Adz' where A, B, C are r x r complex matrices (with A = AT,
C = C1). Nakano positivity is easily seen to be equivalent to the 2r x 2r
matrix

(2.12) T = [ a ’f; }

being positive-definite. Likewise, dual Nakano positivity is equivalent to
the positivity of

(2.13) - { 4 g]
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Now suppose a' is an 7 x r matrix of (1,0) forms given by a' = adz! + fdz>
where a, 5 are r X r matrices of complex numbers. Assume that ag, 5; and
al, Bt are the I*" columns and rows of «, 3 respectively. Then we see that

tr (ia' (i©) a) + tr (ia'a (i©
e (Zdz)l(cll)zlid;g;a (O _ tx(acat) + trfaa'c) + (3481 + (85 4

(2.14) —tr(aBT ") — tr(aB’BT) — tr(3Ba’) — tr(Ba’ B).

Note that tr(aCal) = alcal + CYQCO(E and likewise tr(afBpB) = alBﬁl +
agB B2. Therefore using the assumption that T' and T are positive-definite,

ir ial (10)a) +ur (iala (10)) _ g~p i [A BTH . ]

1dzldzlidz2dz? et B C —oy

O R KR

with equality holding if and only if @ = 0. Hence Nakano-and-dual-Nakano
positivity implies MA-positivity for complex surfaces.

(2) Griffiths positivity means that ©(¢,€) is a positive-definite matrix for all
co-vectors £ # 0. Given a ¢, choose coordinates so that & = %. So we

need to prove that A is a positive-definite matrix, i.e., vfAv > 0 for all
v # 0. Indeed, choose a = dz?3. Then

tr (iaf (i) a) + tr (ia’a (i©))
id21dzVid22d7? = tr(BAB") +tr(8745) > 0

if 8 # 0. Suppose B;; = v;v;. Then = BT and hence
(2.17) 0 < tr(BABY) + tr(BTAB) =2 ZviﬁjAjkva)i = 2Jv|%vf Aw.

(2.16)

Hence for surfaces, MA-positivity implies Griffiths positivity.
O

In order to prove existence results, one typically uses the method of continuity.
The following potentially useful lemma shows that for certain kinds of continuity
paths Griffiths positivity is preserved.

Lemma 2.5. Let h(t) (where t € [0,1]) denote a path of metrics on a holomorphic
vector bundle E over a compact complex surface M such that Oi—¢ is Griffiths

positive, and @ > 0 as positive-definite endomorphisms (where n is any fized
volume form). Then ©, is Griffiths positive for all t € [0, 1].

Proof. As before, it is enough to prove that ©;(¢, €) is positive-definite where by a
change of coordinates we may assume that £ = %. Let T be the first ¢ such that
vtO4(&, €)v = 0 for some v. Using the same notation as before, note that

(2.18) (i0)? = idz'dz'dz*dz*(AC + CA — BB" - B'B) > 0

Thus, vT (AC+CA)v > v (BBt + B B)v. Since vT0,(¢, &)v = 0, we see that Av =0
(A is positive semidefinite). So 0 > ||Bv||? + ||BTv||?> which is impossible. Hence
Griffiths positivity is preserved. (|
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It is easy to see that the linearization of the vector bundle Monge-Ampere equa-
tion is elliptic if and only if Griffiths positivity holds. So the point of Lemma
is that for most reasonable continuity paths, ellipticity is preserved.

3. CONSEQUENCES OF EXISTENCE

In this section we prove two consequences of existence of positively curved solu-
tions to the vbMA equation, and thus prove Theorem [[.2}

3.1. MA Stability.

Lemma 3.1. Let E denote an indecomposable holomorphic rank-2 vector bundle
on a smooth projective surface M. Le n > 0 be a given volume form. If there exists
a smooth metric h such that (i©1,)? = nId and tr(i©y,) is positive, then for every
holomorphic subbundle S, ppa(S) < prpa(E).

Proof. Suppose @ is the quotient line bundle and § is the second fundamental form.
Then the curvature looks like the following
o) o= [527 o T s]
Since (i©)? = nld, we see that
tr(i(0s — B A B1)?) — Pt (VOB A VB =1
(3.2) = 2(27m)3%cha(S) — 2i%tr(0sB A BT) — i*tr(VIOB A VEIBT) =g,
and likewise,
tr(i*(0g — BT A B)?) — (VOB A VBT =9
(3.3) = 2(2m)2%cha(Q) — 2i%*tr(0gBT A B) — i*tr(VIOB AVEIBT) = 1.
Using and B3] and integrating we get,

2 l itr T = l m)2c
| Crpans)+5 [ Pu(@q+05)5 A5 =5 [ (nfeha(E)
(3.4) = /M(2ﬂ')zch2(8)+% /Mi2m(cl(E)ﬂT AB) = % / (2m)2cha(E).

M
The given positivity condition is ¢;(E) > 0 and hence B4] implies that pupr4(S) <
una(E) with equality holding if and only if E is decomposable. Hence upra(S) <
paa(E). O

In order to prove a version of Lemma [3.1] for coherent saturated subsheaves, we
need to do more work (akin to [I5, [0, [I4]).

Proposition 3.1. If (E,h) is an indecomposable Hermitian holomorphic rank-2
vector bundle on a smooth projective surface M such that (i©)% = nld where
1 >0, and tr(i®y) is positive, then E is MA-stable.

Proof. Let S C E be a coherent saturated subsheaf. By assumption, the singulari-
ties of S are points (codimension 2). We adapt the discussion following Corollary
4.2 in [T4]. Essentially, one takes the singular locus of S, blows it up finitely many
times to get m : M — M, and takes S to be the saturation of 7*S in 7*(E). It
is a subbundle of E such that T = g/w*S is a torsion sheaf supported on points
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> Mz, ,Zio (by the reasoning in the proof of Proposition 4.3 in [14]). At this point
we appeal to Proposition 3.1 of [I5] which shows that chy(T") = PD(Z mz, o Zi0)

where PD is the Poincaré dual. Therefore,

(3.5) w*chy(S) = cha(S) = PD(Y_mz, , Zi).

From B3 we see that para(S) < para(S). By Lemma B para(S) < para(E).
Hence E is MA-stable. O

3.2. Chern class inequality.
We prove the following KLBMY-type inequality thus completing the proof of
Theorem [[.2

Proposition 3.2. Let (E,h) be a Hermitian rank-2 holomorphic vector bundle
on a compact compler surface such that i®p > 0 in the sense of Griffiths, and
(i©4)? = nId where n > 0 is a volume form and ©y, is the curvature of the Chern
connection of h. Then c3(E) — 4co(E) < 0 with equality holding if and only if © is
projectively flat.

Proof. Choose a holomorphic frame near p which is also orthonormal at p. Then
O19 = —O9;. Moreover, the Griffiths positivity of 10 implies that we can choose
coordinates near p so that at p, 10911 (p) = idz! A dz! +idz? A dz? and i@ (p) =
iAdzt A dZ' + idadz? A dZ? where A1, Ao > 0. Also, n = fidz' A dz' Aidz? A dZ2.
Thus,

n(p)Id = (i04)(p)

3.6
(_ )2idzl Adzt Adz* A dz* — ©12012(p) 011012(p) + ©12022(p)
- —011012(p) — ©12022(p) 2iA Aadzt Adzt Adz? A dz? — ©12012(p)
Therefore,
1= A1),
(©12)22(p)(M1 + 1) = =(O12)11(p) (A2 + 1), and
(3.7)

2+ (012)11(012)22(p) + (©12)22(O12)11(p) — [(O12)12(p) — [(O12)21*(p) = f(p).

Substituting the second equation in B in the third and using the first equation we
get

_ 2|(@12)11|2(p) _
1

(3.8) 2 [(©12)21*(p) — |(©12)12*(p) = f(p).

Now,

(=0)*(cf (p) — 4e2(p)) = (©11(p) + O22(p))* — 4(011022 + ©12012)(p)
(3.9) =dz' Ndz' Ad2? A dZ? (2(1 +A1)(1+A2) —4(A1 + X2) +4(f(p) — 2)).
Using B.8 and we get the following.

2

ci(p) — 4ea(p) 1 2 12 2
=4-2(\+—)+4(—|© —|(® -2
idz! A dz! A idz? A dz? A1 A1 (=1(®12)12[*(p) = [(©O12)21]"(p)

(3.10) <0,

|(©12)11*(p)
AL

)
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with equality holding if and only if ©® = wl where w? = 7 (which can be solved
because it is the Calabi conjecture). O

4. SPECIAL CASES

In this section we discuss some examples.

4.1. Projective space. The projective space CP" with the Fubini-Study metric
wrs = 5=001In(1 + |z|%) (where |z|? = 3, [27[?) does satisfy (5-0Ops)" = Awhgld
where X is a constant. (So, at least there is one metric on TCP"™ whose curvature’s
power is proportional to identity.) Indeed, the curvature of the Fubini-Study metric
is given by ©Opg = 0(H10H) where iH,;d>" A dz’ = wpg. Therefore,

_ 1 2izi 1 ~
T 2m(1+ |2?) [ ! 1+|Z|2] 2m(1+[22) "
1Opg _ T 5, qar
(4.1) o WFs + 2T((9(H 6H)

We calculate O(H *0H) :

Hﬁcl =ik + P

(Z zldz) 2R

~ dzkz . ~ - dztzd
OHyj = — H'9H);; = ——"—
WS TTRRE T Taamr Vi =TT
L . dzids’ kdy¥Vdzizi
(4.2) S oo, = 20y B zde )i

IREAEE (1+2*)?

Since the Fubini-Study metric is symmetric, i.e., there is a transitive group of
isometries, it is enough to prove that (’%%)n = MAwpg at the point z = 0. Indeed,
at z =0,

iS] j , , ;
(Z FS) (2=0) = L(Sijdzl NdZ bap + L dzo A dzP
af 2 2T

2 ™

. n r=n—1
Z@FS 2 : n r n—r— a = n
- ( 2 )aﬁ (2=0) = r=0 (T>WFS(_WFS) 'z N dZP + wis

. n—1 . — n—1
= whglap + (n—1)! (%) > (d2' ndzt . Lz Adzi AL A > (:) (=) "l dz A dZP
r=0

n—1

@3 — st + 3 (7)1 = 2ef.
r=0

Actually, the Fubini-Study metric on CP? satisfies the positivity condition in
Section 2l and hence, for small perturbations n of A\w%¢ there exist solutions of the
vector bundle Monge-Ampere equation. Indeed, by symmetry it suffices once again
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to verify this at z = 0. Suppose [a]ag = o, dz" is a 2 X 2 matrix of (1, 0)-forms.

tr (ia <Z@FS) (z = ())d) + tr( <Z®FS) (z = O)iaaT> = 2iWpgaas N Gap
2m 2m

+2Z—7sz°‘ A dZPiagy A aogs + idzﬁ ANdZViGa0g A Gary

- 2idz1 Adz Nidz? A dz? (2 > (laap2l* + laapal?)
T oy
-i-|(11y,2|2 + |(I2y,1|2 — A2y,201~,1 — G1,102y,2 + |(la1,2|2 + |(la2,1|2 — 0a1,2002,1 — aa2,1@a1,2>

(4.4) >0,
with equality holding if and only if aagy =0V a, 5,7.

4.2. Mumford stable bundles. Suppose a holomorphic vector bundle E over a
compact complex surface is Mumford stable with respect to a polarisation ¢1(L).
Then we prove that E ® LF admits solutions to the vector bundle Monge-Ampere
equation (for a sufficiently large k depending on the right hand side):

Theorem 4.1. Assume that a rank-r holomorphic vector bundle E over a compact

complex surface M is Mumford stable with respect to an ample class c¢1(L). Given

a volume form n > 0 such that / n= / c1 (L)2, there exists a positive integer k
M M

such that E ® L* has a metric hy, the curvature ©y, of whose Chern connection is
Griffiths positive and satisfies

(4.5)
(i@_k)Q e n/M 2cho(E ® L¥) /M 2¢1(E)ci(L) /M 2chy (E)

&/ 1 &/
M M M

Proof. By Yau’s solution of the Calabi conjecture, there exists a metric hg on L such
that its first Chern form wy satisfies w? = 1. Let go be a Hermitian-Einstein metric
on E (which exists by the Uhlenbeck-Yau theorem [16]) with curvature ©g. Every
other metric on F is of the form g = goH where H is a gg-Hermitian endomorphism
of E. The curvature of g is © = O +9(H 0y H) (here the matrix for the metric is
such that (s,t) = st Ht). Consider the following family of equations parametrised by
h = ¢ for a Hermitian endomorphism Hj, satisfying [, , tr(Hp)volw, =7 [;, c1(L).

(4.6)

Id = k*nId+ k nld + nld.

/QCl(E)Cl(L) /2Ch2(E)
M pld+ P pld.

furm furm
M M

The above equation has a solution Hy = Id at & = 0. The implicit function
theorem proves that for small i (i.e. large k) equation has a solution provided
the linearization at A = 0 is an isomorphism. However, it is not prudent to linearise

. 2
(i(h@o +wo + hé(H,;laOHﬁ))) =nld+h
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the above equation directly because the zeroeth order term is 0. Therefore we
consider the linearization of

. 2¢1(E)er (L) 2chy(E)
T(h,H) = 1 < (i(h@)o +wo + ha(HlaOH))> indh/]”llnlcth/MQnId)

h 2 / /
n ™
M M

at i = 0. Indeed, T(0,Id) = 0. The linearization is
DT,y (h) = 2wy A ddoh.

This is of course a self-adjoint map and hence by the Fredholm alternative we need
to prove that it has trivial kernel. Indeed, if DT'(0, k) = 0, then / woAtr(hddoh) =

0. Integration-by-parts allows us to conclude that h is paralljgl. Therefore, the
eigenspaces of h are parallel transported to form holomorphic subbundles of E.
Since E is stable, it is indecomposable and hence h = cId. By the normalisation
condition, ¢ = 0. Hence we are done. [l

4.3. The Vortex bundle. In [8] a construction of a rank-2 holomorphic bundle
over a product of Riemann surfaces ¥ x CP* was given. This bundle had a high
degree of symmetry that was exploited to reduce its Mumford stability to a sim-
ple Chern classes inequality. Moreover, the Hermitian-Einstein equation could be
reduced to a single PDE for a single function on a Riemann surface (to which the
Kazdan-Warner theory could be applied). For the remainder of this paper, we study
these Vortex bundles in the context of the vbMA equation. In particular, we prove
Theorem [[3]in this section. To have notation consistent with the existing literature
on these bundles, we drop the 27 in several of our definitions below (especially in
the Fubini-Study metric).

Consider a genus g compact Riemann surface ¥ endowed with a metric whose
(1,1)-form is wy = i©( where O is the curvature of a metric hg on a degree one
line holomorphic bundle L. Let CP' be endowed with the Fubini-study metric
Wps = % which is the curvature of a metric hpg on O(1). Consider the
rank-2 bundle

V =m1((rn +1L) @ m5(r20(2)) & 71 (r1 L) @ my((r2 + 1)O(2)),

where rq,7r9 > 2.

Suppose h is a smooth metric on L and f5 is a smooth positive function on X.
Put a metric H = hy @ g2 on V where hy = 7}(hfoh{') @ m5(h53) is a metric
on mi((r1 + 1)L) ® m5(r20(2)) and go = 7}(fohy') @ 75(hp2™?) is a metric on
T (rL) @ m3((r2 + 1)O(2)).

Using a holomorphic section ¢ € H°(X, L) endow V with a holomorphic struc-
ture through the second fundamental form 8 = nf¢em3¢ € HY(X, mf Lon;0(—2)) ~

HO(S, L) where ( = 45262, @ dz.

4.4. Dimensional reduction to the Monge-Ampére Vortex equation. We
now reduce the vbMA equation for the Vortex bundle V for certain symmetric
right-hand-sides to a single equation on ¥. To this end, the Chern connection of
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(V, H) is given by the following expression.

Ap, p )
4.7 A= !
( ) ( _ﬂTh Ag2
Its curvature is

o= ehl - ﬂ A ﬂTh VLOB
N _vo’lﬁh‘ Oy, — BT AP

(4.8)
_ ( ©On+ Oy, —irws — 2irswps — i|Plrwrs VE0p A i
—V0’1¢Th A WSCT 9f2 —iriwy — (27‘2 + 2)inS + Z|¢|}21WFS
For future use we record that
(4.9) VOB AVt = —ivh0p A VOLoT A wpg.
We note that rescaling the metric hg to hgA does not change the curvature i®y =
wy. Assume that hgy has been rescaled so that |¢|2 < % Now we dimensionally

reduce the vbMA equation to the Monge-Ampere Vortex equation.

Theorem 4.2. Suppose there is a smooth metric h on L satisfying
lolr <1,
and solving the following equation.
(+iV0p AV
(2r2 +[813)(2 + 2r2 — |0})’
where ¢ > 0 is a given (1,1)-form on X satisfying

/EC = 2(7”1 (T2 —+ 1) + TQ(’I”l —+ 1))

i = (1- [0f)

Then there is a smooth Griffiths positively curved metric H on the Vortex bundle
V' whose curvature © satisfies the vbMA equation :

(4.10) (10)? = T ¢ A mhwrsl.

Proof. Without loss of generality, we may choose the Kahler form wy, on X to satisfy
pws = G,

where p is a constant given by the following expression.

j= (272 /Xml cha(V) = 2(ra(ry + 1) + r1(ra + 1)) > 0.

Substituting in the vbMA [L10, we get the following equations.
(iOn, —iB A BT1)2 + VOB A VO BTA 0

0 (104, —iftn A B)2 + V0181 ATVLOG | T nld.
The above equation can be simplified to yield a system of equations.
(4.11) 2(iOn + 105, + riws)(2rs + |@2) — iVI0P A VI BT = pws,
and

(4.12) 2(i0 4, + rws)(2re +2 — |¢[2) — iV A VOIpTh = pws.
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From .17 and [£.12] we see that

2(i0y, + riws) (1 — [¢]}) = iOK(2r2 + |9]7)
i@h(27"2 + |¢|;21)

(4.13) =10y, + riws =
’ 2(1—¢l%)
Substituting in we see that

pws, + iV A V0’1¢Th
(2ra + [017)(2 + 2r2 — [¢l})

(4.14) 0 = (1 - [9]3)

By assumption, equation T4 has a smooth solution satisfying |¢|7 < 1. (Hence
Oy, > 0.) We can now solve [L.13] for a smooth f2 and thus we can solve the vbMA
equation.

Lemma 4.1. If equation has a smooth solution h satisfying ||z < 1, then
{13 has a smooth solution fa (unique up to a constant).

Proof. Using local normal coordinates it is easy to prove the following Weitzenbock-
type identity.

(4.15) 00|l = —Onlgli + VI AV,

Integrating on both sides we see that
[ioulel: = [ 1910 A 7061
_ /i@ (2r2 + |0fi)2r2 +2 = 05) /M
1—|ol;
. /i@h ¢l +12_r2|(¢2|%2 +2)

. 1+ 2r9(2re + 2)]
= [iOy |14 2= "%
/ h[ 1= o7

,lL+1 / i@h
4.16 L
(4.16) 14 2r2(2ra + 2) 1— o2

Equation[413is a linear equation and hence has a unique (up to a constant) smooth
solution if and only if the right-hand-side is smooth and the integrals on both sides
match up. Using the expressions .14l and it is easy to see that the coefficients
of the equation are smooth. It remains to check that the integrals are equal.

/(igfz + TIWZ) =T

/i@h(m + [¢[2) _/i@_h (2r2+1 B 1)

20—¢lz) J 2 \1-l¢l3
- 2ra + 1 10, 1
2 /1— 97 2
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At this juncture we may use equation [£.16] to conclude the proof.

iOr(2r2 + [4]7)  2ra+1 p+1 1
/ 20— [92) 2 142m(2m+2) 2
2ra+ 1) (2r1(ra + 1)+ 2r2(r +1)+1) 1

2(2ry +1)2 S 2
C2rm(2ro+ 1)+ 241 1
- 2(2rg + 1) 2

=7r = /(i@fz + lez;).

O

Therefore, equation [AI0 has a smooth solution H = h; & g2 where hy =
7 (hfahit) @ w5 (h32) and g2 = 7} (f2hy') @ m5(hp2t?). We just need to prove
that H is Griffiths positively curved. Indeed,

Lemma 4.2. Og is Griffiths positive.

Proof. We check the Griffiths positivity of the metric H by looking at the (1, 1)-form
7t ev.
7o = lv1 |2(©n + Oy, —iriws, — 2irswps — i|p)2wrs)

+ 22 (O 4, — iriws — (2r2 + 2)iwps + i|liwrs)

+ 0102 V0 A 3¢ — Doy VLT A it

= |v1]?(On + Oy, —irws) + |22 (04, — iriws)

+wrs(Jv1*(=2irz — i]9[) + 2] (= (272 + 2)i + 1] 4]}))
(4.17) + 5102 V0 A 3¢ — T VO gTh A (T

The form 7 OF is positive for all ¥ # 0 if and only if

10y, + i@f2 + riws > 0,
i@f2 + riws > 0,
(2r2 +2) — 9] > 0,

and

it O)? . .
% = WFSs <|vl|4(27"2 + |¢|i)(l@h + Z@f2 + leE)

Hloa|*(2r2 +2 — [0[7) (10, + riws)
(4.18)

+v1va|? (104212 + 2 — [B]7) + (472 + 2) (1O f, + riws) — iVH0P A VOLin) ) .
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In our case we may use equations [TT] and to calculate.
lp[r <1<2ry+2
pws, +iVH0h A VOt
2(2r2 + |917)
. pws, + iV A VOLpn
4.19 1O, + 1wy = > 0.
(419 T T )

As for the inequality LIS it is clear that the coefficients of |v1|* and |vg|* are
positive. We will prove that the coefficient of |vjvs|? is non-negative. In what
follows, we use expressions [£.14] and [£.19 to calculate.

(iOn(2r2 +2 — [¢]7) + (412 + 2)(iO4, + riws) — iV 0 A VO1gTn)

. 1-— |¢|2 4ro + 2
> iVh0p A VOLpTh ( ho + -1
2OV Sy T 102 T 2 2 [0

. 1— |9l 1—|¢l7
_ ,Lvl,O /\vo,l th < h h
OAVTO o T 02 22 O]
L 2iVI09 A VO (1 — |gf2)?
(2ro + [0]2)(2r2 + 2 — [¢]3)
> 0.

10y, + i@f2 + rwy = >0

Hence, the metric H is Griffiths positively curved as desired. O

Therefore, the vbMA equation has been dimensionally reduced to the Monge-
Ampere Vortex equation thus proving Theorem O

4.5. Existence. Now we set up the method of continuity to solve the Monge-
Ampere Vortex equation To this end, we need to choose a good initial metric.
We choose it to be hgA where hg satisfies i©¢ = wy and |¢|2 < % as before, and A
is a small scaling factor. This rescaled metric has the same curvature as the original
one.

Let T C [0, 1] be the set of all ¢ such that the following equation has a smooth
solution h; = hoe ¥t.

put " twsy + it V00 A VY plne

. s 3 _ _ 2
(420) ’L@ht = ’L(@ho + 83%) - (1 |¢|h,) (2T2 T t|¢|%t)(2 + 27‘2 _ t|¢|}21t)7

where u = and

1
a(1-19[3)

] 2(2rira + 11 + 12)
o = = > 1,
(2r2)(2r2 + 2) 473 + 479
if 1 > r2. As we shall see, it is crucial that o > 1 (for Lemma [L.§ to hold).
At t = 0 we have a solution hg, i.e., g = 0. If we prove that T is open and
closed then we will be done.

For future use, we record a useful observation :

Lemma 4.3. [¢[} < 1. Thus Oy,(x) >0V teT, reX.
Proof. Recall equation :
(4.21) 00\6l7, = —Oulol, + Vi o AV .
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At the maximum point p of g = |¢| , we know that Vg(p) = 0 and i00g(p) < 0.
Therefore V¢ (p) = 0, and since ¢ is not identically 0, we see that ©,(p) > 0. From
equation 201 it is now clear that 1 — |¢[} (p) > 0. Hence g(z) < g(p) <1V 2z e X
as desired. O

Now we prove openness of the set T'.

Lemma 4.4. The set T C [0,1] such that equation [J.20 has a smooth solution is
open. In particular, there exists a 6 > 0 such that [0,0) C T

Proof. Assume that tg € T. We want to prove that (tog — d,tg + d) C T for some
d > 0 (depending on tp). To this end, let C; denote the open subset of the space
of C*“ functions C consisting of functions 1 such that 2r + 2 — |¢|ioe,w > 0. Let

Cs be the space of C%* (1, 1)-forms. Define the metric h by h = hge~¥. Consider
the map L : C7; x R — C5 given by

1—¢ +itvl,0¢/\v011¢Th
L(,1) = iOn — (1 - |of}) o i
(¥, 1) = iOn — ( |¢|h)(2T2+t|¢|}21)(2+27"2—t|¢|f2l)

pu' " tws+it V0 oAV gTh

(2r2+tlol7) (2+2r2—t[9[7)
manifolds and L(t,,t0) = 0. If we prove that Dy Ly, +, : C — C2 is an isomor-
phism, then by the implicit function theorem of Banach manifolds, (tg—4d,t0+9d) C T
for some ¢ > 0 as desired. Denote 2rs + t|@|? by I and 2+ 2ry — t|¢|? by I1. Note
that IT — I = 2 — 2t|¢|3. For the sake of convenience we drop the ¢ subscript from
h: from now onwards.

Indeed, the derivative along a C%? function w is

where J =

L is clearly a smooth map between Banach

5 16,V AV ght
Do Ls(w) = 00w = o] — (1 = off) 0 E
1 1
(1.23) 1= oR)loRT (1 - 77 )

Now we use equation [£.21] to see that

50(V3 0 AV ) = 6,,00|¢17 + 6., (On|0[7)
(4.24) = 90(—|¢[7w) + 00w|ol7 — Onlelhuw.

Using [.24] in [L.23] we get,

2ut|gf3
1)
it(90(~|9[2w) + 9dulgf2 — Onldl3w)
DD

Dy Lyp(w) = i00w — |¢lrwd — (1~ |¢];)(1 — tlel7)

(4.25) —(1—1¢l7)
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By the Fredholm alternative, if we prove that the kernel of DL*(v) is trivial, then
we will be done. Indeed, a calculation shows that

AR 2vt|g[3.J itOn|¢[2v
(DyLy )" (v) = i00v — |@lrvd — (1 — lol7) (1 —t]o]7) Wi )(I;) (1 —I¢[7) (I ;I(II})L
A (—(1— |62 ) 5( V1L = [o;)
- o0 (<) oo (M)
. , 2t|¢|2 J itOn|¢[;v
=000 — ¢l — (1= IR — o) Ty + (U= 1) =5

(4.26)

(2010 o1 [62) o= [62)
t( iy 0t (“n ) ool + 1ol 10 (i ))

Using .2T] and the fact that i©), = (1 — |¢|?).J we see that

) 2wtlold T TAVARY V01 ph*n
(DyLy1)*(v) = i09v — |¢[Fv] — (1= [6[3)(1 — 1) {})'f’ b o) ?I;\(II) -

1)
—it<8 (%ﬁlﬁ)) Aa|¢|i+a|¢|iAa( |¢| ))

D TAVALY V01 h*n
= 0 ol — (1~ o)1 20 —<1—|¢|,%>” 0NV

) (0
a1k 0
t((f)( 7300000+ o0 () 1Dl

(4.27)

85 L L=10 5 2 1 5
+va|¢|h/\a<( )(II)>+ Gl 5|¢|h/\8v>.

Now notice that

N P e A e 105)
a<<I><H>>‘ <I><II>8'¢'h+<I><II>< 7 H>
o 21— 92)(1 - 1}612)0l6f2
(4.28) =~ wan - o

Using this in we see that for v € ker(DL*),

20t|g|t ] 2, (V109 A VOLghy

0= 000 — |8liv] — (1= 16)(1 =) T — U= 16— rp

e P R Sl (2 TR
_Zt<(1)(11) Ov A 0|@l; + D0 d|¢|i, A v

(4.29)

Ol ABIGR (20— 61 — tlsl2)
2 (1 ))
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Let v = vI. We calculate the derivatives of ¥ now.

Ot = tvd|¢|2 + Idv
(4.30) = 000 = tOv A Do) + twdd|p|3 + td|d|7 A dv + Idv.

At the point p where the maximum of ¥ occurs, i999(p) < 0 and 9o(p) = Iv(p) =
The latter observation implies that

3 2

(4.31) Ju(p) = —%

Hence,

2 2 3 2
0> —2iw(p) — tiO| 0|2 (p) + itvV10p A VLT (p) 4 Ti00v(p)
(4.32)
2 2v71,0 0,1 41, _
~ 0> 2" G A ZAR (p) — tviO|9|3 (p) + itvV 0 A VO pTn (p) + IiDD(p)

I

We suppress the point p in what follows. Substituting [4.29in the above inequality
and dividing both sides by I we get the following.

PolRY0S AVl (1= [9R)IGl | it
12 I

0>-2 V10¢/\V01¢Th

20t[ g} itvh % AVOLghy
+|¢|§vJ+(1—|¢Ii)(1—t)W =1 —Fan
it |¢|ha nalof + 12 a162 1 5o
o )

Ol ABIOR (20— 6R)( — tlsl)
2 (1 ))'

Using [£3T]in the above equation we may simplify it.

t2U|¢|2v1 Olf/\vo 1¢Th —tu (1 - |¢|Il21)’]|¢|l21 4 tT’le,0¢/\v0,1¢Th

20t|9l},J itV0h A Vgt
+18fiod + (1= 1611 = "5k + (= 1) =577

1t
——<2t |¢|h|¢|hvl O(b/\v0 1¢Th

0>—-2

7 \* D
G109 A VOIGH (| 2(1—|92)(1 — tf2)
N O+ <5un h))

133) = Ail vlo VOl B“u w v,
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whe;e_ _2t|;5|,% i (—I;ﬂil))lsbli 14 I(Ibllh L 20— hﬁgx Dl | 1 _IL¢|}21
- 2t(1(;)|$|§))|¢|i ~ 2|;;>I|i <1+ 2(1 — |¢(>L%S)(§1D_t|¢| ))

LA _2t|;5|i _a (_A?ﬁ.r>)|¢|2 Ly 20= Ifliz(l—ﬂtlsbl‘* 2t(1&)l(¢}l}%))l¢li
n 11] ( ol - AlR0 (|I¢| )1 — t[¢l7) )

2 1 1

=1 aman T aman H( ! <I><H>)
1
5

1 1 1 1
> - 41— (14—
- 80+ 40 5< +2O>>0’
and
_ 2 _ 2 _ 2
g tA=16R) | 20— 8R)( - el
I (D)
1
>——+1>0.
> 4+ >

Going back to we see that v(p) < 0. (Indeed, since L has degree 1, either
[Vo|(p) # 0 or ¢(p) # 0.) Thus, maex < 0. The same argument shows that
Upmin > 0. Hence ¥ = 0 = v, thus proving that ker(Dy Ly, ;) = {0}. Therefore T is
open. (I

We prove the closedness of T' assuming openness near ¢t = 0, i.e., [0,6) C T for
some J > 0. Suppose t,, — t is a sequence such that h;, = hoe™%t» solves .20l We
need to show that a subsequence z/;tnk — 9y in C%* and that 1); is smooth. If we
prove that ||¢t]|c2.s < C where C is independent of ¢, then by the Arzela-Ascoli
theorem, for o < g we have a convergent subsequence. Lemma together with
elliptic regularity shows that ¢ is smooth. So we just need to prove C?# a priori
estimates on ;. From now onwards we suppress the dependence of ¢, on t. The
following lemma reduces the estimates to a C! estimate.

Lemma 4.5. Suppose ||¢||cr < C. Then |||z < C.

Proof. Under the hypotheses, using Lemma [£.3] it is clear that the right hand side
of is uniformly bounded in C°. Therefore, by the LP regularity of elliptic
equations, ¢ is bounded uniformly in W?2P? for all large p. Using the Sobolev
embedding theorem we see that ||¢)||c1.5 < C. Thus the right hand side is in C%F.
By the Schauder estimates we are done. (I

Now we reduce the C' estimate to a uniform estimate on 1.
Lemma 4.6. If [¢||co < C, then ||| ci(x) < C.

Proof. To produce a contradiction, assume that there exists a sequence 1, (cor-
responding to t, — t) such that maxx |d,| = |dn(pn)| = M, — oo. Up to a
subsequence, we may assume that p, — p. Choose n large enough so that p,, p lie
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in a coordinate ball B centred at p with coordinates z (with z = 0 corresponding
to p). Define ¢, (2) = ¥(p, + Min) Now |d,| <1 = |d,|(0). Note that

Mo 1 0P Iy 1 W

9z M, dz 9z M, dz
o 1 O
(4.34) 0205 M2 820z

_ _6
We abuse notation from this point onwards and denote the functions 2= = =t

by ws; and % by V10¢ A VO1¢*. Using B34 and E20 we see that

MWZUI —tn

M

wy + 82'4[;71 1- |¢|721
= 4 no_
M? 020z (I,)(11,)

(4.35) itV A VOen 4
We observe that since ||¢]|2 < 1, the denominator in is bounded below.

On a coordinate ball Br(0) in the Z coordinates we have |di),,| < 1. Using 38 we
conclude that |A1;n| < C on Bg(0). Hence, by interior LP regularity and Sobolev
embedding we see that H1/~)n||cl,ﬁ(o_ﬁBR(0)) < C. Thus by the interior Schauder
estimates ||1Ln||c2w5(0.5BR(0)) < C. Suppose WnHCW(BMR(O)) < Cpg for some fixed
B > 0. For every fixed R, a subsequence of 1, converges in C2%(Bysz(0)) to a
function ¢ for a fixed o < 3. Choosing a diagonal subsequence we may assurne
that for all R we have a single function 1. It is easy to see usmgthat iZL > .
But a subharmonic function on C cannot be bounded above unless it is a constant

Hence ¢ is a constant. But this contradicts the fact that |de|(0) = 1. Hence
|Voy| < C thus implying a C! estimate. O

For the CY estimate we need the following form of Green’s representation formula.
Let G be a Green’s function of the fixed background metric wy such that —C[1 +
[In(dyy (P, Q))]] < G(P,Q) < 0. Then any continuous function w satisfies the
following equation.

(4.36) w(@) = 4 ff:f + /E G(P, Q)iddw(Q).

Next we prove a lower bound on ) :

Lemma 4.7. The function ¢ satisfies v > —C, where C' is independent of t.

Proof. Firstly, note that since |p|2e™ % <1,
(4.37) /¢wz /ln 6], Jws
Using Green’s formula B30 we see that
w(P) = [ (ol Jos + [ G(P.@1000(Q)
(438) — [ (ot )es + [ GP.QIOW@ - [ G(P.Qus(@)
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At this point we note that
pul~tws +i00|¢|? + 10|67
2ra(2ra + 1)
= i05,(2r2(2rs + 1) — 1) < iO,(2r2(2r2 + 1) — |4]7)
< pu' "+ 00|05,

pu ~H(Q)ws(Q) + 100|917 (Q)
2ro(2ra+1) — 1 '

10, <

(439) = G(P.Q)iONQ) > C(P.Q)
Using in we get

w(P)2/1n(|¢|io)wz+/G(P,Q)uu1‘t(c2) 2(Q) +i90]|¢|2(Q

27”2(27”2 + 1) -1

/GPQwﬂ®
6P) — [ Ioffws

1—-t
(|¢|hgw2+/GPQ$ /GPQ“Z(Q 2ry(2rg +1) — 1
ul—t 1
> (ol Jos: + [ GUP.Q)5tge D n(@) - [ G(P.QUn(@ - 5t
> -—C,

where we used the Green representation formula again in the third-to-last inequality.
O

Finally we prove an upper bound on v thus proving the closedness of T.
Lemma 4.8. The function ¥ satisfies ¥ < C, where C is independent of t.
Proof. Suppose the maximum of v is attained at a point p. At this point, we see

that i00v¢(p) < 0 and 9 (p) = O (p) = 0. Thus

_ - 2, iu(p) " ws (p)
(.40 00(p) = ws(p) > (1~ 65 0) {p oo

If the upper bound does not hold and a sequence of ¥, (p,) — oo (with p, — ¢),
then |¢|2(q) — 0. Hence,

1—t t
pu "' (g) o 5/2
4.41 1> = >at>a’?>1
(4 20 +3) (L o, @)
We have a contradiction. Hence ¢ < C. O

Therefore T is open, closed, and non-empty. Hence T = [0, 1] as desired.

Postscript : A slightly unsatisfactory aspect of the above proof is that the
method of continuity used above is tricky to generalise to an arbitrary vector bundle.
The usual method of continuity used for the complex Monge-Ampere equation is

Wy, = etfwn.
A naive generalisation of this to the Monge-Ampere Vortex equation seems to
cause problems with regard to the upper bound on %, i.e., Lemma .8 That being
said, it is quite possible that an involved Moser iteration argument (akin to the one
used for Calabi Conjecture) might circumvent this problem.
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4.6. rp > ro assuming existence. We now show that if a solution to equation
exists, then r; > ro. Indeed, if a solution exists then it also solves the vbMA
equation by Theorem Theorem [[.2] shows that the bundle is M A-stable. This
means that

para(mi(ri + 1)L @ m5r20(2)) < para(V).
We now calculate the second Chern characters of the bundles involved.

Chz(ﬂ'f(?‘l n 1)L ® 7T§T‘2(9(2)) _ Ch1 (7‘1’?(7‘1 + 1)L))Ch1 (7‘1’;'{‘20(2))

2
= (r1 + Dracy (L) [P
cha (V) = chao(ni(r1 + 1)L @ m3120(2)) + cha(niri L @ 5 (r2 + 1)O(2))
(4.42) = ((r1 + Dra +ri(r2 + 1))ea (L) [P'].
Therefore the stability condition translates into the following inequality.

(T1 —+ 1)T2 —+ ’I”l(’I”Q + 1)
2

(’I”l + 1)T2 <
(4'43) = 1ro < T1.

Remark 4.1. Interestingly enough, it can be shown that V' is Mumford stable with
respect to ¢1 (V). Indeed, by a result of Garcia-Prada [§] it suffices to check this for
the subbundle S = 7§ (r1 + 1)L @ w312 O(2).

c1(mi(r1 + 1)L @ w5re0(2)).c1(V) = ((r1 + 1)er (L) + 2ra[PH).((2r1 + V)er (L) + 2(2r2 + 1)[PY])
= (2(r1 + 1)(2ra + 1) + 2r2(2r1 + 1))er (L).[P]
c1 (V).Cl (V) = 4(27‘1 + 1)(27‘2 + 1)

degl(S) B degQ(V) =2(ry +1)(2ry + 1) + 2r9(2r1 + 1) — 2(2r, + 1)(2rg + 1)

(4.44) = —2r; +2ry <0.

As remarked in the introduction, this explains why a KLBMY-type inequality holds
in this case.

4.7. Uniqueness. To complete the proof of Theorem [[.3] we need to prove unique-
ness. Our strategy to do so is as follows :

(1) Let by denote the t = 1 solution arising from the continuity path 20 i.e.,
put~twsy + itV 00 A VY g
(2r2 +t[8]7, ) (2 +2r2 — t[8]7,)

Let ho denote any other solution of the Monge-Ampere Vortex equation
satsifying |(;5|,2L2 < 1. We wish to run another continuity path backwards

(4.45)  iOp, = i(On, + ;) = (1 —[6[2))

starting with Btzl =hs:
put~tws + itV%’0¢ A V0L pThe
(@ra + 102 )2 + 2r2 — 92 )’

Denote by T' C [0,1] the set of ¢ such that 6] has a smooth solution. This
set is non-empty because 1 € T.

(2) The proof of openness for 45 shows that the set T C [0,1] is open. The a
priori estimates for show that (0,1] € T. The only potential problem
can occur at ¢ = 0 because Lemma [£.§ is no longer valid.

(4.46) O, = i(On, + 00vr) = (1—[¢]2)
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(3) We prove that there exists a “small” g € [0, 1] such that 45 has a unique
solution at t = t9. That is, there exists a unique smooth h satisfying
62 <1 and

“owg +itg V0 A VLT
(27“ +1to[@l5)(2 + 2r2 — to|dl7)

(4.47) iOp = i(On, + 00) = (1 — |¢|h)

(4) The previous point implies that the two continuity paths 45 and .40
intersect at t = ¢y. Using this observation we prove that hy = hs.

Since steps 1 and 2 are already done, we proceed to step 3 :

Lemma 4.9. There exists a number ty € (0, 1] depending only on ro, p, ho such that
there is a unique smooth metric h satisfying |¢|3 <1 and the following equation.

puttows + itov,ﬁ% A VOt
(272 + tol@|7)(2 + 212 — to|9[7)

(4.48)  iOp = i(On, + 0) = (1 —|6[2)

Proof. As we go along the proof, we will choose ty to be a small enough number
depending only on ra, i, ho.

Let b1 be the solution hy, coming from the continuity path Denote by hs any
other smooth solution of 48 satisfying |gi)|%2 < 1. Define a function f to satisfy

ho = hre~F. Without loss of generality, there exists a point g such that
(4.49) f(g) > 0.
Let s = hre s/ = b3 [j % where 0 < s < 1. It is easy to see that

(4.50) 612

= (915> el5; < 1.

—— 1,0 0,1 41pg
Let I, = 275 +t0|¢|%s, I, = 27‘2+2—t0|¢|2s, and Jg = to 24‘(;)0711)¢/\V [ '

Therefore iOy, = (1 — |¢|?)Js
By assumption, iOy, = (1 —|¢|y, )?J1 and iOp, = (1 —|¢|y,)?J2. Upon subtrac-
tion we get the following equation.

ooy~ [ @ 2010812

(451) :/0 s (f|¢|hst+( |¢|bs>‘”>

We now calculate %

dJ, 1d(I), 1 dII),\  itosVy'pAVOigh.
s i

B I, ds ' II, ds (I) (I1),
 2Jstoflgl5, (1~ tolélf)) ito

(4.52) 000, W.uDsds

(33|¢|hs

b))
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where we used the Weitzenbock identity 4.15in the last equation of .30l Continuing
further,

dJ,  2Jst 2 (1 —to|o|? ; _ -
e o 2RO OO e (00 f10f,) + 001168, - 00.1161)
(4.53)
24t 2 (1 —tolo|? ; = =
N Oﬂ?.r')sén) — u)zf?z) (=19426 A V16t —of nDl6f;, - dlofz, A OF).

Substituting into .51l we get the following equation.
_ 1 2JtoflolZ (1 —t
o1 - | ds(f|¢ o080l
0 s

D), (I1)s
ito(1 — |9l 5 3
% (=19420 AV 16T —of ndI6fE, - Dl6fE, A OF) ) :

b.)

%SJS + (1 - |¢|%S)

(4.54)

Before we proceed further, we note that the proof of LemmalZ.flimplies the following
lower bound.

(4.55) [>-C,
where C depends only on 72, i1, hg. Define
(4.56) F=r@B+10l),

where 8 > 1 is a large enough constant (depending only on 72, i1, hg) to be chosen
later on and b is defined as

1 1
(4.57) h= / heds = hl/ e %/ ds.
0 0
From it easily follows that
2
(4.58) |¢)|h <1.

Moreover, the curvature of h is as follows.

1
O = Oy, — 09 In (/ esfds>
0

1

of | se~*/ds
=0y, + ot
e *fds
0
(4.59)
1 1 2 1
/ se %1 ds </ se_sfds> / s2e 5fds
=0y, +00fL—— +0f NOf 0 - —

1
/e_sfds (/ esfds)
0 0
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By the Cauchy-Schwarz inequality we see that

2

1 1
</ sesfds> / s2e 5fds
(4.60) o - g —— <0
/e_sfds /eisjds
0 0

Therefore,
(4.61) 10, < <S>i@h2 +(1- <S>)i@h1,
where
1
/ se~*fds
(4.62) 0<(s) =20 — <1.

1 —_
/ e *lds
0

If the maximum of f occurs at p, then 8f(p) = 5f(p) = 0. Assumption
implies that f(p) > 0, f(p) > 0. Therefore,

f(p)(B+1¢l2)(p) = — (P39l (p)

— 0 2
(4.63) = df(p) = %W'

Moreover, iagf(p) <0, ie.,

0> (B+ |9l (p)iddf (p) +i0f(p) A Dlols (p) + i0l¢l7 (p) A Of (p)
+ () (=04 (p)[05 (p) + iV b(p) A V1610 (p))

_ 2% 2 (L0 0ot
= 0> (B+|62(p))iddf(p) — fF0)1¢lg(p) V" d(p) A V1T (p)

B+ 1ol (p)
+ F(p)(—iOp|0[3 (p) + iV b(p) A Vo1 (p))
99 _ f(P)iGh(P)W@(P) i 1,0 0,1 st B— |¢|r2)(p)
=0 >1i00f(p) BT 1020) +if(p)Vy o(p) NV 6 (19)7(ﬂ+|¢|%(p))2

F(p)((5)iOy, + (1 = (5))iOy,) () |¢l5 (p)

100 -
= 199/ (p) B+ 1920

(4.64)

— 2
+ if(p)Vé’0¢(p) A v0,1¢1h(p) B |¢|b(p)

B+ 1605 ())?
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where we used .61 in the last inequality. Expanding further, we get the following.

F(p)((8)i®s, + (1 = (5))iOn,) (p) |97 (p)
B+ 1915 (p)

+ f(p)vh o(p) NV o (p)(ﬁ+|¢|2(p))2

7o) (<>&>JZ'?§2+<1 <s>>&>f‘};1)<>|¢|<> W (s ()

0> iddf(p) —

= 0>1i00f(p) —

B+ 1ol (p)
if(p) [V o(p) AV (p)(B — 62 (p))
M 19[Z(p) B+ 1613 (p)
(4.65)
(1 16[5,)V5"9 A VO 1gh2 (1= |9l V1“9 A VO1h
Let

a|¢l3 91417, 4 a|¢l3 0leln
B+\¢>\2 B+Iol3

V150¢/\ vosl(bJrh

Before substituting .54 in [L.65] we evaluate it at p and simplify it using [£.63

B 1
iddf (p) > /O ds (fl@ﬁlf,s (p)Js(p)

ito(1 — |6[2.)(p)
0.0 I).0)

> paut =" (p)
> [ o (f M URDIITIR

(4.66)
itof () Vi 9(p) A V0 (p)
(1)s(p)(I1)s(p)

F)Vlo(p) AV gl (p) (-1 + E))

(=@ =1el5,)®) + ol (p) + (1 - |¢|§S)E)>
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Now we substitute [£.66] in [£.65] to get the following equation.

1 9 M
02/0 d5<f|¢|hs(p)w2(p)(f) (p)(I1)s(p)

itof (p)V "d(p) A VO1gT0e (p)
T .00 (”'E')>

Fhosto) ()t + (1= (D et ) @'~ o)
) B+ 19 )

if(p) (V%,%(p) A VOGN (p)(B — 1015 ()
B+ lol (p) B+ 19l (p)
(4.67)

_ 2 leo V0.1 402 _ 2 v170 V0.1 401
_<<S>(1 T+ = D )“’”‘f"%(p))'

)
2
b

+

We simplify [£67] further to get the following inequality at p. (We suppress the
dependence on p from now onwards.)

1 L ) + (- )
2 1—to {D20110)- D100,
OZ/O ds(|¢|hsfwz/iu |:(I)S(II)S ﬁ+|¢|§
ito f V6 A VO ighos
77 e U 'E')>
if  [(VyloAVOieh (B —|0f})
BT Lelps B+ 191
(4.68)
(1— |¢|22)Vé’0¢ A v0,1¢b2 (1— |¢|§1)v170¢ A v0,1¢b1 )

At this point we choose 8 > 1 to be so large that

1) i+ (L= ) et
DD, B+ o8

DY S G N SR (S SR G
~ W\ @D, T W00 +19F) .00, ~ D205 + 9F)
(4.69)

Z 1002m) 2 + 1)
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Using [4.69 in .68 we get the following inequality at p.

! FI put=to ito V00 A VO LgTee
02/0 d8(10(2r2)(27~2+1) - (Ds(11)s (1+[E])
if (V3 oAVl (8~ |6l})
REaT: B+ 10l2
(4.70)
(1—1915,) V"0 A VO (1=}, ) V%o A VoighY

Now we relate Vi, ¢ to V¢ using [L.63l

1,0 0,1 11y, — 1,0 ! —sf 0,1 i ! —sf o
Vil @AV gl = [V ¢—0In /e ds| o) ANV Q'o /e ds
0 0
(V50 + ()0£0) A (V016 + (s)f i)
T
/ e %l ds
(5170~ 0 42228) . (00 - 2

/ —sfds

I ST A
/165fds B+ 1ol
0

(4.71) _ Vo nvigh <1 + fol(—tf)etfdt|¢|21>2
: - 2
/ e *lds At |¢|h
0

Note that whenever x < C, ze® is bounded above and below. Therefore, since
—tf <tC; (where C} is the constant appearing in [L.55)),

(4.72) | /(Jl(—tf)e_tfdtl <K,

where K depends only on 79, t, hg. This means that

V6 A VOl
63V 0 AVt Tn < g ¢ i <

Q|N
~—

e *fds

< |of2, Vy 0¢/\ AARRFAD (1 +

)

N
Sls
\_/

(4.73) <V, AVOeT (

QlN
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Likewise, for Vy,¢ we have the following relation

1 -1
Vylo A VOtgine = <v;’0¢ —dln ( 5fds> ¢ — 8f¢>> A VO ((b“ef (/0 65de> )

(94064 ((s) = 1)9f0) A (V0161 + ((s) — 1)F61)

- ()~ DR )

B+18I3

V00 A Vgl <
i

/ e *lds
0

VoA vOeh <
=€

1
/ e *lds
0

By the same reasoning as before

RV
B+ 19l
(4.74)

Jla = o ret-nsarep,\’
B+ 19l

Ve AV gl
|65 Voy & A Vgl < [glfe f"— (1

/ e *lds
0

K 2
<Iof. vyt nv o (14 5)

K 2
(4.75) < Vo AVOgT <1+ ) .

Putting E73] [175], and [£70] we get the following inequality at p

1 flole, pu'=t itofV;"SO(b/\ AVACRYOLR
0= | d8<10<2r2>(2r2+1> T, HE
(4.76)

ifVy o AV (5 —gfh EN’ [ (s) (1 - (s))
S ER P B+ 1o (”6) ((1)2(11)2+(I)1(U)1> '
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For a large enough § (depending only on 79, i1, ho) we see that

. /1 o Al ifVyTe AN (14| B
= Jo 1002r0)(2r, + 1) ° 29 (2r5 + 1)

if Vo AVOIgh 3
2T2(

(4.77)
Lo ettt iVt AVIghe (14 B if Ve A VOIgh
= / ds ) i + ,
0 10(2r2)(2r2 + 1) 2ra(2ra + 1) 283

The following equations describe the relationship between V¢ and Vy_¢.

1 1 -1
V' AV lgh = <v;’0¢ —dln </ etfdt> - saf¢> AV <¢Lesf </ etfdt) )
0 0

—sf B
= ——— (Vi %0+ ((s) = 5)056) A (V16T + ((s) — $)Df o)
/ e tdt
0
(4.78)
—sf _ 2 2
=0 Vilo A Vet <1 + (8= )7loly <S>)f2|,¢|“>
/ e,tfdt ﬁ+|¢|b
0
Note that
- oy 2 :
] 3 [
<Sh-e
Cy
(4.79) < %,
where we used estimate Using .77 [4.78, and we see that
(4.80)
1+ |E]|
f|¢|fz)ﬂul_t0 . 1,0 0,1 11, < / tjdt ) 2(1 4 ¢“) ’
02 0@ @ + 1) AT %_ 2ry 2r2+1) (H 8 >
Now we estimate fo |E|f17'ffdtd
V8l
———ds
/ T ﬂ+|¢l2/ [re tfdt|¢|b|¢|h |v ol
Vg 9l
4.81 ds.
) ‘5/ Joe tfdf|V1°¢+¢6f i

(s = (sDly b=
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Using we get the following.

1 75‘)‘ 2 1 75‘)" 1
€ e
/ |E| 1 _tfdtds S B/ 1 _tfdt |¢|%‘57<5>‘ Ve—sf ds
0 Joe o Joe - B+I8I2 |\/fle—tfdt
0

(4.82) <1,

for large enough 3. Therefore,

(4.83)

flglopa’ =t ifVto AV gl
= 10(2r2)(2r2 + 1) 43

for sufficiently small ¢y (depending on 3,72, i, ho). As before, since the line bundle
is of degree 1, either ¢(p) # 0 or |V¢|(p) # 0. This implies that f(p) < 0 which is
a contradiction. Hence f = 0 showing uniqueness for small ¢y. O

Now we complete step 4 and hence the proof of uniqueness.

Lemma 4.10. If there exists a tog € [0,1] such that hy, = Bto then hy = ho.

Proof. Let S C [8,1] be the set of all ¢ such that h; = h;. Then S satisfies the
following.

(1) It is non-empty : Jp € S.

(2) Tt is open : The proof of openness (Lemma F4]) and the inverse function
theorem of Banach manifolds shows that locally the solution is unique and
hence S is open.

(3) It is closed : The a priori estimates in the proof of existence show that S
is closed.

Therefore S = [dp, 1] as desired. O
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